1
|
Takasaki R, Ito E, Nagae M, Takahashi Y, Matsuoka T, Yasue W, Arichi N, Ohno H, Yamasaki S, Inuki S. Development of Ribityllumazine Analogue as Mucosal-Associated Invariant T Cell Ligands. J Am Chem Soc 2024; 146:29964-29976. [PMID: 39432319 DOI: 10.1021/jacs.4c12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells abundant in human tissues that play a significant role in defense against bacterial and viral infections and in tissue repair. MAIT cells are activated by recognizing microbial-derived small-molecule ligands presented by the MHC class I related-1 protein. Although several MAIT cell modulators have been identified in the past decade, potent and chemically stable ligands remain limited. Herein, we carried out a structure-activity relationship study of ribityllumazine derivatives and found a chemically stable MAIT cell ligand with a pteridine core and a 2-oxopropyl group as the Lys-reactive group. The ligand showed high potency in a cocultivation assay using model cell lines of antigen-presenting cells and MAIT cells. The X-ray crystallographic analysis revealed the binding mode of the ligand to MR1 and the T cell receptor, indicating that it forms a covalent bond with MR1 via Schiff base formation. Furthermore, we found that the ligand stimulated proliferation of human MAIT cells in human peripheral blood mononuclear cells and showed an adjuvant effect in mice. Our developed ligand is one of the most potent among chemically stable MAIT cell ligands, contributing to accelerating therapeutic applications of MAIT cells.
Collapse
Affiliation(s)
- Ryosuke Takasaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Emi Ito
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Masamichi Nagae
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Takahashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Takuro Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Wakana Yasue
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8505, Japan
| |
Collapse
|
2
|
López-Rodríguez JC, Barral P. Mucosal associated invariant T cells: Powerhouses of the lung. Immunol Lett 2024; 269:106910. [PMID: 39128630 DOI: 10.1016/j.imlet.2024.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The lungs face constant environmental challenges from harmless molecules, airborne pathogens and harmful agents that can damage the tissue. The lungs' immune system includes numerous tissue-resident lymphocytes that contribute to maintain tissue homeostasis and to the early initiation of immune responses. Amongst tissue-resident lymphocytes, Mucosal Associated Invariant T (MAIT) cells are present in human and murine lungs and emerging evidence supports their contribution to immune responses during infections, chronic inflammatory disorders and cancer. This review explores the mechanisms underpinning MAIT cell functions in the airways, their impact on lung immunity and the potential for targeting pulmonary MAIT cells in a therapeutic context.
Collapse
Affiliation(s)
- J C López-Rodríguez
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK.
| | - P Barral
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
3
|
Maerz MD, Cross DL, Seshadri C. Functional and biological implications of clonotypic diversity among human donor-unrestricted T cells. Immunol Cell Biol 2024; 102:474-486. [PMID: 38659280 PMCID: PMC11236517 DOI: 10.1111/imcb.12751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/04/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
T cells express a T-cell receptor (TCR) heterodimer that is the product of germline rearrangement and junctional editing resulting in immense clonotypic diversity. The generation of diverse TCR repertoires enables the recognition of pathogen-derived peptide antigens presented by polymorphic major histocompatibility complex (MHC) molecules. However, T cells also recognize nonpeptide antigens through nearly monomorphic antigen-presenting systems, such as cluster of differentiation 1 (CD1), MHC-related protein 1 (MR1) and butyrophilins (BTNs). This potential for shared immune responses across genetically diverse populations led to their designation as donor-unrestricted T cells (DURTs). As might be expected, some CD1-, MR1- and BTN-restricted T cells express a TCR that is conserved across unrelated individuals. However, several recent studies have reported unexpected diversity among DURT TCRs, and increasing evidence suggests that this diversity has functional consequences. Recent reports also challenge the dogma that immune cells are either innate or adaptive and suggest that DURT TCRs may act in both capacities. Here, we review this evidence and propose an expanded view of the role for clonotypic diversity among DURTs in humans, including new perspectives on how DURT TCRs may integrate their adaptive and innate immune functions.
Collapse
Affiliation(s)
- Megan D Maerz
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Molecular Medicine and Mechanisms of Disease Program, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Deborah L Cross
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
4
|
Liman N, Lanasa D, Meylan F, Park JH. The ever-expanding role of cytokine receptor DR3 in T cells. Cytokine 2024; 176:156540. [PMID: 38359559 PMCID: PMC10895922 DOI: 10.1016/j.cyto.2024.156540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Death Receptor 3 (DR3) is a cytokine receptor of the Tumor Necrosis Factor receptor superfamily that plays a multifaceted role in both innate and adaptive immunity. Based on the death domain motif in its cytosolic tail, DR3 had been proposed and functionally affirmed as a trigger of apoptosis. Further studies, however, also revealed roles of DR3 in other cellular pathways, including inflammation, survival, and proliferation. DR3 is expressed in various cell types, including T cells, B cells, innate lymphocytes, myeloid cells, fibroblasts, and even outside the immune system. Because DR3 is mainly expressed on T cells, DR3-mediated immune perturbations leading to autoimmunity and other diseases were mostly attributed to DR3 activation of T cells. However, which T cell subset and what T effector functions are controlled by DR3 to drive these processes remain incompletely understood. DR3 engagement was previously found to alter CD4 T helper subset differentiation, expand the Foxp3+ Treg cell pool, and maintain intraepithelial γδ T cells in the gut. Recent studies further unveiled a previously unacknowledged aspect of DR3 in regulating innate-like invariant NKT (iNKT) cell activation, expanding the scope of DR3-mediated immunity in T lineage cells. Importantly, in the context of iNKT cells, DR3 ligation exerted costimulatory effects in agonistic TCR signaling, unveiling a new regulatory framework in T cell activation and proliferation. The current review is aimed at summarizing such recent findings on the role of DR3 on conventional T cells and innate-like T cells and discussing them in the context of immunopathogenesis.
Collapse
Affiliation(s)
- Nurcin Liman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Dominic Lanasa
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Françoise Meylan
- Office of Science and Technology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, NIH, Bethesda, MD 20892, United States
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
5
|
Méndez Y, Vasco AV, Ebensen T, Schulze K, Yousefi M, Davari MD, Wessjohann LA, Guzmán CA, Rivera DG, Westermann B. Diversification of a Novel α-Galactosyl Ceramide Hotspot Boosts the Adjuvant Properties in Parenteral and Mucosal Vaccines. Angew Chem Int Ed Engl 2024; 63:e202310983. [PMID: 37857582 DOI: 10.1002/anie.202310983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
The development of potent adjuvants is an important step for improving the performance of subunit vaccines. CD1d agonists, such as the prototypical α-galactosyl ceramide (α-GalCer), are of special interest due to their ability to activate iNKT cells and trigger rapid dendritic cell maturation and B-cell activation. Herein, we introduce a novel derivatization hotspot at the α-GalCer skeleton, namely the N-substituent at the amide bond. The multicomponent diversification of this previously unexplored glycolipid chemotype space permitted the introduction of a variety of extra functionalities that can either potentiate the adjuvant properties or serve as handles for further conjugation to antigens toward the development of self-adjuvanting vaccines. This strategy led to the discovery of compounds eliciting enhanced antigen-specific T cell stimulation and a higher antibody response when delivered by either the parenteral or the mucosal route, as compared to a known potent CD1d agonist. Notably, various functionalized α-GalCer analogues showed a more potent adjuvant effect after intranasal immunization than a PEGylated α-GalCer analogue previously optimized for this purpose. Ultimately, this work could open multiple avenues of opportunity for the use of mucosal vaccines against microbial infections.
Collapse
Affiliation(s)
- Yanira Méndez
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Zapata & G, Havana, 10400, Cuba
| | - Aldrin V Vasco
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
| | - Thomas Ebensen
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Kai Schulze
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Mohammad Yousefi
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
| | - Carlos A Guzmán
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Daniel G Rivera
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Zapata & G, Havana, 10400, Cuba
- Finlay Institute of Vaccines, 200 and 21 Street, Havana, 11600, Cuba
| | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
| |
Collapse
|
6
|
Rhoiney ML, Alvizo CR, Jameson JM. Skin Homeostasis and Repair: A T Lymphocyte Perspective. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1266-1275. [PMID: 37844280 DOI: 10.4049/jimmunol.2300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 10/18/2023]
Abstract
Chronic, nonhealing wounds remain a clinical challenge and a significant burden for the healthcare system. Skin-resident and infiltrating T cells that recognize pathogens, microbiota, or self-antigens participate in wound healing. A precise balance between proinflammatory T cells and regulatory T cells is required for the stages of wound repair to proceed efficiently. When diseases such as diabetes disrupt the skin microenvironment, T cell activation and function are altered, and wound repair is hindered. Recent studies have used cutting-edge technology to further define the cellular makeup of the skin prior to and during tissue repair. In this review, we discuss key advances that highlight mechanisms used by T cell subsets to populate the epidermis and dermis, maintain skin homeostasis, and regulate wound repair. Advances in our understanding of how skin cells communicate in the skin pave the way for therapeutics that modulate regulatory versus effector functions to improve nonhealing wound treatment.
Collapse
Affiliation(s)
- Mikaela L Rhoiney
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| | - Cristian R Alvizo
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| | - Julie M Jameson
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| |
Collapse
|
7
|
Matsuoka T, Hattori A, Oishi S, Araki M, Ma B, Fujii T, Arichi N, Okuno Y, Kakeya H, Yamasaki S, Ohno H, Inuki S. Establishment of an MR1 Presentation Reporter Screening System and Identification of Phenylpropanoid Derivatives as MR1 Ligands. J Med Chem 2023; 66:12520-12535. [PMID: 37638616 DOI: 10.1021/acs.jmedchem.3c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that are modulated by ligands presented on MHC class I-related proteins (MR1). These cells have attracted attention as potential drug targets because of their involvement in the initial response to infection and various disorders. Herein, we have established the MR1 presentation reporter assay system employing split-luciferase, which enables the efficient exploration of MR1 ligands. Using our screening system, we identified phenylpropanoid derivatives as MR1 ligands, including coniferyl aldehyde, which have an ability to inhibit the MR1-MAIT cell axis. Further, the structure-activity relationship study of coniferyl aldehyde analogs revealed the key structural features of ligands required for MR1 recognition. These results will contribute to identifying a broad range of endogenous and exogenous MR1 ligands and to developing novel MAIT cell modulators.
Collapse
Affiliation(s)
- Takuro Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akira Hattori
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsugu Araki
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Biao Ma
- RIKEN Center for Computational Science, Chuo-ku, Kobe 650-0047, Japan
| | - Toshiki Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasushi Okuno
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
- RIKEN Center for Computational Science, Chuo-ku, Kobe 650-0047, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Soliman AM, Barreda DR. The acute inflammatory response of teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104731. [PMID: 37196851 DOI: 10.1016/j.dci.2023.104731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Acute inflammation is crucial to the immune responses of fish. The process protects the host from infection and is central to induction of subsequent tissue repair programs. Activation of proinflammatory signals reshapes the microenvironment within an injury/infection site, initiates leukocyte recruitment, promotes antimicrobial mechanisms and contributes to the resolution of inflammation. Inflammatory cytokines and lipid mediators are primary contributors to these processes. Uncontrolled or persistent induction results in delayed tissue healing. The kinetics by which inducers and regulators of acute inflammation exert their actions is essential for understanding the pathogenesis of fish diseases and identifying potential treatments. Although, a number of these are well-conserved across, others are not, reflecting the unique physiologies and life histories of members of this unique animal group.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences, University of Alberta, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Canada.
| |
Collapse
|
9
|
Zhang K, Chen L, Zhu C, Zhang M, Liang C. Current Knowledge of Th22 Cell and IL-22 Functions in Infectious Diseases. Pathogens 2023; 12:pathogens12020176. [PMID: 36839448 PMCID: PMC9965464 DOI: 10.3390/pathogens12020176] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
T helper 22 (Th22) cells, a newly defined CD4+ T-cell lineage, are characterized by their distinct cytokine profile, which primarily consists of IL-13, IL-22 and TNF-α. Th22 cells express a wide spectrum of chemokine receptors, such as CCR4, CCR6 and CCR10. The main effector molecule secreted by Th22 cells is IL-22, a member of the IL-10 family, which acts by binding to IL-22R and triggering a complex downstream signaling system. Th22 cells and IL-22 have been found to play variable roles in human immunity. In preventing the progression of infections such as HIV and influenza, Th22/IL-22 exhibited protective anti-inflammatory characteristics, and their deleterious proinflammatory activities have been demonstrated to exacerbate other illnesses, including hepatitis B and Helicobacter pylori infection. Herein, we review the current understanding of Th22 cells, including their definition, differentiation and mechanisms, and the effect of Th22/IL-22 on human infectious diseases. According to studies on Th22 cells, Th22/IL-22 may be a promising therapeutic target and an effective treatment strategy for various infections.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- The Second Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Lei Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
| | - Chenyu Zhu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- The Second Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Correspondence: (M.Z.); (C.L.); Tel./Fax: +86-55162922034 (M.Z.); +86-55162922034 (C.L.)
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Correspondence: (M.Z.); (C.L.); Tel./Fax: +86-55162922034 (M.Z.); +86-55162922034 (C.L.)
| |
Collapse
|
10
|
Immunometabolism of Immune Cells in Mucosal Environment Drives Effector Responses against Mycobacterium tuberculosis. Int J Mol Sci 2022; 23:ijms23158531. [PMID: 35955665 PMCID: PMC9369211 DOI: 10.3390/ijms23158531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Tuberculosis remains a major threat to global public health, with more than 1.5 million deaths recorded in 2020. Improved interventions against tuberculosis are urgently needed, but there are still gaps in our knowledge of the host-pathogen interaction that need to be filled, especially at the site of infection. With a long history of infection in humans, Mycobacterium tuberculosis (Mtb) has evolved to be able to exploit the microenvironment of the infection site to survive and grow. The immune cells are not only reliant on immune signalling to mount an effective response to Mtb invasion but can also be orchestrated by their metabolic state. Cellular metabolism was often overlooked in the past but growing evidence of its importance in the functions of immune cells suggests that it can no longer be ignored. This review aims to gain a better understanding of mucosal immunometabolism of resident effector cells, such as alveolar macrophages and mucosal-associated invariant T cells (MAIT cells), in response to Mtb infection and how Mtb manipulates them for its survival and growth, which could address our knowledge gaps while opening up new questions, and potentially be applied for future vaccination and therapeutic strategies.
Collapse
|
11
|
Oh SF, Jung DJ, Choi E. Gut Microbiota-Derived Unconventional T Cell Ligands: Contribution to Host Immune Modulation. Immunohorizons 2022; 6:476-487. [PMID: 35868838 PMCID: PMC9924074 DOI: 10.4049/immunohorizons.2200006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023] Open
Abstract
Besides the prototypic innate and adaptive pathways, immune responses by innate-like lymphocytes have gained significant attention due to their unique roles. Among innate-like lymphocytes, unconventional T cells such as NKT cells and mucosal-associated invariant T (MAIT) cells recognize small nonpeptide molecules of specific chemical classes. Endogenous or microbial ligands are loaded to MHC class I-like molecule CD1d or MR1, and inducing immediate effector T cell and ligand structure is one of the key determinants of NKT/MAIT cell functions. Unconventional T cells are in close, constant contact with symbiotic microbes at the mucosal layer, and CD1d/MR1 can accommodate diverse metabolites produced by gut microbiota. There is a strong interest to identify novel immunoactive molecules of endobiotic (symbiont-produced) origin as new NKT/MAIT cell ligands, as well as new cognate Ags for previously uncharacterized unconventional T cell subsets. Further studies will open an possibility to explore basic biology as well as therapeutic potential.
Collapse
Affiliation(s)
- Sungwhan F. Oh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Da-Jung Jung
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Eungyo Choi
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
12
|
Li Y, Shi CW, Zhang YT, Huang HB, Jiang YL, Wang JZ, Cao X, Wang N, Zeng Y, Yang GL, Yang WT, Wang CF. Riboflavin Attenuates Influenza Virus Through Cytokine-Mediated Effects on the Diversity of the Gut Microbiota in MAIT Cell Deficiency Mice. Front Microbiol 2022; 13:916580. [PMID: 35722312 PMCID: PMC9204145 DOI: 10.3389/fmicb.2022.916580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Influenza is a serious respiratory disease that continues to threaten global health. Mucosa-associated invariant T (MAIT) cells use T-cell receptors (TCRs) that recognize microbial riboflavin derived intermediates presented by the major histocompatibility complex (MHC) class I-like protein MR1. Riboflavin synthesis is broadly conserved, but the roles or mechanisms of riboflavin in MR1–/– mouse influenza infection are not well understood. In our study, immunofluorescence techniques were applied to analyze the number and distribution of viruses in lung tissue. The amount of cytokine expression was assessed by flow cytometry (FCM), ELISA, and qPCR. The changes in the fecal flora of mice were evaluated based on amplicon sequencing of the 16S V3-V4 region. Our study showed that MAIT cell deficiency increased mortality and that riboflavin altered these effects in microbiota-depleted mice. The oral administration of riboflavin inhibited IL-1β, IL-17A, and IL-18 production but significantly increased the expression of IFN-γ, TNF-α, CCL2, CCL3, and CCL4 in a mouse model. The analysis of the mouse flora revealed that riboflavin treatment significantly increased the relative abundance of Akkermansia and Lactobacillus (p < 0.05) and decreased that of Bacteroides. In contrast, MR1–/– mice exhibited a concentrated aggregation of Bacteroides (p < 0.01), which indicated that MAIT cell deficiency reduced the diversity of the bacterial population. Our results define the functions of MAIT cells and riboflavin in resistance to influenza virus and suggest a potential role for riboflavin in enhancing MAIT cell immunity and the intestinal flora diversity. Gut populations can be expanded to enhance host resistance to influenza, and the results indicate novel interactions among viruses, MAIT cells, and the gut microbiota.
Collapse
Affiliation(s)
- Ying Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu-Ting Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
- *Correspondence: Gui-Lian Yang,
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
- Wen-Tao Yang,
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
- Chun-Feng Wang,
| |
Collapse
|
13
|
Recent Advancements in Antifibrotic Therapies for Regression of Liver Fibrosis. Cells 2022; 11:cells11091500. [PMID: 35563807 PMCID: PMC9104939 DOI: 10.3390/cells11091500] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Cirrhosis is a severe form of liver fibrosis that results in the irreversible replacement of liver tissue with scar tissue in the liver. Environmental toxicity, infections, metabolic causes, or other genetic factors including autoimmune hepatitis can lead to chronic liver injury and can result in inflammation and fibrosis. This activates myofibroblasts to secrete ECM proteins, resulting in the formation of fibrous scars on the liver. Fibrosis regression is possible through the removal of pathophysiological causes as well as the elimination of activated myofibroblasts, resulting in the reabsorption of the scar tissue. To date, a wide range of antifibrotic therapies has been tried and tested, with varying degrees of success. These therapies include the use of growth factors, cytokines, miRNAs, monoclonal antibodies, stem-cell-based approaches, and other approaches that target the ECM. The positive results of preclinical and clinical studies raise the prospect of a viable alternative to liver transplantation in the near future. The present review provides a synopsis of recent antifibrotic treatment modalities for the treatment of liver cirrhosis, as well as a brief summary of clinical trials that have been conducted to date.
Collapse
|
14
|
Rivera-Lugo R, Light SH, Garelis NE, Portnoy DA. RibU is an essential determinant of Listeria pathogenesis that mediates acquisition of FMN and FAD during intracellular growth. Proc Natl Acad Sci U S A 2022; 119:e2122173119. [PMID: 35316134 PMCID: PMC9060500 DOI: 10.1073/pnas.2122173119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential riboflavin-derived cofactors involved in a myriad of redox reactions across all forms of life. Nevertheless, the basis of flavin acquisition strategies by riboflavin auxotrophic pathogens remains poorly defined. In this study, we examined how the facultative intracellular pathogen Listeria monocytogenes, a riboflavin auxotroph, acquires flavins during infection. A L. monocytogenes mutant lacking the putative riboflavin transporter (RibU) was completely avirulent in mice but had no detectable growth defect in nutrient-rich media. However, unlike wild type, the RibU mutant was unable to grow in defined media supplemented with FMN or FAD or to replicate in macrophages starved for riboflavin. Consistent with RibU functioning to scavenge FMN and FAD inside host cells, a mutant unable to convert riboflavin to FMN or FAD retained virulence and grew in cultured macrophages and in spleens and livers of infected mice. However, this FMN- and FAD-requiring strain was unable to grow in the gallbladder or intestines, where L. monocytogenes normally grows extracellularly, suggesting that these sites do not contain sufficient flavin cofactors to promote replication. Thus, by deleting genes required to synthesize FMN and FAD, we converted L. monocytogenes from a facultative to an obligate intracellular pathogen. Collectively, these data indicate that L. monocytogenes requires riboflavin to grow extracellularly in vivo but scavenges FMN and FAD to grow in host cells.
Collapse
Affiliation(s)
- Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Samuel H. Light
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Nicholas E. Garelis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
15
|
Vazquez J, Chavarria M, Chasman DA, Schwartz RW, Tyler CT, Lopez G, Fisher RC, Ong IM, Stanic AK. Multiomic analysis reveals decidual-specific transcriptional programing of MAIT cells. Am J Reprod Immunol 2021; 86:e13495. [PMID: 34411378 PMCID: PMC8720468 DOI: 10.1111/aji.13495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/24/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
PROBLEM Mucosal-Associated Invariant T (MAIT) cells have been recently identified at the maternal-fetal interface. However, transcriptional programming of decidual MAIT cells in pregnancy remains poorly understood. METHOD OF STUDY We employed a multiomic approach to address this question. Mononuclear cells from the decidua basalis and parietalis, and control PBMCs, were analyzed via flow cytometry to investigate MAIT cells in the decidua and assess their transcription factor expression. In a separate study, both decidual and matched peripheral MAIT cells were analyzed using Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) coupled with gene expression analysis. Lastly, decidual MAIT cells were stimulated with E.coli and expression of MR1 by antigen presenting cells was measured to evaluate decidual MAIT cell function. RESULTS First, we identified MAIT cells in both the decidua basalis and parietalis. CITE-seq, coupled with scRNA-seq gene expression analysis, highlighted transcriptional programming differences between decidual and matched peripheral MAIT cells at a single cell resolution. Transcription factor expression analysis further highlighted transcriptional differences between decidual MAIT cells and non-matched peripheral MAIT cells. Functionally, MAIT cells are skewed towards IFNγ and TNFα production upon stimulation, with E.coli leading to IFNγ production. Lastly, we demonstrate that MR1, the antigen presenting molecule restricting MAIT cells, is expressed by decidual APCs. CONCLUSION MAIT cells are present in the decidua basalis and obtain a unique gene expression profile. The presence of MR1 on APCs coupled with in vitro activation by E.coli suggests that MAIT cells might be involved in tissue-repair mechanisms at the maternal-fetal interface.
Collapse
Affiliation(s)
| | | | - Deborah A. Chasman
- Departments of Obstetrics and Gynecology
- Biostatistics and Medical Informatics
| | - Rene Welch Schwartz
- Departments of Obstetrics and Gynecology
- Biostatistics and Medical Informatics
| | | | | | | | - Irene M. Ong
- Departments of Obstetrics and Gynecology
- Biostatistics and Medical Informatics
- University of Wisconsin Carbone Comprehensive Cancer Center
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI
| | | |
Collapse
|
16
|
Nel I, Beaudoin L, Gouda Z, Rousseau C, Soulard P, Rouland M, Bertrand L, Boitard C, Larger E, Lehuen A. MAIT cell alterations in adults with recent-onset and long-term type 1 diabetes. Diabetologia 2021; 64:2306-2321. [PMID: 34350463 PMCID: PMC8336671 DOI: 10.1007/s00125-021-05527-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/27/2021] [Indexed: 11/03/2022]
Abstract
AIMS/HYPOTHESIS Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes expressing an αβ T cell antigen receptor that recognises the MHC-related 1 molecule. MAIT cells are altered in children at risk for and with type 1 diabetes, and mouse model studies have shown MAIT cell involvement in type 1 diabetes development. Since several studies support heterogeneity in type 1 diabetes physiopathology according to the age of individuals, we investigated whether MAIT cells were altered in adults with type 1 diabetes. METHODS MAIT cell frequency, phenotype and function were analysed by flow cytometry, using fresh peripheral blood from 21 adults with recent-onset type 1 diabetes (2-14 days after disease onset) and 47 adults with long-term disease (>2 years after diagnosis) compared with 55 healthy blood donors. We also separately analysed 17 women with long-term type 1 diabetes and an associated autoimmune disease, compared with 30 healthy women and 27 women with long-term type 1 diabetes. RESULTS MAIT cells from adults with recent-onset type 1 diabetes, compared with healthy adult donors, harboured a strongly activated phenotype indicated by an elevated CD25+ MAIT cell frequency. In adults with long-term type 1 diabetes, MAIT cells displayed an activated and exhausted phenotype characterised by high CD25 and programmed cell death 1 (PD1) expression and a decreased production of proinflammatory cytokines, IL-2, IFN-γ and TNF-α. Even though MAIT cells from these patients showed upregulated IL-17 and IL-4 production, the polyfunctionality of MAIT cells was decreased (median 4.8 vs 13.14% of MAIT cells, p < 0.001) and the frequency of MAIT cells producing none of the effector molecules analysed increased (median 34.40 vs 19.30% of MAIT cells, p < 0.01). Several MAIT cell variables correlated with HbA1c level and more particularly in patients with recent-onset type 1 diabetes. In women with long-term type 1 diabetes, MAIT cell alterations were more pronounced in those with an associated autoimmune disease than in those without another autoimmune disease. In women with long-term type 1 diabetes and an associated autoimmune disease, there was an increase in CD69 expression and a decrease in the survival B-cell lymphoma 2 (BCL-2) (p < 0.05) and CD127 (IL-7R) (p < 0.01) marker expression compared with women without a concomitant autoimmune disorder. Concerning effector molecules, TNF-α and granzyme B production by MAIT cells was decreased. CONCLUSIONS/INTERPRETATION Alterations in MAIT cell frequency, phenotype and function were more pronounced in adults with long-term type 1 diabetes compared with adults with recent-onset type 1 diabetes. There were several correlations between MAIT cell variables and clinical characteristics. Moreover, the presence of another autoimmune disease in women with long-term type 1 diabetes further exacerbated MAIT cell alterations. Our results suggest that MAIT cell alterations in adults with type 1 diabetes could be associated with two aspects of the disease: impaired glucose homeostasis; and autoimmunity.
Collapse
Affiliation(s)
- Isabelle Nel
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Lucie Beaudoin
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Zouriatou Gouda
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Camille Rousseau
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Pauline Soulard
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Matthieu Rouland
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Léo Bertrand
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Christian Boitard
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
- Diabetology Department, Cochin Hospital, AP-HP Centre - Université de Paris, Paris, France
| | - Etienne Larger
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
- Diabetology Department, Cochin Hospital, AP-HP Centre - Université de Paris, Paris, France
| | - Agnès Lehuen
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France.
| |
Collapse
|
17
|
Yang Q, Wen Y, Qi F, Gao X, Chen W, Xu G, Wei C, Wang H, Tang X, Lin J, Zhao J, Zhang M, Zhang S, Zhang Z. Suppressive Monocytes Impair MAIT Cells Response via IL-10 in Patients with Severe COVID-19. THE JOURNAL OF IMMUNOLOGY 2021; 207:1848-1856. [PMID: 34452933 DOI: 10.4049/jimmunol.2100228] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022]
Abstract
Immune cell responses are strikingly altered in patients with severe coronavirus disease 2019 (COVID-19), but the immunoregulatory process in these individuals is not fully understood. In this study, 23 patients with mild and 22 patients with severe COVID-19 and 6 asymptomatic carriers of COVID-19 were enrolled, along with 44 healthy controls (HC). Peripheral immune cells in HC and patients with COVID-19 were comprehensively profiled using mass cytometry. We found that in patients with severe COVID-19, the number of HLA-DRlow/- monocytes was significantly increased, but that of mucosal-associated invariant T (MAIT) cells was greatly reduced. MAIT cells were highly activated but functionally impaired in response to Escherichia coli and IL-12/IL-18 stimulation in patients with severe COVID-19, especially those with microbial coinfection. Single-cell transcriptome analysis revealed that IFN-stimulated genes were significantly upregulated in peripheral MAIT cells and monocytes from patients with severe COVID-19. IFN-α pretreatment suppressed MAIT cells' response to E. coli by triggering high levels of IL-10 production by HLA-DRlow/--suppressive monocytes. Blocking IFN-α or IL-10 receptors rescued MAIT cell function in patients with severe COVID-19. Moreover, plasma from patients with severe COVID-19 inhibited HLA-DR expression by monocytes through IL-10. These data indicate a unique pattern of immune dysregulation in severe COVID-19, which is characterized by enrichment of suppressive HLA-DRlow/- monocytes associated with functional impairment of MAIT cells through the IFN/IL-10 pathway.
Collapse
Affiliation(s)
- Qianting Yang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yanling Wen
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Furong Qi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiang Gao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Weixin Chen
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Gang Xu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Cailing Wei
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Haiyan Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xian Tang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jingyan Lin
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Juanjuan Zhao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Mingxia Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China; and
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China; .,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, China
| |
Collapse
|
18
|
Abstract
To resolve the growing problem of drug resistance in the treatment of bacterial and fungal pathogens, specific cellular targets and pathways can be used as targets for new antimicrobial agents. Endogenous riboflavin biosynthesis is a conserved pathway that exists in most bacteria and fungi. In this review, the roles of endogenous and exogenous riboflavin in infectious disease as well as several antibacterial agents, which act as analogues of the riboflavin biosynthesis pathway, are summarized. In addition, the effects of exogenous riboflavin on immune cells, cytokines, and heat shock proteins are described. Moreover, the immune response of endogenous riboflavin metabolites in infectious diseases, recognized by MHC-related protein-1, and then presented to mucosal associated invariant T cells, is highlighted. This information will provide a strategy to identify novel drug targets as well as highlight the possible clinical use of riboflavin.
Collapse
Affiliation(s)
- Junwen Lei
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Caiyan Xin
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Wei Xiao
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Wenbi Chen
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| |
Collapse
|
19
|
Czaja AJ. Incorporating mucosal-associated invariant T cells into the pathogenesis of chronic liver disease. World J Gastroenterol 2021; 27:3705-3733. [PMID: 34321839 PMCID: PMC8291028 DOI: 10.3748/wjg.v27.i25.3705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/22/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells have been described in liver and non-liver diseases, and they have been ascribed antimicrobial, immune regulatory, protective, and pathogenic roles. The goals of this review are to describe their biological properties, indicate their involvement in chronic liver disease, and encourage investigations that clarify their actions and therapeutic implications. English abstracts were identified in PubMed by multiple search terms, and bibliographies were developed. MAIT cells are activated by restricted non-peptides of limited diversity and by multiple inflammatory cytokines. Diverse pro-inflammatory, anti-inflammatory, and immune regulatory cytokines are released; infected cells are eliminated; and memory cells emerge. Circulating MAIT cells are hyper-activated, immune exhausted, dysfunctional, and depleted in chronic liver disease. This phenotype lacks disease-specificity, and it does not predict the biological effects. MAIT cells have presumed protective actions in chronic viral hepatitis, alcoholic hepatitis, non-alcoholic fatty liver disease, primary sclerosing cholangitis, and decompensated cirrhosis. They have pathogenic and pro-fibrotic actions in autoimmune hepatitis and mixed actions in primary biliary cholangitis. Local factors in the hepatic microenvironment (cytokines, bile acids, gut-derived bacterial antigens, and metabolic by-products) may modulate their response in individual diseases. Investigational manipulations of function are warranted to establish an association with disease severity and outcome. In conclusion, MAIT cells constitute a disease-nonspecific, immune response to chronic liver inflammation and infection. Their pathological role has been deduced from their deficiencies during active liver disease, and future investigations must clarify this role, link it to outcome, and explore therapeutic interventions.
Collapse
Affiliation(s)
- Albert J Czaja
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States
| |
Collapse
|
20
|
Hagel JP, Bennett K, Buffa F, Klenerman P, Willberg CB, Powell K. Defining T Cell Subsets in Human Tonsils Using ChipCytometry. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:3073-3082. [PMID: 34099545 PMCID: PMC8278278 DOI: 10.4049/jimmunol.2100063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/15/2021] [Indexed: 11/19/2022]
Abstract
ChipCytometry is a multiplex imaging method that can be used to analyze either cell suspensions or tissue sections. Images are acquired by iterative cycles of immunostaining with fluorescently labeled Abs, followed by photobleaching, which allows the accumulation of multiple markers on a single sample. In this study, we explored the feasibility of using ChipCytometry to identify and phenotype cell subsets, including rare cell types, using a combination of tissue sections and single-cell suspensions. Using ChipCytometry of tissue sections, we successfully demonstrated the architecture of human palatine tonsils, including the B and T cell zones, and characterized subcompartments such as the B cell mantle and germinal center zone, as well as intrafollicular PD1-expressing CD4+ T cells. Additionally, we were able to identify the rare tonsillar T cell subsets, mucosal-associated invariant T (MAIT) and γδ-T cells, within tonsil tissue. Using single-cell suspension ChipCytometry, we further dissected human tonsillar T cell subsets via unsupervised clustering analysis as well as supervised traditional manual gating. We were able to show that PD1+CD4+ T cells are comprised of CXCR5+BCL6high follicular Th cells and CXCR5-BCL6mid pre-follicular Th cells. Both supervised and unsupervised analysis approaches identified MAIT cells in single-cell suspensions, confirming a phenotype similar to that of blood-derived MAIT cells. In this study, we demonstrate that ChipCytometry is a viable method for single-cell suspension cytometry and analysis, with the additional benefit of allowing phenotyping in a spatial context using tissue sections.
Collapse
Affiliation(s)
- Joachim P Hagel
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom;
| | - Kyle Bennett
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Francesca Buffa
- Computational Biology and Integrative Genomics, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom;
- NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; and
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; and
| | - Kate Powell
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Moriarty RV, Ellis AL, O’Connor SL. Monkeying around with MAIT Cells: Studying the Role of MAIT Cells in SIV and Mtb Co-Infection. Viruses 2021; 13:863. [PMID: 34066765 PMCID: PMC8151491 DOI: 10.3390/v13050863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022] Open
Abstract
There were an estimated 10 million new cases of tuberculosis (TB) disease in 2019. While over 90% of individuals successfully control Mycobacterium tuberculosis (Mtb) infection, which causes TB disease, HIV co-infection often leads to active TB disease. Despite the co-endemic nature of HIV and TB, knowledge of the immune mechanisms contributing to the loss of control of Mtb replication during HIV infection is lacking. Mucosal-associated invariant T (MAIT) cells are innate-like T cells that target and destroy bacterially-infected cells and may contribute to the control of Mtb infection. Studies examining MAIT cells in human Mtb infection are commonly performed using peripheral blood samples. However, because Mtb infection occurs primarily in lung tissue and lung-associated lymph nodes, these studies may not be fully translatable to the tissues. Additionally, studies longitudinally examining MAIT cell dynamics during HIV/Mtb co-infection are rare, and lung and lymph node tissue samples from HIV+ patients are typically unavailable. Nonhuman primates (NHP) provide a model system to characterize MAIT cell activity during Mtb infection, both in Simian Immunodeficiency Virus (SIV)-infected and SIV-naïve animals. Using NHPs allows for a more comprehensive understanding of tissue-based MAIT cell dynamics during infection with both pathogens. NHP SIV and Mtb infection is similar to human HIV and Mtb infection, and MAIT cells are phenotypically similar in humans and NHPs. Here, we discuss current knowledge surrounding MAIT cells in SIV and Mtb infection, how SIV infection impairs MAIT cell function during Mtb co-infection, and knowledge gaps to address.
Collapse
Affiliation(s)
| | | | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (R.V.M.); (A.L.E.)
| |
Collapse
|
22
|
Wan M, Han J, Ding L, Hu F, Gao P. Novel Immune Subsets and Related Cytokines: Emerging Players in the Progression of Liver Fibrosis. Front Med (Lausanne) 2021; 8:604894. [PMID: 33869241 PMCID: PMC8047058 DOI: 10.3389/fmed.2021.604894] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a pathological process caused by persistent chronic injury of the liver. Kupffer cells, natural killer (NK) cells, NKT cells, and dendritic cells (DCs), which are in close contact with T and B cells, serve to bridge innate and adaptive immunity in the liver. Meanwhile, an imbalanced inflammatory response constitutes a challenge in liver disease. The dichotomous roles of novel immune cells, including T helper 17 (Th17), regulatory T cells (Tregs), mucosa-associated invariant T cells (MAIT), and innate lymphoid cells (ILCs) in liver fibrosis have gradually been revealed. These cells not only induce damage during liver fibrosis but also promote tissue repair. Hence, immune cells have unique, and often opposing, roles during the various stages of fibrosis. Due to this heterogeneity, the treatment, or reversal of fibrosis through the target of immune cells have attracted much attention. Moreover, activation of hepatic stellate cells (HSCs) constitutes the core of fibrosis. This activation is regulated by various immune mediators, including Th17, Th22, and Th9, MAIT, ILCs, and γδ T cells, as well as their related cytokines. Thus, liver fibrosis results from the complex interaction of these immune mediators, thereby complicating the ability to elucidate the mechanisms of action elicited by each cell type. Future developments in biotechnology will certainly aid in this feat to inform the design of novel therapeutic targets. Therefore, the aim of this review was to summarize the role of specific immune cells in liver fibrosis, as well as biomarkers and treatment methods related to these cells.
Collapse
Affiliation(s)
- Minjie Wan
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China.,Central Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jiawen Han
- Central Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lili Ding
- Central Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China.,Intensive Care Unit, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Feng Hu
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital, Jilin University, Changchun, China
| | - Pujun Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
23
|
Blackburn NB, Leandro AC, Nahvi N, Devlin MA, Leandro M, Martinez Escobedo I, Peralta JM, George J, Stacy BA, deMaar TW, Blangero J, Keniry M, Curran JE. Transcriptomic Profiling of Fibropapillomatosis in Green Sea Turtles ( Chelonia mydas) From South Texas. Front Immunol 2021; 12:630988. [PMID: 33717164 PMCID: PMC7943941 DOI: 10.3389/fimmu.2021.630988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Sea turtle fibropapillomatosis (FP) is a tumor promoting disease that is one of several threats globally to endangered sea turtle populations. The prevalence of FP is highest in green sea turtle (Chelonia mydas) populations, and historically has shown considerable temporal growth. FP tumors can significantly affect the ability of turtles to forage for food and avoid predation and can grow to debilitating sizes. In the current study, based in South Texas, we have applied transcriptome sequencing to FP tumors and healthy control tissue to study the gene expression profiles of FP. By identifying differentially expressed turtle genes in FP, and matching these genes to their closest human ortholog we draw on the wealth of human based knowledge, specifically human cancer, to identify new insights into the biology of sea turtle FP. We show that several genes aberrantly expressed in FP tumors have known tumor promoting biology in humans, including CTHRC1 and NLRC5, and provide support that disruption of the Wnt signaling pathway is a feature of FP. Further, we profiled the expression of current targets of immune checkpoint inhibitors from human oncology in FP tumors and identified potential candidates for future studies.
Collapse
Affiliation(s)
- Nicholas B. Blackburn
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Ana Cristina Leandro
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Nina Nahvi
- Sea Turtle Inc., South Padre Island, TX, United States
| | | | - Marcelo Leandro
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | | | - Juan M. Peralta
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Jeff George
- Sea Turtle Inc., South Padre Island, TX, United States
| | - Brian A. Stacy
- National Marine Fisheries Service, Office of Protected Resources, University of Florida, Gainesville, FL, United States
| | | | - John Blangero
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Megan Keniry
- Department of Biology, College of Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Joanne E. Curran
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| |
Collapse
|
24
|
Yvorra T, Steinmetz A, Retailleau P, Lantz O, Schmidt F. Synthesis, biological evaluation and molecular modelling of new potent clickable analogues of 5-OP-RU for their use as chemical probes for the study of MAIT cell biology. Eur J Med Chem 2020; 211:113066. [PMID: 33341648 DOI: 10.1016/j.ejmech.2020.113066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023]
Abstract
MAIT cells are preset αβ T lymphocytes that recognize a series of microbial antigens exclusively derived from the riboflavin biosynthesis pathway, which is present in most bacteria. The most active known antigen is unstable 5-(2-oxopropylideneamino)-6-(d-ribitylamino)uracil (5-OP-RU) which is stabilized when bound and presented to MAIT cells by MHC-related protein 1 (MR1). Here we describe the chemical synthesis and biological evaluation of new chemical probes for the study of MAIT cell biology. The two probes were ethinyl functionalized analogues of 5-OP-RU able to react through CuAAC also called "click chemistry". The molecules up-regulated more MR1 than 5-OP-RU and they efficiently activated iVα19 Vβ8 TCR transgenic murine MAIT cells but not iVα19 TCRα transgenic MAIT cells indicating a surprisingly strong impact of the TRCβ chain. Moreover, the use of these molecules as chemical probes was validated in vitro by efficient and selective binding to MR1 revealed via fluorescence microscopy. This study was also complemented by molecular modelling investigation of the probes and the binary/ternary complexes they form with MR1 and the TCR. These new probes will be crucial to delineate the dynamics of 5-OP-RU at the cellular or whole organism level and to identify the cells presenting 5-OP-RU to MAIT cells in vivo.
Collapse
Affiliation(s)
- Thomas Yvorra
- Institut Curie, PSL University, CNRS UMR3666, INSERM U1143, Paris, 75005, France
| | - Anke Steinmetz
- Centre de Recherche et Développement Vitry-Alfortville, IDD/ISDD, Sanofi-Aventis R&D, Vitry-sur-Seine, 94400, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de La Terrasse, Gif-sur-Yvette, 91190, France
| | - Olivier Lantz
- Institut Curie, PSL University, INSERM U932, Paris, 75005, France; Institut Curie, Laboratoire D'immunologie Clinique, Paris, 75005, France; Centre D'investigation Clinique en Biothérapie, Institut Curie (CIC-BT1428), Paris, 75005, France
| | - Frédéric Schmidt
- Institut Curie, PSL University, CNRS UMR3666, INSERM U1143, Paris, 75005, France.
| |
Collapse
|
25
|
Veerapen N, Hobrath J, Besra AK, Besra GS. Chemical insights into the search for MAIT cells activators. Mol Immunol 2020; 129:114-120. [PMID: 33293098 DOI: 10.1016/j.molimm.2020.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Mucosal-associated invariant T cells (MAIT cells) represent a potential therapeutic target as they can tune or enhance immune responses. They recognise and become activated by antigens, presented by the monomorphic MHC-I related molecule, MR1. To assess the significance of MAIT cells in human diseases, a better understanding of the MAIT cell-MR1-antigen interaction is imperative. Easy access to MR1 ligands and MAIT cells activators can help achieve this. In this review, we summarise current literature that has identified the natural ligands and drug-like molecules that activate MAIT cells and provide insight into their key molecular interactions with MR1 and MAIT T cell receptors (TCRs). We focus on the progress made in synthesizing and isolating 5-amino-6-d-ribitylaminouracil (5-A-RU), a key precursor in the synthesis of the known natural ligands, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil(5-OP-RU) and 5-(2-oxoethylideneamino)-6-d-ribitylaminouracil (5-OE-RU), and also on the stabilisation and optimisation of the latter compounds.
Collapse
Affiliation(s)
- Natacha Veerapen
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Judith Hobrath
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Amareeta K Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
26
|
Plužarić V, Štefanić M, Mihalj M, Tolušić Levak M, Muršić I, Glavaš-Obrovac L, Petrek M, Balogh P, Tokić S. Differential Skewing of Circulating MR1-Restricted and γδ T Cells in Human Psoriasis Vulgaris. Front Immunol 2020; 11:572924. [PMID: 33343564 PMCID: PMC7744298 DOI: 10.3389/fimmu.2020.572924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/05/2020] [Indexed: 01/27/2023] Open
Abstract
Psoriasis vulgaris (PV) is a chronic, recurrent inflammatory dermatosis mediated by aberrantly activated immune cells. The role of the innate-like T cells, particularly gammadelta T (γδT) cells and MR1-restricted T lymphocytes, is incompletely explored, mainly through animal models, or by use of surrogate lineage markers, respectively. Here, we used case-control settings, multiparameter flow cytometry, 5-OP-RU-loaded MR1-tetramers, Luminex technology and targeted qRT-PCR to dissect the cellular and transcriptional landscape of γδ and MR1-restricted blood T cells in untreated PV cases (n=21, 22 matched controls). High interpersonal differences in cell composition were observed, fueling transcriptional variability at healthy baseline. A minor subset of canonical CD4+CD8+MR1-tet+TCRVα7.2+ and CD4+CD8-MR1-tet+TCRVα7.2+ T cells was the most significantly underrepresented community in male PV individuals, whereas Vδ2+ γδ T cells expressing high levels of TCR and Vδ1-δ2- γδ T cells expressing intermediate levels of TCR were selectively enriched in affected males, partly reflecting disease severity. Our findings highlight a formerly unappreciated skewing of human circulating MAIT and γδ cytomes during PV, and reveal their compositional changes in relation to sex, CMV exposure, serum cytokine content, BMI, and inflammatory burden. Complementing numerical alterations, we finally show that flow-sorted, MAIT and γδ populations exhibit divergent transcriptional changes in mild type I psoriasis, consisting of differential bulk expression for signatures of cytotoxicity/type-1 immunity (EOMES, RUNX3, IL18R), type-3 immunity (RORC, CCR6), and T cell innateness (ZBTB16).
Collapse
Affiliation(s)
- Vera Plužarić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
| | - Mario Štefanić
- Department of Nuclear Medicine and Oncology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Martina Mihalj
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Maja Tolušić Levak
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
- Department of Histology and Embryology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Ivanka Muršić
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
| | - Ljubica Glavaš-Obrovac
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czechia
| | - Peter Balogh
- Department of Immunology and Biotechnology, Faculty of Medicine, University of Pecs, Pecs, Hungary
| | - Stana Tokić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
| |
Collapse
|
27
|
Lin D, Zhong S, Liu J. Targeting mitochondrial dysfunction in MAIT cells: Potential immunotherapeutic treatment for colorectal cancer. Med Hypotheses 2020; 146:110358. [PMID: 33317849 DOI: 10.1016/j.mehy.2020.110358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022]
Abstract
Mucosal associated invariant T (MAIT) cells have captured the attention of immunologists and clinicians in recent years due to their abundance in humans, especially in human liver and mucosal tissue. Colorectal cancer is one of the most common forms of cancer in mucosal tissue. Recent evidence reveal activated MAIT cells within the microenvironment of colorectal tumors. The increased tumor infiltration with MAIT cells correlates with poor survival in the colorectal cancer patients, suggesting MAIT cells are promising immunotherapeutic targets in colorectal cancer. Besides well-known role in anti-microbial immunity, MAIT cells have been associated with various forms of cancer. The Th1-biased MAIT cells are proposed to mediate anti-tumor immunity, while IL-17-producing subsets have been implicated in promoting malignancy. Reduced IFN-γ production and elevated IL-17 production of MAIT cells have been found in colorectal tumor tissue and shown to promote tumor growth and metastases. Although the mechanism(s) driving the increase in Th17-biased MAIT cells with reduced IFN-γ production in tumor is not fully understood, recent studies have linked IL-17 response to dysfunctional mitochondria and reactive oxygen species (ROS) from the mitochondria. Therefore, we hypothesize that mitochondrial dysfunction contributes to Th17-skewed MAIT cell responses with decreased IFN-γ production. Mitochondrial targeted antioxidants are supposed to be beneficial for recovering Th1-baised antitumor immunity and inhibiting IL-17 production of MAIT by improving mitochondrial function.
Collapse
Affiliation(s)
- Dajia Lin
- Shengli Clinical Medical College of Fujian Medical University, Department of Gastrointestinal Surgery of Fujian Provincial Hospital, N0. 134, East Avenue, Fuzhou 350001, Fujian Province, China
| | - Shishun Zhong
- Shengli Clinical Medical College of Fujian Medical University, Department of Digestive Endoscopy of Fujian Provincial Hospital, N0. 134, East Avenue, Fuzhou 350001, Fujian Province, China
| | - Jinsheng Liu
- Shengli Clinical Medical College of Fujian Medical University, Department of Gastrointestinal Surgery of Fujian Provincial Hospital, N0. 134, East Avenue, Fuzhou 350001, Fujian Province, China.
| |
Collapse
|
28
|
Preeyaa SU, Murugesan A, Sopnajothi S, Yong YK, Tan HY, Larsson M, Velu V, Shankar EM. Peripheral Follicular T Helper Cells and Mucosal-Associated Invariant T Cells Represent Activated Phenotypes During the Febrile Phase of Acute Dengue Virus Infection. Viral Immunol 2020; 33:610-615. [PMID: 32996843 DOI: 10.1089/vim.2020.0149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Peripheral follicular helper T (pTfh) cells represent specialized CD4+ T cells that help B cells to secrete antibodies. Dengue infection appears to cause immune activation in a wide array of immune cells. Herein, we investigated the signatures of immune activation of circulating Tfh cells and mucosal-associated invariant T (MAIT) cells in adult subjects with confirmed acute clinical dengue virus (DENV) infection by multiparametric flow cytometry. The acute DENV infection induced a significant expansion of highly activated pTfh cells and circulating MAIT cells during acute febrile infection. We found a higher frequency of activated PD-1+ Tfh cells and CD38+ pTfh cells in clinical DENV infection. We also found similar activated and expanding phenotypes of MAIT cells in the patients tested. The total counts of activated pTfh cells and circulating MAIT cells were higher in dengue patients relative to healthy controls. We concluded that pTfh cells and circulating MAIT cells represent activated phenotypes in acute DENV infection.
Collapse
Affiliation(s)
- Sathappan U Preeyaa
- Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Amudhan Murugesan
- Department of Microbiology, Government Theni Medical College and Hospital, Theni, India
| | | | - Yean K Yong
- Laboratory Center, Xiamen University Malaysia, Sepang, Malaysia
| | - Hong Y Tan
- Laboratory Center, Xiamen University Malaysia, Sepang, Malaysia.,Department of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia
| | - Marie Larsson
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linkoping University, Linkoping, Sweden
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Esaki M Shankar
- Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
29
|
Ellis AL, Balgeman AJ, Larson EC, Rodgers MA, Ameel C, Baranowski T, Kannal N, Maiello P, Juno JA, Scanga CA, O’Connor SL. MAIT cells are functionally impaired in a Mauritian cynomolgus macaque model of SIV and Mtb co-infection. PLoS Pathog 2020; 16:e1008585. [PMID: 32433713 PMCID: PMC7266356 DOI: 10.1371/journal.ppat.1008585] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/02/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells can recognize and respond to some bacterially infected cells. Several in vitro and in vivo models of Mycobacterium tuberculosis (Mtb) infection suggest that MAIT cells can contribute to control of Mtb, but these studies are often cross-sectional and use peripheral blood cells. Whether MAIT cells are recruited to Mtb-affected granulomas and lymph nodes (LNs) during early Mtb infection and what purpose they might serve there is less well understood. Furthermore, whether HIV/SIV infection impairs MAIT cell frequency or function at the sites of Mtb replication has not been determined. Using Mauritian cynomolgus macaques (MCM), we phenotyped MAIT cells in the peripheral blood and bronchoalveolar lavage (BAL) before and during infection with SIVmac239. To test the hypothesis that SIV co-infection impairs MAIT cell frequency and function within granulomas, SIV+ and -naïve MCM were infected with a low dose of Mtb Erdman, and necropsied at 6 weeks post Mtb-challenge. MAIT cell frequency and function were examined within the peripheral blood, BAL, and Mtb-affected lymph nodes (LN) and granulomas. MAIT cells did not express markers indicative of T cell activation in response to Mtb in vivo within granulomas in animals infected with Mtb alone. SIV and Mtb co-infection led to increased expression of the activation/exhaustion markers PD-1 and TIGIT, and decreased ability to secrete TNFα when compared to SIV-naïve MCM. Our study provides evidence that SIV infection does not prohibit the recruitment of MAIT cells to sites of Mtb infection, but does functionally impair those MAIT cells. Their impaired function could have impacts, either direct or indirect, on the long-term containment of TB disease.
Collapse
Affiliation(s)
- Amy L. Ellis
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexis J. Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erica C. Larson
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mark A. Rodgers
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Cassaundra Ameel
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tonilynn Baranowski
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nadean Kannal
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
30
|
Constantinides MG, Link VM, Tamoutounour S, Wong AC, Perez-Chaparro PJ, Han SJ, Chen YE, Li K, Farhat S, Weckel A, Krishnamurthy SR, Vujkovic-Cvijin I, Linehan JL, Bouladoux N, Merrill ED, Roy S, Cua DJ, Adams EJ, Bhandoola A, Scharschmidt TC, Aubé J, Fischbach MA, Belkaid Y. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 2020; 366:366/6464/eaax6624. [PMID: 31649166 DOI: 10.1126/science.aax6624] [Citation(s) in RCA: 329] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
How early-life colonization and subsequent exposure to the microbiota affect long-term tissue immunity remains poorly understood. Here, we show that the development of mucosal-associated invariant T (MAIT) cells relies on a specific temporal window, after which MAIT cell development is permanently impaired. This imprinting depends on early-life exposure to defined microbes that synthesize riboflavin-derived antigens. In adults, cutaneous MAIT cells are a dominant population of interleukin-17A (IL-17A)-producing lymphocytes, which display a distinct transcriptional signature and can subsequently respond to skin commensals in an IL-1-, IL-18-, and antigen-dependent manner. Consequently, local activation of cutaneous MAIT cells promotes wound healing. Together, our work uncovers a privileged interaction between defined members of the microbiota and MAIT cells, which sequentially controls both tissue-imprinting and subsequent responses to injury.
Collapse
Affiliation(s)
- Michael G Constantinides
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samira Tamoutounour
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea C Wong
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - P Juliana Perez-Chaparro
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seong-Ji Han
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Y Erin Chen
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sepideh Farhat
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | - Antonin Weckel
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | - Siddharth R Krishnamurthy
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivan Vujkovic-Cvijin
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan L Linehan
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - E Dean Merrill
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sobhan Roy
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Daniel J Cua
- Merck & Co., Merck Research Laboratories, Palo Alto, CA 94304, USA
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael A Fischbach
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. .,NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Ravi K, Chan CYS, Akoto C, Zhang W, Vatish M, Norris SA, Klenerman P, Hemelaar J. Changes in the Vα7.2+ CD161++ MAIT cell compartment in early pregnancy are associated with preterm birth in HIV-positive women. Am J Reprod Immunol 2020; 83:e13240. [PMID: 32255246 DOI: 10.1111/aji.13240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
PROBLEM Human immunodeficiency virus (HIV) infection is associated with an increased risk of adverse pregnancy outcomes, including preterm birth (PTB), despite viral suppression with antiretroviral therapy. Mucosal-associated invariant T (MAIT) cells are an immune cell subset involved in antimicrobial immunity at mucosal surfaces. MAIT cells have been found at the maternal-foetal interface, and MAIT cells are typically depleted early in HIV infection. We aimed to investigate changes in MAIT cells in relation to maternal HIV/ART status and PTB. METHOD OF STUDY We conducted flow cytometric analysis of peripheral blood samples from 47 HIV-positive (HIV+) and 45 HIV-negative (HIV-) pregnant women enrolled in a prospective pregnancy cohort study in Soweto, South Africa. Frequencies of Vα7.2+ CD161++ MAIT cells and proportions of CD4+ , CD8+ and double-negative MAIT cells were compared between women with and without HIV infection, and between women with and without PTB or spontaneous preterm labour (Sp-PTL). RESULTS Although overall MAIT cell frequencies were the same between HIV+ and HIV- patients, HIV+ patients had a higher proportion of CD8+ MAIT cells in the first two trimesters. Women with PTB and Sp-PTL also had a higher proportion of CD8+ MAIT cells in the first trimester compared to women without these outcomes. The association between changes in MAIT cell subsets and PTB/Sp-PTL was present in both HIV+ and HIV- women, and an additive effect on MAIT cell subsets was seen in women with both HIV infection and PTB. CONCLUSIONS Interactions between HIV-related and pregnancy-related changes in MAIT cell subsets and distribution may lead to imbalances in peripheral MAIT cell subsets in early pregnancy. This may contribute to the increased risk of PTB in HIV+ patients by altering the overall functionality of the peripheral MAIT cell compartment.
Collapse
Affiliation(s)
- Krithi Ravi
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, UK
| | - Christina Y S Chan
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, UK
| | - Charlene Akoto
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, UK
| | - Wei Zhang
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, UK
| | - Manu Vatish
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, UK
| | - Shane A Norris
- South African Medical Research Council Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Joris Hemelaar
- Nuffield Department of Women's & Reproductive Health, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, UK.,South African Medical Research Council Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
32
|
Terpstra ML, Remmerswaal EBM, van Aalderen MC, Wever JJ, Sinnige MJ, van der Bom-Baylon ND, Bemelman FJ, Geerlings SE. Circulating mucosal-associated invariant T cells in subjects with recurrent urinary tract infections are functionally impaired. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:80-92. [PMID: 32032475 PMCID: PMC7016840 DOI: 10.1002/iid3.287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Background Urinary tract infection recurrence is common, particularly in women and immunocompromised patients, such as renal transplant recipients (RTRs). Mucosal‐associated invariant T (MAIT) cells play a role in the antibacterial response by recognizing bacterial riboflavin metabolites produced by bacteria such as Escherichia coli. Here, we investigated whether MAIT cells are involved in the pathogenesis of recurrent urinary tract infections (RUTIs). Methods Using multichannel flow cytometry, we characterized the MAIT cell phenotype and function in blood from immunocompetent adults with (n = 13) and without RUTIs (n = 10) and in RTRs with (n = 9) and without RUTIs (n = 10). Results There were no differences in the numbers of MAIT cells between the study groups. MAIT cells in patients with RUTI expressed T‐bet more often than those in controls. MAIT cells from immunocompetent RUTI participants required more antigen‐presenting cells coincubated with E. coli to evoke a similar cytokine and degranulation response than those from controls. This effect was absent in the RTR with RUTI vs RTR control groups, where the overall percentage of MAIT cells that responded to stimulation was already reduced. Conclusion Circulating MAIT cells in immunocompetent individuals with RUTIs respond to bacterial stimuli with reduced efficacy, which suggests that they are involved in the pathogenesis of RUTIs.
Collapse
Affiliation(s)
- Matty L Terpstra
- Division of Nephrology, Department of Internal Medicine, Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ester B M Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel C van Aalderen
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joyce J Wever
- Division of Nephrology, Department of Internal Medicine, Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marjan J Sinnige
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nelly D van der Bom-Baylon
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Frederike J Bemelman
- Division of Nephrology, Department of Internal Medicine, Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Suzanne E Geerlings
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Schneider M, Hannaway RF, Lamichhane R, de la Harpe SM, Tyndall JDA, Vernall AJ, Kettle AJ, Ussher JE. Neutrophils suppress mucosal-associated invariant T cells in humans. Eur J Immunol 2020; 50:643-655. [PMID: 31944287 DOI: 10.1002/eji.201948394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/19/2019] [Accepted: 01/14/2020] [Indexed: 12/18/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes that are abundant in mucosal tissues and the liver where they can respond rapidly to a broad range of riboflavin producing bacterial and fungal pathogens. Neutrophils, which are recruited early to sites of infection, play a nonredundant role in pathogen clearance and are crucial for controlling infection. The interaction of these two cell types is poorly studied. Here, we investigated both the effect of neutrophils on MAIT cell activation and the effect of activated MAIT cells on neutrophils. We show that neutrophils suppress the activation of MAIT cells by a cell-contact and hydrogen peroxide dependent mechanism. Moreover, highly activated MAIT cells were able to produce high levels of TNF-α that induced neutrophil death. We therefore provide evidence for a negative regulatory feedback mechanism in which neutrophils prevent overactivation of MAIT cells and, in turn, MAIT cells limit neutrophil survival.
Collapse
Affiliation(s)
- Marion Schneider
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Rachel F Hannaway
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Rajesh Lamichhane
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | | | | | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
34
|
Hannaway RF, Wang X, Schneider M, Slow S, Cowan J, Brockway B, Schofield MR, Morgan XC, Murdoch DR, Ussher JE. Mucosal-associated invariant T cells and Vδ2 + γδ T cells in community acquired pneumonia: association of abundance in sputum with clinical severity and outcome. Clin Exp Immunol 2020; 199:201-215. [PMID: 31587268 PMCID: PMC6954682 DOI: 10.1111/cei.13377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 01/28/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells and Vδ2+ γδ T cells are anti-bacterial innate-like lymphocytes (ILLs) that are enriched in blood and mucosa. ILLs have been implicated in control of infection. However, the role of ILLs in community-acquired pneumonia (CAP) is unknown. Using sputum samples from a well-characterized CAP cohort, MAIT cell and Vδ2+ T cell abundance was determined by quantitative polymerase chain reaction (qPCR). Cytokine and chemokine concentrations in sputum were measured. The capacity of bacteria in sputum to produce activating ligands for MAIT cells and Vδ2+ T cells was inferred by 16S rRNA sequencing. MAIT cell abundance in sputum was higher in patients with less severe pneumonia; duration of hospital admission was inversely correlated with both MAIT and Vδ2+ T cell abundance. The abundance of both ILLs was higher in patients with a confirmed bacterial aetiology; however, there was no correlation with total bacterial load or the predicted capacity of bacteria to produce activating ligands. Sputum MAIT cell abundance was associated with interferon (IFN)-α, IFN-γ, and sputum neutrophil abundance, while Vδ2+ T cell abundance was associated with CXCL11 and IFN-γ. Therefore, MAIT and Vδ2+ T cells can be detected in sputum in CAP, where they may contribute to improved clinical outcome.
Collapse
Affiliation(s)
- R. F. Hannaway
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - X. Wang
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - M. Schneider
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - S. Slow
- Department of Pathology and Biomedical SciencesUniversity of OtagoChristchurchNew Zealand
| | - J. Cowan
- Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - B. Brockway
- Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - M. R. Schofield
- Department of Mathematics and StatisticsUniversity of OtagoDunedinNew Zealand
| | - X. C. Morgan
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - D. R. Murdoch
- Department of Pathology and Biomedical SciencesUniversity of OtagoChristchurchNew Zealand
| | - J. E. Ussher
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
35
|
Murugesan A, Ibegbu C, Styles TM, Jones AT, Shanmugasundaram U, Reddy PBJ, Rahman SJ, Saha P, Vijay-Kumar M, Shankar EM, Amara RR, Velu V. Functional MAIT Cells Are Associated With Reduced Simian-Human Immunodeficiency Virus Infection. Front Immunol 2020; 10:3053. [PMID: 32010135 PMCID: PMC6978843 DOI: 10.3389/fimmu.2019.03053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are recently characterized as a novel subset of innate-like T cells that recognize microbial metabolites as presented by the MHC-1b-related protein MR1. The significance of MAIT cells in anti-bacterial defense is well-understood but not clear in viral infections such as SIV/HIV infection. Here we studied the phenotype, distribution, and function of MAIT cells and their association with plasma viral levels during chronic SHIV infection in rhesus macaques (RM). Two groups of healthy and chronic SHIV-infected macaques were characterized for MAIT cells in blood and mucosal tissues. Similar to human, we found a significant fraction of macaque T cells co-expressing MAIT cell markers CD161 and TCRVα-7.2 that correlated directly with macaque MR1 tetramer. These cells displayed memory phenotype and expressed high levels of IL-18R, CCR6, CD28, and CD95. During chronic infection, the frequency of MAIT cells are enriched in the blood but unaltered in the rectum; both blood and rectal MAIT cells displayed higher proliferative and cytotoxic phenotype post-SHIV infection. The frequency of MAIT cells in blood and rectum correlated inversely with plasma viral RNA levels and correlated directly with total CD4 T cells. MAIT cells respond to microbial products during chronic SHIV infection and correlated positively with serum immunoreactivity to flagellin levels. Tissue distribution analysis of MAIT cells during chronic infection showed significant enrichment in the non-lymphoid tissues (lung, rectum, and liver) compared to lymphoid tissues (spleen and LN), with higher levels of tissue-resident markers CD69 and CD103. Exogenous in vitro cytokine treatments during chronic SHIV infection revealed that IL-7 is important for the proliferation of MAIT cells, but IL-12 and IL-18 are important for their cytolytic function. Overall our results demonstrated that MAIT cells are enriched in blood but unaltered in the rectum during chronic SHIV infection, which displayed proliferative and functional phenotype that inversely correlated with SHIV plasma viral RNA levels. Treatment such as combined cytokine treatments could be beneficial for enhancing functional MAIT cells during chronic HIV infection in vivo.
Collapse
Affiliation(s)
- Amudhan Murugesan
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Chris Ibegbu
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Tiffany M Styles
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Andrew T Jones
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | | | - Pradeep B J Reddy
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Sadia J Rahman
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Piu Saha
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Esaki Muthu Shankar
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Rama Rao Amara
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Vijayakumar Velu
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
36
|
Ibidapo-Obe O, Stengel S, Köse-Vogel N, Quickert S, Reuken PA, Busch M, Bauer M, Stallmach A, Bruns T. Mucosal-Associated Invariant T Cells Redistribute to the Peritoneal Cavity During Spontaneous Bacterial Peritonitis and Contribute to Peritoneal Inflammation. Cell Mol Gastroenterol Hepatol 2020; 9:661-677. [PMID: 31954178 PMCID: PMC7160599 DOI: 10.1016/j.jcmgh.2020.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Mucosal-associated invariant T (MAIT) cells are depleted from blood in patients with advanced liver disease and show features of immune dysfunction. Because circulating MAIT cells differ from organ-resident MAIT cells, we aimed to investigate the frequency, phenotype, and function of peritoneal MAIT cells from patients with cirrhosis and spontaneous bacterial peritonitis (SBP). METHODS MAIT cells in blood and ascitic fluid from patients with cirrhosis were characterized using flow cytometry. Healthy individuals and noncirrhotic patients undergoing peritoneal dialysis served as controls. MAIT cell migration was studied in transwell assays. Cytokine release in response to infected ascitic fluid and bacterial products was assessed in vitro. RESULTS Peritoneal CD3+ CD161hi Vα7.2+ T cells had an inflammatory, tissue retention phenotype, expressing the alpha E integrin, the chemokine receptors CCR5 and CXCR3, and the activation marker CD69 at higher levels than their circulating equivalents. Seventy-seven percent bound to MR1 tetramers loaded with the pyrimidine intermediate 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil. The ratio of peritoneal to blood MAIT cell frequency increased from 1.3 in the absence of SBP to 2.6 at diagnosis and decreased by day 3. MAIT cells migrated toward infected ascitic fluid containing CCL5 and CCL20 and released cytokines in an MR1-restricted fashion. Whereas the depleted circulating MAIT cell pool displayed features of immune exhaustion, peritoneal MAIT cells remained competent producers of inflammatory cytokines in response to bacterial products. Peritoneal MAIT activation correlated with systemic inflammation, suggesting a possible link between peritoneal and systemic immunity. CONCLUSIONS Peritoneal MAIT cells phenotypically and functionally differ from circulating MAIT cells in decompensated cirrhosis and redistribute to the peritoneum during SBP.
Collapse
Affiliation(s)
- Oluwatomi Ibidapo-Obe
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - Sven Stengel
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - Nilay Köse-Vogel
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - Stefanie Quickert
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - Philipp A Reuken
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - Martin Busch
- Department of Internal Medicine III, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany; Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - Tony Bruns
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany; Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
37
|
Braganza CD, Motozono C, Sonoda KH, Yamasaki S, Shibata K, Timmer MSM, Stocker BL. Agonistic or antagonistic mucosal-associated invariant T (MAIT) cell activity is determined by the 6-alkylamino substituent on uracil MR1 ligands. Chem Commun (Camb) 2020; 56:5291-5294. [DOI: 10.1039/d0cc00247j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The 6-alkylamino side chain of aminouracil MR1 ligands controls MAIT cell agonistic or antagonistic activity.
Collapse
Affiliation(s)
- Chriselle D. Braganza
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
| | - Chihiro Motozono
- Department of Molecular Immunology
- Research Institute for Microbial Diseases
- Osaka University
- Osaka
- Japan
| | - Koh-Hei Sonoda
- Department of Ocular Pathology and Imaging Science
- Graduate School of Medical Sciences
- Kyushu University
- Fukuoka
- Japan
| | - Sho Yamasaki
- Department of Molecular Immunology
- Research Institute for Microbial Diseases
- Osaka University
- Osaka
- Japan
| | - Kensuke Shibata
- Department of Ocular Pathology and Imaging Science
- Graduate School of Medical Sciences
- Kyushu University
- Fukuoka
- Japan
| | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
| |
Collapse
|
38
|
Kwak HD, Ju JK. Immunological Differences Between Right-Sided and Left-Sided Colorectal Cancers: A Comparison of Embryologic Midgut and Hindgut. Ann Coloproctol 2019; 35:342-346. [PMID: 31937074 PMCID: PMC6968724 DOI: 10.3393/ac.2019.03.17.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/17/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose There are known differences in embryology, clinical symptoms, incidences, molecular pathways involved, and oncologic outcomes of right-sided and left-sided colorectal cancers. However, immunologic study has only been characterized for healthy adults. The present study was designed to identify differences in immune cell populations in patients with right-sided and left-sided colorectal cancers. Methods A total of 35 patients who underwent colorectal resection for cancer between November 2016 and August 2017 at a tertiary teaching hospital were enrolled in this study. Patients were excluded if they had a disease affecting their immune system. Populations of immune cells, including mucosal-associated invariant T (MAIT), gamma delta T, invariant natural killer T, T, natural killer, and B cells, were measured in the peripheral blood and cancer tissues using flow cytometry, and then assessed based on the origin of the colorectal cancer. Results Fifteen had right-side and 20 had left-side colorectal cancer. There were no significant differences between the 2 cohorts for patient characteristics including pathologic stage. Peripheral blood from patients with right-side colon cancers contained fewer MAIT (0.87% right-side vs. 1.74% left-side, P = 0.028) and gamma delta T cells (1.10% right-side vs. 3.05% left-side, P = 0.002). Although the group with right-side colorectal cancer had more MAIT cells in cancer tissues (1.71% vs. 1.00%), this difference was not statistically significant. Conclusion There is a difference in population sizes of immune cells in blood between patients with right-sided and leftsided colon cancers. The immune cell composition was determined to be distinct based on embryologic origin.
Collapse
Affiliation(s)
- Han Deok Kwak
- Department of Surgery, Chonnam National University Hospital, Gwangju, Korea
| | - Jae Kyun Ju
- Department of Surgery, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
39
|
Th17 and MAIT cell mediated inflammation in antipsychotic free schizophrenia patients. Schizophr Res 2019; 212:47-53. [PMID: 31439420 DOI: 10.1016/j.schres.2019.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
The immune hypothesis of schizophrenia has gained significant popularity in recent years in schizophrenia research. Evidence suggests that the peripheral immune system communicates with central nervous system and the effect propagates through microglial and lymphocyte crosstalk, especially during neuro-inflammation. Although, there is previous literature indicating changes in lymphocyte population in schizophrenia, detailed studies with respect to T and B cells are scarce. Mucosal associated invariant T (MAIT) cells are functionally associated with the gut microbiome. The gut microbiome has been implicated in the pathogenesis of schizophrenia. However, there is no information on the frequency of MAIT cells in schizophrenia. Hence, we investigated changes in proportions of T cells, B cells and MAIT cells in peripheral blood mononuclear cells derived from antipsychotic-free patients with schizophrenia in comparison to healthy controls. In line with earlier reports, we noted perturbations in Th17 cells. This study for the first time reports changes in frequencies of MAIT cells in a homogenous population of antipsychotic-free patients with schizophrenia. These changes, though not common across all patients nevertheless point to the fact that inflammation is prevalent in a significant subset of schizophrenia cases.
Collapse
|
40
|
Leng T, Akther HD, Hackstein CP, Powell K, King T, Friedrich M, Christoforidou Z, McCuaig S, Neyazi M, Arancibia-Cárcamo CV, Hagel J, Powrie F, Peres RS, Millar V, Ebner D, Lamichhane R, Ussher J, Hinks TSC, Marchi E, Willberg C, Klenerman P. TCR and Inflammatory Signals Tune Human MAIT Cells to Exert Specific Tissue Repair and Effector Functions. Cell Rep 2019; 28:3077-3091.e5. [PMID: 31533032 PMCID: PMC6899450 DOI: 10.1016/j.celrep.2019.08.050] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/17/2019] [Accepted: 08/15/2019] [Indexed: 01/10/2023] Open
Abstract
MAIT cells are an unconventional T cell population that can be activated through both TCR-dependent and TCR-independent mechanisms. Here, we examined the impact of combinations of TCR-dependent and TCR-independent signals in human CD8+ MAIT cells. TCR-independent activation of these MAIT cells from blood and gut was maximized by extending the panel of cytokines to include TNF-superfamily member TL1A. RNA-seq experiments revealed that TCR-dependent and TCR-independent signals drive MAIT cells to exert overlapping and specific effector functions, affecting both host defense and tissue homeostasis. Although TCR triggering alone is insufficient to drive sustained activation, TCR-triggered MAIT cells showed specific enrichment of tissue-repair functions at the gene and protein levels and in in vitro assays. Altogether, these data indicate the blend of TCR-dependent and TCR-independent signaling to CD8+ MAIT cells may play a role in controlling the balance between healthy and pathological processes of tissue inflammation and repair.
Collapse
Affiliation(s)
- Tianqi Leng
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK
| | - Hossain Delowar Akther
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Kate Powell
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK; Department of Microbiology and Immunology, University of Otago, Otago, New Zealand
| | - Thomas King
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK
| | - Matthias Friedrich
- The Kennedy Institute of Rheumatology, Roosevelt Dr., Oxford OX3 7FY, UK
| | - Zoe Christoforidou
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Sarah McCuaig
- The Kennedy Institute of Rheumatology, Roosevelt Dr., Oxford OX3 7FY, UK
| | - Mastura Neyazi
- The Kennedy Institute of Rheumatology, Roosevelt Dr., Oxford OX3 7FY, UK
| | | | - Joachim Hagel
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK
| | - Fiona Powrie
- The Kennedy Institute of Rheumatology, Roosevelt Dr., Oxford OX3 7FY, UK
| | | | - Val Millar
- Target Discovery Institute, Roosevelt Dr., Oxford OX3 7FZ, UK
| | - Daniel Ebner
- Target Discovery Institute, Roosevelt Dr., Oxford OX3 7FZ, UK
| | - Rajesh Lamichhane
- Department of Microbiology and Immunology, University of Otago, Otago, New Zealand
| | - James Ussher
- Department of Microbiology and Immunology, University of Otago, Otago, New Zealand
| | - Timothy S C Hinks
- NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK; Respiratory Medicine Unit, Nuffield Department of Medicine Experimental Medicine, University of Oxford, Oxford OX3 9DU, UK; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Emanuele Marchi
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK
| | - Chris Willberg
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
41
|
Mvaya L, Mwale A, Hummel A, Phiri J, Kamng'ona R, Mzinza D, Chimbayo E, Malamba R, Kankwatira A, Mwandumba HC, Jambo KC. Airway CD8 +CD161 ++TCRvα7.2 + T Cell Depletion During Untreated HIV Infection Targets CD103 Expressing Cells. Front Immunol 2019; 10:2003. [PMID: 31497028 PMCID: PMC6713019 DOI: 10.3389/fimmu.2019.02003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
HIV-infected adults are at an increased risk to lower respiratory tract infections (LRTIs). CD8+CD161++TCRvα7.2+ T cells are an innate-like T cell subset that are thought to play an important role in early defense against pathogens in the respiratory tract. HIV infection leads to irreversible depletion of these cells in peripheral blood, however, its impact on this subset in the human airway is still unclear. Here, we show presence of CD103 expressing CD8+CD161++TCRvα7.2+ T cells in the airway that exhibited a distinct cytokine functional profile compared to their CD103- airway counterparts and those from peripheral blood. These CD103 expressing airway CD8+CD161++TCRvα7.2+ T cells were selectively depleted in untreated HIV-infected adults compared to healthy controls. Their frequency was positively correlated with frequency of airway CD4+ T cells. Furthermore, the frequency of airway CD8+CD161++TCRvα7.2+ T cells was also inversely correlated with HIV plasma viral load, while suppressive antiretroviral therapy (ART) resulted in restoration of airway CD8+CD161++TCRvα7.2+ T cells. Our findings show that CD103 expressing airway CD8+CD161++TCRvα7.2+ T cells are functionally distinct and are preferentially depleted during untreated asymptomatic HIV infection. Depletion of CD103 expressing airway CD8+CD161++TCRvα7.2+ T cells, at a major portal of pathogen entry, could partly contribute to the increased propensity for opportunistic LRTIs observed in untreated HIV-infected adults.
Collapse
Affiliation(s)
- Leonard Mvaya
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Andrew Mwale
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Annemarie Hummel
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Joseph Phiri
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Raphael Kamng'ona
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - David Mzinza
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elizabeth Chimbayo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Rose Malamba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Anstead Kankwatira
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Henry C Mwandumba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kondwani C Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
42
|
Proctor RA. Immunity to Staphylococcus aureus: Implications for Vaccine Development. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0037-2018. [PMID: 31298209 PMCID: PMC10957185 DOI: 10.1128/microbiolspec.gpp3-0037-2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/19/2022] Open
Abstract
Cell-mediated immunity seems to be critical for prevention and resolution of invasive S. aureus infections, but an imbalance in this immunity may also produce SIRS and death or an inadequate protective response with prolonged bacteremia and death. This dysregulation is likely at the heart of mortality and severe disease in humans. Anti-toxin antibodies may also come into play in reducing the severity of S. aureus infections, but these antibodies might also address superantigen-induced immune dysregulation. Thus, while changing intrinsic T cell responses may be therapeutically difficult, monoclonal antibodies against superantigens may have utility in addressing dysfunctional immune responses to S. aureus. The models above are hypotheses for examining, and potentially dramatically improving immune response to and safety of S. aureus vaccines.
Collapse
Affiliation(s)
- Richard A Proctor
- University of Wisconsin, Medical Microbiology/Immunology, Madison, WI 53705
| |
Collapse
|
43
|
Anil N. Mucosal-associated invariant T cells: new players in CF lung disease? Inflamm Res 2019; 68:633-638. [PMID: 31201438 DOI: 10.1007/s00011-019-01259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 11/30/2022] Open
Abstract
The past decade has witnessed a surge in research centered around exploring the role of the enigmatic innate immune-like lymphocyte MAIT cell in human disease. Recent evidence has led to the elucidation of its role as a potent defender at mucosal surfaces including lungs due to its capacity to mount a formidable immediate response to bacterial pathogens. MAIT cells have a unique attribute of recognizing microbial ligands in conjunction with non-classical MHC-related protein MR1. Recent studies have demonstrated their contribution in the pathogenesis of chronic pulmonary disorders including asthma and chronic obstructive pulmonary disease. Several cellular players including innate immune cells are active contributors in the immune imbalance present in cystic fibrosis(CF) lung. This immune dysregulation serves as a central pivot in disease pathogenesis, responsible for causing immense structural damage in the CF lung. The present review focuses on understanding the role of MAIT cells in CF lung disease. Future studies directed at understanding the possible relationship between MAIT cells and regulatory T cells (Tregs) in CF lung disease could unravel a holistic picture where a combination of antimicrobial effects of MAIT cells and anti-inflammatory effects of Tregs could be exploited in synergy to alleviate the rapid deterioration of lung function in CF lung disease due to the underlying complex interplay between persistent infection and inflammation.
Collapse
Affiliation(s)
- Nidhi Anil
- Centre For Stem Cell Tissue Engineering and Biomedical Excellence, Panjab University, Chandigarh, India.
| |
Collapse
|
44
|
Amir EAD, Lee B, Badoual P, Gordon M, Guo XV, Merad M, Rahman AH. Development of a Comprehensive Antibody Staining Database Using a Standardized Analytics Pipeline. Front Immunol 2019; 10:1315. [PMID: 31244854 PMCID: PMC6579881 DOI: 10.3389/fimmu.2019.01315] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Large-scale immune monitoring experiments (such as clinical trials) are a promising direction for biomarker discovery and responder stratification in immunotherapy. Mass cytometry is one of the tools in the immune monitoring arsenal. We propose a standardized workflow for the acquisition and analysis of large-scale mass cytometry experiments. The workflow includes two-tiered barcoding, a broad lyophilized panel, and the incorporation of a fully automated, cloud-based analysis platform. We applied the workflow to a large antibody staining screen using the LEGENDScreen kit, resulting in single-cell data for 350 antibodies over 71 profiling subsets. The screen recapitulates many known trends in the immune system and reveals potential markers for delineating MAIT cells. Additionally, we examine the effect of fixation on staining intensity and identify several markers where fixation leads to either gain or loss of signal. The standardized workflow can be seamlessly integrated into existing trials. Finally, the antibody staining data set is available as an online resource for researchers who are designing mass cytometry experiments in suspension and tissue.
Collapse
Affiliation(s)
| | - Brian Lee
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Paul Badoual
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Martin Gordon
- Astrolabe Diagnostics, Inc., Fort Lee, NJ, United States
| | - Xinzheng V Guo
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Miriam Merad
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Adeeb H Rahman
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| |
Collapse
|
45
|
Hanson ED, Danson E, Evans WS, Wood WA, Battaglini CL, Sakkal S. Exercise Increases Mucosal-associated Invariant T Cell Cytokine Expression but Not Activation or Homing Markers. Med Sci Sports Exerc 2019; 51:379-388. [PMID: 30649094 DOI: 10.1249/mss.0000000000001780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells have properties of both the innate and adaptive immune systems but are an understudied population within exercise immunology. These lymphocytes aggregate at the mucous membranes, but it is unknown if submaximal exercise alters their circulating numbers or function. PURPOSE To determine the MAIT cell response to submaximal exercise on activation and homing marker expression and stimulated cytokine production. METHODS Twenty healthy, young, recreationally active males cycled for 40 min at 86% of VT after an overnight fast. Peripheral blood mononuclear cells were isolated and labeled to identify specific MAIT cell populations using flow cytometry. Cytokine production after stimulation was also determined. RESULTS Mucosal-associated invariant T cells were 2.9% of T cells and increased to 3.9% after exercise and with recovery whereas cell numbers significantly increased by 91.5% after exercise before returning to resting levels. Chemokine and activation marker absolute cell number significantly increased while expression levels remained constant but the high levels of CCR5 may help direct MAIT cells to sites of inflammation. After stimulation, TNFα expression significantly increased after exercise before returning to baseline with a similar trend for IFNγ. CONCLUSIONS The MAIT cell numbers undergo a partial biphasic response after submaximal exercise and appear to be preferentially mobilized within T cells; however, the magnitude of the submaximal response was attenuated relative to maximal exercise. Stimulated MAIT cells increase TNFα expression, indicating greater responsiveness to pathogens after acute exercise.
Collapse
Affiliation(s)
- Erik D Hanson
- Exercise Oncology Research Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, NC
| | - Eli Danson
- Exercise Oncology Research Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, NC
| | - William S Evans
- Exercise Oncology Research Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, NC
| | - William A Wood
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC
| | - Claudio L Battaglini
- Exercise Oncology Research Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC, AUSTRALIA.,College of Health and Biomedicine, Victoria University, Melbourne, VIC, AUSTRALIA
| |
Collapse
|
46
|
Davanian H, Gaiser RA, Silfverberg M, Hugerth LW, Sobkowiak MJ, Lu L, Healy K, Sandberg JK, Näsman P, Karlsson J, Jansson L, Engstrand L, Sällberg Chen M. Mucosal-associated invariant T cells and oral microbiome in persistent apical periodontitis. Int J Oral Sci 2019; 11:16. [PMID: 31068577 PMCID: PMC6506549 DOI: 10.1038/s41368-019-0049-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023] Open
Abstract
Opportunistic bacteria in apical periodontitis (AP) may pose a risk for systemic dissemination. Mucosal-associated invariant T (MAIT) cells are innate-like T cells with a broad and potent antimicrobial activity important for gut mucosal integrity. It was recently shown that MAIT cells are present in the oral mucosal tissue, but the involvement of MAIT cells in AP is unknown. Here, comparison of surgically resected AP and gingival tissues demonstrated that AP tissues express significantly higher levels of Vα7.2-Jα33, Vα7.2-Jα20, Vα7.2-Jα12, Cα and tumour necrosis factor (TNF), interferon (IFN)-γ and interleukin (IL)-17A transcripts, resembling a MAIT cell signature. Moreover, in AP tissues the MR1-restricted MAIT cells positive for MR1–5-OP-RU tetramer staining appeared to be of similar levels as in peripheral blood but consisted mainly of CD4+ subset. Unlike gingival tissues, the AP microbiome was quantitatively impacted by factors like fistula and high patient age and had a prominent riboflavin-expressing bacterial feature. When merged in an integrated view, the examined immune and microbiome data in the sparse partial least squares discriminant analysis could identify bacterial relative abundances that negatively correlated with Vα7.2-Jα33, Cα, and IL-17A transcript expressions in AP, implying that MAIT cells could play a role in the local defence at the oral tissue barrier. In conclusion, we describe the presence of MAIT cells at the oral site where translocation of oral microbiota could take place. These findings have implications for understanding the immune sensing of polymicrobial-related oral diseases.
Collapse
Affiliation(s)
- Haleh Davanian
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | | | - Luisa W Hugerth
- Department of Microbiology, Tumor and Cell Biology and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Clinical Genomics Facility, Science for Life Laboratory, Solna, Sweden
| | | | - Liyan Lu
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Katie Healy
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | - Peggy Näsman
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Jörgen Karlsson
- Clinic of Endodontics and Periodontology, Eastman Institute Stockholm, Stockholm, Sweden
| | - Leif Jansson
- Clinic of Endodontics and Periodontology, Eastman Institute Stockholm, Stockholm, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Clinical Genomics Facility, Science for Life Laboratory, Solna, Sweden
| | | |
Collapse
|
47
|
Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity. Front Nutr 2019; 6:48. [PMID: 31058161 PMCID: PMC6478888 DOI: 10.3389/fnut.2019.00048] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Vitamins are micronutrients that have physiological effects on various biological responses, including host immunity. Therefore, vitamin deficiency leads to increased risk of developing infectious, allergic, and inflammatory diseases. Since B vitamins are synthesized by plants, yeasts, and bacteria, but not by mammals, mammals must acquire B vitamins from dietary or microbial sources, such as the intestinal microbiota. Similarly, some intestinal bacteria are unable to synthesize B vitamins and must acquire them from the host diet or from other intestinal bacteria for their growth and survival. This suggests that the composition and function of the intestinal microbiota may affect host B vitamin usage and, by extension, host immunity. Here, we review the immunological functions of B vitamins and their metabolism by intestinal bacteria with respect to the control of host immunity.
Collapse
Affiliation(s)
- Ken Yoshii
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kento Sawane
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Innovation Center, Nippon Flour Mills Co., Ltd., Atsugi, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Graduate School of Dentistry, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Kobe University, Hyogo, Japan
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
48
|
Different distribution of mucosal-associated invariant T cells within the human cecum and colon. Cent Eur J Immunol 2019; 44:75-83. [PMID: 31114440 PMCID: PMC6526592 DOI: 10.5114/ceji.2019.84020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Introduction Mucosal-associated invariant T (MAIT) cells are innate-like T cells that are involved in anti-bacterial immunity. MAIT cells are found in the intestines, but their role and distribution within the large intestine have not been fully elucidated. Therefore, we investigated the distribution of MAIT cells within the cecum and colon. Material and methods Surgically resected tissues of the cecum and colon were obtained from 4 patients with cecal appendix cancer and 8 patients with colorectal cancer, respectively. Lymphocytes were isolated from the intestinal epithelium (intraepithelial lymphocytes – IELs) and the underlying lamina propria (lamina propria lymphocytes – LPLs), and then, MAIT cells were analyzed by flow cytometry. Results Compared with the colon, the cecum showed a significantly increased frequency of MAIT cells among IELs (p < 0.01). CD69 expression on MAIT cells was significantly increased in the cecum and colon compared with that in the blood, and the frequency of natural killer group 2, member A+ cells among MAIT cells was significantly increased in the cecum. Conclusions These results suggest that the distribution of MAIT cells was different between the cecum and colon and that MAIT cells were more likely to be activated, especially in the intestinal epithelium of the cecum than in the colon and blood.
Collapse
|
49
|
Hildreth AD, O'Sullivan TE. Tissue-Resident Innate and Innate-Like Lymphocyte Responses to Viral Infection. Viruses 2019; 11:v11030272. [PMID: 30893756 PMCID: PMC6466361 DOI: 10.3390/v11030272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Infection is restrained by the concerted activation of tissue-resident and circulating immune cells. Recent discoveries have demonstrated that tissue-resident lymphocyte subsets, comprised of innate lymphoid cells (ILCs) and unconventional T cells, have vital roles in the initiation of primary antiviral responses. Via direct and indirect mechanisms, ILCs and unconventional T cell subsets play a critical role in the ability of the immune system to mount an effective antiviral response through potent early cytokine production. In this review, we will summarize the current knowledge of tissue-resident lymphocytes during initial viral infection and evaluate their redundant or nonredundant contributions to host protection or virus-induced pathology.
Collapse
Affiliation(s)
- Andrew D Hildreth
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| |
Collapse
|
50
|
Malka-Ruimy C, Ben Youssef G, Lambert M, Tourret M, Ghazarian L, Faye A, Caillat-Zucman S, Houdouin V. Mucosal-Associated Invariant T Cell Levels Are Reduced in the Peripheral Blood and Lungs of Children With Active Pulmonary Tuberculosis. Front Immunol 2019; 10:206. [PMID: 30853958 PMCID: PMC6396712 DOI: 10.3389/fimmu.2019.00206] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/23/2019] [Indexed: 11/19/2022] Open
Abstract
Mucosal associated invariant T (MAIT) cells are unconventional, semi-invariant T lymphocytes that recognize microbial-derived vitamin B2 (riboflavin) biosynthesis precursor derivatives presented by the monomorphic MHC class 1-related (MR1) molecule. Upon microbial infection, MAIT cells rapidly produce cytokines and cytotoxic effectors, and are thus important players in anti-microbial defense. MAIT cells are protective in experimental models of infection and are decreased in the blood of adult patients with bacterial infections, including Mycobacterium tuberculosis (Mtb). In children, the risk of rapid progression to active tuberculosis (TB) following Mtb infection is higher than in adults. Whether MAIT cells influence the outcome of Mtb infection in children is therefore, an important issue. We analyzed MAIT cell numbers and phenotype in 115 children investigated for pulmonary TB and determined their potential correlation with disease progression. MAIT cells were reduced in numbers and activated in the peripheral blood of children with active TB as compared to those with latent TB infection (LTBI) and healthy children. Moreover, MAIT cells did not accumulate and did not proliferate in the lung of children with active TB. These results suggest that MAIT cells may be important in preventing progression of Mtb infection to active TB in children.
Collapse
Affiliation(s)
- Clara Malka-Ruimy
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France
| | - Ghada Ben Youssef
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France
| | - Marion Lambert
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France
| | - Marie Tourret
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France
| | - Liana Ghazarian
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France
| | - Albert Faye
- Service de Pédiatrie Générale, Hôpital Robert Debré, Assistance Publique Hôpitaux de Paris, Université Paris Diderot, Paris, France
| | - Sophie Caillat-Zucman
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France.,Laboratoire d'Immunologie, Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Véronique Houdouin
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France.,Service des Maladies Digestives et Respiratoires de l'Enfant, Hôpital Robert Debré, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|