1
|
Passari M, Scutera S, Schioppa T, Tiberio L, Piantoni S, Tamassia N, Bugatti M, Vermi W, Angeli F, Caproli A, Salvi V, Sozio F, Gismondi A, Stabile H, Franceschini F, Bosisio D, Acquati F, Vermeren S, Sozzani S, Andreoli L, Prete AD, Musso T, Del Prete A. Regulation of neutrophil associated RNASET2 expression in rheumatoid arthritis. Sci Rep 2024; 14:26820. [PMID: 39500942 PMCID: PMC11538310 DOI: 10.1038/s41598-024-77694-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Neutrophils (PMNs) are key players of innate immune responses through the release of cytoplasmic granule content and the formation of neutrophil extracellular traps (NETs). RNASET2 is an acidic ribonuclease, recently proposed as an alarmin signal associated with inflammatory responses. Here we show that, along the neutrophil maturation cascade, RNASET2 is expressed in segmented and mature PMNs. In human PMNs, RNASET2 colocalized with primary and tertiary granules and was found to be associated with NETs following PMA or Nigericin stimulation. Similarly, activation of PMNs by soluble immune complexes, a hallmark of several autoimmune diseases, also induced RNASET2-associated NETs. Genome-wide association studies recently identified RNASET2 among a cluster of genes associated with increased susceptibility to develop autoimmune diseases, including rheumatoid arthritis (RA). RNASET2 was found expressed by PMNs and macrophages infiltrating inflamed joints in a murine model of RA (K/BxN Serum-Transfer-Induced Arthritis, STIA), by immunostaining. Similar results were found in synovial biopsies of RA patients with active disease. In addition, we demonstrate that RNASET2 circulating levels correlated with the onset and the severity of disease in two mouse models of inflammatory arthritis, STIA and CIA (Collagen-Induced Arthritis) and in serum of RA patients. These results show that PMNs are an important source of RNASET2 and that its circulating levels are associated with RA development suggesting a role for RNASET2 in the pathogenesis of immune-mediated diseases.
Collapse
Affiliation(s)
- Mauro Passari
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Sara Scutera
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- IRCCS Humanitas Research Hospital-Rozzano, Milan, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Silvia Piantoni
- Department of Clinical and Experimental Sciences, Unit of Rheumatology and Clinical Immunology - ASST, University of Brescia, Spedali Civili of Brescia, Brescia, Italy
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Fabrizio Angeli
- Department of Clinical and Experimental Sciences, Unit of Rheumatology and Clinical Immunology - ASST, University of Brescia, Spedali Civili of Brescia, Brescia, Italy
| | - Alessia Caproli
- Department of Clinical and Experimental Sciences, Unit of Rheumatology and Clinical Immunology - ASST, University of Brescia, Spedali Civili of Brescia, Brescia, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Francesca Sozio
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia- Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia- Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia- Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Franco Franceschini
- Department of Clinical and Experimental Sciences, Unit of Rheumatology and Clinical Immunology - ASST, University of Brescia, Spedali Civili of Brescia, Brescia, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Francesco Acquati
- Human Genetics Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Sonja Vermeren
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia- Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Laura Andreoli
- Department of Clinical and Experimental Sciences, Unit of Rheumatology and Clinical Immunology - ASST, University of Brescia, Spedali Civili of Brescia, Brescia, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy.
- IRCCS Humanitas Research Hospital-Rozzano, Milan, Italy.
| | - Tiziana Musso
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- IRCCS Humanitas Research Hospital-Rozzano, Milan, Italy
| |
Collapse
|
2
|
Xu C, Jing W, Liu C, Yuan B, Zhang X, Liu L, Zhang F, Chen P, Liu Q, Wang H, Du X. Cytoplasmic DNA and AIM2 inflammasome in RA: where they come from and where they go? Front Immunol 2024; 15:1343325. [PMID: 39450183 PMCID: PMC11499118 DOI: 10.3389/fimmu.2024.1343325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease of undetermined etiology characterized by symmetric synovitis with predominantly destructive and multiple joint inflammation. Cytoplasmic DNA sensors that recognize protein molecules that are not themselves or abnormal dsDNA fragments play an integral role in the generation and perpetuation of autoimmune diseases by activating different signaling pathways and triggering innate immune signaling pathways and host defenses. Among them, melanoma deficiency factor 2 (AIM2) recognizes damaged DNA and double-stranded DNA and binds to them to further assemble inflammasome, initiating the innate immune response and participating in the pathophysiological process of rheumatoid arthritis. In this article, we review the research progress on the source of cytoplasmic DNA, the mechanism of assembly and activation of AIM2 inflammasome, and the related roles of other cytoplasmic DNA sensors in rheumatoid arthritis.
Collapse
Affiliation(s)
- Conghui Xu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Bo Yuan
- Department of Acupuncture and Pain, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Xinghua Zhang
- Department of Acupuncture, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Limei Liu
- Department of Zheng's Acupuncture, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Fengfan Zhang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Ping Chen
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Qiang Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Haidong Wang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Xiaozheng Du
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
3
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Tzang BS, Chin HY, Tzang CC, Chuang PH, Chen DY, Hsu TC. Parvovirus B19 Infection Is Associated with the Formation of Neutrophil Extracellular Traps and Thrombosis: A Possible Linkage of the VP1 Unique Region. Int J Mol Sci 2024; 25:9917. [PMID: 39337405 PMCID: PMC11432092 DOI: 10.3390/ijms25189917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Neutrophil extracellular traps (NETs) formation, namely NETosis, is implicated in antiphospholipid syndrome (APS)-related thrombosis in various autoimmune disorders such as systemic lupus erythematosus (SLE) and APS. Human parvovirus B19 (B19V) infection is closely associated with SLE and APS and causes various clinical manifestations such as blood disorders, joint pain, fever, pregnancy complications, and thrombosis. Additionally, B19V may trigger the production of autoantibodies, including those against nuclear and phospholipid components. Thus, exploring the connection between B19V, NETosis, and thrombosis is highly relevant. An in vitro NETosis model using differentiated HL-60 neutrophil-like cells (dHL-60) was employed to investigate the effect of B19V-VP1u IgG on NETs formation. A venous stenosis mouse model was used to test how B19V-VP1u IgG-mediated NETs affect thrombosis in vivo. The NETosis was observed in the dHL-60 cells treated with rabbit anti-B19V-VP1u IgG and was inhibited in the presence of either 8-Br-cAMP or CGS216800 but not GSK484. Significantly elevated reactive oxygen species (ROS), myeloperoxidase (MPO), and citrullinated histone (Cit-H3) levels were detected in the dHL60 treated with phorbol myristate acetate (PMA), human aPLs IgG and rabbit anti-B19V-VP1u IgG, respectively. Accordingly, a significantly larger thrombus was observed in a venous stenosis-induced thrombosis mouse model treated with PMA, human aPLs IgG, rabbit anti-B19V-VP1u IgG, and human anti-B19V-VP1u IgG, respectively, along with significantly increased amounts of Cit-H3-, MPO- and CRAMP-positive infiltrated neutrophils in the thrombin sections. This research highlights that anti-B19V-VP1u antibodies may enhance the formation of NETosis and thrombosis and implies that managing and treating B19V infection could lower the risk of thrombosis.
Collapse
Affiliation(s)
- Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hao-Yang Chin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
| | - Chih-Chen Tzang
- School of Medicine, College of Medicine, National Taiwan University, Taipei City 100, Taiwan;
| | - Pei-Hua Chuang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
| | - Der-Yuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
5
|
Wang W, Yao W, Tang W, Li Y, Lv Q, Ding W. Systemic inflammation response index is associated with increased all-cause and cardiovascular mortality in US adults with rheumatoid arthritis. Prev Med 2024; 185:108055. [PMID: 38925512 DOI: 10.1016/j.ypmed.2024.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) stands as a persistent systemic inflammatory autoimmune condition. Despite this understanding, the precise impact of the systemic inflammation response index (SIRI) on the prognosis of RA patients remains elusive. This study aims to elucidate the correlation between the inflammatory biomarker SIRI and both all-cause mortality and cardiovascular mortality among RA patients. METHODS Utilizing data from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2020, a retrospective analysis was conducted. Survival data were depicted through Kaplan-Meier survival curves, while the relationship between SIRI and all-cause or cardiovascular mortality in RA patients was scrutinized via multivariable Cox proportional hazards regression analysis and restricted cubic spline plots. Furthermore, subgroup analysis and mediation analysis were also performed. RESULTS This study encompassed 2656 RA patients with a comprehensive 20-year follow-up, during which 935 all-cause deaths and 273 deaths attributed to cardiovascular disease were recorded. We observed a nonlinear positive correlation between SIRI with both all-cause and cardiovascular mortality in RA patients. Notably, at a SIRI level of 1.12, the hazard ratio reached 1, indicating a shift from low to high mortality risk. Furthermore, mediation analysis revealed that 12.6% of the association between RA and mortality risk was mediated through SIRI. Subgroup analysis indicated a more pronounced association between SIRI and mortality in female patients or those with a high BMI. CONCLUSION This study underscores a non-linear positive correlation between the biomarker SIRI and both all-cause mortality and cardiovascular mortality in RA patients.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Wei Yao
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Wanyun Tang
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Yuhao Li
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Qiaomei Lv
- Department of Rheumatology, Dandong Central Hospital, China Medical University, Dandong, China
| | - Wenbo Ding
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China.
| |
Collapse
|
6
|
Gavriilidi IK, Wielińska J, Bogunia-Kubik K. Updates on the Pathophysiology and Therapeutic Potential of Extracellular Vesicles with Focus on Exosomes in Rheumatoid Arthritis. J Inflamm Res 2024; 17:4811-4826. [PMID: 39051053 PMCID: PMC11268846 DOI: 10.2147/jir.s465653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Rheumatoid arthritis (RA) is an incurable autoimmune disease with high morbidity and socioeconomic burden. Advances in therapeutics have improved patients' quality of life, however due to the complex disease pathophysiology and heterogeneity, 30% of patients do not respond to treatment. Understanding how different genetic and environmental factors contribute to disease initiation and development as well as uncovering the interactions of immune components is key to the implementation of effective and safe therapies. Recently, the role of extracellular vesicles (EVs) in RA development and possible treatment has been an area of interest. EVs are small lipid-bound entities, often containing genetic material, proteins, lipids and amino acids, facilitating paracrine intercellular communication. They are secreted by all cells, and it is believed that they possess regulatory functions due to high complexity and functional diversity. Although it has been shown that EVs participate in RA pathophysiology, through immune modulation, their exact role remains elusive. Furthermore, EVs could be a promising therapeutic agent in various diseases including RA, due to their biocompatibility, low toxicity and possible manipulation, but further research is required in this area. This review provides a comprehensive discussion of disease pathophysiology and summarizes the latest knowledge regarding the role and therapeutic potential of EVs in RA.
Collapse
Affiliation(s)
- Ioulia Karolina Gavriilidi
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Joanna Wielińska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
7
|
Wang W, Yao W, Tang W, Li Y, Lv Q, Ding W. Nonlinear associations of systemic immune-inflammation index with all-cause and cardiovascular mortality in US adults with rheumatoid arthritis. Sci Rep 2024; 14:16639. [PMID: 39026013 PMCID: PMC11258341 DOI: 10.1038/s41598-024-67750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory autoimmune disease. However, the relationship between the systemic immune-inflammation index (SII) and the prognosis of RA patients remains unclear. This study aimed to investigate the association between inflammatory biomarker SII and all-cause and cardiovascular mortality in RA patients. A retrospective analysis was conducted using data from the National Health and Nutrition Examination Survey database spanning from 1999 to March 2020. We assessed the association between the SII and all-cause as well as cardiovascular mortality in RA patients employing multivariable Cox proportional hazards regression analysis and restricted cubic spline plots. Receiver operating characteristic curves were employed to evaluate the prognostic capacity of SII in predicting outcomes in both the RA patients and the general population, alongside its predictive performance compared to other markers. This study comprised 2247 RA patients and a control cohort of 29,177 individuals from the general population. Over a 20-year follow-up period, 738 all-cause deaths and 215 deaths attributable to cardiovascular disease were documented in RA patients. We observed a nonlinear positive correlation between the SII and both all-cause and cardiovascular mortality in RA patients. Of significance, at an SII level of 529.7, the hazard ratio reached 1, signifying a transition from low to high mortality risk. Moreover, subgroup analysis did not reveal any potential interactions. Our study findings indicate a nonlinear positive correlation between the inflammatory biomarker SII and both all-cause and cardiovascular mortality in patients with RA.
Collapse
Affiliation(s)
- Wei Wang
- Dandong Central Hospital, China Medical University, No. 338 Jinshan Street, Zhenxing District, Dandong, 118002, Liaoning Province, People's Republic of China
| | - Wei Yao
- Dandong Central Hospital, China Medical University, No. 338 Jinshan Street, Zhenxing District, Dandong, 118002, Liaoning Province, People's Republic of China
| | - Wanyun Tang
- Dandong Central Hospital, China Medical University, No. 338 Jinshan Street, Zhenxing District, Dandong, 118002, Liaoning Province, People's Republic of China
| | - Yuhao Li
- Dandong Central Hospital, China Medical University, No. 338 Jinshan Street, Zhenxing District, Dandong, 118002, Liaoning Province, People's Republic of China
| | - Qiaomei Lv
- Department of Rheumatology, Dandong Central Hospital, China Medical University, Dandong, People's Republic of China
| | - Wenbo Ding
- Dandong Central Hospital, China Medical University, No. 338 Jinshan Street, Zhenxing District, Dandong, 118002, Liaoning Province, People's Republic of China.
| |
Collapse
|
8
|
Rebak AS, Hendriks IA, Elsborg JD, Buch-Larsen SC, Nielsen CH, Terslev L, Kirsch R, Damgaard D, Doncheva NT, Lennartsson C, Rykær M, Jensen LJ, Christophorou MA, Nielsen ML. A quantitative and site-specific atlas of the citrullinome reveals widespread existence of citrullination and insights into PADI4 substrates. Nat Struct Mol Biol 2024; 31:977-995. [PMID: 38321148 PMCID: PMC11189309 DOI: 10.1038/s41594-024-01214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
Despite the importance of citrullination in physiology and disease, global identification of citrullinated proteins, and the precise targeted sites, has remained challenging. Here we employed quantitative-mass-spectrometry-based proteomics to generate a comprehensive atlas of citrullination sites within the HL60 leukemia cell line following differentiation into neutrophil-like cells. We identified 14,056 citrullination sites within 4,008 proteins and quantified their regulation upon inhibition of the citrullinating enzyme PADI4. With this resource, we provide quantitative and site-specific information on thousands of PADI4 substrates, including signature histone marks and transcriptional regulators. Additionally, using peptide microarrays, we demonstrate the potential clinical relevance of certain identified sites, through distinct reactivities of antibodies contained in synovial fluid from anti-CCP-positive and anti-CCP-negative people with rheumatoid arthritis. Collectively, we describe the human citrullinome at a systems-wide level, provide a resource for understanding citrullination at the mechanistic level and link the identified targeted sites to rheumatoid arthritis.
Collapse
Affiliation(s)
- Alexandra S Rebak
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivo A Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas D Elsborg
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara C Buch-Larsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus H Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lene Terslev
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rebecca Kirsch
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dres Damgaard
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nadezhda T Doncheva
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Lennartsson
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Rykær
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars J Jensen
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Oliveira SR, de Arruda JAA, Schneider AH, Bemquerer LM, de Souza RMS, Barbim P, de Mattos-Pereira GH, Calderaro DC, Machado CC, Alves SF, Moreira PR, de Oliveira RDR, Louzada-Júnior P, Abreu LG, Cunha FQ, Silva TA. Neutrophil extracellular traps in rheumatoid arthritis and periodontitis: Contribution of PADI4 gene polymorphisms. J Clin Periodontol 2024; 51:452-463. [PMID: 38115803 DOI: 10.1111/jcpe.13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/26/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023]
Abstract
AIM We sought to investigate the release of neutrophil extracellular traps (NETs) in neutrophils from individuals with rheumatoid arthritis (RA) and controls and compare the presence of NETs in gingival tissues according to periodontal status. Also, the association between single nucleotide polymorphisms (SNPs) of the peptidyl arginine deaminase type 4 (PADI4) gene and the GTG haplotype with RA, periodontitis and NETs was evaluated in vitro. MATERIALS AND METHODS Peripheral neutrophils were isolated by density gradient, and NET concentration was determined by the PicoGreen method. Immunofluorescence was studied to identify NETs by co-localization of myeloperoxidase (MPO)-citrullinated histone H3 (H3Cit). Genotyping for SNPs (PADI4_89; PADI4_90; PADI4_92; and PADI4_104) was performed in 87 individuals with RA and 111 controls. RESULTS The release of NETs in vitro was significantly higher in individuals with RA and periodontitis and when stimulated with Porphyromonas gingivalis. Gingival tissues from subjects with RA and periodontitis revealed increased numbers of MPO-H3Cit-positive cells. Individuals with the GTG haplotype showed a higher release of NETs in vitro and worse periodontal parameters. CONCLUSIONS The release of NETs by circulating neutrophils is associated with RA and periodontitis and is influenced by the presence of the GTG haplotype.
Collapse
Affiliation(s)
- Sicília Rezende Oliveira
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Alcides Almeida de Arruda
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ayda Henriques Schneider
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Larissa Marques Bemquerer
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rayssa Maria Soalheiro de Souza
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Barbim
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gustavo Henrique de Mattos-Pereira
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora Cerqueira Calderaro
- Department of Locomotor Apparatus, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Caio Cavalcante Machado
- Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sandra Fukada Alves
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paula Rocha Moreira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Paulo Louzada-Júnior
- Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas Guimarães Abreu
- Department of Child and Adolescent Oral Health, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
10
|
Wang N, Ma J, Song W, Zhao C. An injectable hydrogel to disrupt neutrophil extracellular traps for treating rheumatoid arthritis. Drug Deliv 2023; 30:2173332. [PMID: 36724178 PMCID: PMC9897762 DOI: 10.1080/10717544.2023.2173332] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rheumatoid arthritis (RA), an autoimmune disease, is characterized by inflammatory cell infiltration that damages cartilage, disrupts bone, and impairs joint function. The therapeutic efficacy of RA treatments with the severely affected side remains unsatisfactory despite current treatment methods that primarily focus on anti-inflammatory activity, largely because of the complicatedly pathological mechanisms. A recently identified mechanism for RA development involves the interaction of RA autoantibodies with various proinflammatory cytokines to facilitate the formation of neutrophil extracellular traps (NETs), which increased inflammatory responses to express inflammatory cytokines and chemokines. Therefore, NETs architecture digestion may inhibit the positive-feedback inflammatory signal pathway and lessen joint damage in RA. In this work, deoxyribonuclease I (DNase) is connected to oxidized hyaluronic acid (OHA) via Schiff base reaction to extend the half-life of DNase. The modification does not influence the DNase activity for plasmid deoxyribonucleic acid hydrolysis and NETs' architecture disruption. Carboxymethyl chitosan is crosslinked with DNase-functionalised OHA (DHA) to form an injectable, degradable, and biocompatible hydrogel (DHY) to further strengthen the adhesive capability of DHA. Importantly, the collagen-induced arthritis model demonstrates that intra-articular injection of DHY can significantly reduce inflammatory cytokine expression and alleviate RA symptoms, which can be significantly improved by combining methotrexate. Here, a DNase-functionalised hydrogel has been developed for RA treatment by constantly degrading the novel drug target of NETs to decrease inflammatory response in RA.
Collapse
Affiliation(s)
- Nan Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jie Ma
- Department of Clinical pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Wenxia Song
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Chengwu Zhao
- Department of Sports Medicine, The First Hospital of Jilin University, Changchun, China,CONTACT Chengwu Zhao Department of Sports Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Kumar R, Patil G, Dayal S. NLRP3-Induced NETosis: A Potential Therapeutic Target for Ischemic Thrombotic Diseases? Cells 2023; 12:2709. [PMID: 38067137 PMCID: PMC10706381 DOI: 10.3390/cells12232709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Ischemic thrombotic disease, characterized by the formation of obstructive blood clots within arteries or veins, is a condition associated with life-threatening events, such as stroke, myocardial infarction, deep vein thrombosis, and pulmonary embolism. The conventional therapeutic strategy relies on treatments with anticoagulants that unfortunately pose an inherent risk of bleeding complications. These anticoagulants primarily target clotting factors, often overlooking upstream events, including the release of neutrophil extracellular traps (NETs). Neutrophils are integral components of the innate immune system, traditionally known for their role in combating pathogens through NET formation. Emerging evidence has now revealed that NETs contribute to a prothrombotic milieu by promoting platelet activation, increasing thrombin generation, and providing a scaffold for clot formation. Additionally, NET components enhance clot stability and resistance to fibrinolysis. Clinical and preclinical studies have underscored the mechanistic involvement of NETs in the pathogenesis of thrombotic complications, since the clots obtained from patients and experimental models consistently exhibit the presence of NETs. Given these insights, the inhibition of NETs or NET formation is emerging as a promising therapeutic approach for ischemic thrombotic diseases. Recent investigations also implicate a role for the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome as a mediator of NETosis and thrombosis, suggesting that NLRP3 inhibition may also hold potential for mitigating thrombotic events. Therefore, future preclinical and clinical studies aimed at identifying and validating NLRP3 inhibition as a novel therapeutic intervention for thrombotic disorders are imperative.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (R.K.); (G.P.)
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Visakhapatnam 530045, India
| | - Gokul Patil
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (R.K.); (G.P.)
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (R.K.); (G.P.)
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
12
|
Matta B, Battaglia J, Barnes BJ. A New Methodology for the Quantification of Neutrophil Extracellular Traps in Patient Plasma. Bio Protoc 2023; 13:e4701. [PMID: 37397793 PMCID: PMC10308188 DOI: 10.21769/bioprotoc.4701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 07/04/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures made up of decondensed chromatin fibers along with neutrophil granular proteins that are extruded by neutrophils after activation or in response to foreign microorganisms. NETs have been associated with autoimmune and inflammatory diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis, coronavirus disease 2019 (COVID-19), and others. There are reliable methods available to quantitate NETs from neutrophils, but their accurate quantification in patient plasma or serum remains a challenge. We developed a highly sensitive ELISA to detect NETs in serum/plasma and designed a novel smear immunofluorescence assay to detect NETs in as little as 1 μL of serum/plasma. We further validated our technology on plasma samples from SLE patients and healthy donors that carry interferon regulatory factor 5 genetic risk. The multiplex ELISA combines the use of three antibodies against myeloperoxidase (MPO), citrullinated histone H3 (CitH3), and DNA to detect the NET complexes with higher specificities. The immunofluorescence smear assay can visually detect intact structures of NETs in 1 μL of serum/plasma and provide similar results that correlate with findings from the multiplex ELISA. Furthermore, the smear assay is a relatively simple, inexpensive, and quantifiable method of NET detection for small volumes.
Collapse
Affiliation(s)
- Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Jenna Battaglia
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
13
|
Batsalova T, Dzhambazov B. Significance of Type II Collagen Posttranslational Modifications: From Autoantigenesis to Improved Diagnosis and Treatment of Rheumatoid Arthritis. Int J Mol Sci 2023; 24:9884. [PMID: 37373030 PMCID: PMC10298457 DOI: 10.3390/ijms24129884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Collagen type II (COL2), the main structural protein of hyaline cartilage, is considerably affected by autoimmune responses associated with the pathogenesis of rheumatoid arthritis (RA). Posttranslational modifications (PTMs) play a significant role in the formation of the COL2 molecule and supramolecular fibril organization, and thus, support COL2 function, which is crucial for normal cartilage structure and physiology. Conversely, the specific PTMs of the protein (carbamylation, glycosylation, citrullination, oxidative modifications and others) have been implicated in RA autoimmunity. The discovery of the anti-citrullinated protein response in RA, which includes anti-citrullinated COL2 reactivity, has led to the development of improved diagnostic assays and classification criteria for the disease. The induction of immunological tolerance using modified COL2 peptides has been highlighted as a potentially effective strategy for RA therapy. Therefore, the aim of this review is to summarize the recent knowledge on COL2 posttranslational modifications with relevance to RA pathophysiology, diagnosis and treatment. The significance of COL2 PTMs as a source of neo-antigens that activate immunity leading to or sustaining RA autoimmunity is discussed.
Collapse
Affiliation(s)
| | - Balik Dzhambazov
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
14
|
Hascoët E, Blanchard F, Blin-Wakkach C, Guicheux J, Lesclous P, Cloitre A. New insights into inflammatory osteoclast precursors as therapeutic targets for rheumatoid arthritis and periodontitis. Bone Res 2023; 11:26. [PMID: 37217496 DOI: 10.1038/s41413-023-00257-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 05/24/2023] Open
Abstract
Rheumatoid arthritis (RA) and periodontitis are chronic inflammatory diseases leading to increased bone resorption. Preventing this inflammatory bone resorption is a major health challenge. Both diseases share immunopathogenic similarities and a common inflammatory environment. The autoimmune response or periodontal infection stimulates certain immune actors, leading in both cases to chronic inflammation that perpetuates bone resorption. Moreover, RA and periodontitis have a strong epidemiological association that could be explained by periodontal microbial dysbiosis. This dysbiosis is believed to be involved in the initiation of RA via three mechanisms. (i) The dissemination of periodontal pathogens triggers systemic inflammation. (ii) Periodontal pathogens can induce the generation of citrullinated neoepitopes, leading to the generation of anti-citrullinated peptide autoantibodies. (iii) Intracellular danger-associated molecular patterns accelerate local and systemic inflammation. Therefore, periodontal dysbiosis could promote or sustain bone resorption in distant inflamed joints. Interestingly, in inflammatory conditions, the existence of osteoclasts distinct from "classical osteoclasts" has recently been reported. They have proinflammatory origins and functions. Several populations of osteoclast precursors have been described in RA, such as classical monocytes, a dendritic cell subtype, and arthritis-associated osteoclastogenic macrophages. The aim of this review is to synthesize knowledge on osteoclasts and their precursors in inflammatory conditions, especially in RA and periodontitis. Special attention will be given to recent data related to RA that could be of potential value in periodontitis due to the immunopathogenic similarities between the two diseases. Improving our understanding of these pathogenic mechanisms should lead to the identification of new therapeutic targets involved in the pathological inflammatory bone resorption associated with these diseases.
Collapse
Affiliation(s)
- Emilie Hascoët
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Frédéric Blanchard
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | | | - Jérôme Guicheux
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France.
| | - Philippe Lesclous
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Alexandra Cloitre
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| |
Collapse
|
15
|
Nonaka K, Watanabe S, Sano C, Ohta R. Treating Exudative Pleurisy Accompanied by Felty Syndrome in an Older Patient With Advanced Rheumatoid Arthritis. Cureus 2023; 15:e37270. [PMID: 37168154 PMCID: PMC10166576 DOI: 10.7759/cureus.37270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
Advanced rheumatoid arthritis (RA) is complicated by extra-articular manifestations such as small- and medium-sized vasculitis, pulmonary fibrosis, and pleurisy. The clinical course of the disease is refractory and critical. Treating advanced RA with multiple extra-articular manifestations is challenging. Here, we report a case of advanced RA in a 75-year-old man with exudative pleurisy and Felty syndrome. Treatment should be initiated promptly while paying attention to the possibility of infection as a differential diagnosis of exudative pleurisy because of the drastic change in the patient's condition due to disease progression. In addition, appropriate treatment is required to differentiate between Felty syndrome and malignant diseases. In older patients with RV complicated by pleurisy and Felty syndrome, starting steroids and immunosuppressive agents is crucial when conducting a thorough examination and considering the rapid progression of symptoms.
Collapse
Affiliation(s)
- Kanako Nonaka
- Family Medicine, Shimane University Faculty of Medicine, Izumo, JPN
| | - Shota Watanabe
- Family Medicine, Shimane University Faculty of Medicine, Izumo, JPN
| | - Chiaki Sano
- Community Medicine Management, Shimane University Faculty of Medicine, Izumo, JPN
| | | |
Collapse
|
16
|
Michailidou D, Kuley R, Wang T, Hermanson P, Grayson PC, Cuthbertson D, Khalidi NA, Koening CL, Langford CA, McAlear CA, Moreland LW, Pagnoux C, Seo P, Specks U, Sreih AG, Warrington KJ, Monach PA, Merkel PA, Lood C. Neutrophil extracellular trap formation in anti-neutrophil cytoplasmic antibody-associated and large-vessel vasculitis. Clin Immunol 2023; 249:109274. [PMID: 36878421 PMCID: PMC10066833 DOI: 10.1016/j.clim.2023.109274] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023]
Abstract
Levels of neutrophil extracellular traps (NETs) were measured in plasma of healthy controls (HC, n = 30) and patients with granulomatosis with polyangiitis (GPA, n = 123), microscopic polyangiitis (MPA, n = 61), Takayasu's arteritis (TAK, n = 58), and giant cell arteritis (GCA, n = 68), at times of remission or activity and correlated with levels of the platelet-derived thrombospondin-1 (TSP-1). Levels of NETs were elevated during active disease in patients with GPA (p < 0.0001), MPA (p = 0.0038), TAK (p < 0.0001), and GCA (p < 0.0001), and in remission for GPA, p < 0.0001, MPA, p = 0.005, TAK, p = 0.03, and GCA, p = 0.0009. All cohorts demonstrated impaired NET degradation. Patients with GPA (p = 0.0045) and MPA (p = 0.005) had anti-NET IgG antibodies. Patients with TAK had anti-histone antibodies (p < 0.01), correlating with presence of NETs. Levels of TSP-1 were increased in all patients with vasculitis, and associated with NET formation. NET formation is a common process in vasculitides. Targeting NET formation or degradation could be potential therapeutic approaches for vasculitides.
Collapse
Affiliation(s)
| | - Runa Kuley
- Division of Rheumatology, University of Washington, Seattle, USA; Center for Life Sciences, Mahindra University, Hyderabad, India
| | - Ting Wang
- Division of Rheumatology, University of Washington, Seattle, USA
| | - Payton Hermanson
- Division of Rheumatology, University of Washington, Seattle, USA
| | - Peter C Grayson
- Systemic Autoimmunity Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - David Cuthbertson
- Health Informatics Institute, University of South Florida, South Florida, FL, USA
| | - Nader A Khalidi
- Division of Rheumatology, Mc Master University, Ontario, Canada
| | | | | | - Carol A McAlear
- Division of Rheumatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Larry W Moreland
- Division of Rheumatology and Clinical Immunology, University of Colorado, Denver, CO, USA
| | | | - Philip Seo
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, USA
| | - Ulrich Specks
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Antoine G Sreih
- Division of Rheumatology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Paul A Monach
- Division of Rheumatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter A Merkel
- Division of Rheumatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Lood
- Division of Rheumatology, University of Washington, Seattle, USA.
| |
Collapse
|
17
|
Sadeghi M, Dehnavi S, Jamialahmadi T, Johnston TP, Sahebkar A. Neutrophil extracellular trap: A key player in the pathogenesis of autoimmune diseases. Int Immunopharmacol 2023; 116:109843. [PMID: 36764274 DOI: 10.1016/j.intimp.2023.109843] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Numerous studies suggest that neutrophils might have a crucial role in the pathogenesis of systemic autoimmune diseases through neutrophil extracellular trap (NET) formation, production of pro-inflammatory cytokines, and organ destruction. NET components that are released into extracellular spaces can be considered autoantigens, which contribute to causing a break in self-tolerance. Subsequently, this leads to the development of autoimmune responses in predisposed individuals. Additionally, an imbalance between NET formation and NET degradation may prolong immune system contact with these modified autoantigens and enhance NET-induced tissue damage. In this review, we discuss the generation and clearance of the NET, as well as the role of NETosis in the pathogenesis of autoimmune disorders, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV), multiple sclerosis (MS), psoriasis, antiphospholipid syndrome (APS), and Type-1 diabetes mellitus (T1DM).
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Affiliation(s)
- Ellen M Gravallese
- From the Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston (E.M.G.); and the Division of Rheumatology, Allergy, and Immunology, University of California at San Diego School of Medicine, La Jolla (G.S.F.)
| | - Gary S Firestein
- From the Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston (E.M.G.); and the Division of Rheumatology, Allergy, and Immunology, University of California at San Diego School of Medicine, La Jolla (G.S.F.)
| |
Collapse
|
19
|
Filipczak N, Li X, Saawant GR, Yalamarty SSK, Luther E, Torchilin VP. Antibody-modified DNase I micelles specifically recognize the neutrophil extracellular traps (NETs) and promote their degradation. J Control Release 2023; 354:109-119. [PMID: 36596341 DOI: 10.1016/j.jconrel.2022.12.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Neutrophil extracellular traps (NETs) are structures consisting of decondensed chromatin with associated proteins, including histones and antimicrobial peptides, released from activated neutrophils. They are believed to be one of the body's first lines of defense against infectious agents. Despite their beneficial effect on the immune response process, some studies indicate that their excessive formation and the associated accumulation of extracellular DNA (eDNA) together with other polyelectrolytes (F-actin) plays an important role in the pathogenesis of many diseases. Thus NETs formation and removal are clinically significant. The monoclonal antibody 2C5 has strong specificity for intact nucleohistones (NS) and targets NS in NETs as we previously confirmed. Creation of a nano preparation that can specifically recognize and destroy NETs represents the aim for treatment many diseases. 2C5 antibody functionalized micelles coated with DNase I were created to achieve this aim.
Collapse
Affiliation(s)
- Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Gaurav Rajan Saawant
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | | | - Ed Luther
- Supervisor of Shared Research Facilities, School of Pharmacy and Department of Pharmaceutical Sciences, Northeastern University, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Pan W, Xin Q, Xu J, He J, Chen Z, Hu X, Li T, Zhu Y, Wei W, Wu Y. IgD enhances the release of neutrophil extracellular traps (NETs) via FcδR in rheumatoid arthritis patients. Int Immunopharmacol 2023; 114:109484. [PMID: 36450207 DOI: 10.1016/j.intimp.2022.109484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune inflammatory disorder affecting primarily the joints. Neutrophils and the release of neutrophil extracellular traps (NETs) contribute to the pathogenesis of RA. However, IgD, which was abnormally higher in RA, has not been studied for its pathological role in neutrophil activation and NETs formation. To investigate the effects of IgD on neutrophil activation and NETs formation via IgD receptor (FcδR), we collect peripheral blood of RA patients and established adjuvant-induced arthritis (AA) rat model. We found that the expression of FcδR on neutrophils was significantly higher in RA patients compared with healthy controls. As a specific marker of NETs, the level of citrullinated histone H3 was positively correlated with sIgD and FcδR in RA patients. IgD enhances the release of NETs and promotes the proliferation of fibroblast-like synoviocytes (FLS) from RA patients by activating neutrophils. As a competitive FcδR blocker, IgD-Fc-Ig fusion protein could significantly reduce NETs formation and FcδR expression on neutrophils in vitro. In vivo, IgD-Fc-Ig could restrain IgD-induced neutrophil activation and NETs formation, thus inhibited FLS proliferation in AA rats. Data presented here demonstrate that neutrophils could be triggered by IgD to release NETs and take part in FLS proliferation in RA patients with excessive IgD. Blocking IgD-FcδR could inhibit neutrophil activation and NETs formation, and represent an additional attractive novel therapeutic strategy for the treatment of RA.
Collapse
Affiliation(s)
- Wenwen Pan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qianling Xin
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jing Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jingjing He
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Zhaoying Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xiaoxi Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Tao Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanqing Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.
| | - Yujing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.
| |
Collapse
|
21
|
Gao A, Zhao W, Wu R, Su R, Jin R, Luo J, Gao C, Li X, Wang C. Tissue-resident memory T cells: The key frontier in local synovitis memory of rheumatoid arthritis. J Autoimmun 2022; 133:102950. [PMID: 36356551 DOI: 10.1016/j.jaut.2022.102950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
Rheumatoid arthritis (RA) is a highly disabling, systemic autoimmune disease. It presents a remarkable tendency to recur, which renders it almost impossible for patients to live without drugs. Under such circumstances, many patients have to suffer the pain of recurrent attacks as well as the side effects of long-term medication. Current therapies for RA are primarily systemic treatments without targeting the problem that RA is more likely to recur locally. Emerging studies suggest the existence of a mechanism mediating local memory during RA, which is closely related to the persistent residence of tissue-resident memory T cells (TRM). TRM, one of the memory T cell subsets, reside in tissues providing immediate immune protection but driving recurrent local inflammation on the other hand. The heterogeneity among synovial TRM is unclear, with the dominated CD8+ TRM observed in inflamed synovium of RA patients coming into focus. Besides local arthritis relapse, TRM may also contribute to extra-articular organ involvement in RA due to their migration potential. Future integration of single-cell RNA sequencing (scRNA-seq) with spatial transcriptomics to explore the gene expression patterns of TRM in both temporal dimension and spatial dimension may help us identify specific therapeutic targets. Targeting synovial TRM to suppress local arthritis flares while using systemic therapies to prevent extra-articular organ involvement may provide a new perspective to address RA recurrence.
Collapse
Affiliation(s)
- Anqi Gao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Wenpeng Zhao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Ruqing Jin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China.
| |
Collapse
|
22
|
Benucci M, Damiani A, Russo E, Guiducci S, Li Gobbi F, Fusi P, Grossi V, Amedei A, Manfredi M, Infantino M. The Association of uPA, uPAR, and suPAR System with Inflammation and Joint Damage in Rheumatoid Arthritis: suPAR as a Biomarker in the Light of a Personalized Medicine Perspective. J Pers Med 2022; 12:jpm12121984. [PMID: 36556207 PMCID: PMC9788564 DOI: 10.3390/jpm12121984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND In recent years, the involvement of the soluble urokinase Plasminogen Activator Receptor (suPAR) in the pathophysiological modulation of Rheumatoid Arthritis (RA) has been documented, resulting in the activation of several intracellular inflammatory pathways. METHODS We investigated the correlation of urokinase Plasminogen Activator (uPA)/urokinase Plasminogen Activator Receptor (uPAR) expression and suPAR with inflammation and joint damage in RA, evaluating their potential role in a precision medicine context. RESULTS Currently, suPAR has been shown to be a potential biomarker for the monitoring of Systemic Chronic Inflammation (SCI) and COVID-19. However, the effects due to suPAR interaction in immune cells are also involved in both RA onset and progression. To date, the literature data on suPAR in RA endorse its potential application as a biomarker of inflammation and subsequent joint damage. CONCLUSION Available evidence about suPAR utility in the RA field is promising, and future research should further investigate its use in clinical practice, resulting in a big step forward for precision medicine. As it is elevated in different types of inflammation, suPAR could potentially work as an adjunctive tool for the screening of RA patients. In addition, a suPAR system has been shown to be involved in RA pathogenesis, so new data about the therapeutic response to Jak inhibitors can represent a possible way to develop further studies.
Collapse
Affiliation(s)
- Maurizio Benucci
- Rheumatology Unit, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50143 Florence, Italy
- Correspondence: ; Tel.: +39-055-6932636; Fax: +39-055-6932099
| | - Arianna Damiani
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Serena Guiducci
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Francesca Li Gobbi
- Rheumatology Unit, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50143 Florence, Italy
| | - Paola Fusi
- Rheumatology Unit, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50143 Florence, Italy
| | - Valentina Grossi
- Immunology and Allergology Laboratory, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50143 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Mariangela Manfredi
- Immunology and Allergology Laboratory, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50143 Florence, Italy
| | - Maria Infantino
- Immunology and Allergology Laboratory, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50143 Florence, Italy
| |
Collapse
|
23
|
Delgado-Arévalo C, Calvet-Mirabent M, Triguero-Martínez A, Vázquez de Luis E, Benguría-Filippini A, Largo R, Calzada-Fraile D, Popova O, Sánchez-Cerrillo I, Tsukalov I, Moreno-Vellisca R, de la Fuente H, Herrero-Beaumont G, Ramiro A, Sánchez-Madrid F, Castañeda S, Dopazo A, González Álvaro I, Martin-Gayo E. NLRC4-mediated activation of CD1c+ DC contributes to perpetuation of synovitis in rheumatoid arthritis. JCI Insight 2022; 7:152886. [PMID: 36194479 DOI: 10.1172/jci.insight.152886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/29/2022] [Indexed: 12/15/2022] Open
Abstract
The individual contribution of specific myeloid subsets such as CD1c+ conventional DC (cDC) to perpetuation of rheumatoid arthritis (RA) pathology remains unclear. In addition, the specific innate sensors driving pathogenic activation of CD1c+ cDC in patients with RA and their functional implications have not been characterized. Here, we assessed phenotypical, transcriptional, and functional characteristics of CD1c+ and CD141+ cDC and monocytes from the blood and synovial fluid of patients with RA. Increased levels of CCR2 and the IgG receptor CD64 on circulating CD1c+ cDC was associated with the presence of this DC subset in the synovial membrane in patients with RA. Moreover, synovial CD1c+ cDC are characterized by increased expression of proinflammatory cytokines and high abilities to induce pathogenic IFN-γ+IL-17+CD4+ T cells in vitro. Finally, we identified the crosstalk between Fcγ receptors and NLRC4 as a potential molecular mechanism mediating pathogenic activation, CD64 upregulation, and functional specialization of CD1c+ cDC in response to dsDNA-IgG in patients with RA.
Collapse
Affiliation(s)
- Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Marta Calvet-Mirabent
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ana Triguero-Martínez
- Rheumatology Department from Hospital Universitario La Princesa, Instituto de Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | | | | | - Raquel Largo
- Bone and Joint Research Unit, Rheumatology Service, IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Diego Calzada-Fraile
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| | - Olga Popova
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ilya Tsukalov
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | | | - Hortensia de la Fuente
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| | | | - Almudena Ramiro
- Biology Laboratory, The National Centre for Cardiovascular Research, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain.,Biology Laboratory, The National Centre for Cardiovascular Research, Madrid, Spain
| | - Santos Castañeda
- Rheumatology Department from Hospital Universitario La Princesa, Instituto de Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.,Cátedra UAM-Roche, EPID-Future, Department of Medicine, UAM, Madrid, Spain
| | - Ana Dopazo
- Genomic Unit, The National Centre for Cardiovascular Research, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| | - Isidoro González Álvaro
- Rheumatology Department from Hospital Universitario La Princesa, Instituto de Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Enrique Martin-Gayo
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.,CIBER Infectious Diseases, Madrid, Spain
| |
Collapse
|
24
|
Yang ML, Kibbey RG, Mamula MJ. Biomarkers of autoimmunity and beta cell metabolism in type 1 diabetes. Front Immunol 2022; 13:1028130. [PMID: 36389721 PMCID: PMC9647083 DOI: 10.3389/fimmu.2022.1028130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
Posttranslational protein modifications (PTMs) are an inherent response to physiological changes causing altered protein structure and potentially modulating important biological functions of the modified protein. Besides cellular metabolic pathways that may be dictated by PTMs, the subtle change of proteins also may provoke immune attack in numerous autoimmune diseases. Type 1 diabetes (T1D) is a chronic autoimmune disease destroying insulin-producing beta cells within the pancreatic islets, a result of tissue inflammation to specific autoantigens. This review summarizes how PTMs arise and the potential pathological consequence of PTMs, with particular focus on specific autoimmunity to pancreatic beta cells and cellular metabolic dysfunction in T1D. Moreover, we review PTM-associated biomarkers in the prediction, diagnosis and in monitoring disease activity in T1D. Finally, we will discuss potential preventive and therapeutic approaches of targeting PTMs in repairing or restoring normal metabolic pathways in pancreatic islets.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Richard G. Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
25
|
Talal S, Mona K, Karem A, Yaniv L, Reut HM, Ariel S, Moran AK, Harel E, Campisi-Pinto S, Mahmoud AA, Raul C, David T, Gil BS, Idan C. Neutrophil degranulation and severely impaired extracellular trap formation at the basis of susceptibility to infections of hemodialysis patients. BMC Med 2022; 20:364. [PMID: 36284314 PMCID: PMC9597999 DOI: 10.1186/s12916-022-02564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Chronic kidney disease patients are at increased risk of mortality with cardiovascular diseases and infections as the two leading causes of death for end-stage kidney disease treated with hemodialysis (HD). Mortality from bacterial infections in HD patients is estimated to be 100-1000 times higher than in the healthy population. METHODS We comprehensively characterized highly pure circulating neutrophils from HD and healthy donors. RESULTS Protein levels and transcriptome of HD patients' neutrophils indicated massive neutrophil degranulation with a dramatic reduction in reactive oxygen species (ROS) production during an oxidative burst and defective oxidative cellular signaling. Moreover, HD neutrophils exhibit severely impaired ability to generate extracellular NET formation (NETosis) in NADPH oxidase-dependent or independent pathways, reflecting their loss of capacity to kill extracellular bacteria. Ectopic hydrogen peroxidase (H2O2) or recombinant human SOD-1 (rSOD-1) partly restores and improves the extent of HD dysfunctional neutrophil NET formation. CONCLUSIONS Our report is one of the first singular examples of severe and chronic impairment of NET formation leading to substantial clinical susceptibility to bacteremia that most likely results from the metabolic and environmental milieu typical to HD patients and not by common human genetic deficiencies. In this manner, aberrant gene expression and differential exocytosis of distinct granule populations could reflect the chronic defect in neutrophil functionality and their diminished ability to induce NETosis. Therefore, our findings suggest that targeting NETosis in HD patients may reduce infections, minimize their severity, and decrease the mortality rate from infections in this patient population.
Collapse
Affiliation(s)
- Salti Talal
- Oncology & Hematology Division, Cancer Center, Emek Medical Center, 21 Yitzhak Rabin Blvd, 1834111, Afula, Israel
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 320002, Haifa, Israel
| | - Khoury Mona
- Oncology & Hematology Division, Cancer Center, Emek Medical Center, 21 Yitzhak Rabin Blvd, 1834111, Afula, Israel
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 320002, Haifa, Israel
| | - Awad Karem
- Nephrology Department, Emek Medical Center, Afula, Israel
| | | | | | - Shemesh Ariel
- Biomedical Core Facility, Bruce Rappaport Faculty of Medicine Technion-Israel, Haifa, Israel
| | | | - Eitam Harel
- Emek Medical Center, Clinical Laboratories, Clalit, Afula, Israel
| | | | - Abu-Amna Mahmoud
- Oncology & Hematology Division, Cancer Center, Emek Medical Center, 21 Yitzhak Rabin Blvd, 1834111, Afula, Israel
| | - Colodner Raul
- Emek Medical Center, Clinical Laboratories, Clalit, Afula, Israel
| | - Tovbin David
- Nephrology Department, Emek Medical Center, Afula, Israel
| | - Bar-Sela Gil
- Oncology & Hematology Division, Cancer Center, Emek Medical Center, 21 Yitzhak Rabin Blvd, 1834111, Afula, Israel.
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 320002, Haifa, Israel.
| | - Cohen Idan
- Oncology & Hematology Division, Cancer Center, Emek Medical Center, 21 Yitzhak Rabin Blvd, 1834111, Afula, Israel.
| |
Collapse
|
26
|
Giachi A, Cugno M, Gualtierotti R. Disease-modifying anti-rheumatic drugs improve the cardiovascular profile in patients with rheumatoid arthritis. Front Cardiovasc Med 2022; 9:1012661. [PMID: 36352850 PMCID: PMC9637771 DOI: 10.3389/fcvm.2022.1012661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting about 0. 5–1% of the adult population and manifesting as persistent synovitis, systemic inflammation and production of autoantibodies. Patients affected by RA not only experience chronic disease progression, but are also burdened by a 1.5-fold increased cardiovascular (CV) risk, which is comparable to the risk experienced by patients with type 2 diabetes mellitus. RA patients also have a higher incidence and prevalence of coronary artery disease (CAD). Although RA patients frequently present traditional CV risk factors such as insulin resistance and active smoking, previous studies have clarified the pivotal role of chronic inflammation–driven by proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha)–in accelerating the process of atherosclerosis and impairing the coagulation system. Over the last years, a number of studies have shown that disease-modifying anti-rheumatic drugs (DMARDs) reducing the inflammatory state in general improve the CV risk, however some drugs may carry some apparent negative effects. Thus, RA is a model of disease in which targeting inflammation may counteract the progression of atherosclerosis and reduce CV risk. Clinical and experimental evidence indicates that the management of RA patients should be tailored based on the positive and negative effects of DMARDs on CV risk together with the individual traditional CV risk profile. The identification of genetic, biochemical and clinical biomarkers, predictive of evolution and response to treatment, will be the next challenge for a precision approach to reduce the burden of the disease.
Collapse
Affiliation(s)
- Andrea Giachi
- UOC Medicina Generale Emostasi e Trombosi, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Cugno
- UOC Medicina Generale Emostasi e Trombosi, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
- *Correspondence: Massimo Cugno
| | - Roberta Gualtierotti
- UOC Medicina Generale Emostasi e Trombosi, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
27
|
Citrullination: A modification important in the pathogenesis of autoimmune diseases. Clin Immunol 2022; 245:109134. [DOI: 10.1016/j.clim.2022.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
|
28
|
Parackova Z, Zentsova I, Malcova H, Cebecauerova D, Sediva A, Horvath R. Increased histone citrullination in juvenile idiopathic arthritis. Front Med (Lausanne) 2022; 9:971121. [PMID: 36059852 PMCID: PMC9437311 DOI: 10.3389/fmed.2022.971121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Posttranslational modifications (PTMs) of proteins are crucial for regulating various biological processes. However, protein alteration via PTMs, and consequently, the creation of new epitopes, can induce abnormal autoimmune responses in predisposed individuals. Immunopathogenesis of several rheumatic diseases, including the most common childhood form, juvenile idiopathic arthritis (JIA), is associated with the generation of autoantibodies against such modified proteins. Dysregulated generation of neutrophil extracellular traps (NETs) can be a source of post-translationally altered proteins. Thus, we investigated the role of PTMs and the presence of NET-associated markers in JIA patients. Methods We recruited 30 pediatric patients with JIA (20 with active disease and 10 in remission) and 30 healthy donors. The serum concentrations of citrullinated histone H3 (citH3), peptidyl arginine deiminases (PADs), and NET-related products were detected using ELISA, and the number of citH3+ neutrophils was assessed using flow cytometry. Results The serum levels of citH3 and PADs were higher in active as well as in remission JIA patients than in healthy donors. Similarly, the number of citH3+ neutrophils was higher in the peripheral blood of patients with JIA, implying an enhanced process of NETosis. This was effectively reflected by elevated serum levels of NET-associated products, such as neutrophil elastase, LL37, and cell-free DNA-histone complexes. Additionally, 16.7% of active JIA patients were seropositive for carbamylated autoantibodies, the levels of which declined sharply after initiation of anti-TNFα therapy. Conclusion Collectively, our data suggest that the accelerated process of NETosis and PTMs in JIA may result in the generation of anti-citrullinated/carbamylated autoantibodies against various epitopes later in life, which could be prevented by effectively regulating inflammation using immune therapy.
Collapse
Affiliation(s)
- Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czechia
- *Correspondence: Zuzana Parackova
| | - Irena Zentsova
- Department of Immunology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czechia
| | - Hana Malcova
- Department of Paediatric and Adult Rheumatology, University Hospital Motol, Prague, Czechia
| | - Dita Cebecauerova
- Department of Paediatric and Adult Rheumatology, University Hospital Motol, Prague, Czechia
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czechia
| | - Rudolf Horvath
- Department of Paediatric and Adult Rheumatology, University Hospital Motol, Prague, Czechia
| |
Collapse
|
29
|
Matta B, Battaglia J, Barnes BJ. Detection of neutrophil extracellular traps in patient plasma: method development and validation in systemic lupus erythematosus and healthy donors that carry IRF5 genetic risk. Front Immunol 2022; 13:951254. [PMID: 35958624 PMCID: PMC9360330 DOI: 10.3389/fimmu.2022.951254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 01/21/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures extruded by neutrophils after activation or in response to microorganisms. These extracellular structures are decondensed chromatin fibers loaded with antimicrobial granular proteins, peptides, and enzymes. NETs clear microorganisms, thus keeping a check on infections at an early stage, but if dysregulated, may be self-destructive to the body. Indeed, NETs have been associated with autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), antiphospholipid syndrome (APS), psoriasis, and gout. More recently, increased NETs associate with COVID-19 disease severity. While there are rigorous and reliable methods to quantify NETs from neutrophils via flow cytometry and immunofluorescence, the accurate quantification of NETs in patient plasma or serum remains a challenge. Here, we developed new methodologies for the quantification of NETs in patient plasma using multiplex ELISA and immunofluorescence methodology. Plasma from patients with SLE, non-genotyped healthy controls, and genotyped healthy controls that carry either the homozygous risk or non-risk IRF5-SLE haplotype were used in this study. The multiplex ELISA using antibodies detecting myeloperoxidase (MPO), citrullinated histone H3 (CitH3) and DNA provided reliable detection of NETs in plasma samples from SLE patients and healthy donors that carry IRF5 genetic risk. An immunofluorescence smear assay that utilizes only 1 µl of patient plasma provided similar results and data correlate to multiplex ELISA findings. The immunofluorescence smear assay is a relatively simple, inexpensive, and quantifiable method of NET detection for small volumes of patient plasma.
Collapse
Affiliation(s)
- Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Jenna Battaglia
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- *Correspondence: Betsy J. Barnes,
| |
Collapse
|
30
|
Pfister H. Neutrophil Extracellular Traps and Neutrophil-Derived Extracellular Vesicles: Common Players in Neutrophil Effector Functions. Diagnostics (Basel) 2022; 12:diagnostics12071715. [PMID: 35885618 PMCID: PMC9323717 DOI: 10.3390/diagnostics12071715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Neutrophil granulocytes are a central component of the innate immune system. In recent years, they have gained considerable attention due to newly discovered biological effector functions and their involvement in various pathological conditions. They have been shown to trigger mechanisms that can either promote or inhibit the development of autoimmunity, thrombosis, and cancer. One mechanism for their modulatory effect is the release of extracellular vesicles (EVs), that trigger appropriate signaling pathways in immune cells and other target cells. In addition, activated neutrophils can release bactericidal DNA fibers decorated with proteins from neutrophil granules (neutrophil extracellular traps, NETs). While NETs are very effective in limiting pathogens, they can also cause severe damage if released in excess or cleared inefficiently. Since NETs and EVs share a variety of neutrophil molecules and initially act in the same microenvironment, differential biochemical and functional analysis is particularly challenging. This review focuses on the biochemical and functional parallels and the extent to which the overlapping spectrum of effector molecules has an impact on biological and pathological effects.
Collapse
Affiliation(s)
- Heiko Pfister
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Munich, Technical University Munich, D-80636 Munich, Germany
| |
Collapse
|
31
|
Wang X, Fan D, Cao X, Ye Q, Wang Q, Zhang M, Xiao C. The Role of Reactive Oxygen Species in the Rheumatoid Arthritis-Associated Synovial Microenvironment. Antioxidants (Basel) 2022; 11:antiox11061153. [PMID: 35740050 PMCID: PMC9220354 DOI: 10.3390/antiox11061153] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that begins with a loss of tolerance to modified self-antigens and immune system abnormalities, eventually leading to synovitis and bone and cartilage degradation. Reactive oxygen species (ROS) are commonly used as destructive or modifying agents of cellular components or they act as signaling molecules in the immune system. During the development of RA, a hypoxic and inflammatory situation in the synovium maintains ROS generation, which can be sustained by increased DNA damage and malfunctioning mitochondria in a feedback loop. Oxidative stress caused by abundant ROS production has also been shown to be associated with synovitis in RA. The goal of this review is to examine the functions of ROS and related molecular mechanisms in diverse cells in the synovial microenvironment of RA. The strategies relying on regulating ROS to treat RA are also reviewed.
Collapse
Affiliation(s)
- Xing Wang
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Qinbin Ye
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Qiong Wang
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
- Correspondence: or
| |
Collapse
|
32
|
Role of tertiary lymphoid organs in the regulation of immune responses in the periphery. Cell Mol Life Sci 2022; 79:359. [PMID: 35689679 PMCID: PMC9188279 DOI: 10.1007/s00018-022-04388-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022]
Abstract
Tertiary lymphoid organs (TLOs) are collections of immune cells resembling secondary lymphoid organs (SLOs) that form in peripheral, non-lymphoid tissues in response to local chronic inflammation. While their formation mimics embryologic lymphoid organogenesis, TLOs form after birth at ectopic sites in response to local inflammation resulting in their ability to mount diverse immune responses. The structure of TLOs can vary from clusters of B and T lymphocytes to highly organized structures with B and T lymphocyte compartments, germinal centers, and lymphatic vessels (LVs) and high endothelial venules (HEVs), allowing them to generate robust immune responses at sites of tissue injury. Although our understanding of the formation and function of these structures has improved greatly over the last 30 years, their role as mediators of protective or pathologic immune responses in certain chronic inflammatory diseases remains enigmatic and may differ based on the local tissue microenvironment in which they form. In this review, we highlight the role of TLOs in the regulation of immune responses in chronic infection, chronic inflammatory and autoimmune diseases, cancer, and solid organ transplantation.
Collapse
|
33
|
Yang ML, Horstman S, Gee R, Guyer P, Lam TT, Kanyo J, Perdigoto AL, Speake C, Greenbaum CJ, Callebaut A, Overbergh L, Kibbey RG, Herold KC, James EA, Mamula MJ. Citrullination of glucokinase is linked to autoimmune diabetes. Nat Commun 2022; 13:1870. [PMID: 35388005 PMCID: PMC8986778 DOI: 10.1038/s41467-022-29512-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammation, including reactive oxygen species and inflammatory cytokines in tissues amplify various post-translational modifications of self-proteins. A number of post-translational modifications have been identified as autoimmune biomarkers in the initiation and progression of Type 1 diabetes. Here we show the citrullination of pancreatic glucokinase as a result of inflammation, triggering autoimmunity and affecting glucokinase biological functions. Glucokinase is expressed in hepatocytes to regulate glycogen synthesis, and in pancreatic beta cells as a glucose sensor to initiate glycolysis and insulin signaling. We identify autoantibodies and autoreactive CD4+ T cells to glucokinase epitopes in the circulation of Type 1 diabetes patients and NOD mice. Finally, citrullination alters glucokinase biologic activity and suppresses glucose-stimulated insulin secretion. Our study define glucokinase as a Type 1 diabetes biomarker, providing new insights of how inflammation drives post-translational modifications to create both neoautoantigens and affect beta cell metabolism.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Sheryl Horstman
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Renelle Gee
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Perrin Guyer
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Ana L Perdigoto
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Carla J Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Aïsha Callebaut
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Richard G Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Kevan C Herold
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Mark J Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
34
|
Catriona C, Paolo P. SARS-CoV-2 induced post-translational protein modifications: A trigger for developing autoimmune diabetes? Diabetes Metab Res Rev 2022; 38:e3508. [PMID: 34990520 PMCID: PMC9015335 DOI: 10.1002/dmrr.3508] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Emerging evidence indicates a bi-directional relationship between SARS-CoV-2 and diabetes. The possibility exists that SARS-CoV-2 could induce diabetes, but it is not yet clear whether this might be a fulminant-type diabetes, autoimmune diabetes, or a new-onset transient hyperglycaemia. This viewpoint discusses mechanisms by which SARS-CoV-2 might trigger type 1 diabetes mellitus (T1DM). Specifically, we looked at the role of post-translational protein modifications (PTMs) and the generation of neoepitopes as a potential mechanism in the induction of islet autoimmunity, and the pathways via which coronavirus infections might exacerbate the formation of PTMs and, in so doing, provoke the onset of T1DM.
Collapse
Affiliation(s)
| | - Pozzilli Paolo
- Department of MedicineUnit of Endocrinology and DiabetesCampus Bio‐Medico UniversityRomeItaly
- Blizard InstituteBarts and The London School of Medicine and DentistryUniversity of LondonLondonUK
| |
Collapse
|
35
|
Capecchi R, Croia C, Puxeddu I, Pratesi F, Cacciato A, Campani D, Boggi U, Morelli L, Tavoni A, Migliorini P. CXCL12/SDF-1 in IgG4-Related Disease. Front Pharmacol 2021; 12:750216. [PMID: 34764871 PMCID: PMC8576100 DOI: 10.3389/fphar.2021.750216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Background: SDF-1/CXCL12 is a chemokine with pleiotropic functions in hematopoietic stem cell niche homeostasis, germinal center architecture, B cell maturation, neoangiogenesis, and fibrosis. Recently, the CXCL12/CXCR4/CXCR7 axis was associated with cancer metastasis and autoimmune diseases. The IgG4-related disease (IgG4-RD) is a pathological condition characterized by IgG4+ plasma cells infiltrating fibrotic lesions. The aim of this research is to investigate the relevance of SDF-1/CXCL12 in IgG4-RD. Materials and Methods: Peripheral blood samples were collected before therapy from a single-center cohort of 28 IgG4-RD patients, fulfilling the ACR-EULAR classification criteria. Clinical and serological data were obtained for each patient. In total, 14 healthy donors (NHS), 9 patients with pancreatic ductal adenocarcinoma (PDAC), and 9 with Sjogren syndrome (SSj) were recruited as controls and screened for circulating SDF-1/CXCL12 by ELISA. Moreover, paraffin-embedded pancreatic biopsies obtained from patients with IgG4-RD (n = 7), non-autoimmune pancreatitis (n = 3), PDAC (n = 5), and control tissues (n = 4) were analyzed to study the tissue expression and localization of SDF-1/CXCL12 and one of its receptors, CXCR4, and their potential relation with neutrophil extracellular traps (NETs). Results: IgG4-RD patients had higher serum levels of SDF-1/CXCL12 than normal controls (p = 0.0137). Cytokine levels did not differ between the IgG4-RD autoimmune pancreatitis (AIP) and retroperitoneal fibrosis nor between the single- and multiple-organ involvement. No correlation was seen with the IgG4-RD Responder Index, IgG4 levels, white blood cells, or inflammatory markers in the serum. When compared to SSj, the IgG4-RD AIP subgroup presents higher amounts of serum SDF-1/CXCL12 (p = 0.0275), while no differences are seen in comparison with PDAC. The expression of SDF-1/CXCL12 in the tissue was significantly higher in the IgG4-RD tissue than the normal pancreas, and the tissue with the high SDF-1/CXCL12 expression is characterized by the overall inflammatory cell infiltration, fibrosis, and high level of NETs. Conclusion: Modulating B cell development, neoangiogenesis and fibrosis, and SDF-1/CXCL12 may play a role in IgG4-RD. The higher levels observed in IgG4-RD, as compared to SSj, which closely mimics the disease, can be related to a different pattern of lesions, with prevalent fibrosis seen in IgG4-RD. Taken together, these findings suggest that drugs acting on the CXCL12/CXCR4/CXCR7 axis may affect IgG4-RD.
Collapse
Affiliation(s)
- Riccardo Capecchi
- Immuno-Allergology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Croia
- Immuno-Allergology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Puxeddu
- Immuno-Allergology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Pratesi
- Immuno-Allergology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Cacciato
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Daniela Campani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ugo Boggi
- Division of General and Transplant Surgery, Azienda Ospedaliero-Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Luca Morelli
- General Surgery Unit, Department of Surgery, Translational and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Antonio Tavoni
- Immuno-Allergology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Migliorini
- Immuno-Allergology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
36
|
Multisystem inflammatory syndrome in children and Kawasaki disease: a critical comparison. Nat Rev Rheumatol 2021; 17:731-748. [PMID: 34716418 PMCID: PMC8554518 DOI: 10.1038/s41584-021-00709-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
Children and adolescents infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are predominantly asymptomatic or have mild symptoms compared with the more severe coronavirus disease 2019 (COVID-19) described in adults. However, SARS-CoV-2 is also associated with a widely reported but poorly understood paediatric systemic vasculitis. This multisystem inflammatory syndrome in children (MIS-C) has features that overlap with myocarditis, toxic-shock syndrome and Kawasaki disease. Current evidence indicates that MIS-C is the result of an exaggerated innate and adaptive immune response, characterized by a cytokine storm, and that it is triggered by prior SARS-CoV-2 exposure. Epidemiological, clinical and immunological differences classify MIS-C as being distinct from Kawasaki disease. Differences include the age range, and the geographical and ethnic distribution of patients. MIS-C is associated with prominent gastrointestinal and cardiovascular system involvement, admission to intensive care unit, neutrophilia, lymphopenia, high levels of IFNγ and low counts of naive CD4+ T cells, with a high proportion of activated memory T cells. Further investigation of MIS-C will continue to enhance our understanding of similar conditions associated with a cytokine storm.
Collapse
|
37
|
Angeletti A, Migliorini P, Bruschi M, Pratesi F, Candiano G, Prunotto M, Verrina E, Ghiggeri GM. Anti-alpha enolase multi-antibody specificity in human diseases. Clinical significance and molecular mechanisms. Autoimmun Rev 2021; 20:102977. [PMID: 34718161 DOI: 10.1016/j.autrev.2021.102977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
Alpha-enolase (Eno) is an ubiquitary glycolytic enzyme playing multiple functions that go well beyond its principal metabolic role of energy supplier during glycolysis. Eno is localized in the cytoplasm, but also expressed on the cell membrane, where it binds plasminogen allowing its activation. Its shorter form, in the nucleus, acts as transcription factor. In inflammatory conditions, Eno undergoes post-translational modifications, such as citrullination, oxidation and phosphorylation. Eno is also an autoantigen in different disorders. In fact, autoantibodies to Eno have been detected in rheumatoid arthritis, lupus nephritis, primary glomerulonephritis, cancer, infections and other disorders, and in many cases they represent specific markers to be utilized in clinical practice. Anti-Eno antibodies in the different clinical conditions are not equal: they differ in isotype and often recognize different epitopes on the enzyme. IgG1 and IgG3 are prevalent in Rheumatoid Arthritis, IgG2 in Lupus nephritis and IgG4 in primary autoimmune glomerulopathy. This review analyzes the characteristics of anti-Eno autoantibodies in autoimmune disorders and cancer, describing their fine specificity and isotype restriction. The post-translational modifications that are target of autoantibodies are also discussed, as they represent the basis for elucidating the molecular mechanisms responsible for epitope generation. Despite an impressive amount of experimental work on anti-Eno antibodies, it is still necessary to validate the use of anti-Eno antibodies as biomarkers of selected diseases and extend the knowledge on the mechanisms of anti-Eno autoantibody production. Strategies that downmodulate the immune response to Eno may represent in the future novel approaches in the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Andrea Angeletti
- Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy; Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy.
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Italy
| | - Marco Prunotto
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Enrico Verrina
- Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy; Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Italy.
| |
Collapse
|
38
|
Lim DH, Lee EJ, Lee HS, Kim DH, Lee JH, Jeong MR, Hong S, Lee CK, Yoo B, Youn J, Kim YG. Acetylated Diacylglycerol 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol in Autoimmune Arthritis and Interstitial Lung Disease in SKG Mice. Biomedicines 2021; 9:1095. [PMID: 34572282 PMCID: PMC8465505 DOI: 10.3390/biomedicines9091095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Acetylated diacylglycerol 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) is a lipid molecule from the antlers of sika deer that might reduce inflammation by effectively controlling neutrophil infiltration, endothelial permeability and inflammatory chemokine production. Therefore, we evaluated the modulatory effect of PLAG on arthritis and interstitial lung disease (ILD) in an autoimmune arthritis model. We injected curdlan into SKG mice and PLAG was orally administered every day from 3 weeks to 20 weeks after the curdlan injection. The arthritis score was measured every week after the curdlan injection. At 20 weeks post-injection, the lung specimens were evaluated with H&E, Masson's trichrome and multiplexed immunofluorescent staining. Serum cytokines were also analyzed using a Luminex multiple cytokine assay. PLAG administration decreased the arthritis score until 8 weeks after the curdlan injection. However, the effect was not sustained thereafter. A lung histology revealed severe inflammation and fibrosis in the curdlan-induced SKG mice, which was attenuated in the PLAG-treated mice. Furthermore, immunofluorescent staining of the lung tissue showed a GM-CSF+ neutrophil accumulation and a decreased citrullinated histone 3 expression after PLAG treatment. PLAG also downregulated the levels of IL-6 and TNF-α and upregulated the level of sIL-7Rα, an anti-fibrotic molecule. Our results indicate that PLAG might have a preventative effect on ILD development through the resolution of NETosis in the lung.
Collapse
Affiliation(s)
- Doo-Ho Lim
- Division of Rheumatology, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea;
| | - Eun-Ju Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea;
| | - Hee-Seop Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA;
| | - Do Hoon Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.H.K.); (J.-H.L.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Jae-Hyun Lee
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.H.K.); (J.-H.L.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Mi Ryeong Jeong
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.H.K.); (J.-H.L.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Seokchan Hong
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.H.K.); (J.-H.L.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Chang-Keun Lee
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.H.K.); (J.-H.L.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Bin Yoo
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.H.K.); (J.-H.L.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Jeehee Youn
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Korea;
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.H.K.); (J.-H.L.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
- Convergence Medicine Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
39
|
Abstract
Inflammatory arthritis (IA) is a common disease that affects millions of individuals worldwide. Proinflammatory events during IA pathogenesis are well studied; however, loss of protective immunity remains underexplored. Earlier, we reported that 14-3-3zeta (ζ) has a role in T-cell polarization and interleukin (IL)-17A signal transduction. Here, we demonstrate that 14-3-3ζ knockout (KO) rats develop early-onset severe arthritis in two independent models of IA, pristane-induced arthritis and collagen-induced arthritis. Arthritic 14-3-3ζ KO animals showed an increase in bone loss and immune cell infiltration in synovial joints. Induction of arthritis coincided with the loss of anti-14-3-3ζ antibodies; however, rescue experiments to supplement the 14-3-3ζ antibody by passive immunization did not suppress arthritis. Instead, 14-3-3ζ immunization during the presymptomatic phase resulted in significant suppression of arthritis in both wild-type and 14-3-3ζ KO animals. Mechanistically, 14-3-3ζ KO rats exhibited elevated inflammatory gene signatures at the messenger RNA and protein levels, particularly for IL-1β. Furthermore, the immunization with recombinant 14-3-3ζ protein suppressed IL-1β levels, significantly increased anti-14-3-3ζ antibody levels and collagen production, and preserved bone quality. The 14-3-3ζ protein increased collagen expression in primary rat mesenchymal cells. Together, our findings indicate that 14-3-3ζ causes immune suppression and extracellular remodeling, which lead to a previously unrecognized IA-suppressive function.
Collapse
|
40
|
Zhang K, Jiang N, Sang X, Feng Y, Chen R, Chen Q. Trypanosoma brucei Lipophosphoglycan Induces the Formation of Neutrophil Extracellular Traps and Reactive Oxygen Species Burst via Toll-Like Receptor 2, Toll-Like Receptor 4, and c-Jun N-Terminal Kinase Activation. Front Microbiol 2021; 12:713531. [PMID: 34394064 PMCID: PMC8355521 DOI: 10.3389/fmicb.2021.713531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/06/2021] [Indexed: 01/21/2023] Open
Abstract
Trypanosoma brucei brucei is the causative agent of African animal trypanosomosis, which mainly parasitizes the blood of the host. Lipophosphoglycan (LPG), a polymer anchored to the surface of the parasites, activates the host immune response. In this study, we revealed that T. brucei LPG stimulated neutrophils to form neutrophil extracellular traps (NETs) and release the reactive oxygen species (ROS). We further analyzed the involvement of toll-like receptor 2 (TLR2) and toll-like receptor 4 (TLR4) and explored the activation of signaling pathway enzymes in response to LPG stimulation. During the stimulation of neutrophils by LPG, the blockade using anti-TLR2 and anti-TLR4 antibodies reduced the phosphorylation of c-Jun N-terminal kinase (JNK), the release of DNA from the NETs, and the burst of ROS. Moreover, the addition of JNK inhibitor and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor exhibited similar effects. Our data suggest that T. brucei LPG activates the phosphorylation of JNK through TLR2 and TLR4 recognition, which causes the formation of NETs and the burst of ROS.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
41
|
B cells as target for immunotherapy in rheumatic diseases - current status. Immunol Lett 2021; 236:12-19. [PMID: 34077805 DOI: 10.1016/j.imlet.2021.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 01/16/2023]
Abstract
This mini-review is a short overview of different therapeutical strategies targeting B cells in systemic autoimmune rheumatic diseases, mainly: rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and primary Sjogren Syndrome (pSS). Many strategies and their rationale are discussed in this review: B cells' depletion (anti-CD20, anti-CD22), long-lived plasma cells depletion (anti-CD19, anti-CD27, anti-CD38 and anti-CD138), changing activation of B cells (anti-BAFF) and inhibiting proteasomes in plasma cells (bortezomib). The past successful therapies and less successful are shown, and the possible reasons for failures are discussed.
Collapse
|
42
|
Jougleux JL, Léger JL, Djeungoue-Petga MA, Roy P, Soucy MFN, Veilleux V, Hébert MPA, Hebert-Chatelain E, Boudreau LH. Evaluating the mitochondrial activity and inflammatory state of dimethyl sulfoxide differentiated PLB-985 cells. Mol Immunol 2021; 135:1-11. [PMID: 33838400 DOI: 10.1016/j.molimm.2021.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/14/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022]
Abstract
Neutrophils play a key role in the innate immunity with their ability to generate and release inflammatory mediators that promote the inflammatory response and consequently restore the hemostasis. As active participants in several steps of the normal inflammatory response, neutrophils are also involved in chronic inflammatory diseases such as asthma, atherosclerosis, and arthritis. Given their dual role in the modulation of inflammation, regulating the inflammatory response of neutrophils has been suggested as an important therapeutic approach by numerous researchers. The neutrophils have a relatively short lifespan, which can be problematic for some in vitro experiments. To address this issue, researchers have used the human monomyelocyte cell line PLB-985 as an in vitro model for exploratory experiments addressing neutrophil-related physiological functions. PLB-985 cells can be differentiated into a neutrophil-like phenotype upon exposure to several agonists, including dimethyl sulfoxide (DMSO). Whether this differentiation of PLB-985 affects important features related to the neutrophil's normal functions (i.e., mitochondrial activity, eicosanoid production) remains elusive, and characterizing these changes will be the focal point of this study. Our results indicate that the differentiation affected the proliferation of PLB-985 cells, without inducing apoptosis. A significant decrease in mitochondrial respiration was observed in differentiated PLB-985 cells. However, the overall mitochondria content was not affected. Immunoblotting with mitochondrial antibodies revealed a strong modulation of the succinate dehydrogenase A, superoxide dismutase 2, ubiquinol-cytochrome c reductase core protein 2 and ATP synthase subunit α in differentiated PLB-985 cells. Finally, eicosanoids (leukotriene B4, 12-hydroxyheptadecatrienoic and 15-hydroxyeicosatetraenoic acids) production was significantly increased in differentiated cells. In summary, our data demonstrate that the differentiation process of PLB-985 cells does not impact their viability despite a reduced respiratory state of the cells. This process is also accompanied by modulation of the inflammatory state of the cell. Of importance, our data suggest that PLB-985 cells could be suitable in vitro candidates to study mitochondrial-related dysfunctions in inflammatory diseases.
Collapse
Affiliation(s)
- Jean-Luc Jougleux
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Jacob L Léger
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Marie-Ange Djeungoue-Petga
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Department of Biology, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Patrick Roy
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Marie-France N Soucy
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Vanessa Veilleux
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Mathieu P A Hébert
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Etienne Hebert-Chatelain
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Department of Biology, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada; New Brunswick Center for Precision Medicine, Moncton, NB, Canada.
| |
Collapse
|
43
|
Abstract
Rheumatoid arthritis is a chronic, autoimmune connective tissue disease. In addition to joint involvement, extra-articular changes and organ complications also occur in the course of the disease. Untreated disease leads to disability and premature death. Therefore, it is important to recognise and begin treatment early. Based on the presence of rheumatoid factor and antibodies against citrullinated peptides, we can distinguish two forms of the disease: seropositive and seronegative. Research continues to elucidate the mechanisms of the onset of the disease, as well as to uncover factors that induce and influence the activity of the disease. The presence of markers that initially appear and affect the course of the disease can potentially aid in patient treatment. In this article, we have collected biomarkers of rheumatoid arthritis that are well understood as well as those that have been recently described.
Collapse
Affiliation(s)
- Bogdan Kolarz
- Department of Internal Medicine, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Dominika Podgorska
- Department of Internal Medicine, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Rafal Podgorski
- Department of Biochemistry, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland.,Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
44
|
Narla S, Azzam M, Townsend S, Vellaichamy G, Marzano AV, Alavi A, Lowes MA, Hamzavi IH. Identifying key components and therapeutic targets of the immune system in hidradenitis suppurativa with an emphasis on neutrophils. Br J Dermatol 2021; 184:1004-1013. [PMID: 32893875 DOI: 10.1111/bjd.19538] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/05/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022]
Abstract
Hidradenitis suppurativa (HS) is a chronic, inflammatory, recurrent and debilitating skin disease of the hair follicle unit that typically develops after puberty. The disorder is characterized by comedones, painful inflammatory nodules, abscesses, dermal tunnels and scarring, with a predilection for intertriginous areas of the body (axillae, inguinal and anogenital regions). Recruitment of neutrophils to HS lesion sites may play an essential role in the development of the painful inflammatory nodules and abscesses that characterize the disease. This is a review of the major mediators involved in the recruitment of neutrophils to sites of active inflammation, including bacterial components (endotoxins, exotoxins, capsule fragments, etc.), the complement pathway anaphylatoxins C3a and C5a, tumour necrosis factor-alpha, interleukin (IL)-17, IL-8 (CXCL8), IL-36, IL-1, lipocalin-2, leukotriene B4, platelet-activating factor, kallikreins, matrix metalloproteinases, and myeloperoxidase inhibitors. Pharmacological manipulation of the various pathways involved in the process of neutrophil recruitment and activation could allow for successful control and stabilization of HS lesions and the remission of active, severe flares.
Collapse
Affiliation(s)
- S Narla
- Department of Dermatology, Henry Ford Hospital, Detroit, MI, USA
| | - M Azzam
- University of Nevada School of Medicine, Reno, NV, USA
| | - S Townsend
- Wayne State School of Medicine, Detroit, MI, USA
| | | | - A V Marzano
- Dermatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - A Alavi
- Division of Dermatology, Department of Medicine, Women's College Hospital, University of Toronto, Toronto, ON, Canada
| | - M A Lowes
- The Rockefeller University, New York, NY, USA
| | - I H Hamzavi
- Department of Dermatology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
45
|
Song W, Ye J, Pan N, Tan C, Herrmann M. Neutrophil Extracellular Traps Tied to Rheumatoid Arthritis: Points to Ponder. Front Immunol 2021; 11:578129. [PMID: 33584645 PMCID: PMC7878527 DOI: 10.3389/fimmu.2020.578129] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/14/2020] [Indexed: 02/05/2023] Open
Abstract
In recent years, neutrophil extracellular traps at the forefront of neutrophil biology have proven to help capture and kill pathogens involved in the inflammatory process. There is growing evidence that persistent neutrophil extracellular traps drive the pathogenesis of autoimmune diseases. In this paper, we summarize the potential of neutrophil extracellular traps to drive the pathogenesis of rheumatoid arthritis and experimental animal models. We also describe the diagnosis and treatment of rheumatoid arthritis in association with neutrophil extracellular traps.
Collapse
Affiliation(s)
- Wenpeng Song
- Department of Rheumatology, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Ye
- Department of Rheumatology, West China Hospital of Sichuan University, Chengdu, China
| | - Nanfang Pan
- Department of Rheumatology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunyu Tan
- Department of Rheumatology, West China Hospital of Sichuan University, Chengdu, China
| | - Martin Herrmann
- Department of Internal Medicine 3, Universitätsklinik Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
46
|
Culibrk RA, Hahn MS. The Role of Chronic Inflammatory Bone and Joint Disorders in the Pathogenesis and Progression of Alzheimer's Disease. Front Aging Neurosci 2020; 12:583884. [PMID: 33364931 PMCID: PMC7750365 DOI: 10.3389/fnagi.2020.583884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Late-onset Alzheimer's Disease (LOAD) is a devastating neurodegenerative disorder that causes significant cognitive debilitation in tens of millions of patients worldwide. Throughout disease progression, abnormal secretase activity results in the aberrant cleavage and subsequent aggregation of neurotoxic Aβ plaques in the cerebral extracellular space and hyperphosphorylation and destabilization of structural tau proteins surrounding neuronal microtubules. Both pathologies ultimately incite the propagation of a disease-associated subset of microglia-the principle immune cells of the brain-characterized by preferentially pro-inflammatory cytokine secretion and inhibited AD substrate uptake capacity, which further contribute to neuronal degeneration. For decades, chronic neuroinflammation has been identified as one of the cardinal pathophysiological driving features of AD; however, despite a number of works postulating the underlying mechanisms of inflammation-mediated neurodegeneration, its pathogenesis and relation to the inception of cognitive impairment remain obscure. Moreover, the limited clinical success of treatments targeting specific pathological features in the central nervous system (CNS) illustrates the need to investigate alternative, more holistic approaches for ameliorating AD outcomes. Accumulating evidence suggests significant interplay between peripheral immune activity and blood-brain barrier permeability, microglial activation and proliferation, and AD-related cognitive decline. In this work, we review a narrow but significant subset of chronic peripheral inflammatory conditions, describe how these pathologies are associated with the preponderance of neuroinflammation, and posit that we may exploit peripheral immune processes to design interventional, preventative therapies for LOAD. We then provide a comprehensive overview of notable treatment paradigms that have demonstrated considerable merit toward treating these disorders.
Collapse
Affiliation(s)
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
47
|
Xu Y, Lu B, Zhang N, Liang Y, Gao Y, Ye X, Liu W. Neutrophil extracellular traps are not produced in pediatric patients with one-lung ventilation: a prospective, single-center, observational study. Transl Pediatr 2020; 9:775-783. [PMID: 33457299 PMCID: PMC7804480 DOI: 10.21037/tp-20-337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND One-lung ventilation (OLV) may cause lung injury and induce pulmonary pro-inflammation; this ventilator-induced lung injury is associated with neutrophil infiltration. The infiltrated neutrophils release neutrophil extracellular traps (NETs), which are associated with tissue damage. It is not known whether NETs are involved in the pathogenesis of one-lung injury and if they could be a potential therapeutic target. In the present study, we quantified NETs in bronchoalveolar lavage fluid from pediatric patients who underwent OLV and assessed their relationship with prognosis. METHODS Eighteen patients with congenital pulmonary cysts or pulmonary sequestration were enrolled in this prospective monocentric study. Myeloperoxidase (MPO) levels, NET markers [i.e., citrullinated histone-3 (CH-3) and free double-stranded DNA (dsDNA)], and inflammatory cytokine levels in bronchoalveolar lavage fluid were assessed. Continuous variables were compared using the paired t-test. The association of NET concentration in bronchoalveolar lavage fluid and clinical parameters was assessed using linear regression analyses. RESULTS dsDNA concentration in bronchoalveolar lavage fluid was higher after OLV than before OLV in both the affected lung (0.23±0.30 vs. 0.97±1.05, P<0.05) and the healthy lung (0.28±0.19 vs. 2.45±2.23, P<0.05). However, there were no significant differences in concentrations of MPO, CH-3, and inflammatory cytokines before and after OLV. Serum interleukin (IL)-6 concentration was higher after OLV than before (t=-3.222, P=0.007). Moreover, no associations between dsDNA concentration in bronchoalveolar lavage fluid and the duration of postoperative mechanical ventilation, postoperative hospital stay, and chest high-resolution computed tomography score were observed. The durations of OLV, anesthesia, and operation, as well as the amount of blood loss, had no significant influence on postoperative dsDNA concentration in bronchoalveolar lavage fluid. CONCLUSIONS NETs in bronchoalveolar lavage fluid are not involved in patients who undergo OLV.
Collapse
Affiliation(s)
- Yingyi Xu
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bingtai Lu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Na Zhang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yufeng Liang
- Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ying Gao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoxin Ye
- School of Computer Science and Engineering, The University of New South Wales, Sydney, Kensington, Australia
| | - Wei Liu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
48
|
Guerra M, Halls VS, Schatterny J, Hagner M, Mall MA, Schultz C. Protease FRET Reporters Targeting Neutrophil Extracellular Traps. J Am Chem Soc 2020; 142:20299-20305. [PMID: 33186023 DOI: 10.1021/jacs.0c08130] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutrophil extracellular traps (NETs) consist of DNA released by terminally stimulated neutrophils. They fine-tune inflammation, kill pathogens, activate macrophages, contribute to airway mucus obstruction in cystic fibrosis, and facilitate tumor metastasis after dormancy. Neutrophil proteases such as elastase (NE) and cathepsin G (CG) attach to NETs and contribute to the diverse immune outcome. However, because of the lack of suitable tools, little spatiotemporal information on protease activities on NETs is available in a pathophysiological context to date. Here, we present H-NE and H-CG, two FRET-based reporters armed with a DNA minor groove binder, which monitor DNA-bound NE and CG activity, respectively. The probes revealed that only NE maintains its catalytic ability when localized to DNA. Further, we demonstrated elevated protease activity within the extracellular DNA of sputum from cystic fibrosis patients. Finally, H-NE showed NE activity at single-cell and free DNA resolution within mouse lung slices, a difficult to achieve task with available substrate-based reporters.
Collapse
Affiliation(s)
- Matteo Guerra
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL) and University of Heidelberg, 69117 Heidelberg, Germany
- Faculty of Biosciences, Collaboration for Joint Ph.D. Degree between EMBL and Heidelberg University, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Victoria S Halls
- Dept. of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Jolanthe Schatterny
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Matthias Hagner
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Marcus A Mall
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL) and University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Dept. of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
- Berlin Institute of Health, 10178 Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Carsten Schultz
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL) and University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Dept. of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, United States
| |
Collapse
|
49
|
Masoumi M, Bashiri H, Khorramdelazad H, Barzaman K, Hashemi N, Sereshki HA, Sahebkar A, Karami J. Destructive Roles of Fibroblast-like Synoviocytes in Chronic Inflammation and Joint Damage in Rheumatoid Arthritis. Inflammation 2020; 44:466-479. [PMID: 33113036 DOI: 10.1007/s10753-020-01371-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/06/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022]
Abstract
Fibroblast-like synoviocytes (FLSs) are important non-immune cells located mostly in the inner layer of the synovium. Indeed, these cells are specialized mesenchymal cells, implicated in collagen homeostasis of the articular joint and provide extracellular matrix (ECM) materials for cartilage and contribute to joint destruction via multiple mechanisms. RA FLS interactions with immune and non-immune cells lead to the development and organization of tertiary structures such as ectopic lymphoid-like structures (ELSs), tertiary lymphoid organs (TLOs), and secretion of proinflammatory cytokines. The interaction of RA FLS cells with immune and non-immune cells leads to stimulation and activation of effector immune cells. Pathological role of RA FLS cells has been reported for many years, while molecular and cellular mechanisms are not completely understood yet. In this review, we tried to summarize the latest findings about the role of FLS cells in ELS formation, joint destruction, interactions with immune and non-immune cells, as well as potential therapeutic options in rheumatoid arthritis (RA) treatment. Our study revealed data about interactions between RA FLS and immune/non-immune cells as well as the role of RA FLS cells in joint damage, ELS formation, and neoangiogenesis, which provide useful information for developing new approaches for RA treatment.
Collapse
Affiliation(s)
- Maryam Masoumi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Hamidreza Bashiri
- Department of Rheumatology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Khadijeh Barzaman
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nader Hashemi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hale Abdoli Sereshki
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Jafar Karami
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
50
|
Carbone F, Bonaventura A, Liberale L, Paolino S, Torre F, Dallegri F, Montecucco F, Cutolo M. Atherosclerosis in Rheumatoid Arthritis: Promoters and Opponents. Clin Rev Allergy Immunol 2020; 58:1-14. [PMID: 30259381 DOI: 10.1007/s12016-018-8714-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Substantial epidemiological data identified cardiovascular (CV) diseases as a main cause of mortality in patients with rheumatoid arthritis (RA). In light of this, RA patients may benefit from additional CV risk screening and more intensive prevention strategies. Nevertheless, current algorithms for CV risk stratification still remain tailored on general population and are burdened by a significant underestimation of CV risk in RA patients. Acute CV events in patients with RA are largely related to an accelerated atherosclerosis. As pathophysiological features of atherosclerosis overlap those occurring in the inflamed RA synovium, the understanding of those common pathways represents an urgent need and a leading challenge for CV prevention in patients with RA. Genetic background, metabolic status, gut microbiome, and systemic inflammation have been also suggested as additional key pro-atherosclerotic factors. The aim of this narrative review is to update the current knowledge about pathophysiology of atherogenesis in RA patients and potential anti-atherosclerotic effects of disease-modifying anti-rheumatic drugs.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,Center for Molecular Cardiology, University of Zürich, 12 Wagistrasse, 8952, Schlieren, Switzerland
| | - Sabrina Paolino
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, San Martino Polyclinic Hospital, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa, 10 Largo Benzi, 16132, Genoa, Italy
| | - Francesco Torre
- IRCCS Ospedale Policlinico San Martino Genoa, 10 Largo Benzi, 16132, Genoa, Italy.,Clinic of Emergency Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132, Genoa, Italy.,First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Maurizio Cutolo
- IRCCS Ospedale Policlinico San Martino Genoa, 10 Largo Benzi, 16132, Genoa, Italy. .,Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, San Martino Polyclinic Hospital, Genoa, Italy.
| |
Collapse
|