1
|
Chandwaskar R, Dalal R, Gupta S, Sharma A, Parashar D, Kashyap VK, Sohal JS, Tripathi SK. Dysregulation of T cell response in the pathogenesis of inflammatory bowel disease. Scand J Immunol 2024:e13412. [PMID: 39394898 DOI: 10.1111/sji.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn's disease (CD) and ulcerative colitis (UC), are gut inflammatory diseases that were earlier prevalent in the Western Hemisphere but now are on the rise in the East, with India standing second highest in the incidence rate in the world. Inflammation in IBD is a cause of dysregulated immune response, wherein helper T (Th) cell subsets and their cytokines play a major role in the pathogenesis of IBD. In addition, gut microbiota, environmental factors such as dietary factors and host genetics influence the outcome and severity of IBD. Dysregulation between effector and regulatory T cells drives gut inflammation, as effector T cells like Th1, Th17 and Th9 subsets Th cell lineages were found to be increased in IBD patients. In this review, we attempted to discuss the role of different Th cell subsets together with other T cells like CD8+ T cells, NKT and γδT cells in the outcome of gut inflammation in IBD. We also highlighted the potential therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Rucha Chandwaskar
- Amity Institute of Microbial Technology (AIMT), Amity University Jaipur, Rajasthan, India
| | - Rajdeep Dalal
- Infection and Immunology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saurabh Gupta
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur, Karnataka, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Jagdip Singh Sohal
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Subhash K Tripathi
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
2
|
Cordero H. Chemokine receptors in primary and secondary lymphoid tissues. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:1-19. [PMID: 39260934 DOI: 10.1016/bs.ircmb.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokine receptors are a complex superfamily of surface G protein-coupled receptors present mostly in leukocytes. In this chapter, we review the presence and functions of chemokine receptors in the immune cells of the primary and secondary lymphoid organs. Those include bone marrow, thymus, spleen, lymph nodes, and Peyer's patches as the main components of the gut-associated lymphoid tissue. There are general groups of chemokine receptors: conventional and atypical. We will mostly cover the role of conventional chemokine receptors, which are divided into four classes (CC, CXC, CX3C, and XC). Some relevant members are CXCR4, CXCR5, CCR4 and CCR7. For example, CXCR4 is a key chemokine receptor in the bone marrow controlling from the homing of progenitor cells into the bone marrow, the development of B cells, to the homing of long-lived plasma cells to this primary lymphoid organ. CCR7 and CCR4 are two of the main players in the thymus. CCR7 along with CCR9 control the traffic of thymic seed progenitors into the thymus, while CCR4 and CCR7 are critical for the entry of thymocytes into the medulla and as controllers of the central tolerance in the thymus. CXCR4 and CXCR5 have major roles in the spleen, guiding the maturation and class-switching of B cells in the different areas of the germinal center. In the T-cell zone, CCR7 guides the differentiation of naïve T cells. CCR7 also controls and directs the entry of T cells, B cells, and dendritic cells into secondary lymphoid tissues, including the spleen and lymph nodes. As new technologies emerge, techniques such as high dimensional spectral flow cytometry or single-cell sequencing allow a more comprehensive knowledge of the chemokine receptor network and their ligands, as well as the discovery of new interactions mediating unknown and overlooked mechanisms in health and disease.
Collapse
Affiliation(s)
- Hector Cordero
- Columbia Center for Translational Immunology, Columbia University, New York, NY, United States; Immunology Group, Department of Physiology, Faculty of Veterinary, University of Extremadura, 10003 Caceres, Spain.
| |
Collapse
|
3
|
Wang YC, Cao Y, Pan C, Zhou Z, Yang L, Lusis AJ. Intestinal cell type-specific communication networks underlie homeostasis and response to Western diet. J Exp Med 2023; 220:213924. [PMID: 36880999 PMCID: PMC10038833 DOI: 10.1084/jem.20221437] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/14/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
The small intestine plays a key role in immunity and mediates inflammatory responses to high fat diets. We have used single-cell RNA-sequencing (scRNA-seq) and statistical modeling to examine gaps in our understanding of the dynamic properties of intestinal cells and underlying cellular mechanisms. Our scRNA-seq and flow cytometry studies of different layers of intestinal cells revealed new cell subsets and modeled developmental trajectories of intestinal intraepithelial lymphocytes, lamina propria lymphocytes, conventional dendritic cells, and enterocytes. As compared to chow-fed mice, a high-fat high-sucrose (HFHS) "Western" diet resulted in the accumulation of specific immune cell populations and marked changes to enterocytes nutrient absorption function. Utilizing ligand-receptor analysis, we profiled high-resolution intestine interaction networks across all immune cell and epithelial structural cell types in mice fed chow or HFHS diets. These results revealed novel interactions and communication hubs among intestinal cells, and their potential roles in local as well as systemic inflammation.
Collapse
Affiliation(s)
- Yu-Chen Wang
- Department of Medicine, Division of Cardiology, University of California, Los Angeles , Los Angeles, CA, USA
| | - Yang Cao
- Department of Medicine, Division of Cardiology, University of California, Los Angeles , Los Angeles, CA, USA
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, University of California, Los Angeles , Los Angeles, CA, USA
| | - Zhiqiang Zhou
- Department of Medicine, Division of Cardiology, University of California, Los Angeles , Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles , Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, Los Angeles , Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles , Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles , Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, University of California, Los Angeles , Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles , Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA , Los Angeles, CA, USA
| |
Collapse
|
4
|
Pedersen TK, Brown EM, Plichta DR, Johansen J, Twardus SW, Delorey TM, Lau H, Vlamakis H, Moon JJ, Xavier RJ, Graham DB. The CD4 + T cell response to a commensal-derived epitope transitions from a tolerant to an inflammatory state in Crohn's disease. Immunity 2022; 55:1909-1923.e6. [PMID: 36115338 PMCID: PMC9890645 DOI: 10.1016/j.immuni.2022.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/19/2022] [Accepted: 08/24/2022] [Indexed: 02/03/2023]
Abstract
Reciprocal interactions between host T helper cells and gut microbiota enforce local immunological tolerance and modulate extra-intestinal immunity. However, our understanding of antigen-specific tolerance to the microbiome is limited. Here, we developed a systematic approach to predict HLA class-II-specific epitopes using the humanized bacteria-originated T cell antigen (hBOTA) algorithm. We identified a diverse set of microbiome epitopes spanning all major taxa that are compatible with presentation by multiple HLA-II alleles. In particular, we uncovered an immunodominant epitope from the TonB-dependent receptor SusC that was universally recognized and ubiquitous among Bacteroidales. In healthy human subjects, SusC-reactive T cell responses were characterized by IL-10-dominant cytokine profiles, whereas in patients with active Crohn's disease, responses were associated with elevated IL-17A. Our results highlight the potential of targeted antigen discovery within the microbiome to reveal principles of tolerance and functional transitions during inflammation.
Collapse
Affiliation(s)
- Thomas K Pedersen
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Disease Systems Immunology, Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Eric M Brown
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Damian R Plichta
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joachim Johansen
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Shaina W Twardus
- Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Toni M Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Helena Lau
- Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hera Vlamakis
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ramnik J Xavier
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Daniel B Graham
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
James KR, Elmentaite R, Teichmann SA, Hold GL. Redefining intestinal immunity with single-cell transcriptomics. Mucosal Immunol 2022; 15:531-541. [PMID: 34848830 PMCID: PMC8630196 DOI: 10.1038/s41385-021-00470-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 02/04/2023]
Abstract
The intestinal immune system represents the largest collection of immune cells in the body and is continually exposed to antigens from food and the microbiota. Here we discuss the contribution of single-cell transcriptomics in shaping our understanding of this complex system. We consider the impact on resolving early intestine development, engagement with the neighbouring microbiota, diversity of intestinal immune cells, compartmentalisation within the intestines and interactions with non-immune cells. Finally, we offer a perspective on open questions about gut immunity that evolving single-cell technologies are well placed to address.
Collapse
Affiliation(s)
- Kylie Renee James
- grid.415306.50000 0000 9983 6924Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010 Australia ,grid.1005.40000 0004 4902 0432School of Medical Sciences, University of New South Wales, Sydney, NSW 2006 Australia
| | - Rasa Elmentaite
- grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA UK
| | - Sarah Amalia Teichmann
- grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA UK ,grid.5335.00000000121885934Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge, NSW CB3 0HE UK
| | - Georgina Louise Hold
- grid.1005.40000 0004 4902 0432University of New South Wales Microbiome Research Centre, Sydney, NSW 2217 Australia
| |
Collapse
|
6
|
Prakhar P, Alvarez-DelValle J, Keller H, Crossman A, Tai X, Park YK, Park JH. The small intestine epithelium exempts Foxp3+ Tregs from their IL-2 requirement for homeostasis and effector function. JCI Insight 2021; 6:149656. [PMID: 34747370 PMCID: PMC8663555 DOI: 10.1172/jci.insight.149656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022] Open
Abstract
Foxp3+ Tregs are potent immunosuppressive CD4+ T cells that are critical to maintain immune quiescence and prevent autoimmunity. Both the generation and maintenance of Foxp3+ Tregs depend on the cytokine IL-2. Hence, the expression of the IL-2 receptor α-chain (CD25) is not only considered a specific marker, but also a nonredundant requirement for Tregs. Here, we report that Foxp3+ Tregs in the small intestine (SI) epithelium, a critical barrier tissue, are exempt from such an IL-2 requirement, since they had dramatically downregulated CD25 expression, showed minimal STAT5 phosphorylation ex vivo, and were unable to respond to IL-2 in vitro. Nonetheless, SI epithelial Tregs survived and were present at the same frequency as in other lymphoid organs, and they retained potent suppressor function that was associated with high levels of CTLA-4 expression and the production of copious amounts of IL-10. Moreover, adoptive transfer experiments of Foxp3+ Tregs revealed that such IL-2–independent survival and effector functions were imposed by the SI epithelial tissue, suggesting that tissue adaptation is a mechanism that tailors the effector function and survival requirements of Foxp3+ Tregs specific to the tissue environment.
Collapse
Affiliation(s)
- Praveen Prakhar
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Jaylene Alvarez-DelValle
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Hilary Keller
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.,Department of Surgery, Guthrie Robert Packer Hospital, Sayre, Pennsylvania, USA
| | - Assiatu Crossman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Xuguang Tai
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Yoo Kyoung Park
- Department of Medical Nutrition-AgeTech-Service Convergence Major, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, South Korea
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Ynga-Durand M, Tapia-Pastrana G, Rebollar-Ruíz XA, Yépez-Ortega M, Nieto-Yañez O, Arciniega-Martínez IM, Reséndiz-Albor AA. Temporal Dynamics of T Helper Populations in the Proximal Small Intestine after Oral Bovine Lactoferrin Administration in BALB/c Mice. Nutrients 2021; 13:2852. [PMID: 34445013 PMCID: PMC8399302 DOI: 10.3390/nu13082852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023] Open
Abstract
Bovine lactoferrin (bLf), a component of milk and a dietary supplement, modulates intestinal immunity at effector and inductor sites. Considering the regional difference in intestinal compartments and the dynamics of local cytokine-producing cells in the gut across time, the aim of this work was to characterize the effects of bLf on the proximal small intestine in a BALB/c murine model of oral administration. Male BALB/c mice were treated with oral bLf vs. saline control as mock by buccal deposition for 28 days. Intestinal secretions were obtained at different time points and cells were isolated from Peyer's patches (PP) and lamina propria (LP) of the proximal small intestine as representative inductor and effector sites, respectively. Total and specific anti-bLF IgA and IgM were determined by enzyme-immuno assay; the percentages of IgA+ and IgM+ plasma cells (PC) and cytokine-producing CD4+ T cells of PP and LP were analyzed by flow cytometry. We found that total and bLf-specific IgA and IgM levels were increased in the intestinal secretions of the bLf group in comparison to mock group and day 0. LP IgA+ PC and IgM+ PC presented an initial elevation on day 7 and day 21, respectively, followed by a decrease on day 28 in comparison to mock. Higher percentages of CD4+ T cells in LP were found in the bLf group. Cytokines-producing CD4+ T cells populations presented a pattern of increases and decreases in the bLf group in both LP and PP. Transforming growth factor beta (TGF-β)+ CD4+ T cells showed higher percentages after bLf administration with a marked peak at day 21 in both LP and PP in comparison to mock-treated mice. Oral bLf exhibits complex immune properties in the proximal small intestine, where temporal monitoring of the inductor and effector compartments reveals patterns of rises and falls of different cell populations. Exceptionally, TGF-β+ CD4+ T cells show consistent higher numbers after bLf intervention across time. Our work suggests that isolated measurements do not show the complete picture of the modulatory effects of oral bLf in immunological sites as dynamic as the proximal small intestine.
Collapse
Affiliation(s)
- Mario Ynga-Durand
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Salvador Díaz Mirón y Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, México City 11340, Mexico; (M.Y.-D.); (X.A.R.-R.); (M.Y.-O.)
| | - Gabriela Tapia-Pastrana
- Laboratorio de Investigación Biomédica del Hospital Regional de Alta Especialidad de Oaxaca, San Bartolo Coyotepec 71256, Mexico;
| | - Xóchitl Abril Rebollar-Ruíz
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Salvador Díaz Mirón y Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, México City 11340, Mexico; (M.Y.-D.); (X.A.R.-R.); (M.Y.-O.)
| | - Mariazell Yépez-Ortega
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Salvador Díaz Mirón y Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, México City 11340, Mexico; (M.Y.-D.); (X.A.R.-R.); (M.Y.-O.)
| | - Oscar Nieto-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
| | - Ivonne Maciel Arciniega-Martínez
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Salvador Díaz Mirón y Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, México City 11340, Mexico; (M.Y.-D.); (X.A.R.-R.); (M.Y.-O.)
| | - Aldo Arturo Reséndiz-Albor
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Salvador Díaz Mirón y Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, México City 11340, Mexico; (M.Y.-D.); (X.A.R.-R.); (M.Y.-O.)
| |
Collapse
|
8
|
Lazzaro A, Innocenti GP, Santinelli L, Pinacchio C, De Girolamo G, Vassalini P, Fanello G, Mastroianni CM, Ceccarelli G, d’Ettorre G. Antiretroviral Therapy Dampens Mucosal CD4 + T Lamina Propria Lymphocytes Immune Activation in Long-Term Treated People Living with HIV-1. Microorganisms 2021; 9:microorganisms9081624. [PMID: 34442703 PMCID: PMC8402205 DOI: 10.3390/microorganisms9081624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023] Open
Abstract
HIV infection is characterized by a severe deterioration of an immune cell-mediated response due to a progressive loss of CD4+ T cells from gastrointestinal tract, with a preferential loss of IL-17 producing Th cells (Th17), a specific CD4+ T cells subset specialized in maintaining mucosal integrity and antimicrobial inflammatory responses. To address the effectiveness of antiretroviral therapy (ART) in reducing chronic immunological dysfunction and immune activation of intestinal mucosa, we conducted a cross-sectional observational study comparing total IFN-γ-expressing (Th1) and IL-17-expressing (Th17) frequencies of CD4+ T lamina propria lymphocytes (LPLs) and their immune activation status between 11 male ART-naïve and 11 male long-term ART-treated people living with HIV-1 (PLWH) who underwent colonoscopy and retrograde ileoscopy for biopsies collection. Flow cytometry for surface and intracellular staining was performed. Long-term ART-treated PLWH showed lower levels of CD38+ and/or HLA-DR+ LPLs compared to ART-naïve PLWH. Frequencies of Th1 and Th17 LPLs did not differ between the two groups. Despite ART failing to restore the Th1 and Th17 levels within the gut mucosa, it is effective in increasing overall CD4+ T LPLs frequencies and reducing mucosal immune activation.
Collapse
Affiliation(s)
- Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
- Correspondence: (A.L.); (G.P.I.)
| | - Giuseppe Pietro Innocenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
- Correspondence: (A.L.); (G.P.I.)
| | - Letizia Santinelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| | - Claudia Pinacchio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| | - Gabriella De Girolamo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| | - Paolo Vassalini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| | - Gianfranco Fanello
- Department of Emergency Surgery-Emergency Endoscopic Unit, Sapienza University of Rome, Policlinico Umberto I, 00185 Roma, Italy;
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I of Rome, 00185 Roma, Italy; (L.S.); (C.P.); (G.D.G.); (P.V.); (C.M.M.); (G.C.); (G.d.)
| |
Collapse
|
9
|
Bartolomé-Casado R, Landsverk OJB, Chauhan SK, Sætre F, Hagen KT, Yaqub S, Øyen O, Horneland R, Aandahl EM, Aabakken L, Bækkevold ES, Jahnsen FL. CD4 + T cells persist for years in the human small intestine and display a T H1 cytokine profile. Mucosal Immunol 2021; 14:402-410. [PMID: 32572129 DOI: 10.1038/s41385-020-0315-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/30/2020] [Accepted: 06/03/2020] [Indexed: 02/04/2023]
Abstract
Studies in mice and humans have shown that CD8+ T cell immunosurveillance in non-lymphoid tissues is dominated by resident populations. Whether CD4+ T cells use the same strategies to survey peripheral tissues is less clear. Here, examining the turnover of CD4+ T cells in transplanted duodenum in humans, we demonstrate that the majority of CD4+ T cells were still donor-derived one year after transplantation. In contrast to memory CD4+ T cells in peripheral blood, intestinal CD4+ TRM cells expressed CD69 and CD161, but only a minor fraction expressed CD103. Functionally, intestinal CD4+ TRM cells were very potent cytokine producers; the vast majority being polyfunctional TH1 cells, whereas a minor fraction produced IL-17. Interestingly, a fraction of intestinal CD4+ T cells produced granzyme-B and perforin after activation. Together, we show that the intestinal CD4+ T-cell compartment is dominated by resident populations that survive for more than 1 year. This finding is of high relevance for the development of oral vaccines and therapies for diseases in the gut.
Collapse
Affiliation(s)
| | - Ole J B Landsverk
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Sudhir Kumar Chauhan
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Frank Sætre
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Sheraz Yaqub
- Department of Gastrointestinal Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ole Øyen
- Department of Transplantation Medicine, Section for Transplant Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Rune Horneland
- Department of Transplantation Medicine, Section for Transplant Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Einar Martin Aandahl
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Transplantation Medicine, Section for Transplant Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Lars Aabakken
- Department of Gastroenterology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Espen S Bækkevold
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Frode L Jahnsen
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
10
|
Pawlak M, Ho AW, Kuchroo VK. Cytokines and transcription factors in the differentiation of CD4 + T helper cell subsets and induction of tissue inflammation and autoimmunity. Curr Opin Immunol 2020; 67:57-67. [PMID: 33039897 DOI: 10.1016/j.coi.2020.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
CD4+T helper (Th) cells are critical in homeostasis and host defense but are also central to the development of various autoimmune diseases if they become dysregulated. Specifically, pathogenic Th1 and Th17 cells contribute to autoimmune inflammation whereas Treg and Tr1 cells are important for maintaining immune tolerance and resolution of inflammation, respectively. Cytokines trigger signaling pathways in naive T cells that induce lineage-defining transcription factors that direct their differentiation into the distinct T helper cell subsets. It has become clear that the differentiation of T helper cells is not only influenced by the cytokine milieu but also by their metabolic state, cues from the microbiota and the tissue they reside in. A comprehensive understanding how these various stimuli contribute to T helper cell differentiation and phenotype could potentially provide novel ways for therapeutic intervention in autoimmunity and tissue inflammation.
Collapse
Affiliation(s)
- Mathias Pawlak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Allen W Ho
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
11
|
Badolati I, Sverremark‐Ekström E, van der Heiden M. Th9 cells in allergic diseases: A role for the microbiota? Scand J Immunol 2020; 91:e12857. [PMID: 31811655 PMCID: PMC7154783 DOI: 10.1111/sji.12857] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Since their discovery about 10 years ago, Th9 cells have been increasingly linked to allergic pathologies. Within this review, we summarize the current knowledge on associations between Th9 cells and allergic diseases and acknowledge Th9 cells as important targets in future treatment of allergic diseases. However, until today, it is not fully understood how these Th9 cell responses are modulated. We describe current literature suggesting that these Th9 cell responses might be stimulated by microbial species such as Staphylococcus aureus and Candida albicans, while on the other hand, microbial and dietary compounds such as retinoic acid (RA), butyrate and vitamin D show suppressive capacity on allergy-related Th9 responses. By reviewing this recent research, we provide new insights into the modulating capacity of the microbiota on Th9 cell responses. Consequently, microbial and dietary factors may be used as innovative tools to target Th9 cells in the treatment of allergic diseases. However, further research is needed to elucidate the mechanisms behind these interactions in order to translate this knowledge into clinical allergy settings.
Collapse
Affiliation(s)
- Isabella Badolati
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Eva Sverremark‐Ekström
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Marieke van der Heiden
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| |
Collapse
|
12
|
Fuhler GM. The immune system and microbiome in pregnancy. Best Pract Res Clin Gastroenterol 2020; 44-45:101671. [PMID: 32359685 DOI: 10.1016/j.bpg.2020.101671] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/19/2020] [Accepted: 03/05/2020] [Indexed: 01/31/2023]
Abstract
Hormonal changes during pregnancy instigate numerous physiological changes aimed at the growth and delivery of a healthy baby. A careful balance between immunological tolerance against fetal antigens and immunity against infectious agents needs to be maintained. A three-way interaction between pregnancy hormones, the immune system and our microbiota is now emerging. Recent evidence suggests that microbial alterations seen during pregnancy may help maintain homeostasis and aid the required physiological changes occurring in pregnancy. However, these same immunological and microbial alterations may also make women more vulnerable during pregnancy and the post-partum period, especially regarding immunological and infectious diseases. Thus, a further understanding of the host-microbial interactions taking place during pregnancy may improve identification of populations at risk for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- G M Fuhler
- Erasmus MC University Medical Center Rotterdam, Department of Gastroenterology and Hepatology, Erasmus Medical Center, Gravendijkwal 230, 3015CE, Rotterdam, the Netherlands.
| |
Collapse
|
13
|
|
14
|
Dong L, Xie J, Wang Y, Zuo D. Gut Microbiota and Immune Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1238:165-193. [PMID: 32323185 DOI: 10.1007/978-981-15-2385-4_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gut microbiota consists of a dynamic multispecies community living within a particular niche in a mutual synergy with the host organism. Recent findings have revealed roles for the gut microbiota in the modulation of host immunity and the development and progression of immune-mediated diseases. Besides, growing evidence supports the concept that some metabolites mainly originated from gut microbiota are linked to the immune regulation implicated in systemic inflammatory and autoimmune disorders. In this chapter, we describe the recent advances in our understanding of how host-microbiota interactions shape the immune system, how they affect the pathogenesis of immune-associated diseases and the impact of these mechanisms in the efficacy of disease therapy.
Collapse
Affiliation(s)
- Lijun Dong
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jingwen Xie
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Youyi Wang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology, Southern Medical University, Guangzhou, 510515, China
| | - Daming Zuo
- School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology, Southern Medical University, Guangzhou, 510515, China.
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
15
|
Dietary exposure to chlorpyrifos inhibits the polarization of regulatory T cells in C57BL/6 mice with dextran sulfate sodium-induced colitis. Arch Toxicol 2019; 94:141-150. [PMID: 31807802 DOI: 10.1007/s00204-019-02615-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is associated with loss of immune tolerance to antigens originating from the diet and from the gut microflora. T cells play crucial roles in the pathogenesis of IBD. Chlorpyrifos (CPF) is one of the most ubiquitous organophosphate pesticides in the world. The aim of the study was to investigate the effects of dietary exposure to CPF on T-cell populations in C57BL/6 mice with dextran sulfate sodium (DSS)-induced colitis. Mice received distilled water containing 3% DSS for 6 days to induce acute colitis, which was then replaced with distilled water for 21 days, allowing progression to chronic inflammation. During the experimental period, mice were given either an AIN-93-based control diet or a CPF diet-containing 7, 17.5, or 35 ppm of CPF. Results showed that dietary exposure to CPF significantly increased circulating neutrophils in colitic mice. CPF-exposed groups had lower percentages of blood and spleen T cells without altering the proportions of CD4+ and CD8+ T-cell subsets. The percentage of blood regulatory T (Treg) cells, as well as splenic expressions of Treg-related genes, were suppressed in CPF-exposed mice. CPF upregulated the colonic gene expression of tumor necrosis factor-α. Meanwhile, plasma haptoglobin, colon weights, and luminal immunoglobulin G levels were higher in CPF-exposed groups. Histopathological analyses also observed that colon injury was more severe in all CPF-exposed mice. These results suggest that dietary exposure to CPF aggravated tissue injuries in mice with DSS-induced chronic colitis by suppressing T-cell populations and Treg polarization.
Collapse
|
16
|
Maseda D, Ricciotti E, Crofford LJ. Prostaglandin regulation of T cell biology. Pharmacol Res 2019; 149:104456. [PMID: 31553935 DOI: 10.1016/j.phrs.2019.104456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 09/13/2019] [Indexed: 12/26/2022]
Abstract
Prostaglandins (PG) are pleiotropic bioactive lipids involved in the control of many physiological processes, including key roles in regulating inflammation. This links PG to the modulation of the quality and magnitude of immune responses. T cells, as a core part of the immune system, respond readily to inflammatory cues from their environment, and express a diverse array of PG receptors that contribute to their function and phenotype. Here we put in context our knowledge about how PG affect T cell biology, and review advances that bring light into how specific T cell functions that have been newly discovered are modulated through PG. We will also comment on drugs that target PG metabolism and sensing, their effect on T cell function during disease, and we will finally discuss how we can design new approaches that modulate PG in order to maximize desired therapeutic T cell effects.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Microbiology, University of Pennsylvania School of Medicine, 8-138 Smillow Center for Translational Research, Philadelphia, PA, USA.
| | - Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie J Crofford
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
17
|
Xia X, Zhu L, Lei Z, Song Y, Tang F, Yin Z, Wang J, Huang J. Feruloylated Oligosaccharides Alleviate Dextran Sulfate Sodium-Induced Colitis in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9522-9531. [PMID: 31379161 DOI: 10.1021/acs.jafc.9b03647] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The imbalance of T lymphocyte subsets substantially conduces to disturbed intestinal immune system and succeeding colonic tissue damage in inflammatory bowel diseases. It is considered that regulation of phytochemicals on cytokine production potentially provides a broad prospect for the exploitation of immunomodulatory agents. Here, we reported that oral administration of feruloylated oligosaccharides (FOs) effectively alleviated mice colitis disease induced by dextran sulfate sodium (DSS). FOs decreased the percentage of T helper (Th)17 cells and downregulated the production of Th17-specific cytokines. In contrast, FOs increased the percentage of regulatory T (Treg) cells and elevated the production of Treg-specific cytokines in colons of DSS-challenged mice. These results indicated that FOs restored the immunologic equilibrium of Th17 and Treg subsets, hereby ameliorating the deterioration of colitis. Furthermore, FOs diminished the secretion of interleukin (IL)-23 and IL-6 but enhanced the transforming growth factor-β1 (TGF-β1) in dendritic cells in vitro and in vivo, which contributed to the restoration of Th17 and Treg cells immune balance. The mechanistic analysis showed that the regulation of FOs on IL-23 and IL-6 was associated with the nuclear factor-κ-gene binding signaling pathway and TGF-β1 with mitogen-activated protein kinase-activator protein 1 signaling pathway. Taken together, oral administration of FOs exerted potent immunomodulatory effects against mice colitis via restoring the immune balance of Th17 and Treg cells.
Collapse
Affiliation(s)
- Xichun Xia
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Leqing Zhu
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Zhiwei Lei
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China
- Department of Basic Medical Research , The Sixth Affiliated Hospital of Guangzhou Medical University, Qing Yuan People's Hospital , Qingyuan , Guangdong 511518 , China
| | - Yueqi Song
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Fen Tang
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Zhao Yin
- Formula-pattern Research Center, College of Traditional Chinese Medicine , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Jing Wang
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology and Business University , Beijing 100048 , China
| | - Junqing Huang
- Formula-pattern Research Center, College of Traditional Chinese Medicine , Jinan University , Guangzhou , Guangdong 510632 , China
| |
Collapse
|
18
|
Affiliation(s)
- Jyoti Patel
- Division of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Dotan I, Allez M, Danese S, Keir M, Tole S, McBride J. The role of integrins in the pathogenesis of inflammatory bowel disease: Approved and investigational anti-integrin therapies. Med Res Rev 2019; 40:245-262. [PMID: 31215680 PMCID: PMC6973243 DOI: 10.1002/med.21601] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by uncontrolled inflammation in the gastrointestinal tract. The underlying pathobiology of IBD includes an increase in infiltrating gut-homing lymphocytes. Although lymphocyte homing is typically a tightly regulated and stepwise process involving multiple integrins and adhesion molecules expressed on endothelial cells, the distinct roles of integrin-expressing immune cells is not fully understood in the pathology of IBD. In this review, we detail the involvement of integrins expressed on specific lymphocyte subsets in the pathogenesis of IBD and discuss the current status of approved and investigational integrin-targeted therapies.
Collapse
Affiliation(s)
- Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthieu Allez
- Department of Gastroenterology, Hôpital Saint-Louis, AP-HP, INSERM U1160, University Denis Diderot, Paris, France
| | - Silvio Danese
- Gastrointestinal Immunopathology Laboratory and IBD Unit, Humanitas Clinical and Research Center, Milan, Italy
| | - Mary Keir
- Department of Research and Early Development, Genentech, South San Francisco, California
| | - Swati Tole
- Department of Product Development, Genentech, South San Francisco, California
| | - Jacqueline McBride
- Department of Research and Early Development, Genentech, South San Francisco, California
| |
Collapse
|
20
|
Seguella L, Capuano R, Sarnelli G, Esposito G. Play in advance against neurodegeneration: exploring enteric glial cells in gut-brain axis during neurodegenerative diseases. Expert Rev Clin Pharmacol 2019; 12:555-564. [PMID: 31025582 DOI: 10.1080/17512433.2019.1612744] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: New investigations have shown that 'activated' enteric glial cells (EGCs), astrocyte-like cells of the enteric nervous system (ENS), represent a possible extra-CNS trigger point of the neurodegenerative processes in impaired intestinal permeability conditions. The early modulation of enteric glia-mediated neuroinflammation might optimize neuroprotective treatments outcomes currently used in neurodegenerative diseases. Areas covered: We discussed recent clinical and preclinical data existing on the Pubmed database, concerning the glial role in neurodegeneration. We focused on the gut as possible "entrance door" for endoluminal neurotoxic agents that induce neurological impairments during leaky gut conditions. Moreover, we reviewed the paradigmatic studies linking the leaky gut-induced priming of EGCs to the induction of late neurodegenerative processes in Parkinson's disease and other neurodegenerative disorders. Expert opinion: The previous appearance of neuropathological markers in the ENS emphasizes the extra-CNS origin of neurodegenerative disorders, by directing their therapies toward peripheral management of neurodegeneration. In light of the EGCs changes resulting from a switch-on of activated phenotype in leaky gut syndrome, EGCs sampling could be predictive for neuropathological conditions detection, anticipating their symptomatic manifestation in the CNS.
Collapse
Affiliation(s)
- Luisa Seguella
- a Department of Physiology and Pharmacology "V. Erspamer" , Sapienza University of Rome , Rome , Italy
| | - Riccardo Capuano
- a Department of Physiology and Pharmacology "V. Erspamer" , Sapienza University of Rome , Rome , Italy
| | - Giovanni Sarnelli
- b Department of Clinical Medicine and Surgery , University of Naples 'Federico II' , Naples , Italy
| | - Giuseppe Esposito
- a Department of Physiology and Pharmacology "V. Erspamer" , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
21
|
Marsilio S, Ackermann MR, Lidbury JA, Suchodolski JS, Steiner JM. Results of histopathology, immunohistochemistry, and molecular clonality testing of small intestinal biopsy specimens from clinically healthy client-owned cats. J Vet Intern Med 2019; 33:551-558. [PMID: 30820999 PMCID: PMC6430868 DOI: 10.1111/jvim.15455] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/05/2019] [Indexed: 01/25/2023] Open
Abstract
Background Histopathology, immunohistochemistry, and molecular clonality testing are metrics frequently used to diagnose chronic enteropathy (CE) in cats. However, normal values for these metrics have been based mainly on samples from cats that were relatively young, specific pathogen‐free, or both. Objectives To describe results of histopathology, immunohistochemistry, and clonality testing of endoscopically‐derived biopsy specimens of the upper small intestinal tract from a cohort of clinically healthy client‐owned cats. Animals Twenty clinically healthy client‐owned cats ≥3 years of age. Methods Tissue specimens were collected from the stomach and duodenum and evaluated single blinded by a board‐certified pathologist. In addition, samples were evaluated by routine immunohistochemistry and clonality testing. Cats were followed after the procedure for signs of CE. Results Integrated results from histopathology, immunohistochemistry, and clonality testing were interpreted as consistent with small cell lymphoma (SCL; n = 12), emerging SCL (n = 1), lymphocytic enteritis (n = 6), and pseudoclonality (n = 1). On follow‐up, 3 cats eventually developed clinical signs of CE, of which 2 were euthanized 295 and 654 days post‐endoscopy. The remaining 17 cats did not show clinical signs of CE after a median of 709 days (range, 219‐869 days). Conclusions and Clinical Importance Intestinal biopsy specimens from clinically healthy client‐owned cats commonly had abnormal findings on histopathology, immunohistochemistry, clonality testing, or some combination of these without apparent clinical relevance. Current diagnostic metrics for diagnosing CE in cats may need modification to be applicable to the general population of cats.
Collapse
Affiliation(s)
- Sina Marsilio
- Gastrointestinal Laboratory, Texas A&M University, College Station, Texas
| | - Mark R Ackermann
- Gastrointestinal Laboratory, Texas A&M University, College Station, Texas.,Oregon Veterinary Diagnostic Laboratory, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, Texas A&M University, College Station, Texas
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, College Station, Texas
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Texas A&M University, College Station, Texas
| |
Collapse
|
22
|
Dimitrijević M, Arsenović-Ranin N, Kosec D, Bufan B, Nacka-Aleksić M, Pilipović I, Leposavić G. Sexual dimorphism in Th17/Treg axis in lymph nodes draining inflamed joints in rats with collagen-induced arthritis. Brain Behav Immun 2019; 76:198-214. [PMID: 30476564 DOI: 10.1016/j.bbi.2018.11.311] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 11/22/2018] [Indexed: 01/11/2023] Open
Abstract
Collagen type II-induced arthritis (CIA) in Dark Agouti rats, a model of rheumatoid arthritis (RA), reproduces sexual dimorphism in the incidence and severity of the human disease. Th17 cells are central in the induction/propagation of autoimmune inflammation in CIA and RA. To assess mechanisms underlying this dimorphism in CIA rats, in lymph nodes draining inflamed joints and adjacent tissues (dLNs) from CIA rats of both sexes Th17/CD25+Foxp3+CD4+ T-regulatory cell (Treg) ratio, Th17 cell redifferentiation in functionally distinct subsets and Treg transdifferentiation into IL-17-producing cells (exTregs) were examined. In female rats (developing more severe CIA than their male counterparts) the higher frequency of all Th17 cells (reflecting partly their greater proliferation), followed by the higher frequency of highly pathogenic IFN-γ/GM-CSF-co-producing cells, but lower frequency of less pathogenic/immunoregulatory IL-10-producing cells among them was found. Additionally, compared with male rats, in female rats the lower frequency of Tregs was observed. Moreover, Tregs from female rats exhibited diminished proliferative and suppressive capacity (judging by PD-1 expression) and enhanced conversion into IL-17-producing cells. Given that TGF-β concentration was comparable in collagen-type II-stimulated dLN cell cultures from female and male rats, the shift in Th17/Treg ratio followed by augmented Th17 cell redifferentiation into IFN-γ/GM-CSF-co-producing cells and Treg transdifferentiation into IL-17-producing cells in female rats was associated with increased concentration of IL-6 in female rat dLN cell cultures, and the higher frequency of IL-1β- and IL-23-producing cells among their dLN cells. The lower frequency of IL-10-producing B cells, presumably B regulatory cells (Bregs) could also contribute to the shift in Th17/Treg ratio in female rat compared with male rat dLNs. Consistently, the lower expression of IL-35 (the cytokine promoting Treg expansion directly and indirectly, by favoring Breg expansion and conversion into IL-10/IL-35-producing cells) in female rat dLN cells was detected. Thus, the study identified putative cellular and molecular substrates of the sexual dimorphism in the immunopathogenesis and clinical outcome of CIA and suggested mechanisms to be targeted in females to improve control of Th17 response, and consequently clinical outcome of CIA, and possibly RA.
Collapse
Affiliation(s)
- Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Center, Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe 458, Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Center, Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe 458, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia.
| |
Collapse
|
23
|
Sun X, Jia Z. Microbiome modulates intestinal homeostasis against inflammatory diseases. Vet Immunol Immunopathol 2018; 205:97-105. [PMID: 30459007 DOI: 10.1016/j.vetimm.2018.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/21/2018] [Accepted: 10/27/2018] [Indexed: 02/07/2023]
Abstract
Eliminating prophylactic antibiotics in food animal production has exerted pressure on discovering antimicrobial alternatives (e.g. microbiome) to reduce elevated intestinal diseases. Intestinal tract is a complex ecosystem coupling host cells with microbiota. The microbiota and its metabolic activities and products are collectively called microbiome. Intestinal homeostasis is reached through dynamic and delicate crosstalk between host immunity and microbiome. However, this balance can be occasionally broken, which results in intestinal inflammatory diseases such as human Inflammatory Bowel Diseases, chicken necrotic enteritis, and swine postweaning diarrhea. In this review, we introduce the intestinal immune system, intestinal microbiome, and microbiome modulation of inflammation against intestinal diseases. The purpose of this review is to provide updated knowledge on host-microbe interaction and to promote using microbiome as new antimicrobial strategies to reduce intestinal diseases.
Collapse
Affiliation(s)
- Xiaolun Sun
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, 72701, United States.
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| |
Collapse
|
24
|
Veldhoen M, Blankenhaus B, Konjar Š, Ferreira C. Metabolic wiring of murine T cell and intraepithelial lymphocyte maintenance and activation. Eur J Immunol 2018; 48:1430-1440. [PMID: 30043974 DOI: 10.1002/eji.201646745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/14/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
Abstract
Adaptive immunity critically depends on cell migration combined with clonal selection and rapid expansion of rare lymphocytes recognising their cognate antigen in secondary lymphoid organs. It has since become apparent that large populations of T cells are maintained in tissues, which do not migrate throughout the body and do not require clonal expansion. Murine intraepithelial lymphocytes (IELs), located in the skin and small intestines, are maintained in a state of semi-activation, in marked contrast to the quiescent condition naive and memory lymphocytes are kept in. The poised activation state of IELs, their location in the top layers of barrier organs and close bidirectional interactions with epithelial cells suggests IELs are part of a sophisticated strategy of immune-surveillance and compartmentalisation of immune responses. Recent murine studies have reemphasised the influence of metabolism in T-cell activation and differentiation, with different metabolic make up of naive, effector and memory T cells. Here we highlight and discuss some of the current insights on immunometabolism of IELs, with emphasis on novel data contrasting how IELs may be maintained in a semi-activated state and may become fully functional compared with conventional T cells.
Collapse
Affiliation(s)
- Marc Veldhoen
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, Portugal
| | - Birte Blankenhaus
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, Portugal
| | - Špela Konjar
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, Portugal
| | - Cristina Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, Portugal
| |
Collapse
|
25
|
Brucklacher-Waldert V, Ferreira C, Stebegg M, Fesneau O, Innocentin S, Marie JC, Veldhoen M. Cellular Stress in the Context of an Inflammatory Environment Supports TGF-β-Independent T Helper-17 Differentiation. Cell Rep 2018; 19:2357-2370. [PMID: 28614720 PMCID: PMC5483510 DOI: 10.1016/j.celrep.2017.05.052] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 03/27/2017] [Accepted: 05/15/2017] [Indexed: 12/26/2022] Open
Abstract
T helper-17 (Th17) cells are associated with inflammatory disorders and cancer. We report that environmental conditions resulting in cellular stress, such as low oxygen, glucose, and isotonic stress, particularly enhance the generation of Th17 cells. Pharmacological inhibition of cell stress reduces Th17 cell differentiation while stress inducers enhance the development of Th17 cells. The cellular stress response results in Th17 cell development via sustained cytoplasmic calcium levels and, in part, XBP1 activity. Furthermore, in an inflammatory environment, conditions resulting in cell stress can bring about de novo Th17 cell differentiation, even in the absence of transforming growth factor β (TGF-β) signaling. In vivo, cell stress inhibition enhances resistance to Th17-mediated autoimmunity while stress-exposed T cells enhance disease severity. Adverse metabolic environments during inflammation provide a link between adaptive immunity and inflammation and may represent a risk factor for the development of chronic inflammatory conditions by facilitating Th17 cell differentiation.
Collapse
Affiliation(s)
| | - Cristina Ferreira
- Laboratory for Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK; Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular, Av. Professor Egas Moniz, Lisbon 1649-028, Portugal
| | - Marisa Stebegg
- Laboratory for Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Olivier Fesneau
- Immunology Virology and Inflammation Department, Cancer Research Center of Lyon UMR INSERM1052, CNRS 5286 28 rue Laennec, Lyon 69373, Cedex 08, France; Université Lyon 1, Lyon 69000, France; Centre Léon Bérard, Lyon 69008, France; Labex DEVweCAN, Lyon 69008, France
| | - Silvia Innocentin
- Laboratory for Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Julien C Marie
- Immunology Virology and Inflammation Department, Cancer Research Center of Lyon UMR INSERM1052, CNRS 5286 28 rue Laennec, Lyon 69373, Cedex 08, France; Université Lyon 1, Lyon 69000, France; Centre Léon Bérard, Lyon 69008, France; Labex DEVweCAN, Lyon 69008, France; TGFβ and Immuno-Evasion Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marc Veldhoen
- Laboratory for Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK; Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular, Av. Professor Egas Moniz, Lisbon 1649-028, Portugal.
| |
Collapse
|
26
|
Al-Banna NA, Cyprian F, Albert MJ. Cytokine responses in campylobacteriosis: Linking pathogenesis to immunity. Cytokine Growth Factor Rev 2018; 41:75-87. [PMID: 29550265 DOI: 10.1016/j.cytogfr.2018.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/08/2018] [Indexed: 12/15/2022]
Abstract
Campylobacter jejuni is an important enteric pathogen that causes diarrheas of different degrees of severity and several extra-intestinal manifestations, including Guillain-Barre syndrome. The variability of disease outcomes is thought to be linked to the immune response induced by C. jejuni. The virulence factors of C. jejuni induce a pro-inflammatory response, that is initiated by the intestinal epithelial cells, propagated by innate immune cells and modulated by the cells of the adaptive immune response. This review focuses on cytokines, that are reported to orchestrate the induction and propagation of pro-inflammatory immune response, and also those that are involved in control and resolution of inflammation. We describe the functional roles of a number of cytokines in modulating anti-Campylobacter immune responses: 1. cytokines of innate immunity (TNF-α, IL-6, and IL-8) as initiators of inflammatory response, 2. cytokines of antigen-presenting cells (IL-1β, IL-12, and IL-23) as promoters of pro-inflammatory response, 3. cytokines produced by T cells (IFN-γ, IL-17, IL-22) as activators of T cells, and 4. anti-inflammatory cytokines (IL-4 and IL-10) as inhibitors of pro-inflammatory responses. We highlight the roles of cytokines as potential therapeutic agents that are under investigation. In the end, we pose several questions that remain unanswered in our quest to understand Campylobacter immunity.
Collapse
Affiliation(s)
- Nadia A Al-Banna
- Department of Basic Medical Sciences, College of Medicine, QU Health Cluster, Qatar University, Doha, Qatar.
| | - Farhan Cyprian
- Department of Basic Medical Sciences, College of Medicine, QU Health Cluster, Qatar University, Doha, Qatar.
| | - M John Albert
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait.
| |
Collapse
|
27
|
Abstract
The gastrointestinal (GI) tract is a highly efficient organ system with specialized structures to facilitate digestion and absorption of nutrients to meet the body's needs. The presence of nutrients in the GI tract supports optimal structure and function, stimulates regulatory hormones, and supports the microbiota, the population of microorganisms residing in the GI tract. A lack of enteral nutrition (EN) results in impaired GI integrity and serious patient complications, making EN a priority. Normal GI physiology is reviewed, and the regulatory impact of luminal nutrients on GI function is discussed.
Collapse
|
28
|
Israelian N, Danska JS. Sex Effects at the Ramparts: Nutrient- and Microbe-Mediated Regulation of the Immune-Metabolic Interface. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:113-140. [PMID: 29224093 DOI: 10.1007/978-3-319-70178-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The relationships between dietary compounds, derivative metabolites, and host metabolism and immunity are controlled by diverse molecular mechanisms. Essential contributions to these dynamics come from the community of microbes (the microbiome) inhabiting the human digestive tract. The composition and function of the microbiome are shaped by available nutrients, and reciprocally, these organisms produce an as yet poorly defined repertoire of molecules that communicate with the epithelial barrier and the mucosal immune system. We present evidence that diet-derived vitamins and lipids regulate immunity and metabolic function and highlight the diverse mechanisms through which these effects are impacted by sex. We discuss exciting new data emerging from studies using high-throughput sequencing technology, specialized mouse models, and bio-specimens, and clinical data from human subjects that have begun to reveal the complexity of these interactions. Also profiled in this chapter are the striking sex differences in pathways by which dietary nutrients and gut microbes modify metabolism, immunity, and immune- and inflammation-mediated diseases. Although the incidence, severity, and therapeutic responses of many autoimmune diseases differ by sex, the molecular mechanisms of these effects remain poorly understood.
Collapse
Affiliation(s)
- Nyrie Israelian
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Jayne S Danska
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada. .,Department of Immunology, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
29
|
Lycke NY, Bemark M. The regulation of gut mucosal IgA B-cell responses: recent developments. Mucosal Immunol 2017; 10:1361-1374. [PMID: 28745325 DOI: 10.1038/mi.2017.62] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/20/2017] [Indexed: 02/04/2023]
Abstract
The majority of activated B cells differentiate into IgA plasma cells, with the gut being the largest producer of immunoglobulin in the body. Secretory IgA antibodies have numerous critical functions of which protection against infections and the role for establishing a healthy microbiota appear most important. Expanding our knowledge of the regulation of IgA B-cell responses and how effective mucosal vaccines can be designed are of critical importance. Here we discuss recent developments in the field that shed light on the uniqueness and complexity of mucosal IgA responses and the control of protective IgA responses in the gut, specifically.
Collapse
Affiliation(s)
- N Y Lycke
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - M Bemark
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
The Th17 Lineage: From Barrier Surfaces Homeostasis to Autoimmunity, Cancer, and HIV-1 Pathogenesis. Viruses 2017; 9:v9100303. [PMID: 29048384 PMCID: PMC5691654 DOI: 10.3390/v9100303] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022] Open
Abstract
The T helper 17 (Th17) cells represent a subset of CD4+ T-cells with unique effector functions, developmental plasticity, and stem-cell features. Th17 cells bridge innate and adaptive immunity against fungal and bacterial infections at skin and mucosal barrier surfaces. Although Th17 cells have been extensively studied in the context of autoimmunity, their role in various other pathologies is underexplored and remains an area of open investigation. This review summarizes the history of Th17 cell discovery and the current knowledge relative to the beneficial role of Th17 cells in maintaining mucosal immunity homeostasis. We further discuss the concept of Th17 pathogenicity in the context of autoimmunity, cancer, and HIV infection, and we review the most recent discoveries on molecular mechanisms regulating HIV replication/persistence in pathogenic Th17 cells. Finally, we stress the need for novel fundamental research discovery-based Th17-specific therapeutic interventions to treat pathogenic conditions associated with Th17 abnormalities, including HIV infection.
Collapse
|
31
|
Konjar Š, Ferreira C, Blankenhaus B, Veldhoen M. Intestinal Barrier Interactions with Specialized CD8 T Cells. Front Immunol 2017; 8:1281. [PMID: 29075263 PMCID: PMC5641586 DOI: 10.3389/fimmu.2017.01281] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023] Open
Abstract
The trillions of microorganisms that reside in the gastrointestinal tract, essential for nutrient absorption, are kept under control by a single cell barrier and large amounts of immune cells. Intestinal epithelial cells (IECs) are critical in establishing an environment supporting microbial colonization and immunological tolerance. A large population of CD8+ T cells is in direct and constant contact with the IECs and the intraepithelial lymphocytes (IELs). Due to their location, at the interphase of the intestinal lumen and external environment and the host tissues, they seem ideally positioned to balance immune tolerance and protection to preserve the fragile intestinal barrier from invasion as well as immunopathology. IELs are a heterogeneous population, with a large innate-like contribution of unknown specificity, intercalated with antigen-specific tissue-resident memory T cells. In this review, we provide a comprehensive overview of IEL physiology and how they interact with the IECs and contribute to immune surveillance to preserve intestinal homeostasis and host-microbial relationships.
Collapse
Affiliation(s)
- Špela Konjar
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Cristina Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Birte Blankenhaus
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
32
|
Abstract
Affect and emotion are defined as “an essential part of the process of an organism's interaction with stimuli.” Similar to affect, the immune response is the “tool” the body uses to interact with the external environment. Thanks to the emotional and immunological response, we learn to distinguish between what we like and what we do not like, to counteract a broad range of challenges, and to adjust to the environment we are living in. Recent compelling evidence has shown that the emotional and immunological systems share more than a similarity of functions. This review article will discuss the crosstalk between these two systems and the need for a new scientific area of research called affective immunology. Research in this field will allow a better understanding and appreciation of the immunological basis of mental disorders and the emotional side of immune diseases.
Collapse
Affiliation(s)
- Fulvio D'Acquisto
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
33
|
Miteva LD, Stanilov NS, Cirovski GМ, Stanilova SA. Upregulation of Treg-Related Genes in Addition with IL6 Showed the Significant Role for the Distant Metastasis in Colorectal Cancer. CANCER MICROENVIRONMENT 2017; 10:69-76. [PMID: 28868572 DOI: 10.1007/s12307-017-0198-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022]
Abstract
T helper 17 (Th17) and T regulatory (Treg) cytokines appear to be contributing greatly to colorectal cancer (CRC) development and progression. The aim of the current study was to investigate the expression of Foxp3; IL10; TGFB1; IL17A; IL6 and NOS2 genes in tumor tissue, regional positive lymph nodes and distant metastasis obtained from 26 patients with advanced CRC. Quantitative real-time polymerase chain reaction (qPCR) was performed for mRNA detection by TaqMan gene expression assay. In distant metastasis, IL6 was strongly expressed, over 7.5 fold, followed by Treg-related genes Foxp3; IL10 and TGFB1 in contrast to IL17A and NOS2. The similar pattern of expression was observed in positive regional lymph node in addition to significant down-regulation of NOS2 (RQ = 0.287; p = 0.011) and a trend for the elevation of IL17A. In tumor tissue, Fopx3 was significantly upregulated and Foxp3 mRNA positively correlated with TGFB1 in all investigated tissue types. In tumor tissue, expression of IL17A was correlated with NOS2 (r = 0.68; p = 0.005), while in distant metastasis IL10 was in strong relation with TGFB1 and IL6. In addition, a reverse correlation between IL6 and NOS2 (r = -0.66; p = 0.009), was observed in distant metastasis. The simultaneous expression of given Treg and Th17-related genes found both in the primary tumor and in the regional lymph nodes appears to provide suitable microenvironment sufficient for promoting metastatic growth. The upregulation of Foxp3; IL10, TGFB1 and IL6 might be a transcriptional profile hallmark for colorectal metastases.
Collapse
Affiliation(s)
- L D Miteva
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| | - N S Stanilov
- Breast Oncoplastic Unit, University College London Hospital, London, UK
| | | | - Spaska Angelova Stanilova
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Stara Zagora, Bulgaria.
| |
Collapse
|
34
|
Krebs CF, Schmidt T, Riedel JH, Panzer U. T helper type 17 cells in immune-mediated glomerular disease. Nat Rev Nephrol 2017; 13:647-659. [PMID: 28781371 DOI: 10.1038/nrneph.2017.112] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CD4+ T cells are important drivers of tissue damage in immune-mediated renal diseases, such as anti-glomerular basement membrane glomerulonephritis, anti-neutrophil cytoplasmic antibody-associated glomerulonephritis, and lupus nephritis. The discovery of a distinct, IL-17-producing CD4+ T-cell lineage termed T helper type 17 (TH17) cells has markedly advanced current understanding of the pathogenic mechanisms of organ-specific immunity and the pathways that lead to target organ damage. TH17 cells are characterized by the expression of the transcription factor RORγt, the production of the pro-inflammatory cytokines IL-17A, IL-17F, IL-22, and high expression of the chemokine receptor C-C-motif chemokine receptor 6 (CCR6). An emerging body of evidence from experimental models and human studies supports a key role for these cells in the development of renal damage, and has led to the identification of targets to inhibit the production of TH17 cells in the intestine, their migration, or their actions within the kidney. Here, we describe the identification, regulation, and function of TH17 cells and their associated pathways in immune-mediated kidney diseases, with a particular focus on the mechanisms underlying renal tissue injury. We also discuss the rationale for the translation of these findings into new therapeutic approaches in patients with autoimmune kidney disease.
Collapse
Affiliation(s)
- Christian F Krebs
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Tilman Schmidt
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jan-Hendrik Riedel
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ulf Panzer
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
35
|
Tashireva LA, Perelmuter VM, Manskikh VN, Denisov EV, Savelieva OE, Kaygorodova EV, Zavyalova MV. Types of Immune-Inflammatory Responses as a Reflection of Cell-Cell Interactions under Conditions of Tissue Regeneration and Tumor Growth. BIOCHEMISTRY (MOSCOW) 2017; 82:542-555. [PMID: 28601064 DOI: 10.1134/s0006297917050029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inflammatory infiltration of tumor stroma is an integral reflection of reactions that develop in response to any damage to tumor cells including immune responses to antigens or necrosis caused by vascular disorders. In this review, we use the term "immune-inflammatory response" (IIR) that allows us to give an integral assessment of the cellular composition of the tumor microenvironment. Two main types of IIRs are discussed: type 1 and 2 T-helper reactions (Th1 and Th2), as well as their inducers: immunosuppressive responses and reactions mediated by Th22 and Th17 lymphocytes and capable of modifying the main types of IIRs. Cellular and molecular manifestations of each IIR type are analyzed and their general characteristics and roles in tissue regeneration and tumor growth are presented. Since inflammatory responses in a tumor can also be initiated by innate immunity mechanisms, special attention is given to inflammation based on them. We emphasize that processes accompanying tissue regeneration are prototypes of processes underlying cancer progression, and these processes have the same cellular and molecular substrates. We focus on evidence that tumor progression is mainly contributed by processes specific for the second phase of "wound healing" that are based on the Th2-type IIR. We emphasize that the effect of various types of immune and stroma cells on tumor progression is determined by the ability of the cells and their cytokines to promote or prevent the development of Th1- or Th2-type of IIR. Finally, we supposed that the nonspecific influence on the tumor caused by the cytokine context of the Th1- or Th2-type microenvironment should play a decisive role for suppression or stimulation of tumor growth and metastasis.
Collapse
Affiliation(s)
- L A Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
36
|
Veldhoen M. Interleukin 17 is a chief orchestrator of immunity. Nat Immunol 2017; 18:612-621. [DOI: 10.1038/ni.3742] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022]
|
37
|
Zhou Y, Shi X, Chen H, Zhang S, Salker MS, Mack AF, Föller M, Mak TW, Singh Y, Lang F. DJ-1/Park7 Sensitive Na + /H + Exchanger 1 (NHE1) in CD4 + T Cells. J Cell Physiol 2017; 232:3050-3059. [PMID: 27509531 DOI: 10.1002/jcp.25516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/09/2016] [Indexed: 01/03/2023]
Abstract
DJ-1/Park7 is a redox-sensitive chaperone protein counteracting oxidation and presumably contributing to the control of oxidative stress responses and thus inflammation. DJ-1 gene deletion exacerbates the progression of Parkinson's disease presumably by augmenting oxidative stress. Formation of reactive oxygen species (ROS) is paralleled by activation of the Na+ /H+ exchanger 1 (NHE1). ROS formation in CD4+ T cells plays a decisive role in regulating inflammatory responses. In the present study, we explored whether DJ-1 is expressed in CD4+ T cells, and affects ROS production as well as NHE1 in those cells. To this end, DJ-1 and NHE1 transcript, and protein levels were quantified by qRT-PCR and Western blotting, respectively, intracellular pH (pHi ) utilizing bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) fluorescence, NHE activity from realkalinization after an ammonium pulse, and ROS production utilizing 2',7' -dichlorofluorescin diacetate (DCFDA) fluorescence. As a result DJ-1 was expressed in CD4+ T cells. ROS formation, NHE1 transcript levels, NHE1 protein, and NHE activity were higher in CD4+ T cells from DJ-1 deficient mice than in CD4+ T cells from wild type mice. Antioxidant N-acetyl-cysteine (NAC) and protein tyrosine kinase (PTK) inhibitor staurosporine decreased the NHE activity in DJ-1 deficient CD4+ T cells, and blunted the difference between DJ-1-/- and DJ-1+/+ CD4+ T cells, an observation pointing to a role of ROS in the up-regulation of NHE1 in DJ-1-/- CD4+ T cells. In conclusion, DJ-1 is a powerful regulator of ROS production as well as NHE1 expression and activity in CD4+ T cells. J. Cell. Physiol. 232: 3050-3059, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuetao Zhou
- Department of Cardiology, Vascular Medicine and Physiology, Eberhard-Karls-University, Tübingen, Germany
| | - Xiaolong Shi
- Department of Cardiology, Vascular Medicine and Physiology, Eberhard-Karls-University, Tübingen, Germany
| | - Hong Chen
- Department of Cardiology, Vascular Medicine and Physiology, Eberhard-Karls-University, Tübingen, Germany
| | - Shaqiu Zhang
- Department of Cardiology, Vascular Medicine and Physiology, Eberhard-Karls-University, Tübingen, Germany.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, China
| | - Madhuri S Salker
- Department of Cardiology, Vascular Medicine and Physiology, Eberhard-Karls-University, Tübingen, Germany
| | - Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, Eberhard-Karls-University, Tübingen, Germany
| | - Michael Föller
- Department of Cardiology, Vascular Medicine and Physiology, Eberhard-Karls-University, Tübingen, Germany.,Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, UHN, Toronto, Canada.,Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, UHN, Toronto, Canada
| | - Yogesh Singh
- Department of Cardiology, Vascular Medicine and Physiology, Eberhard-Karls-University, Tübingen, Germany
| | - Florian Lang
- Department of Cardiology, Vascular Medicine and Physiology, Eberhard-Karls-University, Tübingen, Germany
| |
Collapse
|
38
|
D'Acquisto F. Affective immunology: where emotions and the immune response converge. DIALOGUES IN CLINICAL NEUROSCIENCE 2017; 19:9-19. [PMID: 28566943 PMCID: PMC5442367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Affect and emotion are defined as "an essential part of the process of an organism's interaction with stimuli." Similar to affect, the immune response is the "tool" the body uses to interact with the external environment. Thanks to the emotional and immunological response, we learn to distinguish between what we like and what we do not like, to counteract a broad range of challenges, and to adjust to the environment we are living in. Recent compelling evidence has shown that the emotional and immunological systems share more than a similarity of functions. This review article will discuss the crosstalk between these two systems and the need for a new scientific area of research called affective immunology. Research in this field will allow a better understanding and appreciation of the immunological basis of mental disorders and the emotional side of immune diseases.
Collapse
Affiliation(s)
- Fulvio D'Acquisto
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
39
|
Continuous Dual Resetting of the Immune Repertoire as a Basic Principle of the Immune System Function. J Immunol Res 2017; 2017:3760238. [PMID: 28246613 PMCID: PMC5299180 DOI: 10.1155/2017/3760238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/04/2016] [Indexed: 01/01/2023] Open
Abstract
Idiopathic chronic inflammatory conditions (ICIC) such as allergy, asthma, chronic obstructive pulmonary disease, and various autoimmune conditions are a worldwide health problem. Understanding the pathogenesis of ICIC is essential for their successful therapy and prevention. However, efforts are hindered by the lack of comprehensive understanding of the human immune system function. In line with those efforts, described here is a concept of stochastic continuous dual resetting (CDR) of the immune repertoire as a basic principle that governs the function of immunity. The CDR functions as a consequence of system's thermodynamically determined intrinsic tendency to acquire new states of inner equilibrium and equilibrium against the environment. Consequently, immune repertoire undergoes continuous dual (two-way) resetting: against the physiologic continuous changes of self and against the continuously changing environment. The CDR-based dynamic concept of immunity describes mechanisms of self-regulation, tolerance, and immunosenescence, and emphasizes the significance of immune system's compartmentalization in the pathogenesis of ICIC. The CDR concept's relative simplicity and concomitantly documented congruency with empirical, clinical, and experimental data suggest it may represent a plausible theoretical framework to better understand the human immune system function.
Collapse
|
40
|
Chackelevicius CM, Gambaro SE, Tiribelli C, Rosso N. Th17 involvement in nonalcoholic fatty liver disease progression to non-alcoholic steatohepatitis. World J Gastroenterol 2016; 22:9096-9103. [PMID: 27895397 PMCID: PMC5107591 DOI: 10.3748/wjg.v22.i41.9096] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/22/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
The nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. NAFLD encompasses a wide histological spectrum ranging from benign simple steatosis to non-alcoholic steatohepatitis (NASH). Sustained inflammation in the liver is critical in this process. Hepatic macrophages, including liver resident macropaghes (Kupffer cells), monocytes infiltrating the injured liver, as well as specific lymphocytes subsets play a pivotal role in the initiation and perpetuation of the inflammatory response, with a major deleterious impact on the progression of fatty liver to fibrosis. During the last years, Th17 cells have been involved in the development of inflammation not only in liver but also in other organs, such as adipose tissue or lung. Differentiation of a naïve T cell into a Th17 cell leads to pro-inflammatory cytokine and chemokine production with subsequent myeloid cell recruitment to the inflamed tissue. Th17 response can be mitigated by T regulatory cells that secrete anti-inflammatory cytokines. Both T cell subsets need TGF-β for their differentiation and a characteristic plasticity in their phenotype may render them new therapeutic targets. In this review, we discuss the role of the Th17 pathway in NAFLD progression to NASH and to liver fibrosis analyzing different animal models of liver injury and human studies.
Collapse
|
41
|
Carrasco A, Fernández-Bañares F, Pedrosa E, Salas A, Loras C, Rosinach M, Aceituno M, Andújar X, Forné M, Zabana Y, Esteve M. Regional Specialisation of T Cell Subsets and Apoptosis in the Human Gut Mucosa: Differences Between Ileum and Colon in Healthy Intestine and Inflammatory Bowel Diseases. J Crohns Colitis 2016; 10:1042-54. [PMID: 26995182 DOI: 10.1093/ecco-jcc/jjw066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/29/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS There is very limited information regarding region-specific immunological response in human intestine. We aimed to determine differences in immune compartmentalisation between ileum and colon in healthy and inflamed mucosa. METHODS T cell profile and its apoptosis were measured by flow cytometry, Th1, Th17, Treg [CD4(+)CD25(+)FOXP3(+)], double positive [DP, CD3(+)CD4(+)CD8(+)] and double negative T cells [DN, CD3(+)CD4(-)CD8(-)], immunohistochemistry [FOXP3, caspase-3], and real-time polymerase chain reaction [PCR] [IFN-γ, IL-17-A, and FOXP3] on biopsies from different regions of healthy intestine and of intestine in inflammatory bowel diseases. RESULTS Healthy colon showed higher percentages of Treg, Th17, and DN, and lower numbers of DP T cells compared with ileum [p < 0.05]. Some but not all region-specific differences were lost in inflammatory conditions. Disease-specific patterns were found: a Th1/Th17 pattern and a Th17 pattern in Crohn's disease and ulcerative colitis respectively, whereas a reduction in Th1/Th17 was found in microscopic colitis. In colonic Crohn's disease and microscopic colitis, DN T cells had a pattern inverse to that of Th1/Th17 (increase in microscopic colitis [p < 0.05] and decrease in Crohn's disease [p < 0.005]). Higher levels of lymphocyte apoptosis were found in healthy colon compared with the ileal counterparts [p = 0.001]. All forms of colonic inflammation presented a dramatic decrease in apoptosis compared with healthy colon. By contrast ileal Crohn's disease showed higher levels of cleaved-Caspase(+) CD3(+) cells. CONCLUSIONS Immunological differences exist in healthy gastrointestinal tract. Inflammatory processes overwhelm some location-specific differences, whereas others are maintained. Care has to be taken when analysing immune response in intestinal inflammation, as location-specific differences may be relevant.
Collapse
Affiliation(s)
- Anna Carrasco
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBERehd], Barcelona, Catalonia, Spain
| | - Fernando Fernández-Bañares
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBERehd], Barcelona, Catalonia, Spain
| | - Elisabet Pedrosa
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain
| | - Antonio Salas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBERehd], Barcelona, Catalonia, Spain Department of Pathology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain
| | - Carme Loras
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBERehd], Barcelona, Catalonia, Spain
| | - Mercè Rosinach
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBERehd], Barcelona, Catalonia, Spain
| | - Montserrat Aceituno
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain
| | - Xavier Andújar
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBERehd], Barcelona, Catalonia, Spain
| | - Montserrat Forné
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBERehd], Barcelona, Catalonia, Spain
| | - Yamile Zabana
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBERehd], Barcelona, Catalonia, Spain
| | - Maria Esteve
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBERehd], Barcelona, Catalonia, Spain
| |
Collapse
|
42
|
Bilate AM, Bousbaine D, Mesin L, Agudelo M, Leube J, Kratzert A, Dougan SK, Victora GD, Ploegh HL. Tissue-specific emergence of regulatory and intraepithelial T cells from a clonal T cell precursor. Sci Immunol 2016; 1:eaaf7471. [PMID: 28783695 DOI: 10.1126/sciimmunol.aaf7471] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/22/2016] [Indexed: 12/19/2022]
Abstract
Peripheral Foxp3+ regulatory T cells (pTregs) maintain immune homeostasis by controlling potentially harmful effector T cell responses toward dietary and microbial antigens. Although the identity of the T cell receptor (TCR) can impose commitment and functional specialization of T cells, less is known about how TCR identity governs pTreg development from conventional CD4+ T cells. To investigate the extent to which TCR identity dictates pTreg fate, we used somatic cell nuclear transfer to generate a transnuclear (TN) mouse carrying a monoclonal TCR from a pTreg (pTreg TN mice). We found that the pTreg TCR did not inevitably predispose T cells to become pTreg but instead allowed for differentiation of noninflammatory CD4+CD8αα+ intraepithelial lymphocytes (CD4IELs) in the small intestine. Only when we limited the number of T cell precursors that carried the TN pTreg TCR did we observe substantial pTreg development in the mesenteric lymph nodes and small intestine lamina propria of mixed bone marrow chimeras. Small clonal sizes and therefore decreased intraclonal competition were required for pTreg development. Despite bearing the same TCR, small intestine CD4IEL developed independently of precursor frequency. Both pTreg and CD4IEL development strictly depended on the resident microbiota. A single clonal CD4+ T cell precursor can thus give rise to two functionally distinct and anatomically segregated T cell subsets in a microbiota-dependent manner. Therefore, plasticity of the CD4 T cell compartment depends not only on the microbiota but also on specialized environmental cues provided by different tissues.
Collapse
Affiliation(s)
- Angelina M Bilate
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Djenet Bousbaine
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biology, Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Luka Mesin
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Marianna Agudelo
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Justin Leube
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Andreas Kratzert
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Stephanie K Dougan
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Gabriel D Victora
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
43
|
Brucklacher-Waldert V, Ferreira C, Innocentin S, Kamdar S, Withers DR, Kullberg MC, Veldhoen M. Tbet or Continued RORγt Expression Is Not Required for Th17-Associated Immunopathology. THE JOURNAL OF IMMUNOLOGY 2016; 196:4893-904. [PMID: 27183623 PMCID: PMC4891569 DOI: 10.4049/jimmunol.1600137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/14/2016] [Indexed: 01/08/2023]
Abstract
The discovery of Th17 cell plasticity, in which CD4+ IL-17–producing Th17 cells give rise to IL-17/IFN-γ double-producing cells and Th1-like IFNγ+ ex-Th17 lymphocytes, has raised questions regarding which of these cell types contribute to immunopathology during inflammatory diseases. In this study, we show using Helicobacter hepaticus-induced intestinal inflammation that IL-17ACre– or Rag1Cre-mediated deletion of Tbx21 has no effect on the generation of IL-17/IFN-γ double-producing cells, but leads to a marked absence of Th1-like IFNγ+ ex-Th17 cells. Despite the lack of Th1-like ex-Th17 cells, the degree of H. hepaticus-triggered intestinal inflammation in mice in which Tbx21 was excised in IL-17–producing or Rag1-expressing cells is indistinguishable from that observed in control mice. In stark contrast, using experimental autoimmune encephalomyelitis, we show that IL-17ACre–mediated deletion of Tbx21 prevents the conversion of Th17 cells to IL-17A/IFN-γ double-producing cells as well as Th1-like IFN-γ+ ex-Th17 cells. However, IL-17ACre–mediated deletion of Tbx21 has only limited effects on disease course in this model and is not compensated by Ag-specific Th1 cells. IL-17ACre–mediated deletion of Rorc reveals that RORγt is essential for the maintenance of the Th17 cell lineage, but not immunopathology during experimental autoimmune encephalomyelitis. These results show that neither the single Th17 subset, nor its progeny, is solely responsible for immunopathology or autoimmunity.
Collapse
Affiliation(s)
- Verena Brucklacher-Waldert
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Cristina Ferreira
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Silvia Innocentin
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Shraddha Kamdar
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York YO10 5DD, United Kingdom; and
| | - David R Withers
- Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Marika C Kullberg
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York YO10 5DD, United Kingdom; and
| | - Marc Veldhoen
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom;
| |
Collapse
|
44
|
Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease. Clin Transl Immunology 2016; 5:e60. [PMID: 26900473 PMCID: PMC4735066 DOI: 10.1038/cti.2015.47] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/04/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.
Collapse
|
45
|
Omenetti S, Pizarro TT. The Treg/Th17 Axis: A Dynamic Balance Regulated by the Gut Microbiome. Front Immunol 2015; 6:639. [PMID: 26734006 PMCID: PMC4681807 DOI: 10.3389/fimmu.2015.00639] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/04/2015] [Indexed: 12/12/2022] Open
Abstract
T-helper 17 (Th17) and T-regulatory (Treg) cells are frequently found at barrier surfaces, particularly within the intestinal mucosa, where they function to protect the host from pathogenic microorganisms and to restrain excessive effector T-cell responses, respectively. Despite their differing functional properties, Th17 cells and Tregs share similar developmental requirements. In fact, the fate of antigen-naïve T-cells to either Th17 or Treg lineages is finely regulated by key mediators, including TGFβ, IL-6, and all-trans retinoic acid. Importantly, the intestinal microbiome also provides immunostimulatory signals, which can activate innate and downstream adaptive immune responses. Specific components of the gut microbiome have been implicated in the production of proinflammatory cytokines by innate immune cells, such as IL-6, IL-23, IL-1β, and the subsequent generation and expansion of Th17 cells. Similarly, commensal bacteria and their metabolites can also promote the generation of intestinal Tregs that can actively induce mucosal tolerance. As such, dysbiosis of the gut microbiome may not solely represent a consequence of gut inflammation, but rather shape the Treg/Th17 commitment and influence susceptibility to inflammatory bowel disease. In this review, we discuss Treg and Th17 cell plasticity, its dynamic regulation by the microbiome, and highlight its impact on intestinal homeostasis and disease.
Collapse
Affiliation(s)
- Sara Omenetti
- Department of Pathology, Case Western Reserve University School of Medicine , Cleveland, OH , USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine , Cleveland, OH , USA
| |
Collapse
|
46
|
Jankovic D, Feng CG. CD4(+) T Cell Differentiation in Infection: Amendments to the Th1/Th2 Axiom. Front Immunol 2015; 6:198. [PMID: 25972870 PMCID: PMC4413827 DOI: 10.3389/fimmu.2015.00198] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/09/2015] [Indexed: 01/10/2023] Open
Affiliation(s)
- Dragana Jankovic
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) , Bethesda, MD , USA
| | - Carl G Feng
- Department of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney , Sydney, NSW , Australia
| |
Collapse
|
47
|
Abstract
T-helper 17 (Th17) and T-regulatory (Treg) cells are frequently found at barrier surfaces, particularly within the intestinal mucosa, where they function to protect the host from pathogenic microorganisms and to restrain excessive effector T-cell responses, respectively. Despite their differing functional properties, Th17 cells and Tregs share similar developmental requirements. In fact, the fate of antigen-naïve T-cells to either Th17 or Treg lineages is finely regulated by key mediators, including TGFβ, IL-6, and all-trans retinoic acid. Importantly, the intestinal microbiome also provides immunostimulatory signals, which can activate innate and downstream adaptive immune responses. Specific components of the gut microbiome have been implicated in the production of proinflammatory cytokines by innate immune cells, such as IL-6, IL-23, IL-1β, and the subsequent generation and expansion of Th17 cells. Similarly, commensal bacteria and their metabolites can also promote the generation of intestinal Tregs that can actively induce mucosal tolerance. As such, dysbiosis of the gut microbiome may not solely represent a consequence of gut inflammation, but rather shape the Treg/Th17 commitment and influence susceptibility to inflammatory bowel disease. In this review, we discuss Treg and Th17 cell plasticity, its dynamic regulation by the microbiome, and highlight its impact on intestinal homeostasis and disease.
Collapse
Affiliation(s)
- Sara Omenetti
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Theresa T. Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- *Correspondence: Theresa T. Pizarro,
| |
Collapse
|