1
|
Serin M, Kara P. Demyelination detection in CSF based on electrochemical monitoring of myelin basic protein in comparison between Apta vs. Immuno sensing strategies. Bioelectrochemistry 2025; 161:108834. [PMID: 39442496 DOI: 10.1016/j.bioelechem.2024.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Multiple sclerosis (MS) is a recurrent inflammatory, demyelinating disease of the white matter in central nervous system (CNS). The number of MS patients is increasing, but the diagnostic process is still quite difficult, costly and requires combination of several methods. Myelin basic protein (MBP) makes up to 30 % of the myelin in CNS. It is known that MBP is released into the cerebrospinal fluid (CSF) as MS bioindicator. Herein, myelin specific DNA aptamer earlier developed for possible therapeutic purposes and anti-MBP antibody were applied as bioreceptors for MBP recognition on the same nanomodified sensor surfaces and their performances were compared. Biosensors were developed by using graphene oxide (GO) nanoparticles integrated onto pencil graphite electrodes (PGE) and bioreceptor molecules immobilized to create a bioactive layer for MBP binding. The measurements were run with electrochemical impedance spectroscopy (EIS). Selectivity of the biosensors was evaluated using human serum albumin (HSA). After optimization of binding parameters, biosensors were validated in artificial CSF. It was shown that LJM-5708 based aptasensor had LOD 0.65 ng/mL that was comparable to immunosensor LOD (0.36 ng/mL) in artificial CSF and showed its applicability in the clinical concentration range between 1 and 128 ng/mL.
Collapse
Affiliation(s)
- Marina Serin
- Faculty of Pharmacy, Department of Analytical Chemistry, Ege University, 35100 Izmir, Bornova, Turkey; Graduate School of Natural and Applied Sciences, Department of Biomedical Technologies, Ege University, 35100 Izmir, Bornova, Turkey
| | - Pınar Kara
- Faculty of Pharmacy, Department of Analytical Chemistry, Ege University, 35100 Izmir, Bornova, Turkey.
| |
Collapse
|
2
|
Finger E, Coimbra TMG, Dastoli AF. Severe murine schistosomiasis results from disrupted CD4+ T-cell modulation by immunodominance of a single egg epitope. EINSTEIN-SAO PAULO 2024; 22:eAO0839. [PMID: 39661861 PMCID: PMC11634341 DOI: 10.31744/einstein_journal/2024ao0839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/25/2024] [Indexed: 12/13/2024] Open
Abstract
OBJECTIVE This study examined the correlation between immunodominance of the major egg antigen Sm-p40234-246, a robust Th1/Th17 anti-egg CD4 T-cell response, and severe liver immunopathology in experimental murine schistosomiasis. It serves as a platform to analyze how varying degrees of immunodominance affect CD4+ T cell modulation and disease outcomes. METHODS We used a murine model of schistosomiasis to investigate the effects of immunodominance. Infected mice were divided into two groups: one treated with a combination of epitopes targeting immunodominance of the major egg antigen Sm-p40 and the other with a mock mixture of non-immunogenic epitopes. Liver granuloma area, a hallmark of schistosomiasis pathology, was quantified using histological and morphometric analyses. The average granuloma areas between the treated and untreated groups were compared using one-way ANOVA with Tukey's multiple comparison test. Additionally, we isolated CD4+ T cells from mesenteric lymph nodes, stimulated them with specific egg antigens, and collected purified supernatants to assess their signature cytokine secretion profiles for each treatment group. RESULTS Results showed that strong immunodominance of a single egg epitope undermines effective CD4+ T-cell modulation, promoting a strongly polarized Th1/Th17 pathogenic response. Conversely, neutralizing this immunodominance produces the opposite restorative effect. CONCLUSION Immunodominance is an important pathogenic component that influences CD4+ T cell modulation in experimental murine schistosomiasis. Moreover, immunodominance can be used to treat these and other important CD4+ T cell-mediated diseases.
Collapse
Affiliation(s)
- Eduardo Finger
- Faculdade de Ciências Médicas da Santa Casa de São PauloSão PauloSPBrazilFaculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil.
- SalomaoZoppi DiagnósticosSão PauloSPBrazilSalomaoZoppi Diagnósticos, São Paulo, SP, Brazil.
| | - Thaissa Melo Galante Coimbra
- Faculdade de Ciências Médicas da Santa Casa de São PauloSão PauloSPBrazilFaculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil.
| | - Alessandra Finardi Dastoli
- Faculdade de Ciências Médicas da Santa Casa de São PauloSão PauloSPBrazilFaculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil.
- SalomaoZoppi DiagnósticosSão PauloSPBrazilSalomaoZoppi Diagnósticos, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Ding S, Zhang Y, Tang Y, Zhang Y, Liu M. Combining gene expression microarrays and Mendelian randomization: exploring key immune-related genes in multiple sclerosis. Front Neurol 2024; 15:1437778. [PMID: 39664749 PMCID: PMC11631747 DOI: 10.3389/fneur.2024.1437778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024] Open
Abstract
Objective Multiple Sclerosis (MS) is an autoimmune disorder characterized by demyelination occurring within the white matter of the central nervous system. While its pathogenesis is intricately linked with the body's immune response, the precise underlying mechanisms remain elusive. This study aims to explore potential immune-related genes associated with MS and assess the causal relationship between these genes and the risk of developing MS. Methods We retrieved expression datasets of peripheral blood mononuclear cells from MS patients from the Gene Expression Omnibus (GEO) database. Immune-related differentially expressed genes (IM-DEGs) were identified using the ImmPort database. GO and KEGG analyses were subsequently performed to elucidate the functions and pathways associated with the IM-DEGs. To visualize protein-protein interactions (PPIs), we used STRING, Cytoscape, and Cytohubba to construct networks of PPIs and hub genes. The diagnostic efficacy of hub genes was assessed using the nomogram model and ROC curve. The correlation of these hub genes was further validated in the mouse EAE model using quantitative PCR (qPCR). Finally, Mendelian randomization (MR) was performed to ascertain the causal impact of hub genes on MS. Results Twenty-eight IM-DEGs were selected from the intersection of DEGs and immune genes. These genes are involved mainly in antigen receptor-mediated signaling pathways, B cell differentiation, B cell proliferation, and B cell receptor signaling pathways. Using Cytoscape software for analysis, the top 10 genes with the highest scores were identified as PTPRC, CD19, CXCL8, CD79A, IL7, CR2, CD22, BLNK, LCN2, and LTF. Five hub genes (PTPRC, CD19, CXCL8, CD79A, and IL7) are considered to have strong diagnostic potential. In the qPCR validation, the relative expression of these five genes showed significant differences between the control and EAE groups, indicating that these genes may play a potential role in the pathogenesis of MS. The MR results indicate that elevated levels of CD79A (OR = 1.106, 95% CI 1.002-1.222, p = 0.046) are causally positively associated with the risk of developing MS. Conclusion This study integrated GEO data mining with MR to pinpoint pivotal immune genes linked to the onset of MS, thereby offering novel strategies for the treatment of MS.
Collapse
Affiliation(s)
- Shuangfeng Ding
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunyun Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunzhe Tang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyuan Liu
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Torres Iglesias G, López-Molina M, Botella L, Laso-García F, Chamorro B, Fernández-Fournier M, Puertas I, Bravo SB, Alonso-López E, Díez-Tejedor E, Gutiérrez-Fernández M, Otero-Ortega L. Differential Protein Expression in Extracellular Vesicles Defines Treatment Responders and Non-Responders in Multiple Sclerosis. Int J Mol Sci 2024; 25:10761. [PMID: 39409091 PMCID: PMC11477160 DOI: 10.3390/ijms251910761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Multiple sclerosis (MS) remains the leading cause of neurological disability among young adults worldwide, underscoring the urgent need to define the best therapeutic strategy. Recent advances in proteomics have deepened our understanding of treatment mechanisms and revealed promising biomarkers for predicting therapeutic outcomes. This study focuses on the identification of a protein profile of circulating extracellular vesicles (EVs) derived from neurons, oligodendrocytes, and B and T cells able to differentiate treatment responders and non-responders in 80 patients with MS. In the patients who responded to treatment, T cell-derived EVs were enriched in LV151, a protein involved in the promotion of anti-inflammatory cytokines, whereas Bcell-derived EVs showed elevated PSMD6 and PTPRC, related to immunoproteasome function. Oligodendrocyte- and neuron-derived EVs showed upregulated CO6A1 and COEA1, involved in extracellular matrix reorganisation, as well as LAMA5, NonO, SPNT, and NCAM, which are critical for brain repair. In contrast, non-responders showed higher levels of PSMD7 and PRS10 from B cell-derived EVs, associated with DNA damage, and increased levels of PERM and PERL from T cell-derived EVs, linked to nuclear factor kappa B activation and drug-resistant proteins such as HS90A and RASK. These findings highlight a distinct panel of proteins in EVs that could serve as an early indicator of treatment efficacy in MS.
Collapse
Affiliation(s)
- Gabriel Torres Iglesias
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - MariPaz López-Molina
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Lucía Botella
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Fernando Laso-García
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Beatriz Chamorro
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Mireya Fernández-Fournier
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Inmaculada Puertas
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Susana B. Bravo
- Proteomics Unit, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Elisa Alonso-López
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Exuperio Díez-Tejedor
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Laura Otero-Ortega
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| |
Collapse
|
5
|
Ramírez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov 2024; 23:501-524. [PMID: 38839912 DOI: 10.1038/s41573-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
Despite major progress in the treatment of autoimmune diseases in the past two decades, most therapies do not cure disease and can be associated with increased risk of infection through broad suppression of the immune system. However, advances in understanding the causes of autoimmune disease and clinical data from novel therapeutic modalities such as chimeric antigen receptor T cell therapies provide evidence that it may be possible to re-establish immune homeostasis and, potentially, prolong remission or even cure autoimmune diseases. Here, we propose a 'sequential immunotherapy' framework for immune system modulation to help achieve this ambitious goal. This framework encompasses three steps: controlling inflammation; resetting the immune system through elimination of pathogenic immune memory cells; and promoting and maintaining immune homeostasis via immune regulatory agents and tissue repair. We discuss existing drugs and those in development for each of the three steps. We also highlight the importance of causal human biology in identifying and prioritizing novel immunotherapeutic strategies as well as informing their application in specific patient subsets, enabling precision medicine approaches that have the potential to transform clinical care.
Collapse
|
6
|
Zamecnik CR, Sowa GM, Abdelhak A, Dandekar R, Bair RD, Wade KJ, Bartley CM, Kizer K, Augusto DG, Tubati A, Gomez R, Fouassier C, Gerungan C, Caspar CM, Alexander J, Wapniarski AE, Loudermilk RP, Eggers EL, Zorn KC, Ananth K, Jabassini N, Mann SA, Ragan NR, Santaniello A, Henry RG, Baranzini SE, Zamvil SS, Sabatino JJ, Bove RM, Guo CY, Gelfand JM, Cuneo R, von Büdingen HC, Oksenberg JR, Cree BAC, Hollenbach JA, Green AJ, Hauser SL, Wallin MT, DeRisi JL, Wilson MR. An autoantibody signature predictive for multiple sclerosis. Nat Med 2024; 30:1300-1308. [PMID: 38641750 DOI: 10.1038/s41591-024-02938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Although B cells are implicated in multiple sclerosis (MS) pathophysiology, a predictive or diagnostic autoantibody remains elusive. In this study, the Department of Defense Serum Repository (DoDSR), a cohort of over 10 million individuals, was used to generate whole-proteome autoantibody profiles of hundreds of patients with MS (PwMS) years before and subsequently after MS onset. This analysis defines a unique cluster in approximately 10% of PwMS who share an autoantibody signature against a common motif that has similarity with many human pathogens. These patients exhibit antibody reactivity years before developing MS symptoms and have higher levels of serum neurofilament light (sNfL) compared to other PwMS. Furthermore, this profile is preserved over time, providing molecular evidence for an immunologically active preclinical period years before clinical onset. This autoantibody reactivity was validated in samples from a separate incident MS cohort in both cerebrospinal fluid and serum, where it is highly specific for patients eventually diagnosed with MS. This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically or radiologically isolated neuroinflammatory syndromes.
Collapse
Affiliation(s)
- Colin R Zamecnik
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gavin M Sowa
- University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, USA
| | - Ahmed Abdelhak
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ravi Dandekar
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rebecca D Bair
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kristen J Wade
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher M Bartley
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kerry Kizer
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Danillo G Augusto
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Asritha Tubati
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Refujia Gomez
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Camille Fouassier
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Chloe Gerungan
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Colette M Caspar
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica Alexander
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Anne E Wapniarski
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rita P Loudermilk
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Erica L Eggers
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kelsey C Zorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Kirtana Ananth
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Nora Jabassini
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sabrina A Mann
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Nicholas R Ragan
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Adam Santaniello
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Roland G Henry
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sergio E Baranzini
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Scott S Zamvil
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph J Sabatino
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Riley M Bove
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Chu-Yueh Guo
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey M Gelfand
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Richard Cuneo
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - H-Christian von Büdingen
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jorge R Oksenberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce A C Cree
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jill A Hollenbach
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Ari J Green
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen L Hauser
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mitchell T Wallin
- Department of Veterans Affairs, Multiple Sclerosis Center of Excellence, Washington, DC, USA
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Michael R Wilson
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Tang Y, Zhou Y, Wang X, Che N, Tian J, Man K, Rui K, Peng N, Lu L. The role of epithelial cells in the immunopathogenesis of Sjögren's syndrome. J Leukoc Biol 2024; 115:57-67. [PMID: 37134025 DOI: 10.1093/jleuko/qiad049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Sjögren's syndrome is a systemic autoimmune disease characterized by dysfunction of the affected exocrine glands. Lymphocytic infiltration within the inflamed glands and aberrant B-cell hyperactivation are the two salient pathologic features in Sjögren's syndrome. Increasing evidence indicates that salivary gland epithelial cells act as a key regulator in the pathogenesis of Sjögren's syndrome, as revealed by the dysregulated innate immune signaling pathways in salivary gland epithelium and increased expression of various proinflammatory molecules as well as their interaction with immune cells. In addition, salivary gland epithelial cells can regulate adaptive immune responses as nonprofessional antigen-presenting cells and promote the activation and differentiation of infiltrated immune cells. Moreover, the local inflammatory milieu can modulate the survival of salivary gland epithelial cells, leading to enhanced apoptosis and pyroptosis with the release of intracellular autoantigens, which further contributes to SG autoimmune inflammation and tissue destruction in Sjögren's syndrome. Herein, we reviewed recent advances in elucidating the role of salivary gland epithelial cells in the pathogenesis of Sjögren's syndrome, which may provide rationales for potential therapeutic targeting of salivary gland epithelial cells to alleviate salivary gland dysfunction alongside treatments with immunosuppressive reagents in Sjögren's syndrome.
Collapse
Affiliation(s)
- Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Yingbo Zhou
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Xiaoran Wang
- Department of Rheumatology, The Second People's Hospital of Three Gorges University, College street, Xiling District, Yichang, China
| | - Nan Che
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Gulou District, Nanjing, China
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Jiefang Road, Jingkou District, Zhenjiang, China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Jiefang Road, Jingkou District, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology, The Second People's Hospital of Three Gorges University, College street, Xiling District, Yichang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Sha Tin, New Territories, Hong Kong, China
| |
Collapse
|
8
|
Zhao X, Song L, Yang A, Zhang Z, Zhang J, Yang YT, Zhao XM. Prioritizing genes associated with brain disorders by leveraging enhancer-promoter interactions in diverse neural cells and tissues. Genome Med 2023; 15:56. [PMID: 37488639 PMCID: PMC10364416 DOI: 10.1186/s13073-023-01210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Prioritizing genes that underlie complex brain disorders poses a considerable challenge. Despite previous studies have found that they shared symptoms and heterogeneity, it remained difficult to systematically identify the risk genes associated with them. METHODS By using the CAGE (Cap Analysis of Gene Expression) read alignment files for 439 human cell and tissue types (including primary cells, tissues and cell lines) from FANTOM5 project, we predicted enhancer-promoter interactions (EPIs) of 439 cell and tissue types in human, and examined their reliability. Then we evaluated the genetic heritability of 17 diverse brain disorders and behavioral-cognitive phenotypes in each neural cell type, brain region, and developmental stage. Furthermore, we prioritized genes associated with brain disorders and phenotypes by leveraging the EPIs in each neural cell and tissue type, and analyzed their pleiotropy and functionality for different categories of disorders and phenotypes. Finally, we characterized the spatiotemporal expression dynamics of these associated genes in cells and tissues. RESULTS We found that identified EPIs showed activity specificity and network aggregation in cell and tissue types, and enriched TF binding in neural cells played key roles in synaptic plasticity and nerve cell development, i.e., EGR1 and SOX family. We also discovered that most neurological disorders exhibit heritability enrichment in neural stem cells and astrocytes, while psychiatric disorders and behavioral-cognitive phenotypes exhibit enrichment in neurons. Furthermore, our identified genes recapitulated well-known risk genes, which exhibited widespread pleiotropy between psychiatric disorders and behavioral-cognitive phenotypes (i.e., FOXP2), and indicated expression specificity in neural cell types, brain regions, and developmental stages associated with disorders and phenotypes. Importantly, we showed the potential associations of brain disorders with brain regions and developmental stages that have not been well studied. CONCLUSIONS Overall, our study characterized the gene-enhancer regulatory networks and genetic mechanisms in the human neural cells and tissues, and illustrated the value of reanalysis of publicly available genomic datasets.
Collapse
Affiliation(s)
- Xingzhong Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Liting Song
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Anyi Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Zichao Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Jinglong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Yucheng T Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Internatioal Human Phenome Institutes (Shanghai), Shanghai, 200433, China.
| |
Collapse
|
9
|
Pyzik M, Kozicky LK, Gandhi AK, Blumberg RS. The therapeutic age of the neonatal Fc receptor. Nat Rev Immunol 2023; 23:415-432. [PMID: 36726033 PMCID: PMC9891766 DOI: 10.1038/s41577-022-00821-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 02/03/2023]
Abstract
IgGs are essential soluble components of the adaptive immune response that evolved to protect the body from infection. Compared with other immunoglobulins, the role of IgGs is distinguished and enhanced by their high circulating levels, long half-life and ability to transfer from mother to offspring, properties that are conferred by interactions with neonatal Fc receptor (FcRn). FcRn binds to the Fc portion of IgGs in a pH-dependent manner and protects them from intracellular degradation. It also allows their transport across polarized cells that separate tissue compartments, such as the endothelium and epithelium. Further, it is becoming apparent that FcRn functions to potentiate cellular immune responses when IgGs, bound to their antigens, form IgG immune complexes. Besides the protective role of IgG, IgG autoantibodies are associated with numerous pathological conditions. As such, FcRn blockade is a novel and effective strategy to reduce circulating levels of pathogenic IgG autoantibodies and curtail IgG-mediated diseases, with several FcRn-blocking strategies on the path to therapeutic use. Here, we describe the current state of knowledge of FcRn-IgG immunobiology, with an emphasis on the functional and pathological aspects, and an overview of FcRn-targeted therapy development.
Collapse
Affiliation(s)
- Michal Pyzik
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Lisa K Kozicky
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amit K Gandhi
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Digestive Diseases Center, Boston, MA, USA.
| |
Collapse
|
10
|
Zamecnik CR, Sowa GM, Abdelhak A, Dandekar R, Bair RD, Wade KJ, Bartley CM, Tubati A, Gomez R, Fouassier C, Gerungan C, Alexander J, Wapniarski AE, Loudermilk RP, Eggers EL, Zorn KC, Ananth K, Jabassini N, Mann SA, Ragan NR, Santaniello A, Henry RG, Baranzini SE, Zamvil SS, Bove RM, Guo CY, Gelfand JM, Cuneo R, von Büdingen HC, Oksenberg JR, Cree BAC, Hollenbach JA, Green AJ, Hauser SL, Wallin MT, DeRisi JL, Wilson MR. A Predictive Autoantibody Signature in Multiple Sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.01.23288943. [PMID: 37205595 PMCID: PMC10187343 DOI: 10.1101/2023.05.01.23288943] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although B cells are implicated in multiple sclerosis (MS) pathophysiology, a predictive or diagnostic autoantibody remains elusive. Here, the Department of Defense Serum Repository (DoDSR), a cohort of over 10 million individuals, was used to generate whole-proteome autoantibody profiles of hundreds of patients with MS (PwMS) years before and subsequently after MS onset. This analysis defines a unique cluster of PwMS that share an autoantibody signature against a common motif that has similarity with many human pathogens. These patients exhibit antibody reactivity years before developing MS symptoms and have higher levels of serum neurofilament light (sNfL) compared to other PwMS. Furthermore, this profile is preserved over time, providing molecular evidence for an immunologically active prodromal period years before clinical onset. This autoantibody reactivity was validated in samples from a separate incident MS cohort in both cerebrospinal fluid (CSF) and serum, where it is highly specific for patients eventually diagnosed with MS. This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically- or radiologically-isolated neuroinflammatory syndromes.
Collapse
Affiliation(s)
- Colin R. Zamecnik
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Gavin M. Sowa
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, USA
| | - Ahmed Abdelhak
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Ravi Dandekar
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Rebecca D. Bair
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kristen J. Wade
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Christopher M. Bartley
- UCSF Weill Institute for Neurosciences, Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Asritha Tubati
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Refujia Gomez
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Camille Fouassier
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Chloe Gerungan
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Jessica Alexander
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Anne E. Wapniarski
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Rita P. Loudermilk
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Erica L. Eggers
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kelsey C. Zorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Kirtana Ananth
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Nora Jabassini
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Sabrina A. Mann
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Nicholas R. Ragan
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Adam Santaniello
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Roland G. Henry
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Sergio E. Baranzini
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Scott S. Zamvil
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Riley M. Bove
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Chu-Yueh Guo
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Jeffrey M. Gelfand
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Richard Cuneo
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - H.-Christian von Büdingen
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Jorge R. Oksenberg
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bruce AC Cree
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Jill A. Hollenbach
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA USA
| | - Ari J. Green
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Stephen L. Hauser
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Mitchell T. Wallin
- Veterans Affairs, Multiple Sclerosis Center of Excellence, Washington, DC and University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Michael R. Wilson
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
11
|
Klotz L, Antel J, Kuhlmann T. Inflammation in multiple sclerosis: consequences for remyelination and disease progression. Nat Rev Neurol 2023; 19:305-320. [PMID: 37059811 DOI: 10.1038/s41582-023-00801-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Despite the large number of immunomodulatory or immunosuppressive treatments available to treat relapsing-remitting multiple sclerosis (MS), treatment of the progressive phase of the disease has not yet been achieved. This lack of successful treatment approaches is caused by our poor understanding of the mechanisms driving disease progression. Emerging concepts suggest that a combination of persisting focal and diffuse inflammation within the CNS and a gradual failure of compensatory mechanisms, including remyelination, result in disease progression. Therefore, promotion of remyelination presents a promising intervention approach. However, despite our increasing knowledge regarding the cellular and molecular mechanisms regulating remyelination in animal models, therapeutic increases in remyelination remain an unmet need in MS, which suggests that mechanisms of remyelination and remyelination failure differ fundamentally between humans and demyelinating animal models. New and emerging technologies now allow us to investigate the cellular and molecular mechanisms underlying remyelination failure in human tissue samples in an unprecedented way. The aim of this Review is to summarize our current knowledge regarding mechanisms of remyelination and remyelination failure in MS and in animal models of the disease, identify open questions, challenge existing concepts, and discuss strategies to overcome the translational roadblock in the field of remyelination-promoting therapies.
Collapse
Affiliation(s)
- Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada
| | - Tanja Kuhlmann
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada.
- Institute of Neuropathology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
12
|
Sorosina M, Santoro S, Ferrè L, Mascia E, Clarelli F, Giordano A, Cannizzaro M, Lucia M, Martinelli V, Filippi M, Esposito F. Risk HLA Variants Affect the T-Cell Repertoire in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/3/e200093. [PMID: 36792371 PMCID: PMC9931183 DOI: 10.1212/nxi.0000000000200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/14/2022] [Indexed: 02/17/2023]
Abstract
BACKGROUND AND OBJECTIVES The major histocompatibility complex (MHC) locus has a predominant role in the genetic predisposition to multiple sclerosis (MS), with 32 associations found to be involved. We aimed to investigate the impact of MHC MS-risk alleles on T-cell repertoire in patients with MS. METHODS We studied 161 untreated patients with relapsing-remitting MS for whom Class I and II human leukocyte antigen (HLA) alleles were inferred from whole-genome genotyping data, and T-cell receptor (TCR) CDR3 sequences were obtained through next-generation sequencing. T-cell repertoire features including diversity, public clones, and architecture were evaluated. RESULTS We identified 5 MS-risk loci associated with TCR diversity: HLA-DRB1*15:01 (7.65 × 10-3), rs9271366 (1.96 × 10-3), rs766848979 A (1.89 × 10-2), rs9277626 (2.95 × 10-2), and rs11751659 (1.92 × 10-2), with evidence of expanded clonotypes in carriers of risk alleles. Moreover, HLA-DRB1*15:01 (4.99 × 10-3), rs9271366 (6.54 × 10-3), rs1049079 C (4.37 × 10-2), AA DQΒ1 position -5 L (1.05 × 10-3), and AA DQΒ1 position 221 Q (9.39 × 10-4) showed an association with the CDR3 aminoacidic sequence architecture, suggesting an impact on the antigen recognition breadth as well. Evaluating the sharing of clones across MS-risk allele carrier individuals revealed the presence of highly shared clonotypes predicted to target viral antigens, including Epstein-Barr virus. DISCUSSION Our study supports the association between MHC-risk alleles and macrofeatures of the T-cell repertoire in the context of MS. Further studies are needed to understand the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Federica Esposito
- From the Laboratory of Neurological Complex Disorders (M.S., S.S., L.F., E.M., F.C., A.G., M.C., F.E.), Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute; Neurology and Neurorehabilitation Unit (L.F., A.G., M.C., M.L., V.M., M.F., F.E.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (M.F.); Neurophysiology Unit (M.F.), IRCCS San Raffaele Scientific Institute; and Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE) (P.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
13
|
Role of DAMPs and cell death in autoimmune diseases: the example of multiple sclerosis. Genes Immun 2023; 24:57-70. [PMID: 36750753 DOI: 10.1038/s41435-023-00198-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Multiple sclerosis is a chronic neuroinflammatory demyelinating disease of the central nervous system (CNS) of unknown etiology and still incompletely clarified pathogenesis. The disease is generally considered a disorder resulting from a complex interplay between environmental risk factors and predisposing causal genetic variants. To examine the etiopathogenesis of the disease, two complementary pre-clinical models are currently discussed: the "outside-in" model proposing a peripherally elicited inflammatory/autoimmune attack against degraded myelin as the cause of the disease, and the "inside-out" paradigm implying a primary cytodegenerative process of cells in the CNS that triggers secondary reactive inflammatory/autoimmune responses against myelin debris. In this review, the integrating pathogenetic role of damage-associated molecular patterns (DAMPs) in these two scenario models is examined by focusing on the origin and sources of these molecules, which are known to promote neuroinflammation and, via activation of pattern recognition receptor-bearing antigen-presenting cells, drive and shape autoimmune responses. In particular, environmental factors are discussed that are conceptually defined as agents which produce endogenous DAMPs via induction of regulated cell death (RCD) or act themselves as exogenous DAMPs. Indeed, in the field of autoimmune diseases, including multiple sclerosis, recent research has focused on environmental triggers that cause secondary events in terms of subroutines of RCD, which have been identified as prolific sources of DAMPs. Finally, a model of a DAMP-driven positive feed-forward loop of chronic inflammatory demyelinating processes is proposed, aimed at reconciling the competing "inside-out" and "outside-in" paradigms.
Collapse
|
14
|
Chairta PP, Nicolaou P, Christodoulou K. Enrichr in silico analysis of MS-based extracted candidate proteomic biomarkers highlights pathogenic pathways in systemic sclerosis. Sci Rep 2023; 13:1934. [PMID: 36732374 PMCID: PMC9894849 DOI: 10.1038/s41598-023-29054-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Systemic sclerosis (SSc) is a rheumatic disease characterised by vasculopathy, inflammation and fibrosis. Its aetiopathogenesis is still unknown, and the pathways/mechanisms of the disease are not clarified. This study aimed to perform in silico analysis of the already Mass Spectrometry (MS)-based discovered biomarkers of SSc to extract possible pathways/mechanisms implicated in the disease. We recorded all published candidate MS-based found biomarkers related to SSc. We then selected a number of the candidate biomarkers using specific criteria and performed pathway and cellular component analyses using Enrichr. We used PANTHER and STRING to assess the biological processes and the interactions of the recorded proteins, respectively. Pathway analysis extracted several pathways that are associated with the three different stages of SSc pathogenesis. Some of these pathways are also related to other diseases, including autoimmune diseases. We observe that these biomarkers are located in several cellular components and implicated in many biological processes. STRING analysis showed that some proteins interact, creating significant clusters, while others do not display any evidence of an interaction. All these data highlight the complexity of SSc, and further investigation of the extracted pathways/biological processes and interactions may help study the disease from a different angle.
Collapse
Affiliation(s)
- Paraskevi P Chairta
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
| | - Paschalis Nicolaou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
| | - Kyproula Christodoulou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus.
| |
Collapse
|
15
|
Papadaki GF, Ani O, Florio TJ, Young MC, Danon JN, Sun Y, Dersh D, Sgourakis NG. Decoupling peptide binding from T cell receptor recognition with engineered chimeric MHC-I molecules. Front Immunol 2023; 14:1116906. [PMID: 36761745 PMCID: PMC9905809 DOI: 10.3389/fimmu.2023.1116906] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Major Histocompatibility Complex class I (MHC-I) molecules display self, viral or aberrant epitopic peptides to T cell receptors (TCRs), which employ interactions between complementarity-determining regions with both peptide and MHC-I heavy chain 'framework' residues to recognize specific Human Leucocyte Antigens (HLAs). The highly polymorphic nature of the HLA peptide-binding groove suggests a malleability of interactions within a common structural scaffold. Here, using structural data from peptide:MHC-I and pMHC:TCR structures, we first identify residues important for peptide and/or TCR binding. We then outline a fixed-backbone computational design approach for engineering synthetic molecules that combine peptide binding and TCR recognition surfaces from existing HLA allotypes. X-ray crystallography demonstrates that chimeric molecules bridging divergent HLA alleles can bind selected peptide antigens in a specified backbone conformation. Finally, in vitro tetramer staining and biophysical binding experiments using chimeric pMHC-I molecules presenting established antigens further demonstrate the requirement of TCR recognition on interactions with HLA framework residues, as opposed to interactions with peptide-centric Chimeric Antigen Receptors (CARs). Our results underscore a novel, structure-guided platform for developing synthetic HLA molecules with desired properties as screening probes for peptide-centric interactions with TCRs and other therapeutic modalities.
Collapse
Affiliation(s)
- Georgia F. Papadaki
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Omar Ani
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tyler J. Florio
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael C. Young
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Julia N. Danon
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yi Sun
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Devin Dersh
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nikolaos G. Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
16
|
The complex role of inflammation and gliotransmitters in Parkinson's disease. Neurobiol Dis 2023; 176:105940. [PMID: 36470499 PMCID: PMC10372760 DOI: 10.1016/j.nbd.2022.105940] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Our understanding of the role of innate and adaptive immune cell function in brain health and how it goes awry during aging and neurodegenerative diseases is still in its infancy. Inflammation and immunological dysfunction are common components of Parkinson's disease (PD), both in terms of motor and non-motor components of PD. In recent decades, the antiquated notion that the central nervous system (CNS) in disease states is an immune-privileged organ, has been debunked. The immune landscape in the CNS influences peripheral systems, and peripheral immunological changes can alter the CNS in health and disease. Identifying immune and inflammatory pathways that compromise neuronal health and survival is critical in designing innovative and effective strategies to limit their untoward effects on neuronal health.
Collapse
|
17
|
Lyu C, Sun Y. Immunometabolism in the pathogenesis of vitiligo. Front Immunol 2022; 13:1055958. [PMID: 36439174 PMCID: PMC9684661 DOI: 10.3389/fimmu.2022.1055958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 01/25/2023] Open
Abstract
Vitiligo is a common depigmenting skin disorder characterized by the selective loss of melanocytes. Autoimmunity, genetic, environmental, and biochemical etiology have been proposed in vitiligo pathogenesis. However, the exact molecular mechanisms of vitiligo development and progression are unclear, particularly for immunometabolism. Sporadic studies have suggested mitochondrial dysfunction, enhanced oxidative stress, and specific defects in other metabolic pathways can promote dysregulation of innate and adaptive immune responses in vitiligo. These abnormalities appear to be driven by genetic and epigenetic factors modulated by stochastic events. In addition, glucose and lipid abnormalities in metabolism have been associated with vitiligo. Specific skin cell populations are also involved in the critical role of dysregulation of metabolic pathways, including melanocytes, keratinocytes, and tissue-resident memory T cells in vitiligo pathogenesis. Novel therapeutic treatments are also raised based on the abnormalities of immunometabolism. This review summarizes the current knowledge on immunometabolism reprogramming in the pathogenesis of vitiligo and novel treatment options.
Collapse
|
18
|
Onisiforou A, Spyrou GM. Systems Bioinformatics Reveals Possible Relationship between COVID-19 and the Development of Neurological Diseases and Neuropsychiatric Disorders. Viruses 2022; 14:2270. [PMID: 36298824 PMCID: PMC9611753 DOI: 10.3390/v14102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is associated with increased incidence of neurological diseases and neuropsychiatric disorders after infection, but how it contributes to their development remains under investigation. Here, we investigate the possible relationship between COVID-19 and the development of ten neurological disorders and three neuropsychiatric disorders by exploring two pathological mechanisms: (i) dysregulation of host biological processes via virus-host protein-protein interactions (PPIs), and (ii) autoreactivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epitopes with host "self" proteins via molecular mimicry. We also identify potential genetic risk factors which in combination with SARS-CoV-2 infection might lead to disease development. Our analysis indicated that neurodegenerative diseases (NDs) have a higher number of disease-associated biological processes that can be modulated by SARS-CoV-2 via virus-host PPIs than neuropsychiatric disorders. The sequence similarity analysis indicated the presence of several matching 5-mer and/or 6-mer linear motifs between SARS-CoV-2 epitopes with autoreactive epitopes found in Alzheimer's Disease (AD), Parkinson's Disease (PD), Myasthenia Gravis (MG) and Multiple Sclerosis (MS). The results include autoreactive epitopes that recognize amyloid-beta precursor protein (APP), microtubule-associated protein tau (MAPT), acetylcholine receptors, glial fibrillary acidic protein (GFAP), neurofilament light polypeptide (NfL) and major myelin proteins. Altogether, our results suggest that there might be an increased risk for the development of NDs after COVID-19 both via autoreactivity and virus-host PPIs.
Collapse
Affiliation(s)
| | - George M. Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2370, Cyprus
| |
Collapse
|
19
|
Williams GP, Schonhoff AM, Sette A, Lindestam Arlehamn CS. Central and Peripheral Inflammation: Connecting the Immune Responses of Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S129-S136. [PMID: 35754290 PMCID: PMC9535591 DOI: 10.3233/jpd-223241] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inflammation has increasingly become a focus of study in regards to Parkinson’s disease (PD). Moreover, both central and peripheral sources of inflammation have been implicated in the pathogenesis of PD. Central inflammation consisting of activated microglia, astroglia, and T cell responses within the PD central nervous system; and peripheral inflammation referring to activated innate cells and T cell signaling in the enteric nervous system, gastrointestinal tract, and blood. This review will highlight important work that further implicates central and peripheral inflammation in playing a role in PD. We also discuss how these two distant inflammations appear related and how that may be mediated by autoantigenic responses to α-syn.
Collapse
Affiliation(s)
- Gregory P. Williams
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Aubrey M. Schonhoff
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cecilia S. Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
20
|
Biomolecular Mechanisms of Autoimmune Diseases and Their Relationship with the Resident Microbiota: Friend or Foe? PATHOPHYSIOLOGY 2022; 29:507-536. [PMID: 36136068 PMCID: PMC9505211 DOI: 10.3390/pathophysiology29030041] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
The use of innovative approaches to elucidate the pathophysiological mechanisms of autoimmune diseases, as well as to further study of the factors which can have either a positive or negative effect on the course of the disease, is essential. In this line, the development of new molecular techniques and the creation of the Human Genome Program have allowed access to many more solutions to the difficulties that exist in the identification and characterization of the microbiome, as well as changes due to various factors. Such innovative technologies can rekindle older hypotheses, such as molecular mimicry, allowing us to move from hypothesis to theory and from correlation to causality, particularly regarding autoimmune diseases and dysbiosis of the microbiota. For example, Prevotella copri appears to have a strong association with rheumatoid arthritis; it is expected that this will be confirmed by several scientists, which, in turn, will make it possible to identify other mechanisms that may contribute to the pathophysiology of the disease. This article seeks to identify new clues regarding similar correlations between autoimmune activity and the human microbiota, particularly in relation to qualitative and quantitative microbial variations therein.
Collapse
|
21
|
Serin M, Kara P. Biosensing strategies (approaches) for diagnosis and monitoring of multiple sclerosis. Talanta 2022; 252:123794. [DOI: 10.1016/j.talanta.2022.123794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
|
22
|
Vincenti I, Page N, Steinbach K, Yermanos A, Lemeille S, Nunez N, Kreutzfeldt M, Klimek B, Di Liberto G, Egervari K, Piccinno M, Shammas G, Mariotte A, Fonta N, Liaudet N, Shlesinger D, Liuzzi AR, Wagner I, Saadi C, Stadelmann C, Reddy S, Becher B, Merkler D. Tissue-resident memory CD8 + T cells cooperate with CD4 + T cells to drive compartmentalized immunopathology in the CNS. Sci Transl Med 2022; 14:eabl6058. [PMID: 35417190 DOI: 10.1126/scitranslmed.abl6058] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In chronic inflammatory diseases of the central nervous system (CNS), immune cells persisting behind the blood-brain barrier are supposed to promulgate local tissue destruction. The drivers of such compartmentalized inflammation remain unclear, but tissue-resident memory T cells (TRM) represent a potentially important cellular player in this process. Here, we investigated whether resting CD8+ TRM persisting after cleared infection with attenuated lymphocytic choriomeningitis virus (LCMV) can initiate immune responses directed against cognate self-antigen in the CNS. We demonstrated that time-delayed conditional expression of the LCMV glycoprotein as neo-self-antigen by glia cells reactivated CD8+ TRM. Subsequently, CD8+ TRM expanded and initiated CNS inflammation and immunopathology in an organ-autonomous manner independently of circulating CD8+ T cells. However, in the absence of CD4+ T cells, TCF-1+ CD8+ TRM failed to expand and differentiate into terminal effectors. Similarly, in human demyelinating CNS autoimmune lesions, we found CD8+ T cells expressing TCF-1 that predominantly exhibited a TRM-like phenotype. Together, our study provides evidence for CD8+ TRM-driven CNS immunopathology and sheds light on why inflammatory processes may evade current immunomodulatory treatments in chronic autoimmune CNS conditions.
Collapse
Affiliation(s)
- Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Karin Steinbach
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Alexander Yermanos
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.,Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Nunez
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Bogna Klimek
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Giovanni Di Liberto
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Kristof Egervari
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Margot Piccinno
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Ghazal Shammas
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Alexandre Mariotte
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Fonta
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Liaudet
- Bioimaging core facility, University of Geneva, 1211 Geneva, Switzerland
| | - Danielle Shlesinger
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Anna Rita Liuzzi
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Cynthia Saadi
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Sai Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| |
Collapse
|
23
|
Tolentino M, Cho CC, Lyons JA. Photobiomodulation Modulates Interleukin-10 and Interferon Gamma Production by Mononuclear Cells from Healthy Donors and Persons with Multiple Sclerosis. Photobiomodul Photomed Laser Surg 2022; 40:234-244. [DOI: 10.1089/photob.2021.0169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Miguel Tolentino
- Biomedical Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| | - Chi C. Cho
- College of Health Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| | - Jeri-Anne Lyons
- Biomedical Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
24
|
Huntula S, Lalert L, Punsawad C. The Effects of Exercise on Aging-Induced Exaggerated Cytokine Responses: An Interdisciplinary Discussion. SCIENTIFICA 2022; 2022:3619362. [PMID: 35106183 PMCID: PMC8801319 DOI: 10.1155/2022/3619362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Aging is generally known to be associated with dynamic biological changes, physiological dysfunction, and environmental and psychological decline. Several studies have suggested that aging is associated with increased inflammatory cytokines, causing several diseases. However, the effect of exercise on aging has been less delineated, and the relationships between cytokine activation, aging, and exercise also need further study. Here, we discuss some ideas about the effect of exercise on aging-induced exaggerated cytokine responses and discuss the possible roles of the aging-induced exaggerated cytokine response following exercise. Evidence from these findings suggests that exercise is a beneficially applicable model to use in studies on the mechanisms underlying the age-associated gradated cytokine response, and these results may provide guidelines for health professionals with diverse backgrounds.
Collapse
Affiliation(s)
- Soontaraporn Huntula
- Department of Sport and Exercise Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Laddawan Lalert
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Chuchard Punsawad
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
25
|
Ding Y, Cui M, Qian J, Wang C, Shen Q, Ren H, Li L, Zhang F, Zhang R. Calculation of Similarity Between 26 Autoimmune Diseases Based on Three Measurements Including Network, Function, and Semantics. Front Genet 2021; 12:758041. [PMID: 34858474 PMCID: PMC8632457 DOI: 10.3389/fgene.2021.758041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Autoimmune diseases (ADs) are a broad range of diseases in which the immune response to self-antigens causes damage or disorder of tissues, and the genetic susceptibility is regarded as the key etiology of ADs. Accumulating evidence has suggested that there are certain commonalities among different ADs. However, the theoretical research about similarity between ADs is still limited. In this work, we first computed the genetic similarity between 26 ADs based on three measurements: network similarity (NetSim), functional similarity (FunSim), and semantic similarity (SemSim), and systematically identified three significant pairs of similar ADs: rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), myasthenia gravis (MG) and autoimmune thyroiditis (AIT), and autoimmune polyendocrinopathies (AP) and uveomeningoencephalitic syndrome (Vogt-Koyanagi-Harada syndrome, VKH). Then we investigated the gene ontology terms and pathways enriched by the three significant AD pairs through functional analysis. By the cluster analysis on the similarity matrix of 26 ADs, we embedded the three significant AD pairs in three different disease clusters respectively, and the ADs of each disease cluster might have high genetic similarity. We also detected the risk genes in common among the ADs which belonged to the same disease cluster. Overall, our findings will provide significant insight in the commonalities of different ADs in genetics, and contribute to the discovery of novel biomarkers and the development of new therapeutic methods for ADs.
Collapse
Affiliation(s)
- Yanjun Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Mintian Cui
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jun Qian
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Chao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Qi Shen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongbiao Ren
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liangshuang Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Fengmin Zhang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Ruijie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Retinoic Acid-Containing Liposomes for the Induction of Antigen-Specific Regulatory T Cells as a Treatment for Autoimmune Diseases. Pharmaceutics 2021; 13:pharmaceutics13111949. [PMID: 34834364 PMCID: PMC8620283 DOI: 10.3390/pharmaceutics13111949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
The current treatment of autoimmune and chronic inflammatory diseases entails systemic immune suppression, which is associated with increased susceptibility to infections. To restore immune tolerance and reduce systemic side effects, a targeted approach using tolerogenic dendritic cells (tolDCs) is being explored. tolDCs are characterized by the expression of CD11c, the major histocompatibility complex (MHC)II and low levels of co-stimulatory molecules CD40 and CD86. In this study, tolDCs were generated using a human-proteoglycan-derived peptide (hPG) and all-trans retinoic acid (RA). RA-tolDCs not only display a tolerogenic phenotype but also can induce an antigen-specific regulatory T cell (Treg) response in vitro. However, further analysis showed that RA-tolDCs make up a heterogeneous population of DCs, with only a small proportion being antigen-associated tolDCs. To increase the homogeneity of this population, 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG)-containing liposomes were used to encapsulate the relevant antigen together with RA. These liposomes greatly enhanced the proportion of antigen-associated tolDCs in culture. In addition, in mice, we showed that the liposomal co-delivery of antigen and RA can be a more targeted approach to induce antigen-specific tolerance compared to the injection of RA-tolDCs, and that these liposomes can stimulate the generation of antigen-specific Tregs. This work highlights the importance of the co-delivery of an antigen and immunomodulator to minimize off-target effects and systemic side effects and provides new insights in the use of RA for antigen-specific immunotherapy for autoimmune and chronic inflammatory diseases.
Collapse
|
27
|
Favor OK, Pestka JJ, Bates MA, Lee KSS. Centrality of Myeloid-Lineage Phagocytes in Particle-Triggered Inflammation and Autoimmunity. FRONTIERS IN TOXICOLOGY 2021; 3:777768. [PMID: 35295146 PMCID: PMC8915915 DOI: 10.3389/ftox.2021.777768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure to exogenous particles found as airborne contaminants or endogenous particles that form by crystallization of certain nutrients can activate inflammatory pathways and potentially accelerate autoimmunity onset and progression in genetically predisposed individuals. The first line of innate immunological defense against particles are myeloid-lineage phagocytes, namely macrophages and neutrophils, which recognize/internalize the particles, release inflammatory mediators, undergo programmed/unprogrammed death, and recruit/activate other leukocytes to clear the particles and resolve inflammation. However, immunogenic cell death and release of damage-associated molecules, collectively referred to as "danger signals," coupled with failure to efficiently clear dead/dying cells, can elicit unresolved inflammation, accumulation of self-antigens, and adaptive leukocyte recruitment/activation. Collectively, these events can promote loss of immunological self-tolerance and onset/progression of autoimmunity. This review discusses critical molecular mechanisms by which exogenous particles (i.e., silica, asbestos, carbon nanotubes, titanium dioxide, aluminum-containing salts) and endogenous particles (i.e., monosodium urate, cholesterol crystals, calcium-containing salts) may promote unresolved inflammation and autoimmunity by inducing toxic responses in myeloid-lineage phagocytes with emphases on inflammasome activation and necrotic and programmed cell death pathways. A prototypical example is occupational exposure to respirable crystalline silica, which is etiologically linked to systemic lupus erythematosus (SLE) and other human autoimmune diseases. Importantly, airway instillation of SLE-prone mice with crystalline silica elicits severe pulmonary pathology involving accumulation of particle-laden alveolar macrophages, dying and dead cells, nuclear and cytoplasmic debris, and neutrophilic inflammation that drive cytokine, chemokine, and interferon-regulated gene expression. Silica-induced immunogenic cell death and danger signal release triggers accumulation of T and B cells, along with IgG-secreting plasma cells, indicative of ectopic lymphoid tissue neogenesis, and broad-spectrum autoantibody production in the lung. These events drive early autoimmunity onset and accelerate end-stage autoimmune glomerulonephritis. Intriguingly, dietary supplementation with ω-3 fatty acids have been demonstrated to be an intervention against silica-triggered murine autoimmunity. Taken together, further insight into how particles drive immunogenic cell death and danger signaling in myeloid-lineage phagocytes and how these responses are influenced by the genome will be essential for identification of novel interventions for preventing and treating inflammatory and autoimmune diseases associated with these agents.
Collapse
Affiliation(s)
- Olivia K. Favor
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Melissa A. Bates
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
28
|
Advanced glycation end-products as potential triggering factors of self-reactivity against myelin antigens in Multiple Sclerosis. Med Hypotheses 2021; 157:110702. [PMID: 34666261 DOI: 10.1016/j.mehy.2021.110702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022]
Abstract
Multiple Sclerosis (MS) is a demyelinating autoimmune disease in which autoreactive T lymphocytes infiltrate the central nervous system (CNS) and react against antigens derived from proteins of the myelin sheath. The reason why T lymphocytes recognize certain myelin antigens as exogenous, activating the autoimmune response, remains unknown and represents the key to understand the pathogenesis of MS. Neurons are characterized by an elevated glycolytic metabolism. Methylglyoxal (MG) is a highly reactive α-oxoaldehyde spontaneously formed as a by-product of glycolysis, and it reacts with proteins, nucleotides and phospholipids forming stable adducts called advanced glycation end-products (AGEs). Several studies demonstrate that MG-derived AGEs accumulate in the plasma and brain of MS patients. Furthermore, there are evidences that post-myelinated oligodendrocytes, the myelin-forming glial cells, increase their glycolytic metabolism to maintain their survival and functions, likely explaining the progressive accumulation of MG in MS lesions. The hypothesis proposed here is that the MG-derived AGEs, accumulated on the proteins composing the myelin sheath, are responsible for the altered antigen presentation process, mimicking exogenous antigens and triggering the autoimmune response. If this hypothesis will be experimentally confirmed a new pathogenic mechanism of MS will be identified.
Collapse
|
29
|
Immune regulations by 14-3-3: A misty terrain. Immunobiology 2021; 226:152145. [PMID: 34628289 DOI: 10.1016/j.imbio.2021.152145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022]
Abstract
The 14-3-3 proteins are known for their functions related to the cell cycle and play a prominent role in cancer-related diseases. Recent studies show that 14-3-3 proteins are also regulators of immune responses and are involved in the pathogenesis of autoimmune and infectious diseases. This focused review highlights the significant and recent studies on how 14-3-3 proteins influence innate and adaptive immune responses; specifically, their roles as immunogens and cytokine signaling regulators are discussed. These revelations have added numerous questions to the pre-existing list of challenges, including understanding the 14-3-3 proteins' mechanism of immunogenicity to dissecting the isoform-specific immune regulations.
Collapse
|
30
|
Sezer E, Can Demirdöğen B, Demirkaya Ş, Bulut G, Akkulak M, Evin E, Adalı O. Association of cholesterol 7α-hydroxylase (CYP7A1) promoter polymorphism (rs3808607) and cholesterol 24S-hydroxylase (CYP46A1) intron 2 polymorphism (rs754203) with serum lipids, vitamin D levels, and multiple sclerosis risk in the Turkish population. Neurol Sci 2021; 43:2611-2620. [PMID: 34546511 DOI: 10.1007/s10072-021-05597-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/06/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Patients with multiple sclerosis (MS) have significantly lower vitamin D levels. Cholesterol is known to be the precursor for vitamin D synthesis, and cholesterol removal is regulated by cholesterol 7α-hydroxylase (CYP7A1) in the liver and cholesterol 24S-hydroxylase (CYP46A1) in the brain. In this study, single nucleotide polymorphisms (SNPs) within the genes CYP7A1 (rs3808607) and CYP46A1 (rs754203) were investigated for their effects on serum lipid profiles, vitamin D levels, and the risk of developing MS. METHODS Patients with MS (n = 191) and controls (n = 100) were tested using the PCR-RFLP method to determine their genotypes for rs3808607 and rs754203 SNPs. RESULTS The minor (C) allele frequency for CYP7A1 rs3808607 variation was 0.380 in patients with MS and 0.305 in control subjects (P = .074). For CYP46A1 rs754203, the frequencies of the minor (C) allele were 0.272 and 0.250 in patients and control subjects, respectively (P = .563). Serum vitamin D (25(OH)D3) concentrations were significantly lower in patients than in control subjects (P = .002). The CYP46A1 rs754203 SNP was associated with total cholesterol levels in patients, whereas the CYP7A1 rs3808607 variant was not associated with serum lipid parameters or vitamin D levels in patients or control subjects. CONCLUSION CYP7A1 rs3808607 and CYP46A1 rs754203 variations are not likely to confer an independent risk for MS development in the Turkish population. To the best of our knowledge, this is the first study to investigate the association between CYP46A1 rs754203 and MS risk.
Collapse
Affiliation(s)
- Eda Sezer
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Birsen Can Demirdöğen
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, Turkey.
| | - Şeref Demirkaya
- Department of Neurology, University of Health Sciences, Gülhane Health Sciences Institute, Ankara, Turkey
| | - Giray Bulut
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Merve Akkulak
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Emre Evin
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Orhan Adalı
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
31
|
Mansilla MJ, Presas-Rodríguez S, Teniente-Serra A, González-Larreategui I, Quirant-Sánchez B, Fondelli F, Djedovic N, Iwaszkiewicz-Grześ D, Chwojnicki K, Miljković Đ, Trzonkowski P, Ramo-Tello C, Martínez-Cáceres EM. Paving the way towards an effective treatment for multiple sclerosis: advances in cell therapy. Cell Mol Immunol 2021; 18:1353-1374. [PMID: 33958746 PMCID: PMC8167140 DOI: 10.1038/s41423-020-00618-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a leading cause of chronic neurological disability in young to middle-aged adults, affecting ~2.5 million people worldwide. Currently, most therapeutics for MS are systemic immunosuppressive or immunomodulatory drugs, but these drugs are unable to halt or reverse the disease and have the potential to cause serious adverse events. Hence, there is an urgent need for the development of next-generation treatments that, alone or in combination, stop the undesired autoimmune response and contribute to the restoration of homeostasis. This review analyzes current MS treatments as well as different cell-based therapies that have been proposed to restore homeostasis in MS patients (tolerogenic dendritic cells, regulatory T cells, mesenchymal stem cells, and vaccination with T cells). Data collected from preclinical studies performed in the experimental autoimmune encephalomyelitis (EAE) model of MS in animals, in vitro cultures of cells from MS patients and the initial results of phase I/II clinical trials are analyzed to better understand which parameters are relevant for obtaining an efficient cell-based therapy for MS.
Collapse
Affiliation(s)
- M J Mansilla
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - S Presas-Rodríguez
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - A Teniente-Serra
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - I González-Larreategui
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - B Quirant-Sánchez
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - F Fondelli
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - N Djedovic
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - D Iwaszkiewicz-Grześ
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland.,Poltreg S.A., Gdańsk, Poland
| | - K Chwojnicki
- Department of Anaesthesiology & Intensive Care, Medical University of Gdańsk, Gdańsk, Poland
| | - Đ Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - P Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland.,Poltreg S.A., Gdańsk, Poland
| | - C Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - E M Martínez-Cáceres
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
32
|
Zhang Y, Li D, Zeng Q, Feng J, Fu H, Luo Z, Xiao B, Yang H, Wu M. LRRC4 functions as a neuron-protective role in experimental autoimmune encephalomyelitis. Mol Med 2021; 27:44. [PMID: 33932995 PMCID: PMC8088686 DOI: 10.1186/s10020-021-00304-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leucine rich repeat containing 4 (LRRC4), also known as netrin-G ligand-2 (NGL-2), belongs to the superfamily of LRR proteins and serves as a receptor for netrin-G2. LRRC4 regulates the formation of excitatory synapses and promotes axon differentiation. Mutations in LRRC4 occur in Autism Spectrum Disorder (ASD) and intellectual disability. Multiple sclerosis (MS) is a chronic neuroinflammatory disease with spinal cords demyelination and neurodegeneration. Here, we sought to investigate whether LRRC4 is involved in spinal cords neuron-associated diseases. METHODS LRRC4 was detected in the CNS of experimental autoimmune encephalomyelitis (EAE) mice by the use of real-time PCR and western blotting. LRRC4-/- mice were created and immunized with myelin oligodendrocyte glycoprotein peptide (MOG)35-55. Pathological changes in spinal cords of LRRC4-/- and WT mice 15 days after immunization were examined by using hematoxylin and eosin (H&E), Luxol Fast Blue (LFB) staining and immunohistochemistry. The number of Th1/Th2/Th17/Treg cells in spleens and blood were measured with flow cytometry. Differential gene expression in the spinal cords from WT and LRRC4-/- mice was analyzed by using RNA sequencing (RNA-seq). Adeno-associated virus (AAV) vectors were used to overexpress LRRC4 (AAV-LRRC4) and were injected into EAE mice to assess the therapeutic effect of AAV-LRRC4 ectopic expression on EAE. RESULTS We report that LRRC4 is mainly expressed in neuron of spinal cords, and is decreased in the spinal cords of the EAE mice. Knockout of LRRC4 have a disease progression quickened and exacerbated with more severe myelin degeneration and infiltration of leukocytes into the spinal cords. We also first found that Rab7b is high expressed in EAE mice, and the deficiency of LRRC4 induces the elevated NF-κB p65 by up-regulating Rab7b, and up-regulation of IL-6, IFN-γ and down-regulation of TNF-α, results in more severe Th1 immune response in LRRC4-/- mice. Ectopic expression of LRRC4 alleviates the clinical symptoms of EAE mice and protects the neurons from immune damages. CONCLUSIONS We identified a neuroprotective role of LRRC4 in the progression of EAE, which may be used as a potential target for auxiliary support therapeutic treatment of MS.
Collapse
Affiliation(s)
- Yan Zhang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Di Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Qiuming Zeng
- Internal Medicine-Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jianbo Feng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Haijuan Fu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Zhaohui Luo
- Internal Medicine-Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Xiao
- Internal Medicine-Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huan Yang
- Internal Medicine-Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
33
|
Bolton C. An evaluation of the recognised systemic inflammatory biomarkers of chronic sub-optimal inflammation provides evidence for inflammageing (IFA) during multiple sclerosis (MS). Immun Ageing 2021; 18:18. [PMID: 33853634 PMCID: PMC8045202 DOI: 10.1186/s12979-021-00225-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 03/12/2021] [Indexed: 01/11/2023]
Abstract
The pathogenesis of the human demyelinating disorder multiple sclerosis (MS) involves the loss of immune tolerance to self-neuroantigens. A deterioration in immune tolerance is linked to inherent immune ageing, or immunosenescence (ISC). Previous work by the author has confirmed the presence of ISC during MS. Moreover, evidence verified a prematurely aged immune system that may change the frequency and profile of MS through an altered decline in immune tolerance. Immune ageing is closely linked to a chronic systemic sub-optimal inflammation, termed inflammageing (IFA), which disrupts the efficiency of immune tolerance by varying the dynamics of ISC that includes accelerated changes to the immune system over time. Therefore, a shifting deterioration in immunological tolerance may evolve during MS through adversely-scheduled effects of IFA on ISC. However, there is, to date, no collective proof of ongoing IFA during MS. The Review addresses the constraint and provides a systematic critique of compelling evidence, through appraisal of IFA-related biomarker studies, to support the occurrence of a sub-optimal inflammation during MS. The findings justify further work to unequivocally demonstrate IFA in MS and provide additional insight into the complex pathology and developing epidemiology of the disease.
Collapse
|
34
|
Jadeja SD, Mayatra JM, Vaishnav J, Shukla N, Begum R. A Concise Review on the Role of Endoplasmic Reticulum Stress in the Development of Autoimmunity in Vitiligo Pathogenesis. Front Immunol 2021; 11:624566. [PMID: 33613564 PMCID: PMC7890234 DOI: 10.3389/fimmu.2020.624566] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Vitiligo is characterized by circumscribed depigmented macules in the skin resulting due to the autoimmune destruction of melanocytes from the epidermis. Both humoral as well as cell-mediated autoimmune responses are involved in melanocyte destruction. Several studies including ours have established that oxidative stress is involved in vitiligo onset, while autoimmunity contributes to the disease progression. However, the underlying mechanism involved in programing the onset and progression of the disease remains a conundrum. Based on several direct and indirect evidences, we suggested that endoplasmic reticulum (ER) stress might act as a connecting link between oxidative stress and autoimmunity in vitiligo pathogenesis. Oxidative stress disrupts cellular redox potential that extends to the ER causing the accumulation of misfolded proteins, which activates the unfolded protein response (UPR). The primary aim of UPR is to resolve the stress and restore cellular homeostasis for cell survival. Growing evidences suggest a vital role of UPR in immune regulation. Moreover, defective UPR has been implicated in the development of autoimmunity in several autoimmune disorders. ER stress-activated UPR plays an essential role in the regulation and maintenance of innate as well as adaptive immunity, and a defective UPR may result in systemic/tissue level/organ-specific autoimmunity. This review emphasizes on understanding the role of ER stress-induced UPR in the development of systemic and tissue level autoimmunity in vitiligo pathogenesis and its therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
35
|
Hilger C, Riedhammer C, Orsó E, Weissert R. Effects of Alemtuzumab on (Auto)antigen-Specific Immune Responses. Front Immunol 2020; 11:563645. [PMID: 33133074 PMCID: PMC7578345 DOI: 10.3389/fimmu.2020.563645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/21/2020] [Indexed: 11/13/2022] Open
Abstract
Alemtuzumab (anti-CD52 mAb) leads to a long-lasting disease activity suppression in patients with relapsing forms of multiple sclerosis (MS). In this study, we examined the change of the immune cell repertoire and the cellular reactivity after treatment with alemtuzumab. We analyzed the number of IFN-γ–secreting cells in presence of several peptides which had been eluted from the central nervous system (CNS) of MS patients and are possible targets of autoreactive T cells in MS. The patients showed a stabilized disease activity measured in clinical parameters and lesion formation after the treatment. We detected a reduction of the number of IFN-γ–secreting cells in the presence of every tested self-antigen. The number of IFN-γ–secreting cells was also reduced in the presence of non-self-antigens. We also found a clear change in the immune cell repertoire. After an almost complete depletion of all lymphocytes, the cell specificities showed different reconstitution patterns, resulting in different cell fractions. The percentage of CD4+ T cells was clearly reduced after therapy, whereas the fractions of B and NK cells were elevated. When we evaluated the number of IFN-γ–secreting cells in relation to the number of present CD4+ T cells, we still found a significant reduction. We conclude that the reduction of IFN-γ–secreting cells by alemtuzumab is not only due to a reduction of the CD4+ T cell fraction within the peripheral blood mononuclear cell (PBMC) compartment but might also be caused by functional changes or a shift in the distribution of different subtypes in the CD4+ T cell pool.
Collapse
Affiliation(s)
- Clara Hilger
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | | | - Evelyn Orsó
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Robert Weissert
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
36
|
Antigen presentation, autoantibody production, and therapeutic targets in autoimmune liver disease. Cell Mol Immunol 2020; 18:92-111. [PMID: 33110250 PMCID: PMC7852534 DOI: 10.1038/s41423-020-00568-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is an important immunological organ that controls systemic tolerance. The liver harbors professional and unconventional antigen-presenting cells that are crucial for tolerance induction and maintenance. Orchestrating the immune response in homeostasis depends on a healthy and well-toned immunological liver microenvironment, which is maintained by the crosstalk of liver-resident antigen-presenting cells and intrahepatic and liver-infiltrating leukocytes. In response to pathogens or autoantigens, tolerance is disrupted by unknown mechanisms. Intrahepatic parenchymal and nonparenchymal cells exhibit unique antigen-presenting properties. The presentation of microbial and endogenous lipid-, metabolite- and peptide-derived antigens from the gut via conventional and nonconventional mechanisms can educate intrahepatic immune cells and elicit effector responses or tolerance. Perturbation of this balance results in autoimmune liver diseases, such as autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. Although the exact etiologies of these autoimmune liver diseases are unknown, it is thought that the disruption of tolerance towards self-antigens and microbial metabolites and lipids, as well as alterations in bile acid composition, may result in changes in effector cell activation and polarization and may reduce or impair protective anti-inflammatory regulatory T and B cell responses. Additionally, the canonical and noncanonical transmission of antigens and antigen:MHC complexes via trogocytosis or extracellular vesicles between different (non) immune cells in the liver may play a role in the induction of hepatic inflammation and tolerance. Here, we summarize emerging aspects of antigen presentation, autoantibody production, and the application of novel therapeutic approaches in the characterization and treatment of autoimmune liver diseases.
Collapse
|
37
|
The contribution of thymic tolerance to central nervous system autoimmunity. Semin Immunopathol 2020; 43:135-157. [PMID: 33108502 PMCID: PMC7925481 DOI: 10.1007/s00281-020-00822-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases of the central nervous system (CNS) are associated with high levels of morbidity and economic cost. Research efforts have previously focused on the contribution of the peripheral adaptive and innate immune systems to CNS autoimmunity. However, a failure of thymic negative selection is a necessary step in CNS-reactive T cells escaping into the periphery. Even with defective thymic or peripheral tolerance, the development of CNS inflammation is rare. The reasons underlying this are currently poorly understood. In this review, we examine evidence implicating thymic selection in the pathogenesis of CNS autoimmunity. Animal models suggest that thymic negative selection is an important factor in determining susceptibility to and severity of CNS inflammation. There are indirect clinical data that suggest thymic function is also important in human CNS autoimmune diseases. Specifically, the association between thymoma and paraneoplastic encephalitis and changes in T cell receptor excision circles in multiple sclerosis implicate thymic tolerance in these diseases. We identify potential associations between CNS autoimmunity susceptibility factors and thymic tolerance. The therapeutic manipulation of thymopoiesis has the potential to open up new treatment modalities, but a better understanding of thymic tolerance in CNS autoimmunity is required before this can be realised.
Collapse
|
38
|
Mannie MD, DeOca KB, Bastian AG, Moorman CD. Tolerogenic vaccines: Targeting the antigenic and cytokine niches of FOXP3 + regulatory T cells. Cell Immunol 2020; 355:104173. [PMID: 32712270 PMCID: PMC7444458 DOI: 10.1016/j.cellimm.2020.104173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
FOXP3+ regulatory T cells (Tregs) constitute a critical barrier that enforces tolerance to both the self-peptidome and the extended-self peptidome to ensure tissue-specific resistance to autoimmune, allergic, and other inflammatory disorders. Here, we review intuitive models regarding how T cell antigen receptor (TCR) specificity and antigen recognition efficiency shape the Treg and conventional T cell (Tcon) repertoires to adaptively regulate T cell maintenance, tissue-residency, phenotypic stability, and immune function in peripheral tissues. Three zones of TCR recognition efficiency are considered, including Tcon recognition of specific low-efficiency self MHC-ligands, Treg recognition of intermediate-efficiency agonistic self MHC-ligands, and Tcon recognition of cross-reactive high-efficiency agonistic foreign MHC-ligands. These respective zones of TCR recognition efficiency are key to understanding how tissue-resident immune networks integrate the antigenic complexity of local environments to provide adaptive decisions setting the balance of suppressive and immunogenic responses. Importantly, deficiencies in the Treg repertoire appear to be an important cause of chronic inflammatory disease. Deficiencies may include global deficiencies in Treg numbers or function, subtle 'holes in the Treg repertoire' in tissue-resident Treg populations, or simply Treg insufficiencies that are unable to counter an overwhelming molecular mimicry stimulus. Tolerogenic vaccination and Treg-based immunotherapy are two therapeutic modalities meant to restore dominance of Treg networks to reverse chronic inflammatory disease. Studies of these therapeutic modalities in a preclinical setting have provided insight into the Treg niche, including the concept that intermediate-efficiency TCR signaling, high IFN-β concentrations, and low IL-2 concentrations favor Treg responses and active dominant mechanisms of immune tolerance. Overall, the purpose here is to assimilate new and established concepts regarding how cognate TCR specificity of the Treg repertoire and the contingent cytokine networks provide a foundation for understanding Treg suppressive strategy.
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| | - Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Alexander G Bastian
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
39
|
Abstract
In mammals, adaptive immunity is mediated by a broadly diverse repertoire of naive B and T lymphocytes that recirculate between secondary lymphoid organs. Initial antigen exposure promotes lymphocyte clonal expansion and differentiation, including the formation of memory cells. Antigen-specific memory cells are maintained at higher frequencies than their naive counterparts and have different functional and homing abilities. Importantly, a subset of memory cells, known as tissue-resident memory cells, is maintained without recirculating in nonlymphoid tissues, often at barrier surfaces, where they can be reactivated by antigen and rapidly perform effector functions that help protect the tissue in which they reside. Although antigen-experienced B cells are abundant at many barrier surfaces, their characterization as tissue-resident memory B (BRM) cells is not well developed. In this study, we describe the characteristics of memory B cells in various locations and discuss their possible contributions to immunity and homeostasis as bona fide BRM cells.
Collapse
Affiliation(s)
- S. Rameeza Allie
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Troy D. Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
40
|
Mohammadi-Milasi F, Mahnam K, Shakhsi-Niaei M. In silico study of the association of the HLA-A*31:01 allele (human leucocyte antigen allele 31:01) with neuroantigenic epitopes of PLP (proteolipid protein), MBP (myelin basic protein) and MOG proteins (myelin oligodendrocyte glycoprotein) for studying the multiple sclerosis disease pathogenesis. J Biomol Struct Dyn 2020; 39:2526-2542. [PMID: 32242486 DOI: 10.1080/07391102.2020.1751291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The main pathologic hallmark of multiple sclerosis is a demyelinating plaque that contains a prominent immunologic response dominated by T cells of the immune system. PLP (proteolipid protein), MPB (myelin basic protein), and Myelin oligodendrocyte glycoprotein (MOG) proteins are important autoantigens for the demyelinating of CNS in multiple sclerosis. There is good evidence indicating that T CD8+ cells and MHC class I molecules play an important role in this disease. The HLA-A*31:01 allele of MHC class I is a member of HLA-A3 superfamily and there is no clear report concerning the relationship of this allele with MS. Feeling this gap, we studied the possible association of the HLA-A*31:01 with MS by prediction of neuroantigenic epitopes of human MBP, PLP, and MOG proteins of myelin sheath using in silico methods. PLP did not show any neuroantigenic epitope, but the two epitopes of MBP and seven epitopes of MOG for HLA-A*31:01 were determined via bioinformatics servers. In silico study of the nine epitope showed that MOG195-204 (LIICYNWLHR) peptide of the membrane-associated/cytoplasmic part of human MOG has suitable binding affinity to the HLA-A*31:01 allele as a potential neuroantigenic epitope. Further investigations of this peptide revealed that the binding of C-terminal residue of this peptide has a more significant effect on binding to this allele than the N-terminal part of the peptide. Altogether, this combination of "LIICYNWLHR/A*31:01 allele "may play an important role in MS pathogenesis and this complex is suggested for further studies such as T cell receptor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Karim Mahnam
- Departments of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran.,Nanotechnology Research Center, Shahrekord University, Shahrekord, I.R. Iran
| | - Mostafa Shakhsi-Niaei
- Nanotechnology Research Center, Shahrekord University, Shahrekord, I.R. Iran.,Departments of Genetics, Faculty of Basic Science, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
41
|
Garcia PS, Brum DG, Oliveira ON, Higa AM, Ierich JCM, Moraes ADS, Shimizu FM, Okuda-Shinagawa NM, Peroni LA, da Gama PD, Machini MT, Leite FL. Nanoimmunosensor based on atomic force spectroscopy to detect anti-myelin basic protein related to early-stage multiple sclerosis. Ultramicroscopy 2020; 211:112946. [PMID: 32028099 DOI: 10.1016/j.ultramic.2020.112946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 12/02/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory disorder in the central nervous system for which biomarkers for diagnosis still remain unknown. One potential biomarker is the myelin basic protein. Here, a nanoimmunosensor based on atomic force spectroscopy (AFS) successfully detected autoantibodies against the MBP85-99 peptide from myelin basic protein. The nanoimmunosensor consisted of an atomic force microscope tip functionalization with MBP85-99 peptide, which was made to interact with a mica surface coated either with a layer of anti-MBP85-99 (positive control) or samples of cerebrospinal fluid (CSF) from five multiple sclerosis (MS) patients at different stages of the disease and five non-MS subjects. The adhesion forces obtained from AFS pointed to a high concentration of anti-MBP85-99 for the two patients at early stages of relapsing-remitting multiple sclerosis (RRMS), which were indistinguishable from the positive control. In contrast, considerably lower adhesion forces were measured for all the other eight subjects, including three MS patients with longer history of the disease and under treatment, without episodes of acute MS activity. We have also shown that the average adhesion force between MBP85-99 and anti-MBP85-99 is compatible with the value estimated using steered molecular dynamics. Though further tests will be required with a larger cohort of patients, the present results indicate that the nanoimmunosensor may be a simple tool to detect early-stage MS patients and be useful to understand the molecular mechanisms behind MS.
Collapse
Affiliation(s)
- Pâmela Soto Garcia
- Department of Physics, Chemistry and Mathematics, Nanoneurobiophysics Research Group, Federal University of São Carlos, Sorocaba, São Paulo 18052780, Brazil; Institute of Tropical Medicine, University of São Paulo, 05403-000, São Paulo, SP, Brazil
| | - Doralina Guimarães Brum
- Department of Neurology, Psychology and Psychiatry, São Paulo State University, 18618-687, Botucatu, SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, 13560-970, São Carlos, SP, Brazil
| | - Akemi Martins Higa
- Department of Physics, Chemistry and Mathematics, Nanoneurobiophysics Research Group, Federal University of São Carlos, Sorocaba, São Paulo 18052780, Brazil; Institute of Tropical Medicine, University of São Paulo, 05403-000, São Paulo, SP, Brazil
| | - Jéssica Cristiane Magalhães Ierich
- Department of Physics, Chemistry and Mathematics, Nanoneurobiophysics Research Group, Federal University of São Carlos, Sorocaba, São Paulo 18052780, Brazil; Institute of Tropical Medicine, University of São Paulo, 05403-000, São Paulo, SP, Brazil
| | - Ariana de Souza Moraes
- Department of Physics, Chemistry and Mathematics, Nanoneurobiophysics Research Group, Federal University of São Carlos, Sorocaba, São Paulo 18052780, Brazil; Institute of Tropical Medicine, University of São Paulo, 05403-000, São Paulo, SP, Brazil
| | - Flávio Makoto Shimizu
- São Carlos Institute of Physics, University of São Paulo, 13560-970, São Carlos, SP, Brazil
| | - Nancy M Okuda-Shinagawa
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Luís Antonio Peroni
- Rheabiotech Laboratory Research and Development, 13084-791, Campinas, SP, Brazil
| | | | - M Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Fabio Lima Leite
- Department of Physics, Chemistry and Mathematics, Nanoneurobiophysics Research Group, Federal University of São Carlos, Sorocaba, São Paulo 18052780, Brazil.
| |
Collapse
|
42
|
Amon L, Lehmann CHK, Baranska A, Schoen J, Heger L, Dudziak D. Transcriptional control of dendritic cell development and functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:55-151. [PMID: 31759434 DOI: 10.1016/bs.ircmb.2019.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are major regulators of adaptive immunity, as they are not only capable to induce efficient immune responses, but are also crucial to maintain peripheral tolerance and thereby inhibit autoimmune reactions. DCs bridge the innate and the adaptive immune system by presenting peptides of self and foreign antigens as peptide MHC complexes to T cells. These properties render DCs as interesting target cells for immunomodulatory therapies in cancer, but also autoimmune diseases. Several subsets of DCs with special properties and functions have been described. Recent achievements in understanding transcriptional programs on single cell level, together with the generation of new murine models targeting specific DC subsets, advanced our current understanding of DC development and function. Thus, DCs arise from precursor cells in the bone marrow with distinct progenitor cell populations splitting the monocyte populations and macrophage populations from the DC lineage, which upon lineage commitment can be separated into conventional cDC1, cDC2, and plasmacytoid DCs (pDCs). The DC populations harbor intrinsic programs enabling them to react for specific pathogens in dependency on the DC subset, and thereby orchestrate T cell immune responses. Similarities, but also varieties, between human and murine DC subpopulations are challenging, and will require further investigation of human specimens under consideration of the influence of the tissue micromilieu and DC subset localization in the future.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Schoen
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
43
|
Fucikova J, Palova-Jelinkova L, Bartunkova J, Spisek R. Induction of Tolerance and Immunity by Dendritic Cells: Mechanisms and Clinical Applications. Front Immunol 2019; 10:2393. [PMID: 31736936 PMCID: PMC6830192 DOI: 10.3389/fimmu.2019.02393] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are key regulators of immune responses that operate at the interface between innate and adaptive immunity, and defects in DC functions contribute to the pathogenesis of a variety of disorders. For instance, cancer evolves in the context of limited DC activity, and some autoimmune diseases are initiated by DC-dependent antigen presentation. Thus, correcting aberrant DC functions stands out as a promising therapeutic paradigm for a variety of diseases, as demonstrated by an abundant preclinical and clinical literature accumulating over the past two decades. However, the therapeutic potential of DC-targeting approaches remains to be fully exploited in the clinic. Here, we discuss the unique features of DCs that underlie the high therapeutic potential of DC-targeting strategies and critically analyze the obstacles that have prevented the full realization of this promising paradigm.
Collapse
Affiliation(s)
- Jitka Fucikova
- Sotio, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Lenka Palova-Jelinkova
- Sotio, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Jirina Bartunkova
- Sotio, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Radek Spisek
- Sotio, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| |
Collapse
|
44
|
Duffy SS, Keating BA, Moalem-Taylor G. Adoptive Transfer of Regulatory T Cells as a Promising Immunotherapy for the Treatment of Multiple Sclerosis. Front Neurosci 2019; 13:1107. [PMID: 31680840 PMCID: PMC6803619 DOI: 10.3389/fnins.2019.01107] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/01/2019] [Indexed: 01/22/2023] Open
Affiliation(s)
- Samuel S Duffy
- School of Medical Sciences, University of New South Wales, UNSW Sydney, Kensington, NSW, Australia
| | - Brooke A Keating
- School of Medical Sciences, University of New South Wales, UNSW Sydney, Kensington, NSW, Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences, University of New South Wales, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
45
|
Abstract
The contributions of the peripheral adaptive and innate immune systems to CNS autoimmunity have been extensively studied. However, the role of thymic selection in these conditions is much less well understood. The thymus is the primary lymphoid organ for the generation of T cells; thymic mechanisms ensure that cells with an overt autoreactive specificity are eliminated before they emigrate to the periphery and control the generation of thymic regulatory T cells. Evidence from animal studies demonstrates that thymic T cell selection is important for establishing tolerance to autoantigens. However, there is a considerable knowledge gap regarding the role of thymic selection in autoimmune conditions of the human CNS. In this Review, we critically examine the current body of experimental evidence for the contribution of thymic tolerance to CNS autoimmune diseases. An understanding of why dysfunction of either thymic or peripheral tolerance mechanisms rarely leads to CNS inflammation is currently lacking. We examine the potential of de novo T cell formation and thymic selection as novel therapeutic avenues and highlight areas for future study that are likely to make these targets the focus of future treatments.
Collapse
|
46
|
Bronge M, Ruhrmann S, Carvalho-Queiroz C, Nilsson OB, Kaiser A, Holmgren E, Macrini C, Winklmeier S, Meinl E, Brundin L, Khademi M, Olsson T, Gafvelin G, Grönlund H. Myelin oligodendrocyte glycoprotein revisited-sensitive detection of MOG-specific T-cells in multiple sclerosis. J Autoimmun 2019; 102:38-49. [PMID: 31054941 DOI: 10.1016/j.jaut.2019.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
Autoreactive CD4+ T-cells are believed to be a main driver of multiple sclerosis (MS). Myelin oligodendrocyte glycoprotein (MOG) is considered an autoantigen, yet doubted in recent years. The reason is in part due to low frequency and titers of MOG autoantibodies and the challenge to detect MOG-specific T-cells. In this study we aimed to analyze T-cell reactivity and frequency utilizing a novel method for detection of antigen-specific T-cells with bead-bound MOG as stimulant. Peripheral blood mononuclear cells (PBMCs) from natalizumab treated persons with MS (n = 52) and healthy controls (HCs) (n = 24) were analyzed by IFNγ/IL-22/IL-17A FluoroSpot. A higher number of IFNγ (P = 0.001), IL-22 (P = 0.003), IL-17A (P < 0.0001) as well as double and triple cytokine producing MOG-specific T-cells were detected in persons with MS compared to HCs. Of the patients, 46.2-59.6% displayed MOG-reactivity. Depletion of CD4+ T-cells or monocytes or blocking HLA-DR completely eliminated the MOG specific response. Anti-MOG antibodies did not correlate with T-cell MOG-responses. In conclusion, we present a sensitive method to detect circulating autoreactive CD4+ T-cells producing IFNγ, IL-22 or IL-17A using MOG as a model antigen. Further, we demonstrate that MOG-specific T-cells are present in approximately half of persons with MS.
Collapse
Affiliation(s)
- Mattias Bronge
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Sabrina Ruhrmann
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Claudia Carvalho-Queiroz
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Ola B Nilsson
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Andreas Kaiser
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Erik Holmgren
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Caterina Macrini
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 821 52, Planegg-Martinsried, Germany.
| | - Stephan Winklmeier
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 821 52, Planegg-Martinsried, Germany.
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 821 52, Planegg-Martinsried, Germany.
| | - Lou Brundin
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden.
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden.
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden.
| | - Guro Gafvelin
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Hans Grönlund
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| |
Collapse
|
47
|
Pisapia L, Cerillo I, Farina F, Zimbardo A, Barba P, Orefice G, Gianfrani C, Strazzullo M, Del Pozzo G. The HLA-DRB1 risk alleles for multiple sclerosis are differentially expressed in blood cells of patients from Southern Italy. Int J Immunogenet 2019; 46:479-484. [PMID: 31313885 DOI: 10.1111/iji.12450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/05/2019] [Accepted: 06/18/2019] [Indexed: 11/28/2022]
Abstract
HLA gene expression has an important role in the autoimmune disease predisposition. We investigated the mRNA expression profile of the risk alleles HLA-DRB1*15 and HLA-DRB1*13 in a cohort of subjects both multiple sclerosis (MS) patients and healthy controls. Moreover, we explored the expression of the allele HLA-DRB1*11 that is very frequent in our cohort from southern Italy. We found that the expression of MS-associated alleles in heterozygous MS patients was always higher than the nonassociated alleles. The differential risk allele expression occurred also in nonaffected subjects, though with a lower increment compared to MS patients.
Collapse
Affiliation(s)
- Laura Pisapia
- Institute of Genetics and Biophysics-CNR, Naples, Italy
| | - Ilaria Cerillo
- Azienda Ospedaliera di Rilievo Nazionale Antonio Cardarelli, Naples, Italy
| | | | | | | | - Giuseppe Orefice
- Department of Neuroscience, Reproductive Sciences and Dentistry- University Federico II, Naples, Italy
| | | | | | | |
Collapse
|
48
|
Araman C, 't Hart BA. Neurodegeneration meets immunology - A chemical biology perspective. Bioorg Med Chem 2019; 27:1911-1924. [PMID: 30910473 DOI: 10.1016/j.bmc.2019.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022]
Affiliation(s)
- C Araman
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, The Netherlands.
| | - B A 't Hart
- University of Groningen, Department of Biomedical Sciences of Cells and Systems, University Medical Centre, Groningen, The Netherlands; Department Anatomy and Neuroscience, Free University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Hollingsworth TJ, Radic MZ, Beranova-Giorgianni S, Giorgianni F, Wang Y, Iannaccone A. Murine Retinal Citrullination Declines With Age and is Mainly Dependent on Peptidyl Arginine Deiminase 4 (PAD4). Invest Ophthalmol Vis Sci 2019; 59:3808-3815. [PMID: 30073354 PMCID: PMC6074612 DOI: 10.1167/iovs.18-24118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Citrullination is a post-translational modification (PTM) that serves many normal physiological functions. Studies have shown that this PTM—along with expression of the catalyzing enzymes, peptidyl arginine deiminases (PADs)—are increased in autoimmune and age-related pathologies. PAD2 retinal expression has been previously documented in rat and human. Herein, we report on the expression levels and patterns of PAD2, PAD4, and retinal citrullination in the murine retina with age. Methods Wild-type (WT) and Pad4-/- (PAD4KO) mice ages 0.5, 0.75, 1, 3, 6, and 9 months were investigated after euthanasia and eye enucleation. Retinal lysates from 3-month-old mice were probed for PAD4 by western blot. Whole eyes were fixed, cryosectioned, and probed using an anti-PAD2/4 antibody (Ab), a specific anti-PAD4 Ab, and F95 anti-citrullinated peptide Ab. Fluorescent intensities were quantified with ImageJ. Results WT retinas show different levels of PAD4 expression in distinct retinal layers, with the most intense labeling in inner retinal layers, while PAD4KO mice lacked retinal PAD4. Using a nonspecific anti-PAD2/4 Ab, PAD reactivity observed in PAD4KO mice was attributed to PAD2. In WT, both PAD2 and PAD4 expression levels decrease significantly with age while low-level residual PAD2 expression was seen in PAD4KO mice. Citrullination levels in WT retinas paralleled PAD4 expression, with PAD4KO mice exhibiting consistently minimal citrullination. Conclusions Both PAD2 and PAD4 expression and citrullination decrease with age in the murine retina. However, in the absence of PAD4, retinal citrullination is nearly abolished, indicating that PAD4 is a main effector for retinal citrullination under physiological conditions.
Collapse
Affiliation(s)
- T J Hollingsworth
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Marko Z Radic
- Department of Microbiology, Biochemistry and Immunology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Sarka Beranova-Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Francesco Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Yanming Wang
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States
| | - Alessandro Iannaccone
- Duke University School of Medicine, Duke Eye Center, Department of Ophthalmology, Durham, North Carolina, United States
| |
Collapse
|
50
|
Limanaqi F, Biagioni F, Gaglione A, Busceti CL, Fornai F. A Sentinel in the Crosstalk Between the Nervous and Immune System: The (Immuno)-Proteasome. Front Immunol 2019; 10:628. [PMID: 30984192 PMCID: PMC6450179 DOI: 10.3389/fimmu.2019.00628] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022] Open
Abstract
The wealth of recent evidence about a bi-directional communication between nerve- and immune- cells revolutionized the traditional concept about the brain as an “immune-privileged” organ while opening novel avenues in the pathophysiology of CNS disorders. In fact, altered communication between the immune and nervous system is emerging as a common hallmark in neuro-developmental, neurodegenerative, and neuro-immunological diseases. At molecular level, the ubiquitin proteasome machinery operates as a sentinel at the crossroad between the immune system and brain. In fact, the standard proteasome and its alternative/inducible counterpart, the immunoproteasome, operate dynamically and coordinately in both nerve- and immune- cells to modulate neurotransmission, oxidative/inflammatory stress response, and immunity. When dysregulations of the proteasome system occur, altered amounts of standard- vs. immune-proteasome subtypes translate into altered communication between neurons, glia, and immune cells. This contributes to neuro-inflammatory pathology in a variety of neurological disorders encompassing Parkinson's, Alzheimer's, and Huntingtin's diseases, brain trauma, epilepsy, and Multiple Sclerosis. In the present review, we analyze those proteasome-dependent molecular interactions which sustain communication between neurons, glia, and brain circulating T-lymphocytes both in baseline and pathological conditions. The evidence here discussed converges in that upregulation of immunoproteasome to the detriment of the standard proteasome, is commonly implicated in the inflammatory- and immune- biology of neurodegeneration. These concepts may foster additional studies investigating the role of immunoproteasome as a potential target in neurodegenerative and neuro-immunological disorders.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,I.R.C.C.S Neuromed, Pozzilli, Italy
| |
Collapse
|