1
|
Garg P, Ramisetty SK, Raghu Subbalakshmi A, Krishna BM, Pareek S, Mohanty A, Kulkarni P, Horne D, Salgia R, Singhal SS. Gynecological cancer tumor Microenvironment: Unveiling cellular complexity and therapeutic potential. Biochem Pharmacol 2024; 229:116498. [PMID: 39159874 DOI: 10.1016/j.bcp.2024.116498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Gynecological cancers, including ovarian, cervical, endometrial, and vulvar cancers, present significant challenges in diagnosis and treatment globally. The tumor microenvironment (TME) plays a pivotal role in cancer progression and therapy response, necessitating a deeper understanding of its composition and dynamics. This review offers a comprehensive overview of the gynecological cancer tumor microenvironment, emphasizing its cellular complexity and therapeutic potential. The diverse cellular components of the TME, including cancer cells, immune cells, stromal cells, and extracellular matrix elements, are explored, elucidating their interplay in shaping tumor behavior and treatment outcomes. Across various stages of cancer progression, the TME exerts profound effects on tumor heterogeneity, immune modulation, angiogenesis, and metabolic reprogramming. The urgency for novel therapeutic strategies is underscored by understanding immune evasion mechanisms within the TME. Emerging approaches such as immunotherapy, stromal-targeting therapies, anti-angiogenic agents, and metabolic inhibitors are discussed, offering promising avenues for improving patient outcomes. Interdisciplinary collaborations and translational research are emphasized, aiming to advance precision oncology and enhance therapeutic efficacy in gynecological cancers.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sravani K Ramisetty
- Departments of Medical Oncology & Therapeutics Research and Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ayalur Raghu Subbalakshmi
- Departments of Medical Oncology & Therapeutics Research and Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - B Madhu Krishna
- Departments of Medical Oncology & Therapeutics Research and Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Siddhika Pareek
- Departments of Medical Oncology & Therapeutics Research and Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Departments of Medical Oncology & Therapeutics Research and Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research and Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research and Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Departments of Medical Oncology & Therapeutics Research and Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
2
|
Shih YY, Kao CW, Jhong YR, Chen YA, Chen YW. Synergistic effects of fibrin-enriched adipose decellularized extracellular matrix (AdECM) and microfluidic model on vascularization. RSC Adv 2024; 14:34143-34155. [PMID: 39469019 PMCID: PMC11513771 DOI: 10.1039/d4ra05573j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Vasculature is essential for maintaining the cellular function and balance of organs and tumors. As a key component of the tumor microenvironment (TME), it significantly influences tumor characteristics. Angiogenesis, heavily influenced by the extracellular matrix (ECM), which acts as a structural scaffold and growth factor reservoir, is regulated by various factors. Notably, adipose tissues and adipose-derived stromal cells contribute angiogenic and anti-apoptotic factors that promote angiogenesis. Sustained vasculature is essential for tissue engineering and ex vivo disease modeling. Lack of shear stress from fluid flow leads to vascular instability and regression. Microfluidic models replicate three-dimensional (3D) cultures from original tissues, encapsulate microenvironmental factors, and maintain consistent fluid flow. In our study, we established decellularized adipose ECM (AdECM) derived from bovine sources and engineered a 3D-printed microfluidic device. We observed significant increases in both the length and diameter of vascular networks after coculturing HUVECs and HDFs in a fibrin gel containing 0.5% AdECM. Additionally, gene expression related to ECM remodeling and angiogenesis was significantly enhanced in vasculature cultivated in fibrin gel containing 0.5% AdECM compared to that in fibrin gel alone. The enhanced vasculogenesis was further amplified and sustained by the 3D microfluidic device placed on a rocker during extended cultivation, primarily through the activation of the PI3K and JAK-mediated pathways. Our ex vivo model with vascularized colon tumoroids revealed that integrating AdECM within a microfluidic device correlates with increased tumoroid growth. Therefore, our study underscores the synergistic impact of AdECM and microfluidic device in promoting and sustaining vasculature. This synergy may have significant implications for tissue regeneration and ex vivo disease modeling, facilitating drug testing and efficacy evaluation.
Collapse
Affiliation(s)
- Yu-Yin Shih
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital Taichung 404332 Taiwan
| | - Chun-Wei Kao
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital Taichung 404332 Taiwan
| | - Yi-Rong Jhong
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital Taichung 404332 Taiwan
| | - Yi-An Chen
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital Taichung 404332 Taiwan
| | - Yi-Wen Chen
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital Taichung 404332 Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University Taichung 41354 Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University Taichung 406040 Taiwan
| |
Collapse
|
3
|
Yamamoto H, Hanamatsu Y, Saigo C, Takeuchi T, Iwata H. SOX17 expression in tumor-penetrating vessels in relation to CD8 + T-cell infiltration in cancer stroma niches. Thorac Cancer 2024. [PMID: 39385307 DOI: 10.1111/1759-7714.15464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION Sex-determining region Y-related high-mobility group box 17 protein (SOX17), a proangiogenic transcription factor, is specifically expressed in tumor endothelial cells (TECs) of implanted Lewis lung carcinoma. However, the expression profile of SOX17 is largely unknown in human lung cancer. We aimed to elucidate SOX17 expression in cancer cells and the tumor microenvironment of lung adenocarcinoma. METHODS In the present study, we examined SOX17 expression in whole-tissue specimens of 83 lung adenocarcinomas by immunohistochemistry. RESULTS SOX17 immunoreactivity was minimal in lung adenocarcinoma cells, except in five non-mucinous adenocarcinomas in situ. SOX17 was also expressed in cultured A549 lung adenocarcinoma cells, which is widely used as a model of malignant alveolar type II epithelial cells. Notably, SOX17 immunoreactivity was found in endothelial cells of tumor-penetrating vessels in 19 of 83 lung adenocarcinoma tissue specimens, with statistical significance to stromal infiltration of CD8+ T cells (p < 0.01) but was not associated with the number of tertiary lymph nodes. Although not statistically significant, SOX17 immunoreactivity was related to favorable patient outcomes. CONCLUSION Our findings indicate that SOX17 might play a pleiotropic role in lung adenocarcinoma in cancer cells and stromal niches. SOX17-mediated CD8+ T-cell-rich tumor microenvironment might attract interest in improving the effect of cancer immunotherapy.
Collapse
Affiliation(s)
- Hirotaka Yamamoto
- Department of General Thoracic Surgery, Gifu University Hospital, Gifu, Japan
| | - Yuki Hanamatsu
- Department of Pathology and Translational Research, Gifu Medical School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research, COMIT, Gifu University, Gifu, Japan
| | - Chiemi Saigo
- Department of Pathology and Translational Research, Gifu Medical School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research, COMIT, Gifu University, Gifu, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational Research, Gifu Medical School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research, COMIT, Gifu University, Gifu, Japan
| | - Hisashi Iwata
- Department of General Thoracic Surgery, Gifu University Hospital, Gifu, Japan
| |
Collapse
|
4
|
Mortazavi SMA, Firoozabadi B. Towards a framework for predicting immunotherapy outcome: a hybrid multiscale mathematical model of immune response to vascular tumor growth. Biomech Model Mechanobiol 2024:10.1007/s10237-024-01891-x. [PMID: 39373819 DOI: 10.1007/s10237-024-01891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Studying tumor immune microenvironment (TIME) is pivotal to understand the mechanism and predict the outcome of cancer immunotherapy. Systems biology mathematical models can consider and control various factors of TIME and therefore explore the anti-tumor immune response meticulously. However, the role of tumor vasculature in the recruitment of T cells and the mechanism of T cell migration through TIME have not been studied comprehensively. In this work, we developed a hybrid discrete-continuum multi-scale model to study TIME. The mathematical model includes angiogenesis and T cell recruitment via tumor vasculature. Moreover, solid tumor growth, vascular growth and remodeling, interstitial fluid flow, hemodynamics, and blood rheology are all considered in the model. In addition, different aspects of T cells, including their migration, proliferation, subtype conversion, and interaction with tumor cells are thoroughly included. The model reproduces spatiotemporal distribution of tumor infiltrating T cells that mimics histopathological patterns. Furthermore, TIME model robustly recapitulates different phases of tumor immunoediting. We also examined a number of biomarkers to predict the outcome of immune checkpoint blockade (ICB) treatment. The results demonstrated that although tumor mutational burden (TMB) may predict non-responders to ICB, a combination of different biomarkers is essential to predict the majority of the responders. Based on our results, the ICB response rate varies significantly from 28 to 89% depending on the values of different parameters, even in the cases with high TMB.
Collapse
Affiliation(s)
| | - Bahar Firoozabadi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
5
|
Liao CY, Chen YM, Wu YT, Chao HS, Chiu HY, Wang TW, Chen JR, Shiao TH, Lu CF. Personalized prediction of immunotherapy response in lung cancer patients using advanced radiomics and deep learning. Cancer Imaging 2024; 24:129. [PMID: 39350284 PMCID: PMC11440728 DOI: 10.1186/s40644-024-00779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Lung cancer (LC) is a leading cause of cancer-related mortality, and immunotherapy (IO) has shown promise in treating advanced-stage LC. However, identifying patients likely to benefit from IO and monitoring treatment response remains challenging. This study aims to develop a predictive model for progression-free survival (PFS) in LC patients with IO based on clinical features and advanced imaging biomarkers. MATERIALS AND METHODS A retrospective analysis was conducted on a cohort of 206 LC patients receiving IO treatment. Pre-treatment computed tomography images were used to extract advanced imaging biomarkers, including intratumoral and peritumoral-vasculature radiomics. Clinical features, including age, gene status, hematology, and staging, were also collected. Key radiomic and clinical features for predicting IO outcomes were identified using a two-step feature selection process, including univariate Cox regression and chi-squared test, followed by sequential forward selection. The DeepSurv model was constructed to predict PFS based on clinical and radiomic features. Model performance was evaluated using the area under the time-dependent receiver operating characteristic curve (AUC) and concordance index (C-index). RESULTS Combining radiomics of intratumoral heterogeneity and peritumoral-vasculature with clinical features demonstrated a significant enhancement (p < 0.001) in predicting IO response. The proposed DeepSurv model exhibited a prediction performance with AUCs ranging from 0.76 to 0.80 and a C-index of 0.83. Furthermore, the predicted personalized PFS curves revealed a significant difference (p < 0.05) between patients with favorable and unfavorable prognoses. CONCLUSIONS Integrating intratumoral and peritumoral-vasculature radiomics with clinical features enabled the development of a predictive model for PFS in LC patients with IO. The proposed model's capability to estimate individualized PFS probability and differentiate the prognosis status held promise to facilitate personalized medicine and improve patient outcomes in LC.
Collapse
Affiliation(s)
- Chien-Yi Liao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei, 112, Taiwan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Heng-Sheng Chao
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hwa-Yen Chiu
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Wei Wang
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jyun-Ru Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei, 112, Taiwan
| | - Tsu-Hui Shiao
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei, 112, Taiwan.
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
6
|
Kozbor D, Winkler M, Malhotra N, Mistarz A, Wang S, Hutson A, Gambotto A, Abrams S, Singh P, Liu S, Odunsi K, Wang J. Consequences of the perivascular niche remodeling for tumoricidal T-cell trafficking into metastasis of ovarian cancer. RESEARCH SQUARE 2024:rs.3.rs-4940287. [PMID: 39372930 PMCID: PMC11451647 DOI: 10.21203/rs.3.rs-4940287/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The treatment-induced activation level within the perivascular tumor microenvironment (TME) that supports T-cell trafficking and optimal T-cell differentiation is unknown. We investigated the mechanisms by which inflammatory responses generated by tumor-specific T cells delivered to ovarian tumor-bearing mice alone or after oncolytic vaccinia virus-driven immunogenic cancer cell death affect antitumor efficacy. Analyses of the perivascular TME by spatially resolved omics technologies revealed reduced immunosuppression and increased tumoricidal T-cell trafficking and function after moderate inflammatory responses driven by a CXCR4 antagonist-armed oncolytic virus. Neither weak nor high inflammation created a permissive TME for T-cell trafficking. Notably, treatment-mediated differences in T-cell effector programs acquired within the perivascular TME contrasted with comparable antigenic priming in the tumor-draining lymph nodes regardless of the activation mode of antigen-presenting cells. These findings provide new insights into combinatorial treatment strategies that enable tumor-specific T cells to overcome multiple barriers for enhanced trafficking and control of tumor growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Song Liu
- Roswell Park Comprehensive Cancer Center
| | - Kunle Odunsi
- University of Chicago Medicine Comprehensive Cancer Center
| | | |
Collapse
|
7
|
Ghadrdoost Nakhchi B, Kosuru R, Chrzanowska M. Towards Targeting Endothelial Rap1B to Overcome Vascular Immunosuppression in Cancer. Int J Mol Sci 2024; 25:9853. [PMID: 39337337 PMCID: PMC11432579 DOI: 10.3390/ijms25189853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The vascular endothelium, a specialized monolayer of endothelial cells (ECs), is crucial for maintaining vascular homeostasis by controlling the passage of substances and cells. In the tumor microenvironment, Vascular Endothelial Growth Factor A (VEGF-A) drives tumor angiogenesis, leading to endothelial anergy and vascular immunosuppression-a state where ECs resist cytotoxic CD8+ T cell infiltration, hindering immune surveillance. Immunotherapies have shown clinical promise. However, their effectiveness is significantly reduced by tumor EC anergy. Anti-angiogenic treatments aim to normalize tumor vessels and improve immune cell infiltration. Despite their potential, these therapies often cause significant systemic toxicities, necessitating new treatments. The small GTPase Rap1B emerges as a critical regulator of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) signaling in ECs. Our studies using EC-specific Rap1B knockout mice show that the absence of Rap1B impairs tumor growth, alters vessel morphology, and increases CD8+ T cell infiltration and activation. This indicates that Rap1B mediates VEGF-A's immunosuppressive effects, making it a promising target for overcoming vascular immunosuppression in cancer. Rap1B shares structural and functional similarities with RAS oncogenes. We propose that targeting Rap1B could enhance therapies' efficacy while minimizing adverse effects by reversing endothelial anergy. We briefly discuss strategies successfully developed for targeting RAS as a model for developing anti-Rap1 therapies.
Collapse
Affiliation(s)
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; (B.G.N.)
| | - Magdalena Chrzanowska
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; (B.G.N.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Wang R, Shu RR, Seldin L. Noncanonical functions of adhesion proteins in inflammation. Am J Physiol Cell Physiol 2024; 327:C505-C515. [PMID: 38981610 PMCID: PMC11427013 DOI: 10.1152/ajpcell.00292.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Cell adhesion proteins localize to epithelial and endothelial cell membranes to form junctional complexes between neighboring cells or between cells and the underlying basement membrane. The structural and functional integrities of these junctions are critical to establish cell polarity and maintain tissue barrier function, while also facilitating leukocyte migration and adhesion to sites of inflammation. In addition to their adhesive properties, however, junctional proteins can also serve important noncanonical functions in inflammatory signaling and transcriptional regulation. Intriguingly, recent work has unveiled novel roles for cell adhesion proteins as both signaling initiators and downstream targets during inflammation. In this review, we discuss both the traditional functions of junction proteins in cell adhesion and tissue barrier function as well as their noncanonical signaling roles that have been implicated in facilitating diverse inflammatory pathologies.
Collapse
Affiliation(s)
- Ruochong Wang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Raphael R Shu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Lindsey Seldin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, United States
| |
Collapse
|
9
|
Du J, Huang Z. NLR stability predicts response to immune checkpoint inhibitors in advanced hepatocellular carcinoma. Sci Rep 2024; 14:19583. [PMID: 39179639 PMCID: PMC11344071 DOI: 10.1038/s41598-024-68048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/18/2024] [Indexed: 08/26/2024] Open
Abstract
A high baseline NLR is associated with a poor prognosis of immunotherapy in patients with advanced HCC. As anti-tumour immune activation takes time, early dynamic changes in NLR may serve as a biomarker for predicting immunotherapy response. We conducted a retrospective study in which we enrolled 209 patients with aHCC who received ICIs (training cohort: N = 121, validation cohort: N = 88). In the training cohort, we categorized the patients based on the early changes in their NLR. Specifically, we defined patients as NLR Stable-Responder, NLR Responder and NLR Non-Responder. We compared the outcomes of these three patient groups using survival analysis. Additionally, we shortened the observation period to 6 weeks and validated the findings in the validation cohort. In the training cohort, early dynamic changes in NLR (HR 0.14, 95%CI 0.03-0.65, p = 0.012, HR 0.19, 95%CI 0.07-0.54, p = 0.002; HR 0.21, 95%CI 0.10-0.42, p < 0.001, HR 0.40, 95%CI 0.23-0.69, p = 0.001), PD-L1 < 1% (HR 5.36, 95%CI 1.12-25.66, p = 0.036; HR 2.98, 95%CI 1.51-5.91, p = 0.002) and MVI (HR 3.52, 95%CI 1.28-9.69, p = 0.015; HR 1.99, 95%CI 1.14-3.47, p = 0.015) were identified as independent predictors of OS and PFS. In the validation cohort, when the observation period was reduced to 6 weeks, early NLR changes still have predictive value. Early dynamic changes in NLR may be an easily defined, cost-effective, non-invasive biomarker to predict aHCC response to ICIs.
Collapse
Affiliation(s)
- Jiajia Du
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
10
|
Jiang J, Wu B, Sun Y, Xiang J, Shen C, He X, Ying H, Xia Z. Anlotinib reversed resistance to PD-1 inhibitors in recurrent and metastatic head and neck cancers: a real-world retrospective study. Cancer Immunol Immunother 2024; 73:199. [PMID: 39105897 PMCID: PMC11303650 DOI: 10.1007/s00262-024-03784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Patients with recurrent or metastatic head and neck cancers (R/M HNCs) are prone to developing resistance after immunotherapy. This retrospective real-world study aims to investigate whether the addition of anlotinib can reverse resistance to PD-1 inhibitors (PD-1i) and evaluate the efficacy and safety of this combination in R/M HNCs. Main outcomes included objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), duration of response (DOR), and safety. Potential biomarkers included PD-L1 expression, lipid index, and genomic profiling. Twenty-one patients with R/M HNCs were included, including 11 nasopharyngeal carcinoma (NPC), five head and neck squamous cell carcinoma (HNSCC), three salivary gland cancers (SGC), and two nasal cavity or paranasal sinus cancers (NC/PNC). Among all patients, ORR was 47.6% (95% CI: 28.6-66.7), with 2 (9.5%) complete response; DCR was 100%. At the median follow-up of 17.1 months, the median PFS and OS were 14.3 months (95% CI: 5.9-NR) and 16.7 months (95% CI:8.4-NR), respectively. The median DOR was 11.2 months (95% CI: 10.1-NR). As per different diseases, the ORR was 45.5% for NPC, 60.0% for HNSCC, 66.7% for SGC, and 50.0% for NC/PNC. Most treatment-related adverse events (TRAEs) were grade 1 or 2 (88.9%). The most common grades 3-4 TRAE was hypertension (28.6%), and two treatment-related deaths occurred due to bleeding. Therefore, adding anlotinib to the original PD-1i could reverse PD-1 blockade resistance, with a favorable response rate, prolonged survival, and acceptable toxicity, indicating the potential as a second-line and subsequent therapy choice in R/M HNCs.
Collapse
Affiliation(s)
- Jianyun Jiang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Bin Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Radiology, Fudan University Shanghai Cancer Centre, Shanghai, 200032, China
| | - Ying Sun
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Xiang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chunying Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Xiayun He
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Hongmei Ying
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China.
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China.
| | - Zuguang Xia
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
11
|
Lopez-Vince E, Wilhelm C, Simon-Yarza T. Vascularized tumor models for the evaluation of drug delivery systems: a paradigm shift. Drug Deliv Transl Res 2024; 14:2216-2241. [PMID: 38619704 PMCID: PMC11208221 DOI: 10.1007/s13346-024-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
As the conversion rate of preclinical studies for cancer treatment is low, user-friendly models that mimic the pathological microenvironment and drug intake with high throughput are scarce. Animal models are key, but an alternative to reduce their use would be valuable. Vascularized tumor-on-chip models combine great versatility with scalable throughput and are easy to use. Several strategies to integrate both tumor and vascular compartments have been developed, but few have been used to assess drug delivery. Permeability, intra/extravasation, and free drug circulation are often evaluated, but imperfectly recapitulate the processes at stake. Indeed, tumor targeting and chemoresistance bypass must be investigated to design promising cancer therapeutics. In vitro models that would help the development of drug delivery systems (DDS) are thus needed. They would allow selecting good candidates before animal studies based on rational criteria such as drug accumulation, diffusion in the tumor, and potency, as well as absence of side damage. In this review, we focus on vascularized tumor models. First, we detail their fabrication, and especially the materials, cell types, and coculture used. Then, the different strategies of vascularization are described along with their classical applications in intra/extravasation or free drug assessment. Finally, current trends in DDS for cancer are discussed with an overview of the current efforts in the domain.
Collapse
Affiliation(s)
- Elliot Lopez-Vince
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
- Université Paris Cité, Université Sorbonne Paris Nord, LVTS Inserm U1148, 75018, Paris, France
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, LVTS Inserm U1148, 75018, Paris, France.
| |
Collapse
|
12
|
Yang P, Luo H, Zhao L, Xiong F, Tang C. Effectiveness and safety of anlotinib plus anti-programmed cell death 1/ligand 1 (anti-PD-1/PD-L1) antibodies as maintenance therapy after first-line chemotherapy combined with anti-PD-1/PD-L1 antibodies in extensive-stage small cell lung cancer: a real-world study. J Thorac Dis 2024; 16:4391-4399. [PMID: 39144292 PMCID: PMC11320278 DOI: 10.21037/jtd-24-394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/31/2024] [Indexed: 08/16/2024]
Abstract
Background Currently, chemotherapy plus immunotherapy followed by maintenance therapy with immune monotherapy is the preferred first-line treatment option for extensive-stage small cell lung cancer (ES-SCLC), but with limited overall survival (OS) and progression-free survival (PFS) benefits. The combination of anti-angiogenic drugs with immunotherapy has shown encouraging anti-tumor activity and tolerability, with some degree of overcoming immune resistance. This study aimed to evaluate the effectiveness and safety of anlotinib plus anti-programmed cell death 1/ligand 1 (anti-PD-1/PD-L1) antibodies as maintenance therapy after first-line chemotherapy combined with immunotherapy in ES-SCLC. Methods Between June 2020 and December 2021, 12 patients with newly diagnosed ES-SCLC in the First Affiliated Hospital of Army Medical University were retrospectively analyzed. All patients without disease progression after 4-6 cycles of first-line platinum-containing chemotherapy plus anti-PD-1/PD-L1 antibodies received anlotinib (12 mg oral/day, days 1-14, followed by 1 week off, every 3 weeks per cycle) plus anti-PD-1/PD-L1 antibodies as maintenance therapy. Several patients underwent chest radiotherapy (intensity-modulated radiotherapy using a 6 MV X-ray) without disease progression before maintenance therapy. The effectiveness and safety of anlotinib plus anti-PD-1/PD-L1 antibodies as maintenance therapy after first-line chemotherapy combined with immunotherapy in ES-SCLC were evaluated. Results The median follow-up time was 31.1 months. During first-line treatment (including maintenance therapy), one patient achieved a complete response, eight patients achieved a partial response (PR), and three patients had stable disease, with an objective response rate of 75.0% and a disease control rate of 100.0%. During maintenance therapy with anlotinib plus anti-PD-1/PD-L1 antibodies, 50.0% of patients achieved further lesion remission on the basis of the prior initial treatment, of which one patient achieved a PR. The median PFS was 13.6 [95% confidence interval (CI): 11.2-15.6] months, and the median OS was 19.5 (95% CI: 14.5-24.5) months. Treatment-related any grade and grade 3-4 adverse events (AEs) were reported in 100.0% and 58.3% of patients, respectively. No life-threatening AEs were observed. Grade 3-4 AEs included leukocytopenia (58.3%, 7/12), thrombocytopenia (33.3%, 4/12), nausea (33.3%, 4/12), anemia (16.7%, 2/12), and fatigue (8.3%, 1/12). All AEs during maintenance therapy were tolerated and were regarded as grade 1-2, with the majority being fatigue, nausea, rash, and hemoptysis. Conclusions The combination of anlotinib with anti-PD-1/PD-L1 antibodies demonstrated encouraging effectiveness and safety in treating patients with ES-SCLC, suggesting that it may be a preferred option for maintenance therapy after first-line chemotherapy combined with immunotherapy.
Collapse
Affiliation(s)
- Pan Yang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hu Luo
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Lintao Zhao
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Fu Xiong
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Chunlan Tang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
14
|
Lin J, Cai B, Lin Q, Lin X, Wang B, Chen X. TLE4 downregulation identified by WGCNA and machine learning algorithm promotes papillary thyroid carcinoma progression via activating JAK/STAT pathway. J Cancer 2024; 15:4759-4776. [PMID: 39006072 PMCID: PMC11242334 DOI: 10.7150/jca.95501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/02/2024] [Indexed: 07/16/2024] Open
Abstract
Background: Papillary Thyroid Carcinoma (PTC), a common type of thyroid cancer, has a pathogenesis that is not fully understood. This study utilizes a range of public databases, sophisticated bioinformatics tools, and empirical approaches to explore the key genetic components and pathways implicated in PTC, particularly concentrating on the Transducin-Like Enhancer of Split 4 (TLE4) gene. Methods: Public databases such as TCGA and GEO were utilized to conduct differential gene expression analysis in PTC. Hub genes were identified using Weighted Gene Co-expression Network Analysis (WGCNA), and machine learning techniques, including Random Forest, LASSO regression, and SVM-RFE, were employed for biomarker identification. The clinical impact of the TLE4 gene was assessed in terms of diagnostic accuracy, prognostic value, and its functional enrichment analysis in PTC. Additionally, the study focused on understanding the role of TLE4 in the dynamics of immune cell infiltration, gene function enhancement, and behaviors of PTC cells like growth, migration, and invasion. To complement these analyses, in vivo studies were performed using a xenograft mouse model. Results: 244 genes with significant differential expression across various databases were identified. WGCNA indicated a strong link between specific gene modules and PTC. Machine learning analysis brought the TLE4 gene into focus as a key biomarker. Bioinformatics studies verified that TLE4 expression is lower in PTC, linking it to immune cell infiltration and the JAK-STAT signaling pathways. Experimental data revealed that decreased TLE4 expression in PTC cell lines leads to enhanced cell growth, migration, invasion, and activates the JAK/STAT pathway. In contrast, TLE4 overexpression in these cells inhibited tumor growth and metastasis. Conclusions: This study sheds light on TLE4's crucial role in PTC pathogenesis, positioning it as a potential biomarker and target for therapy. The integration of multi-omics data and advanced analytical methods provides a robust framework for understanding PTC at a molecular level, potentially guiding personalized treatment strategies.
Collapse
Affiliation(s)
- Junyu Lin
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, 350005, Fuzhou, Fujian, China
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Fuzhou, Fujian, China
| | - Beichen Cai
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, 350005, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Fuzhou, Fujian, China
| | - Qian Lin
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, 350005, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Fuzhou, Fujian, China
| | - Xinjian Lin
- Key Laboratory of Gastrointestinal Cancer, Fujian Medical University, Ministry of Education, 350108, Fuzhou, Fujian, China
| | - Biao Wang
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, 350005, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Fuzhou, Fujian, China
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, 350005, Fuzhou, Fujian, China
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Wu XH, Wang JQ, Wang MD, Xiao T, Wang Y, Niu JY, Wang L, Hou DY, Fu B, Liu Z, Wang H, Xu W. Bispecific fibrous glue synergistically boosts vascular normalization and antitumor immunity for advanced renal carcinoma therapy. Biomaterials 2024; 308:122550. [PMID: 38581762 DOI: 10.1016/j.biomaterials.2024.122550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Immune checkpoint blockade therapy represented by programmed cell death ligand 1 (PD-L1) inhibitor for advanced renal carcinoma with an objective response rate (ORR) in patients is less than 20%. It is attributed to abundant tumoral vasculature with abnormal structure limiting effector T cell infiltration and drug penetration. We propose a bispecific fibrous glue (BFG) to regulate tumor immune and vascular microenvironments simultaneously. The bispecific precursor glue peptide-1 (pre-GP1) can penetrate tumor tissue deeply and self-assemble into BFG in the presence of neuropilin-1 (NRP-1) and PD-L1. The resultant fibrous glue is capable of normalizing tumoral vasculature as well as restricting immune escape. The pre-GP1 retains a 6-fold higher penetration depth than that of antibody in the multicellular spheroids (MCSs) model. It also shows remarkable tumor growth inhibition (TGI) from 19% to 61% in a murine advanced large tumor model compared to the clinical combination therapy. In addition, in the orthotopic renal tumor preclinical model, the lung metastatic nodules are reduced by 64% compared to the clinically used combination. This pre-GP1 provides a promising strategy to control the progression and metastasis of advanced renal carcinoma.
Collapse
Affiliation(s)
- Xiu-Hai Wu
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China; CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Jia-Qi Wang
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China; CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Man-Di Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China; Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Ting Xiao
- Henan Institute of Advanced Technology, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450052, China
| | - Yu Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China; Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Jia-Yuan Niu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China; Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lu Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Da-Yong Hou
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Bo Fu
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China; CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Zimo Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.
| | - Wanhai Xu
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China; NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
16
|
Tang MY, Shen X, Yuan RS, Li HY, Li XW, Jing YM, Zhang Y, Shen HH, Wang ZS, Zhou L, Yang YC, Wen HX, Su F. Plexin domain-containing 1 may be a biomarker of poor prognosis in hepatocellular carcinoma patients, may mediate immune evasion. World J Gastrointest Oncol 2024; 16:2091-2112. [PMID: 38764846 PMCID: PMC11099457 DOI: 10.4251/wjgo.v16.i5.2091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND For the first time, we investigated the oncological role of plexin domain-containing 1 (PLXDC1), also known as tumor endothelial marker 7 (TEM7), in hepatocellular carcinoma (HCC). AIM To investigate the oncological profile of PLXDC1 in HCC. METHODS Based on The Cancer Genome Atlas database, we analyzed the expression of PLXDC1 in HCC. Using immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting, we validated our results. The prognostic value of PLXDC1 in HCC was analyzed by assessing its correlation with clinicopathological features, such as patient survival, methylation level, tumor immune microenvironment features, and immune cell surface checkpoint expression. Finally, to assess the immune evasion potential of PLXDC1 in HCC, we used the tumor immune dysfunction and exclusion (TIDE) website and immunohistochemical staining assays. RESULTS Based on immunohistochemistry, qRT-PCR, and Western blot assays, overexpression of PLXDC1 in HCC was associated with poor prognosis. Univariate and multivariate Cox analyses indicated that PLXDC1 might be an independent prognostic factor. In HCC patients with high methylation levels, the prognosis was worse than in patients with low methylation levels. Pathway enrichment analysis of HCC tissues indicated that genes upregulated in the high-PLXDC1 subgroup were enriched in mesenchymal and immune activation signaling, and TIDE assessment showed that the risk of immune evasion was significantly higher in the high-PLXDC1 subgroup compared to the low-PLXDC1 subgroup. The high-risk group had a significantly lower immune evasion rate as well as a poor prognosis, and PLXDC1-related risk scores were also associated with a poor prognosis. CONCLUSION As a result of this study analyzing PLXDC1 from multiple biological perspectives, it was revealed that it is a biomarker of poor prognosis for HCC patients, and that it plays a role in determining immune evasion status.
Collapse
Affiliation(s)
- Ming-Yue Tang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Xue Shen
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Run-Sheng Yuan
- Otolaryngology and Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Hui-Yuan Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Xin-Wei Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Yi-Ming Jing
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Yue Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Hong-Hong Shen
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Zi-Shu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Yun-Chuan Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - He-Xin Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Fang Su
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui Province, China
| |
Collapse
|
17
|
Chowdhury M, Das PK. Hypoxia: Intriguing Feature in Cancer Cell Biology. ChemMedChem 2024; 19:e202300551. [PMID: 38328976 DOI: 10.1002/cmdc.202300551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Hypoxia, a key aspect of the tumor microenvironment, plays a vital role in cell proliferation, angiogenesis, metabolism, and the immune response within tumors. These factors collectively promote tumor advancement, aggressiveness, metastasis and result in a poor prognosis. Hypoxia inducible factor 1α (HIF-1α), activated under low oxygen conditions, mediates many of these effects by altering drug target expression, metabolic regulation, and oxygen consumption. These changes promote cancer cell growth and survival. Hypoxic tumor cells develop aggressive traits and resistance to chemotherapy and radiotherapy, leading to increased mortality. Targeting hypoxic tumor offers a potential solution to overcome the challenges posed by tumor heterogeneity and can be used in designing diagnostic and therapeutic nanocarriers for various solid cancers. This concept provides an overview of the intricate relationship between hypoxia and the tumor microenvironment, highlighting its potential as a promising tool for cancer therapies. The article explores the development of hypoxia in cancer cells and its role in cancer progression, along with the latest advancements in hypoxia-triggered cancer treatment.
Collapse
Affiliation(s)
- Monalisa Chowdhury
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| |
Collapse
|
18
|
Huang Y, Fan H, Ti H. Tumor microenvironment reprogramming by nanomedicine to enhance the effect of tumor immunotherapy. Asian J Pharm Sci 2024; 19:100902. [PMID: 38595331 PMCID: PMC11002556 DOI: 10.1016/j.ajps.2024.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 04/11/2024] Open
Abstract
With the rapid development of the fields of tumor biology and immunology, tumor immunotherapy has been used in clinical practice and has demonstrated significant therapeutic potential, particularly for treating tumors that do not respond to standard treatment options. Despite its advances, immunotherapy still has limitations, such as poor clinical response rates and differences in individual patient responses, largely because tumor tissues have strong immunosuppressive microenvironments. Many tumors have a tumor microenvironment (TME) that is characterized by hypoxia, low pH, and substantial numbers of immunosuppressive cells, and these are the main factors limiting the efficacy of antitumor immunotherapy. The TME is crucial to the occurrence, growth, and metastasis of tumors. Therefore, numerous studies have been devoted to improving the effects of immunotherapy by remodeling the TME. Effective regulation of the TME and reversal of immunosuppressive conditions are effective strategies for improving tumor immunotherapy. The use of multidrug combinations to improve the TME is an efficient way to enhance antitumor immune efficacy. However, the inability to effectively target drugs decreases therapeutic effects and causes toxic side effects. Nanodrug delivery carriers have the advantageous ability to enhance drug bioavailability and improve drug targeting. Importantly, they can also regulate the TME and deliver large or small therapeutic molecules to decrease the inhibitory effect of the TME on immune cells. Therefore, nanomedicine has great potential for reprogramming immunosuppressive microenvironments and represents a new immunotherapeutic strategy. Therefore, this article reviews strategies for improving the TME and summarizes research on synergistic nanomedicine approaches that enhance the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Yu Huang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui Fan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Province Precise Medicine Big Date of Traditional Chinese Medicine Engineering Technology Research Center, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
19
|
Torke S, Walther W, Stein U. Immune Response and Metastasis-Links between the Metastasis Driver MACC1 and Cancer Immune Escape Strategies. Cancers (Basel) 2024; 16:1330. [PMID: 38611008 PMCID: PMC11010928 DOI: 10.3390/cancers16071330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Metastasis remains the most critical factor limiting patient survival and the most challenging part of cancer-targeted therapy. Identifying the causal drivers of metastasis and characterizing their properties in various key aspects of cancer biology is essential for the development of novel metastasis-targeting approaches. Metastasis-associated in colon cancer 1 (MACC1) is a prognostic and predictive biomarker that is now recognized in more than 20 cancer entities. Although MACC1 can already be linked with many hallmarks of cancer, one key process-the facilitation of immune evasion-remains poorly understood. In this review, we explore the direct and indirect links between MACC1 and the mechanisms of immune escape. Therein, we highlight the signaling pathways and secreted factors influenced by MACC1 as well as their effects on the infiltration and anti-tumor function of immune cells.
Collapse
Affiliation(s)
- Sebastian Torke
- Experimental and Clinical Research Center, Charité, Medical Centre Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany; (W.W.); (U.S.)
| | | | | |
Collapse
|
20
|
Huang D, Lin C, Jiang Y, Xin E, Xu F, Gan Y, Xu R, Wang F, Zhang H, Lou K, Shi L, Hu H. Radiomics model based on intratumoral and peritumoral features for predicting major pathological response in non-small cell lung cancer receiving neoadjuvant immunochemotherapy. Front Oncol 2024; 14:1348678. [PMID: 38585004 PMCID: PMC10996281 DOI: 10.3389/fonc.2024.1348678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Objective To establish a radiomics model based on intratumoral and peritumoral features extracted from pre-treatment CT to predict the major pathological response (MPR) in patients with non-small cell lung cancer (NSCLC) receiving neoadjuvant immunochemotherapy. Methods A total of 148 NSCLC patients who underwent neoadjuvant immunochemotherapy from two centers (SRRSH and ZCH) were retrospectively included. The SRRSH dataset (n=105) was used as the training and internal validation cohort. Radiomics features of intratumoral (T) and peritumoral regions (P1 = 0-5mm, P2 = 5-10mm, and P3 = 10-15mm) were extracted from pre-treatment CT. Intra- and inter- class correlation coefficients and least absolute shrinkage and selection operator were used to feature selection. Four single ROI models mentioned above and a combined radiomics (CR: T+P1+P2+P3) model were established by using machine learning algorithms. Clinical factors were selected to construct the combined radiomics-clinical (CRC) model, which was validated in the external center ZCH (n=43). The performance of the models was assessed by DeLong test, calibration curve and decision curve analysis. Results Histopathological type was the only independent clinical risk factor. The model CR with eight selected radiomics features demonstrated a good predictive performance in the internal validation (AUC=0.810) and significantly improved than the model T (AUC=0.810 vs 0.619, p<0.05). The model CRC yielded the best predictive capability (AUC=0.814) and obtained satisfactory performance in the independent external test set (AUC=0.768, 95% CI: 0.62-0.91). Conclusion We established a CRC model that incorporates intratumoral and peritumoral features and histopathological type, providing an effective approach for selecting NSCLC patients suitable for neoadjuvant immunochemotherapy.
Collapse
Affiliation(s)
- Dingpin Huang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Medical Imaging International Scientific and Technological Cooperation Base of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chen Lin
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yangyang Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Enhui Xin
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Fangyi Xu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Gan
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rui Xu
- DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian, Liaoning, China
- DUT-RU Co-Research Center of Advanced Information Computing Technology (ICT) for Active Life, Dalian University of Technology, Dalian, Liaoning, China
| | - Fang Wang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiping Zhang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kaihua Lou
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lei Shi
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Medical Imaging International Scientific and Technological Cooperation Base of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Yuan L, Tan Z, Huang J, Chen F, Hambly BD, Bao S, Tao K. Exploring the clinical significance of IL-38 correlation with PD-1, CTLA-4, and FOXP3 in colorectal cancer draining lymph nodes. Front Immunol 2024; 15:1384548. [PMID: 38533512 PMCID: PMC10963446 DOI: 10.3389/fimmu.2024.1384548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction Colorectal cancer (CRC) presents a substantial challenge characterized by unacceptably high mortality and morbidity, primarily attributed to delayed diagnosis and reliance on palliative care. The immune response of the host plays a pivotal role in carcinogenesis, with IL-38 emerging as a potential protective factor in CRC. However, the precise involvement of IL-38 among various leucocytes, its interactions with PD-1/PD-L1, and its impact on metastasis require further elucidation. Results Our investigation revealed a significant correlation between IL-38 expression and metastasis, particularly concerning survival and interactions among diverse leucocytes within draining lymph nodes. In the mesentery lymph nodes, we observed an inverse correlation between IL-38 expression and stages of lymph node invasions (TNM), invasion depth, distance, and differentiation. This aligns with an overall survival advantage associated with higher IL-38 expression in CRC patients' nodes compared to lower levels, as well as elevated IL-38 expression on CD4+ or CD8+ cells. Notably, a distinct subset of patients characterized by IL-38high/PD-1low expression exhibited superior survival outcomes compared to other combinations. Discussion Our findings demonstrate that IL-38 expression in colorectal regional nodes from CRC patients is inversely correlated with PD-1/PD-L1 but positively correlated with infiltrating CD4+ or CD8+ lymphocytes. The combined assessment of IL-38 and PD-1 expression in colorectal regional nodes emerges as a promising biomarker for predicting the prognosis of CRC.
Collapse
Affiliation(s)
- Liuhong Yuan
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China
| | - Zhenyu Tan
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China
| | - Junjie Huang
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feier Chen
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China
| | - Brett D. Hambly
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shisan Bao
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kun Tao
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Dorjkhorloo G, Erkhem-Ochir B, Shiraishi T, Sohda M, Okami H, Yamaguchi A, Shioi I, Komine C, Nakazawa N, Ozawa N, Shibasaki Y, Okada T, Osone K, Sano A, Sakai M, Ogawa H, Yokobori T, Shirabe K, Saeki H. Prognostic value of a modified‑immune scoring system in patients with pathological T4 colorectal cancer. Oncol Lett 2024; 27:104. [PMID: 38298428 PMCID: PMC10829066 DOI: 10.3892/ol.2024.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/13/2023] [Indexed: 02/02/2024] Open
Abstract
Tumor-infiltrating immune cells, such as lymphocytes and macrophages, have been associated with tumor aggressiveness, prognosis and treatment response in colorectal cancer (CRC). An immune scoring system, Immunoscore (IS), based on tumor-infiltrating T cells in stage I-III CRC, was used to predict prognosis. An alternative immune scoring signature of immune activation (SIA) reflects the balance between anti- and pro-tumoral immune components. The present study aimed to evaluate the prognostic value of modified IS (mIS) and modified SIA (mSIA) in locally advanced pathological T4 (pT4) CRC, including stage IV CRC. Immunohistochemical staining for immune cell markers, such as CD3 (pan-T cell marker), CD8 (anti-tumoral cytotoxic T cell marker) and CD163 (tumor-supportive macrophage marker), in specimens from patients with radically resected pT4 CRC at stages II-IV was performed. mIS levels in the T4 CRC cohort were not associated with prognosis. However, low mSIA levels were associated with low survival. Furthermore, low mSIA was an independent predictor of recurrence in patients with radically resected pT4 CRC. In patients with CRC who did not receive postoperative adjuvant chemotherapy, low mSIA was a major poor prognostic factor; however, this was not observed in patients receiving adjuvant chemotherapy. Evaluation of the tumor-infiltrating immune cell population could serve as a valuable marker of recurrence and poor prognosis in patients with locally advanced CRC. mSIA assessment after radical CRC resection may be promising for identifying high-risk patients with pT4 CRC who require aggressive adjuvant chemotherapy.
Collapse
Affiliation(s)
- Gendensuren Dorjkhorloo
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Bilguun Erkhem-Ochir
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| | - Takuya Shiraishi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Haruka Okami
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Arisa Yamaguchi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Ikuma Shioi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Chika Komine
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Nobuhiro Nakazawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Naoya Ozawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Yuta Shibasaki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Takuhisa Okada
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Katsuya Osone
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Akihiko Sano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Hiroomi Ogawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
23
|
Cheng Y, Song Z, Chen J, Tang Z, Wang B. Molecular basis, potential biomarkers, and future prospects of OSCC and PD-1/PD-L1 related immunotherapy methods. Heliyon 2024; 10:e25895. [PMID: 38380036 PMCID: PMC10877294 DOI: 10.1016/j.heliyon.2024.e25895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) affects a large number of individuals worldwide. Despite advancements in surgery, radiation, and chemotherapy, satisfactory outcomes have not been achieved. In recent years, the success of drugs targeting programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) has led to breakthroughs in cancer treatment, but systematic summaries on their effectiveness against OSCC are lacking. This article reviews the latest research on the PD-1/PD-L1 pathway and the potential of combination therapy based on this pathway in OSCC. Further, it explores the mechanisms involved in the interaction of this pathway with exosomes and protein-protein interactions, and concludes with potential future OSCC therapeutic strategies.
Collapse
Affiliation(s)
- Yuxi Cheng
- Xiangya Stomatological Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Stomatology, Central South University, Changsha, 410008, China
- Clinical Research Center of Oral Major Diseases and Oral Health, 410008, Hunan, China
| | - Zhengzheng Song
- Xiangya Stomatological Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Stomatology, Central South University, Changsha, 410008, China
- Clinical Research Center of Oral Major Diseases and Oral Health, 410008, Hunan, China
| | - Juan Chen
- Xiangya Stomatological Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Stomatology, Central South University, Changsha, 410008, China
- Clinical Research Center of Oral Major Diseases and Oral Health, 410008, Hunan, China
| | - Zhangui Tang
- Xiangya Stomatological Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Stomatology, Central South University, Changsha, 410008, China
- Clinical Research Center of Oral Major Diseases and Oral Health, 410008, Hunan, China
| | - Baisheng Wang
- Xiangya Stomatological Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Stomatology, Central South University, Changsha, 410008, China
- Clinical Research Center of Oral Major Diseases and Oral Health, 410008, Hunan, China
| |
Collapse
|
24
|
Wang F, Wang C, Li B, Wang G, Meng Z, Han J, Guo G, Yu B, Wang G. Identification of angiogenesis-related subtypes, the development of a prognosis model, and features of tumor microenvironment in colon cancer. Biotechnol Appl Biochem 2024; 71:45-60. [PMID: 37881150 DOI: 10.1002/bab.2520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Angiogenesis is associated with tumor progression, prognosis, and treatment effect. However, the angiogenesis' underlying mechanisms in the tumor microenvironment (TME) still remain unclear. Understanding the dynamic interactions between angiogenesis and TME in colon adenocarcinoma (COAD) is necessary. We downloaded the transcriptome data and corresponding clinical data of colon cancer patients from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, respectively. We identified two distinct angiogenesis-related molecular subtypes (subtype A and subtype B) and assessed the clinical features, prognosis, and infiltrating immune cells of patients in the two subtypes. According to the prognostic differential genes, we defined two different gene clusters to further explore the correlation between angiogenesis and tumor heterogeneity. Then, we construct the prognostic risk scoring model angiogenesis-related gene (ARG-score) including seven genes (ARMCX2, latent transforming growth factor β binding protein 1, ADAM8, FABP4, CCL11, CXCL11, ITLN1) using Lasso-multivariate cox method. We analyzed the correlation between ARG-score and prognosis, clinicopathological features, TME, molecular feature, cancer stem cells (CSCs), and microsatellite instability (MSI) status. To assess the application value of ARG-score in clinical treatment, immunophenotype score was used to predict patients' immunotherapy response in colon cancer. We found the mutations of ARGs in TCGA-COAD dataset from genetic levels and discussed their expression patterns based on TCGA and GEO datasets. We observed important differences in clinicopathological features, prognosis, immune feature, molecular feature between the two molecular subgroups. Then, we established an ARG-score for predicting OS and validated its predictive capability. A high ARG-score characterized by higher transcription level of ARGs, suggested lower MSI-high (MSI-H), lower immune score, and worse clinical stage and survival outcome. Additionally, the ARG-score was remarkably related to the CSCs index and immunotherapy sensitivity. We found two new molecular subtypes and two gene clusters based on ARGs and established an ARG-score. Multilayered analysis revealed that ARGs were remarkably correlated to the heterogeneity of colon cancer patients and explained the process of tumorigenesis and progression better. The ARG-score can help us better assess patients' survival outcomes and provide guidance for individualized treatment.
Collapse
Affiliation(s)
- Feifei Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Changjing Wang
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Baokun Li
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guanglin Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zesong Meng
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiachao Han
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ganlin Guo
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bin Yu
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guiying Wang
- Department of Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
25
|
La Paglia L, Vazzana M, Mauro M, Urso A, Arizza V, Vizzini A. Bioactive Molecules from the Innate Immunity of Ascidians and Innovative Methods of Drug Discovery: A Computational Approach Based on Artificial Intelligence. Mar Drugs 2023; 22:6. [PMID: 38276644 PMCID: PMC10817596 DOI: 10.3390/md22010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
The study of bioactive molecules of marine origin has created an important bridge between biological knowledge and its applications in biotechnology and biomedicine. Current studies in different research fields, such as biomedicine, aim to discover marine molecules characterized by biological activities that can be used to produce potential drugs for human use. In recent decades, increasing attention has been paid to a particular group of marine invertebrates, the Ascidians, as they are a source of bioactive products. We describe omics data and computational methods relevant to identifying the mechanisms and processes of innate immunity underlying the biosynthesis of bioactive molecules, focusing on innovative computational approaches based on Artificial Intelligence. Since there is increasing attention on finding new solutions for a sustainable supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of marine invertebrates' innate immunity.
Collapse
Affiliation(s)
- Laura La Paglia
- Istituto di Calcolo e Reti ad Alte Prestazioni–Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (L.L.P.); (A.U.)
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche–Università di Palermo, Via Archirafi 18, 90100 Palermo, Italy; (M.V.); (M.M.); (V.A.)
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche–Università di Palermo, Via Archirafi 18, 90100 Palermo, Italy; (M.V.); (M.M.); (V.A.)
| | - Alfonso Urso
- Istituto di Calcolo e Reti ad Alte Prestazioni–Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (L.L.P.); (A.U.)
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche–Università di Palermo, Via Archirafi 18, 90100 Palermo, Italy; (M.V.); (M.M.); (V.A.)
| | - Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche–Università di Palermo, Via Archirafi 18, 90100 Palermo, Italy; (M.V.); (M.M.); (V.A.)
| |
Collapse
|
26
|
Abbas E, Fanni SC, Bandini C, Francischello R, Febi M, Aghakhanyan G, Ambrosini I, Faggioni L, Cioni D, Lencioni RA, Neri E. Delta-radiomics in cancer immunotherapy response prediction: A systematic review. Eur J Radiol Open 2023; 11:100511. [PMID: 37520768 PMCID: PMC10371799 DOI: 10.1016/j.ejro.2023.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Background The new immunotherapies have not only changed the oncological therapeutic approach but have also made it necessary to develop new imaging methods for assessing the response to treatment. Delta radiomics consists of the analysis of radiomic features variation between different medical images, usually before and after therapy. Purpose This review aims to evaluate the role of delta radiomics in the immunotherapy response assessment. Methods A systematic search was performed in PubMed, Scopus, and Web Of Science using "delta radiomics AND immunotherapy" as search terms. The included articles' methodological quality was measured using the Radiomics Quality Score (RQS) tool. Results Thirteen articles were finally included in the systematic review. Overall, the RQS of the included studies ranged from 4 to 17, with a mean RQS total of 11,15 ± 4,18 with a corresponding percentage of 30.98 ± 11.61 %. Eleven articles out of 13 performed imaging at multiple time points. All the included articles performed feature reduction. No study carried out prospective validation, decision curve analysis, or cost-effectiveness analysis. Conclusions Delta radiomics has been demonstrated useful in evaluating the response in oncologic patients undergoing immunotherapy. The overall quality was found law, due to the lack of prospective design and external validation. Thus, further efforts are needed to bring delta radiomics a step closer to clinical implementation.
Collapse
Affiliation(s)
- Engy Abbas
- The Joint Department of Medical Imaging, University of Toronto, University Health Network, Sinai Health System, Women’s College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9
| | | | - Claudio Bandini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Roberto Francischello
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Maria Febi
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Gayane Aghakhanyan
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Ilaria Ambrosini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Lorenzo Faggioni
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Dania Cioni
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | | | - Emanuele Neri
- The Joint Department of Medical Imaging, University of Toronto, University Health Network, Sinai Health System, Women’s College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| |
Collapse
|
27
|
Shao F, Jin K, Li B, Liu Z, Zeng H, Wang Y, Zhu Y, Xu L, Xu J, Wang Z, Chang Y, Zhang W. Integrating angiogenesis signature and tumor mutation burden for improved patient stratification in immune checkpoint blockade therapy for muscle-invasive bladder cancer. Urol Oncol 2023; 41:433.e9-433.e18. [PMID: 37625906 DOI: 10.1016/j.urolonc.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/01/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Muscle-invasive bladder cancer (MIBC) patients have benefitted greatly from immune checkpoint blockade (ICB) therapy. However, there is a pressing need to identify factors underlying the heterogeneity of clinical responses to ICB. METHODS We conducted a study on 848 MIBC patients from 4 independent cohorts to investigate the key biological characteristics affecting ICB responses. The IMvigor210 cohort (n = 234) was used to identify the key factor, followed by exploration of the correlation between tumor angiogenesis and immune suppression in the IMvigor210, TCGA (n = 391), and UNC-108 (n = 89) cohorts. The ZSHS cohort (n = 134) was used for validation. Additionally, we integrated angiogenesis signature with tumor mutation burden (TMB) to decipher the heterogeneity of clinical outcomes to ICB in MIBC patients. RESULTS Our analysis revealed that nonresponders to PD-L1 blockade were enriched with angiogenesis signature. Furthermore, we observed a correlation between angiogenesis signature and decreased neoantigen load, downregulated T-cell antigen recognition, and noninflamed immunophenotype. We identified a subgroup of patients resistant to ICB, characterized by high angiogenesis signature and low tumor mutation burden (TMB), and found the activation of TGF-β signaling and downregulation of T-cell cytolytic signatures in this subgroup. CONCLUSIONS The study concluded that angiogenesis signature is closely associated with an immunosuppressive microenvironment, leading to resistance to ICB therapy in MIBC patients. The study further suggested that the combination of angiogenesis signature and TMB can serve as an integrated biomarker for better stratification of patients' clinical outcomes to ICB therapy.
Collapse
Affiliation(s)
- Fei Shao
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaifeng Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, NHC Key Laboratory of Glycoconjugate Research, Fudan University, Shanghai, China; Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bingyu Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaopei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, NHC Key Laboratory of Glycoconjugate Research, Fudan University, Shanghai, China; Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Han Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, NHC Key Laboratory of Glycoconjugate Research, Fudan University, Shanghai, China; Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, NHC Key Laboratory of Glycoconjugate Research, Fudan University, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Lin Q, Choyke PL, Sato N. Visualizing vasculature and its response to therapy in the tumor microenvironment. Theranostics 2023; 13:5223-5246. [PMID: 37908739 PMCID: PMC10614675 DOI: 10.7150/thno.84947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/30/2023] [Indexed: 11/02/2023] Open
Abstract
Tumor vasculature plays a critical role in the progression and metastasis of tumors, antitumor immunity, drug delivery, and resistance to therapies. The morphological and functional changes of tumor vasculature in response to therapy take place in a spatiotemporal-dependent manner, which can be predictive of treatment outcomes. Dynamic monitoring of intratumor vasculature contributes to an improved understanding of the mechanisms of action of specific therapies or reasons for treatment failure, leading to therapy optimization. There is a rich history of methods used to image the vasculature. This review describes recent advances in imaging technologies to visualize the tumor vasculature, with a focus on enhanced intravital imaging techniques and tumor window models. We summarize new insights on spatial-temporal vascular responses to various therapies, including changes in vascular perfusion and permeability and immune-vascular crosstalk, obtained from intravital imaging. Finally, we briefly discuss the clinical applications of intravital imaging techniques.
Collapse
Affiliation(s)
| | | | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
29
|
Hamada Y, Tanoue K, Kita Y, Tanabe K, Hokonohara K, Wada M, Hozaka Y, Oi H, Nakayama C, Higashi M, Arigami T, Mori S, Ohtsuka T. Vascular endothelial growth factor inhibitors promote antitumor responses via tumor microenvironment immunosuppression in advanced colorectal cancer. Scand J Gastroenterol 2023; 58:1009-1020. [PMID: 36987919 DOI: 10.1080/00365521.2023.2194011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
PURPOSE This study aims to investigate changes in the tumor immune environment of patients who underwent therapy with a vascular endothelial growth factor (VEGF) inhibitor for advanced colorectal cancer. METHODS Patients (n = 135) with T3 or T4 colorectal cancer were included in this retrospective study. They were classified as follows: patients who had not received preoperative treatment (UPFRONT group, n = 54), who had received FOLFOX as preoperative chemotherapy (FOLFOX group, n = 55), and who had undergone resection after combination FOLFOX and bevacizumab as unresectable colorectal cancer (B-MAB group, n = 26). The number of cytotoxic T lymphocytes (CTLs), FOXP3+ lymphocytes (including regulatory T cells (Tregs)), CD163+ monocytes (including M2-type tumor-associated macrophages (TAM-M2 type)), and programmed cell death 1 (PD-1)+ lymphocytes was evaluated immunohistochemically in the cancer cell area (CC) and stromal cell area (ST) of surgical specimens, and compared among the three groups. RESULTS The CTL population did not differ among the three groups in both areas. In the B-MAB group, the numbers of PD-1+ cells in the ST, FOXP3+ lymphocytes in both areas, and CD163+monocytes in the ST was lower than that in the other two groups, and a correlation with the histological therapeutic effect was observed. CONCLUSIONS In advanced colorectal cancer, VEGF inhibitors may decrease the number of PD-1+ cells and inhibit the infiltration of FOXP3+ lymphocytes and CD163+monocytes into the tumor environment.
Collapse
Affiliation(s)
- Yuki Hamada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kiyonori Tanoue
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kan Tanabe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kentaro Hokonohara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masumi Wada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuto Hozaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hideyuki Oi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Chieri Nakayama
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Michiyo Higashi
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takaaki Arigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shinichiro Mori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
30
|
Bosoteanu M, Deacu M, Aschie M, Vamesu S, Cozaru GC, Mitroi AF, Voda RI, Orasanu CI, Vlad SE, Penciu RC, Chirila SI. The Role of Pathogenesis Associated with the Tumor Microclimate in the Differential Diagnosis of Uterine Myocytic Tumors. J Clin Med 2023; 12:4161. [PMID: 37373854 DOI: 10.3390/jcm12124161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Myocytic tumors of the uterus present vast morphological heterogeneity, which makes differential diagnosis between the different entities necessary. This study aims to enrich the existing data and highlight new potential therapeutic targets regarding aspects related to the pathogenic process and the tumor microenvironment in order to improve the quality of life of women. We performed a 5-year retrospective study, including particular cases of uterine myocyte tumors. Immunohistochemical analyses of pathogenic pathways (p53, RB1, and PTEN) and tumor microclimate using markers (CD8, PD-L1, and CD105), as well as genetic testing of the PTEN gene, were performed. The data were statistically analyzed using the appropriate parameters. In cases of atypical leiomyoma, a significant association was observed between PTEN deletion and an increased number of PD-L1+ T lymphocytes. For malignant lesions and STUMP, PTEN deletion was associated with the advanced disease stage. Advanced cases were also associated with an increased mean CD8+ T cell count. An increased number of lymphocytes was associated with an increased percentage of RB1+ nuclei. The study corroborated clinical and histogenetic data, highlighting the importance of the differential diagnosis of these tumors to improve the management of patients and increase their quality of life.
Collapse
Affiliation(s)
- Madalina Bosoteanu
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Department of Pathology, Faculty of Medicine, "Ovidius" University of Constanţa, 900527 Constanta, Romania
| | - Mariana Deacu
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Department of Pathology, Faculty of Medicine, "Ovidius" University of Constanţa, 900527 Constanta, Romania
| | - Mariana Aschie
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Department of Pathology, Faculty of Medicine, "Ovidius" University of Constanţa, 900527 Constanta, Romania
- Academy of Medical Sciences of Romania, 030171 Bucharest, Romania
| | - Sorin Vamesu
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
- Clinical Service of Pathology, Department of Genetics, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Anca Florentina Mitroi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
- Clinical Service of Pathology, Department of Genetics, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Raluca Ioana Voda
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
| | - Cristian Ionut Orasanu
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
| | - Sabina Elena Vlad
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
| | - Roxana Cleopatra Penciu
- Department of Obstetrics and Gynecology, Faculty of Medicine, "Ovidius" University of Constanţa, 900527 Constanta, Romania
| | - Sergiu Ioachim Chirila
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, Ovidius University, 900527 Constanta, Romania
| |
Collapse
|
31
|
Brisson L, Henrique Geraldo L, Bikfalvi A, Mathivet T. The strange Microenvironment of Glioblastoma. Rev Neurol (Paris) 2023; 179:490-501. [PMID: 36964121 PMCID: PMC11195635 DOI: 10.1016/j.neurol.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Glioblastoma (GB) is the most common and aggressive primary brain tumor, with poor patient survival and lack of effective therapies. Late advances trying to decipher the composition of the GB tumor microenvironment (TME) emphasized its role in tumor progression and potentialized it as a therapeutic target. Many components participate critically to tumor development and expansion such as blood vessels, immune cells or components of the nervous system. Dysmorphic tumor vasculature brings challenges to optimal delivery of cytotoxic agents currently used in clinics. Also, massive infiltration of immunosuppressive myeloid cells and limited recruitment of T cells limits the success of conventional immunotherapies. Neuronal input seems also be required for tumor expansion. In this review, we provide a comprehensive report of vascular and immune component of the GB TME and their cross talk during GB progression.
Collapse
Affiliation(s)
- L Brisson
- BRIC Inserm U1312, Université de Bordeaux, 33615 Pessac, France
| | - L Henrique Geraldo
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - A Bikfalvi
- BRIC Inserm U1312, Université de Bordeaux, 33615 Pessac, France.
| | - T Mathivet
- BRIC Inserm U1312, Université de Bordeaux, 33615 Pessac, France
| |
Collapse
|
32
|
Li G, Hu J, Cho C, Cui J, Li A, Ren P, Zhou J, Wei W, Zhang T, Liu X. Everolimus combined with PD-1 blockade inhibits progression of triple-negative breast cancer. Cell Signal 2023:110729. [PMID: 37257766 DOI: 10.1016/j.cellsig.2023.110729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/27/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Due to rapid progression and a lack of targetable receptors, TNBC is exceptionally difficult to treat. Available treatment options are nonspecific cytotoxic agents, which have had modest success; thus, there is a need for novel therapies for TNBC. The mammalian/mechanistic target of rapamycin (mTOR) signaling pathway is aberrantly activated in TNBC, and this pathway has been shown to promote cancer cell survival and chemoresistance. As such, mTOR inhibition has been considered a potential therapeutic strategy for TNBC. The mTOR inhibitor everolimus (EVE) has been approved for the treatment of estrogen positive breast cancer; however, its efficacy in TNBC is still undetermined. In this study, we evaluated the effects of EVE monotherapy and the mechanism of EVE resistance in the 4 T1 model of TNBC. Whereas EVE monotherapy inhibited mTOR signaling activity, it did not attenuate tumor progression. Additionally, tumors from EVE-treated mice had abnormal vasculature characterized by disorganized architecture and hyperpermeability. We also found that treatment with EVE increased PD-L1 expression in intratumoral vascular endothelial cells, and this increase in endothelial cell-associated PD-L1 corresponded to reduced CD8 + T cell tumor infiltration. Importantly, combination treatment with anti-PD-1 antibody and EVE normalized the tumor vasculature, rescued CD8 + T cell tumor infiltration, and reduced tumor growth. Taken together, our findings improve our current understanding of mechanisms underlying mTOR inhibition resistance in TNBC and identify a novel combination treatment strategy in the treatment of mTOR resistant tumors.
Collapse
Affiliation(s)
- Guangxin Li
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jiajia Hu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christina Cho
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Junwei Cui
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Ao Li
- Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, USA
| | - Pengwei Ren
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wei Wei
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University, New Haven, CT, USA.
| | - Xiaoling Liu
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China.
| |
Collapse
|
33
|
Mani N, Andrews D, Obeng RC. Modulation of T cell function and survival by the tumor microenvironment. Front Cell Dev Biol 2023; 11:1191774. [PMID: 37274739 PMCID: PMC10232912 DOI: 10.3389/fcell.2023.1191774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Cancer immunotherapy is shifting paradigms in cancer care. T cells are an indispensable component of an effective antitumor immunity and durable clinical responses. However, the complexity of the tumor microenvironment (TME), which consists of a wide range of cells that exert positive and negative effects on T cell function and survival, makes achieving robust and durable T cell responses difficult. Additionally, tumor biology, structural and architectural features, intratumoral nutrients and soluble factors, and metabolism impact the quality of the T cell response. We discuss the factors and interactions that modulate T cell function and survive in the TME that affect the overall quality of the antitumor immune response.
Collapse
Affiliation(s)
- Nikita Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dathan Andrews
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Rebecca C. Obeng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
34
|
Qin BD, Jiao XD, Wang Z, Liu K, Wu Y, Ling Y, Chen SQ, Zhong X, Duan XP, Qin WX, Xue L, Guo ZH, Zang YS. Pan-cancer efficacy and safety of anlotinib plus PD-1 inhibitor in refractory solid tumor: A single-arm, open-label, phase II trial. Int J Cancer 2023. [PMID: 37155342 DOI: 10.1002/ijc.34546] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023]
Abstract
The combination of immunotherapy and antiangiogenic agents for the treatment of refractory solid tumor has not been well investigated. Thus, our study aimed to evaluate the efficacy and safety of a new regimen of anlotinib plus PD-1 inhibitor to treat refractory solid tumor. APICAL-RST is an investigator-initiated, open-label, single-arm, phase II trial in patients with heavily treated, refractory, metastatic solid tumor. Eligible patients experienced disease progression during prior therapy without further effective regimen. All patients received anlotinib and PD-1 inhibitor. The primary endpoints were objective response and disease control rates. The secondary endpoints included the ratio of progression-free survival 2 (PFS2)/PFS1, overall survival (OS) and safety. Forty-one patients were recruited in our study; 9 patients achieved a confirmed partial response and 21 patients had stable disease. Objective response rate and disease control rate were 22.0% and 73.2% in the intention-to-treat cohort, and 24.3% and 81.1% in the efficacy-evaluable cohort, respectively. A total of 63.4% (95% confidence interval [CI]: 46.9%-77.4%) of the patients (26/41) presented PFS2/PFS1 >1.3. The median OS was 16.8 months (range: 8.23-24.4), and the 12- and 36-month OS rates were 62.8% and 28.9%, respectively. No significant association was observed between concomitant mutation and efficacy. Thirty-one (75.6%) patients experienced at least one treatment-related adverse event. The most common adverse events were hypothyroidism, hand-foot syndrome and malaise. This phase II trial showed that anlotinib plus PD-1 inhibitor exhibits favorable efficacy and tolerability in patients with refractory solid tumor.
Collapse
Affiliation(s)
- Bao-Dong Qin
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Dong Jiao
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhan Wang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke Liu
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ying Wu
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yan Ling
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shi-Qi Chen
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xue Zhong
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Peng Duan
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wen-Xing Qin
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Xue
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhen-Hong Guo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
35
|
Sharma GP, Kosuru R, Lakshmikanthan S, Zheng S, Chen Y, Burns R, Xin G, Cui W, Chrzanowska M. Endothelial Rap1B mediates T-cell exclusion to promote tumor growth: a novel mechanism underlying vascular immunosuppression. Angiogenesis 2023; 26:265-278. [PMID: 36403190 DOI: 10.1007/s10456-022-09862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/05/2022] [Indexed: 11/21/2022]
Abstract
Overcoming vascular immunosuppression: lack of endothelial cell (EC) responsiveness to inflammatory stimuli in the proangiogenic environment of tumors, is essential for successful cancer immunotherapy. The mechanisms through which Vascular Endothelial Growth Factor A(VEGF-A) modulates tumor EC response to exclude T-cells are not well understood. Here, we demonstrate that EC-specific deletion of small GTPase Rap1B, previously implicated in normal angiogenesis, restricts tumor growth in endothelial-specific Rap1B-knockout (Rap1BiΔEC) mice. EC-specific Rap1B deletion inhibits angiogenesis, but also leads to an altered tumor microenvironment with increased recruitment of leukocytes and increased activity of tumor CD8+ T-cells. Depletion of CD8+ T-cells restored tumor growth in Rap1BiΔEC mice. Mechanistically, global transcriptome and functional analyses indicated upregulation of signaling by a tumor cytokine, TNF-α, and increased NF-κB transcription in Rap1B-deficient ECs. Rap1B-deficiency led to elevated proinflammatory chemokine and Cell Adhesion Molecules (CAMs) expression in TNF-α stimulated ECs. Importantly, CAM expression was elevated in tumor ECs from Rap1BiΔEC mice. Significantly, Rap1B deletion prevented VEGF-A-induced immunosuppressive downregulation of CAM expression, demonstrating that Rap1B is essential for VEGF-A-suppressive signaling. Thus, our studies identify a novel endothelial-endogenous mechanism underlying VEGF-A-dependent desensitization of EC to proinflammatory stimuli. Significantly, they identify EC Rap1B as a potential novel vascular target in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI, 53201-2178, USA
| | | | - Shikan Zheng
- Versiti Blood Research Institute, Milwaukee, WI, 53201-2178, USA
| | - Yao Chen
- Versiti Blood Research Institute, Milwaukee, WI, 53201-2178, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert Burns
- Versiti Blood Research Institute, Milwaukee, WI, 53201-2178, USA
| | - Gang Xin
- Versiti Blood Research Institute, Milwaukee, WI, 53201-2178, USA
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, WI, 53201-2178, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Magdalena Chrzanowska
- Versiti Blood Research Institute, Milwaukee, WI, 53201-2178, USA.
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
36
|
Nguyen HT, Peirsman A, Tirpakova Z, Mandal K, Vanlauwe F, Maity S, Kawakita S, Khorsandi D, Herculano R, Umemura C, Yilgor C, Bell R, Hanson A, Li S, Nanda HS, Zhu Y, Najafabadi AH, Jucaud V, Barros N, Dokmeci MR, Khademhosseini A. Engineered Vasculature for Cancer Research and Regenerative Medicine. MICROMACHINES 2023; 14:978. [PMID: 37241602 PMCID: PMC10221678 DOI: 10.3390/mi14050978] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Engineered human tissues created by three-dimensional cell culture of human cells in a hydrogel are becoming emerging model systems for cancer drug discovery and regenerative medicine. Complex functional engineered tissues can also assist in the regeneration, repair, or replacement of human tissues. However, one of the main hurdles for tissue engineering, three-dimensional cell culture, and regenerative medicine is the capability of delivering nutrients and oxygen to cells through the vasculatures. Several studies have investigated different strategies to create a functional vascular system in engineered tissues and organ-on-a-chips. Engineered vasculatures have been used for the studies of angiogenesis, vasculogenesis, as well as drug and cell transports across the endothelium. Moreover, vascular engineering allows the creation of large functional vascular conduits for regenerative medicine purposes. However, there are still many challenges in the creation of vascularized tissue constructs and their biological applications. This review will summarize the latest efforts to create vasculatures and vascularized tissues for cancer research and regenerative medicine.
Collapse
Affiliation(s)
- Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Arne Peirsman
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Plastic, Reconstructive and Aesthetic Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Zuzana Tirpakova
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Florian Vanlauwe
- Plastic, Reconstructive and Aesthetic Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Rondinelli Herculano
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| | - Christian Umemura
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Can Yilgor
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Remy Bell
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Adrian Hanson
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Himansu Sekhar Nanda
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Biomedical Engineering and Technology Laboratory, PDPM—Indian Institute of Information Technology Design Manufacturing, Jabalpur 482005, Madhya Pradesh, India
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | | | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Natan Barros
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| |
Collapse
|
37
|
Camargo CP, Muhuri AK, Alapan Y, Sestito LF, Khosla M, Manspeaker MP, Smith AS, Paulos CM, Thomas SN. A dhesion analysis via a tumor vasculature-like microfluidic device identifies CD8 + T cells with enhanced tumor homing to improve cell therapy. Cell Rep 2023; 42:112175. [PMID: 36848287 DOI: 10.1016/j.celrep.2023.112175] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
CD8+ T cell recruitment to the tumor microenvironment is critical for the success of adoptive cell therapy (ACT). Unfortunately, only a small fraction of transferred cells home to solid tumors. Adhesive ligand-receptor interactions have been implicated in CD8+ T cell homing; however, there is a lack of understanding of how CD8+ T cells interact with tumor vasculature-expressed adhesive ligands under the influence of hemodynamic flow. Here, the capacity of CD8+ T cells to home to melanomas is modeled ex vivo using an engineered microfluidic device that recapitulates the hemodynamic microenvironment of the tumor vasculature. Adoptively transferred CD8+ T cells with enhanced adhesion in flow in vitro and tumor homing in vivo improve tumor control by ACT in combination with immune checkpoint blockade. These results show that engineered microfluidic devices can model the microenvironment of the tumor vasculature to identify subsets of T cells with enhanced tumor infiltrating capabilities, a key limitation in ACT.
Collapse
Affiliation(s)
- Camila P Camargo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Abir K Muhuri
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yunus Alapan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lauren F Sestito
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Megha Khosla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Margaret P Manspeaker
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Aubrey S Smith
- Winship Cancer Institute, Emory University, Atlanta, GA 30332, USA; Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Susan N Thomas
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
38
|
Gao X, Jiang P, Wei X, Zhang W, Zheng J, Sun S, Yao H, Liu X, Zhang Q. Novel fusion protein PK5-RL-Gal-3C inhibits hepatocellular carcinoma via anti-angiogenesis and cytotoxicity. BMC Cancer 2023; 23:154. [PMID: 36793021 PMCID: PMC9930235 DOI: 10.1186/s12885-023-10608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Galectin-3 (Gal-3), the only chimeric β-galactosides-binding lectin, consists of Gal-3N (N-terminal regulatory peptide) and Gal-3C (C-terminal carbohydrate-recognition domain). Interestingly, Gal-3C could specifically inhibit endogenous full-length Gal-3 to exhibit anti-tumor activity. Here, we aimed to further improve the anti-tumor activity of Gal-3C via developing novel fusion proteins. METHODS PK5 (the fifth kringle domain of plasminogen) was introduced to the N-terminus of Gal-3C via rigid linker (RL) to generate novel fusion protein PK5-RL-Gal-3C. Then, we investigated the anti-tumor activity of PK5-RL-Gal-3C in vivo and in vitro by using several experiments, and figured out their molecular mechanisms in anti-angiogenesis and cytotoxicity to hepatocellular carcinoma (HCC). RESULTS Our results show that PK5-RL-Gal-3C can inhibit HCC both in vivo and in vitro without obvious toxicity, and also significantly prolong the survival time of tumor-bearing mice. Mechanically, we find that PK5-RL-Gal-3C inhibits angiogenesis and show cytotoxicity to HCC. In detail, HUVEC-related and matrigel plug assays indicate that PK5-RL-Gal-3C plays an important role in inhibiting angiogenesis by regulating HIF1α/VEGF and Ang-2 both in vivo and in vitro. Moreover, PK5-RL-Gal-3C induces cell cycle arrest at G1 phase and apoptosis with inhibition of Cyclin D1, Cyclin D3, CDK4, and Bcl-2, but activation of p27, p21, caspase-3, -8 and -9. CONCLUSION Novel fusion protein PK5-RL-Gal-3C is potent therapeutic agent by inhibiting tumor angiogenesis in HCC and potential antagonist of Gal-3, which provides new strategy for exploring novel antagonist of Gal-3 and promotes their application in clinical treatment.
Collapse
Affiliation(s)
- Xiaoge Gao
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Pin Jiang
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Medical Oncology of Huangmei People’s Hospital, Huanggang, Hubei Province 435500 People’s Republic of China
| | - Xiaohuan Wei
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Wei Zhang
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Jiwei Zheng
- grid.417303.20000 0000 9927 0537Department of Oral Medicine, School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004 People’s Republic of China
| | - Shishuo Sun
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Hong Yao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650118, People's Republic of China.
| | - Xiangye Liu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China.
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province, 210000, People's Republic of China.
| |
Collapse
|
39
|
Yang H, Gou X, Feng C, Zhang Y, Chai F, Hong N, Ye Y, Wang Y, Gao B, Cheng J. Computed tomography-detected extramural venous invasion-related gene signature: a potential negative biomarker of immune checkpoint inhibitor treatment in patients with gastric cancer. J Transl Med 2023; 21:4. [PMID: 36604653 PMCID: PMC9814439 DOI: 10.1186/s12967-022-03845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND To investigate the association between computed tomography (CT)-detected extramural venous invasion (EMVI)-related genes and immunotherapy resistance and immune escape in patients with gastric cancer (GC). METHODS Thirteen patients with pathologically proven locally advanced GC who had undergone preoperative abdominal contrast-enhanced CT and radical resection surgery were included in this study. Transcriptome sequencing was multidetector performed on the cancerous tissue obtained during surgery, and EMVI-related genes (P value for association < 0.001) were selected. A single-sample gene set enrichment analysis algorithm was also used to divide all GC samples (n = 377) in The Cancer Genome Atlas (TCGA) database into high and low EMVI-immune related groups based on immune-related differential genes. Cluster analysis was used to classify EMVI-immune-related genotypes, and survival among patients was validated in TCGA and Gene Expression Omnibus (GEO) cohorts. The EMVI scores were calculated using principal component analysis (PCA), and GC samples were divided into high and low EMVI score groups. Microsatellite instability (MSI) status, tumor mutation burden (TMB), response rate to immune checkpoint inhibitors (ICIs), immune escape were compared between the high and low EMVI score groups. Hub gene of the model in pan-cancer analysis was also performed. RESULTS There were 17 EMVI-immune-related genes used for cluster analysis. PCA identified 8 genes (PCH17, SEMA6B, GJA4, CD34, ACVRL1, SOX17, CXCL12, DYSF) that were used to calculate EMVI scores. High EMVI score groups had lower MSI, TMB and response rate of ICIs, status but higher immune escape status. Among the 8 genes used for EMVI scores, CXCL12 and SOX17 were at the core of the protein-protein interaction (PPI) network and had a higher priority in pan-cancer analysis. Immunohistochemical analysis showed that the expression of CXCL12 and SOX17 was significantly higher in CT-detected EMVI-positive samples than in EMVI-negative samples (P < 0.0001). CONCLUSION A CT-detected EMVI gene signature could be a potential negative biomarker for ICIs treatment, as the signature is negatively correlated with TMB, and MSI, resulting in poorer prognosis.
Collapse
Affiliation(s)
- Hao Yang
- grid.412463.60000 0004 1762 6325Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyi Gou
- grid.411634.50000 0004 0632 4559Department of Radiology, Peking University People’s Hospital, 11 Xizhimen South St., Beijing, 100044 China
| | - Caizhen Feng
- grid.411634.50000 0004 0632 4559Department of Radiology, Peking University People’s Hospital, 11 Xizhimen South St., Beijing, 100044 China
| | - Yinli Zhang
- grid.411634.50000 0004 0632 4559Department of Pathology, Peking University People’s Hospital, Beijing, China
| | - Fan Chai
- grid.411634.50000 0004 0632 4559Department of Radiology, Peking University People’s Hospital, 11 Xizhimen South St., Beijing, 100044 China
| | - Nan Hong
- grid.411634.50000 0004 0632 4559Department of Radiology, Peking University People’s Hospital, 11 Xizhimen South St., Beijing, 100044 China
| | - Yingjiang Ye
- grid.411634.50000 0004 0632 4559Department of Gastrointestinal Surgery, Peking University People’s Hospital, Beijing, China
| | - Yi Wang
- grid.411634.50000 0004 0632 4559Department of Radiology, Peking University People’s Hospital, 11 Xizhimen South St., Beijing, 100044 China
| | - Bo Gao
- grid.411634.50000 0004 0632 4559Department of General Surgery, Peking University People’s Hospital, Beijing, 100044 China
| | - Jin Cheng
- grid.411634.50000 0004 0632 4559Department of Radiology, Peking University People’s Hospital, 11 Xizhimen South St., Beijing, 100044 China
| |
Collapse
|
40
|
Park JH, Lee HK. The Role of Hypoxia in Brain Tumor Immune Responses. Brain Tumor Res Treat 2023; 11:39-46. [PMID: 36762807 PMCID: PMC9911710 DOI: 10.14791/btrt.2022.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Oxygen is a vital component of living cells. Low levels of oxygen in body tissues, known as hypoxia, can affect multiple cellular functions across a variety of cell types and are a hallmark of brain tumors. In the tumor microenvironment, abnormal vasculature and enhanced oxygen consumption by tumor cells induce broad hypoxia that affects not only tumor cell characteristics but also the antitumor immune system. Although some immune reactions require hypoxia, hypoxia generally negatively affects immunity. Hypoxia induces tumor cell invasion, cellular adaptations to hypoxia, and tumor cell radioresistance. In addition, hypoxia limits the efficacy of immunotherapy and hinders antitumor responses. Therefore, understanding the role of hypoxia in the brain tumor, which usually does not respond to immunotherapy alone is important for the development of effective anti-tumor therapies. In this review, we discuss recent evidence supporting the role of hypoxia in the context of brain tumors.
Collapse
Affiliation(s)
- Jang Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| |
Collapse
|
41
|
Huang CBX, Tu TY. Recent advances in vascularized tumor-on-a-chip. Front Oncol 2023; 13:1150332. [PMID: 37064144 PMCID: PMC10099572 DOI: 10.3389/fonc.2023.1150332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
The vasculature plays a critical role in cancer progression and metastasis, representing a pivotal aspect in the creation of cancer models. In recent years, the emergence of organ-on-a-chip technology has proven to be a robust tool, capable of replicating in vivo conditions with exceptional spatiotemporal resolution, making it a significant asset in cancer research. This review delves into the latest developments in 3D microfluidic vascularized tumor models and their applications in vitro, focusing on heterotypic cellular interactions, the mechanisms of metastasis, and therapeutic screening. Additionally, the review examines the benefits and drawbacks of these models, as well as the future prospects for their advancement.
Collapse
Affiliation(s)
| | - Ting-Yuan Tu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Ting-Yuan Tu,
| |
Collapse
|
42
|
Udayasiri RI, Luo T, Gorringe KL, Fox SB. Identifying recurrences and metastasis after ductal carcinoma in situ (DCIS) of the breast. Histopathology 2023; 82:106-118. [PMID: 36482277 PMCID: PMC10953414 DOI: 10.1111/his.14804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 12/13/2022]
Abstract
Ductal carcinoma in situ (DCIS) of the breast is a non-invasive tumour that has the potential to progress to invasive ductal carcinoma (IDC). Thus, it represents a treatment dilemma: alone it does not present a risk to life, however, left untreated it may progress to a life-threatening condition. Current clinico-pathological features cannot accurately predict which patients with DCIS have invasive potential, and therefore clinicians are unable to quantify the risk of progression for an individual patient. This leads to many women being over-treated, while others may not receive sufficient treatment to prevent invasive recurrence. A better understanding of the molecular features of DCIS, both tumour-intrinsic and the microenvironment, could offer the ability to better predict which women need aggressive treatment, and which can avoid therapies carrying significant side-effects and such as radiotherapy. In this review, we summarise the current knowledge of DCIS, and consider future research directions.
Collapse
Affiliation(s)
- Ruwangi I Udayasiri
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Tongtong Luo
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Kylie L Gorringe
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Stephen B Fox
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| |
Collapse
|
43
|
Jiang M, Qin B, Li X, Liu Y, Guan G, You J. New advances in pharmaceutical strategies for sensitizing anti-PD-1 immunotherapy and clinical research. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1837. [PMID: 35929522 DOI: 10.1002/wnan.1837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 01/31/2023]
Abstract
Attempts have been made continuously to use nano-drug delivery system (NDDS) to improve the effect of antitumor therapy. In recent years, especially in the application of immunotherapy represented by antiprogrammed death receptor 1 (anti-PD-1), it has been vigorously developed. Nanodelivery systems are significantly superior in a number of aspects including increasing the solubility of insoluble drugs, enhancing their targeting ability, prolonging their half-life, and reducing side effects. It can not only directly improve the efficacy of anti-PD-1 immunotherapy, but also indirectly enhance the antineoplastic efficacy of immunotherapy by boosting the effectiveness of therapeutic modalities such as chemotherapy, radiotherapy, photothermal, and photodynamic therapy (PTT/PDT). Here, we summarize the studies published in recent years on the use of nanotechnology in pharmaceutics to improve the efficacy of anti-PD-1 antibodies, analyze their characteristics and shortcomings, and combine with the current clinical research on anti-PD-1 antibodies to provide a reference for the design of future nanocarriers, so as to further expand the clinical application prospects of NDDSs. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bing Qin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Guannan Guan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Ressler JM, Zila N, Korosec A, Yu J, Silmbrod R, Bachmayr V, Tittes J, Strobl J, Lichtenberger BM, Hoeller C, Petzelbauer P. Myofibroblast stroma differentiation in infiltrative basal cell carcinoma is accompanied by regulatory T-cells. J Cutan Pathol 2022; 50:544-551. [PMID: 36562598 DOI: 10.1111/cup.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The implications of infiltrative compared to non-infiltrative growth of cutaneous basal cell carcinoma (BCC) on the tumor stroma and immune cell landscape are unknown. This is of clinical importance, because infiltrative BCCs, in contrast to other BCC subtypes, are more likely to relapse after surgery and radiotherapy. MATERIALS AND METHODS This descriptive cross-sectional study analyzed 38 BCCs collected from 2018 to 2021. In the first cohort (n = 28), immune cells were characterized by immunohistochemistry and multiplex immunofluorescence staining for CD3, CD8, CD68, Foxp3, and α-SMA protein expression. In the second cohort (n = 10) with matched characteristics (age, sex, location, and BCC subtype), inflammatory parameters, including TGF-β1, TGF-β2, ACTA2, IL-10, IL-12A, and Foxp3, were quantified via RT-qPCR after isolating mRNA from BCC tissue samples and perilesional skin. RESULTS Infiltrative BCCs showed significantly increased levels of α-SMA expression in fibroblasts (p = 0.0001) and higher levels of Foxp3+ (p = 0.0023) and CD3+ (p = 0.0443) T-cells compared to non-infiltrative BCCs. CD3+ (p = 0.0171) and regulatory T-cells (p = 0.0026) were significantly increased in α-SMA-positive tumor stroma, whereas CD8+ T-cells (p = 0.1329) and CD68+ myeloid cells (p = 0.2337) were not affected. TGF-β1 and TGF-β2 correlated significantly with ACTA2/α-SMA mRNA expression (p = 0.020, p = 0.005). CONCLUSION Infiltrative growth of BCCs shows a myofibroblastic stroma differentiation and is accompanied by an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
| | - Nina Zila
- Department of Dermatology, Medical University of Vienna, Austria
| | - Ana Korosec
- Department of Dermatology, Medical University of Vienna, Austria.,SERD Skin and Endothelium Research Division, Medical University of Vienna, Austria
| | - Josef Yu
- Department of Dermatology, Medical University of Vienna, Austria
| | - Rita Silmbrod
- Department of Dermatology, Medical University of Vienna, Austria
| | | | - Julia Tittes
- Department of Dermatology, Medical University of Vienna, Austria
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Austria
| | - Beate Maria Lichtenberger
- Department of Dermatology, Medical University of Vienna, Austria.,SERD Skin and Endothelium Research Division, Medical University of Vienna, Austria
| | | | - Peter Petzelbauer
- Department of Dermatology, Medical University of Vienna, Austria.,SERD Skin and Endothelium Research Division, Medical University of Vienna, Austria
| |
Collapse
|
45
|
Neuroblastoma Tumor-Associated Mesenchymal Stromal Cells Regulate the Cytolytic Functions of NK Cells. Cancers (Basel) 2022; 15:cancers15010019. [PMID: 36612020 PMCID: PMC9818020 DOI: 10.3390/cancers15010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Neuroblastoma tumor-associated mesenchymal stromal cells (NB-TA-MSC) have been extensively characterized for their pro-tumorigenic properties, while their immunosuppressive potential, especially against NK cells, has not been thoroughly investigated. Herein, we study the immune-regulatory potential of six primary young and senescent NB-TA-MSC on NK cell function. Young cells display a phenotype (CD105+/CD90+/CD73+/CD29+/CD146+) typical of MSC cells and, in addition, express high levels of immunomodulatory molecules (MHC-I, PDL-1 and PDL-2 and transcriptional-co-activator WWTR1), able to hinder NK cell activity. Notably, four of them express the neuroblastoma marker GD2, the most common target for NB immunotherapy. From a functional point of view, young NB-TA-MSC, contrary to the senescent ones, are resistant to activated NK cell-mediated lysis, but this behavior is overcome using anti-CD105 antibody TRC105 that activates antibody-dependent cell-mediated cytotoxicity. In addition, proliferating NB-TA-MSC, but not the senescent ones, after six days of co-culture, inhibit proliferation, expression of activating receptors and cytolytic activity of freshly isolated NK. Inhibitors of the soluble immunosuppressive factors L-kynurenine and prostaglandin E2 efficiently counteract this latter effect. Our data highlight the presence of phenotypically heterogeneous NB-TA-MSC displaying potent immunoregulatory properties towards NK cells, whose inhibition could be mandatory to improve the antitumor efficacy of targeted immunotherapy.
Collapse
|
46
|
The Lymphatic Endothelium in the Context of Radioimmuno-Oncology. Cancers (Basel) 2022; 15:cancers15010021. [PMID: 36612017 PMCID: PMC9817924 DOI: 10.3390/cancers15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The study of lymphatic tumor vasculature has been gaining interest in the context of cancer immunotherapy. These vessels constitute conduits for immune cells' transit toward the lymph nodes, and they endow tumors with routes to metastasize to the lymph nodes and, from them, toward distant sites. In addition, this vasculature participates in the modulation of the immune response directly through the interaction with tumor-infiltrating leukocytes and indirectly through the secretion of cytokines and chemokines that attract leukocytes and tumor cells. Radiotherapy constitutes the therapeutic option for more than 50% of solid tumors. Besides impacting transformed cells, RT affects stromal cells such as endothelial and immune cells. Mature lymphatic endothelial cells are resistant to RT, but we do not know to what extent RT may affect tumor-aberrant lymphatics. RT compromises lymphatic integrity and functionality, and it is a risk factor to the onset of lymphedema, a condition characterized by deficient lymphatic drainage and compromised tissue homeostasis. This review aims to provide evidence of RT's effects on tumor vessels, particularly on lymphatic endothelial cell physiology and immune properties. We will also explore the therapeutic options available so far to modulate signaling through lymphatic endothelial cell receptors and their repercussions on tumor immune cells in the context of cancer. There is a need for careful consideration of the RT dosage to come to terms with the participation of the lymphatic vasculature in anti-tumor response. Here, we provide new approaches to enhance the contribution of the lymphatic endothelium to radioimmuno-oncology.
Collapse
|
47
|
Alilou M, Khorrami M, Prasanna P, Bera K, Gupta A, Viswanathan VS, Patil P, Velu PD, Fu P, Velcheti V, Madabhushi A. A tumor vasculature-based imaging biomarker for predicting response and survival in patients with lung cancer treated with checkpoint inhibitors. SCIENCE ADVANCES 2022; 8:eabq4609. [PMID: 36427313 PMCID: PMC9699671 DOI: 10.1126/sciadv.abq4609] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 10/06/2022] [Indexed: 05/30/2023]
Abstract
Tumor vasculature is a key component of the tumor microenvironment that can influence tumor behavior and therapeutic resistance. We present a new imaging biomarker, quantitative vessel tortuosity (QVT), and evaluate its association with response and survival in patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitor (ICI) therapies. A total of 507 cases were used to evaluate different aspects of the QVT biomarkers. QVT features were extracted from computed tomography imaging of patients before and after ICI therapy to capture the tortuosity, curvature, density, and branching statistics of the nodule vasculature. Our results showed that QVT features were prognostic of OS (HR = 3.14, 0.95% CI = 1.2 to 9.68, P = 0.0006, C-index = 0.61) and could predict ICI response with AUCs of 0.66, 0.61, and 0.67 on three validation sets. Our study shows that QVT imaging biomarker could potentially aid in predicting and monitoring response to ICI in patients with NSCLC.
Collapse
Affiliation(s)
- Mehdi Alilou
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Prateek Prasanna
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11790, USA
| | - Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amit Gupta
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Pradnya Patil
- Department of Solid Tumor Oncology, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Priya Darsini Velu
- Pathology and Laboratory Medicine, Weill Cornell Medicine Physicians, New York, NY 10021, USA
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, CWRU, Cleveland, OH 44106, USA
| | - Vamsidhar Velcheti
- Department of Hematology and Oncology, NYU Langone Health, New York, NY 10016, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
- Atlanta Veterans Administration Medical Center, Atlanta, GA 30322, USA
| |
Collapse
|
48
|
Qiao T, Zhao J, Xin X, Xiong Y, Guo W, Meng F, Li H, Feng Y, Xu H, Shi C, Han Y. Combined pembrolizumab and bevacizumab therapy effectively inhibits non-small-cell lung cancer growth and prevents postoperative recurrence and metastasis in humanized mouse model. Cancer Immunol Immunother 2022; 72:1169-1181. [PMID: 36357599 PMCID: PMC10110651 DOI: 10.1007/s00262-022-03318-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022]
Abstract
Antibodies targeting the programmed cell death protein 1/programmed cell death ligand-1 (PD-1/PD-L1) pathway have dramatically changed the treatment landscape of advanced non-small cell lung cancer (NSCLC). However, combination approaches are required to extend this benefit beyond a subset of patients. In addition, it is of equal interest whether these combination therapy can be applied to neoadjuvant therapy of early-stage NSCLC. In this study, we hypothesized that combining immunotherapy with anti-angiogenic therapy may have a synergistic effect in local tumor control and neoadjuvant therapy. To this end, the effect of combination of bevacizumab and pembrolizumab in humanized mouse models was evaluated. Furthermore, we innovatively constructed a neoadjuvant mouse model that can simulate postoperative recurrence and metastasis of NSCLC to perform neoadjuvant study. Tumor growth and changes in the tumor vasculature, along with the frequency and phenotype of tumor-infiltrating lymphocytes, were examined. Additionally, in vivo imaging system (IVIS) was used to observe the effect of neoadjuvant therapy. Results showed that combination therapy could inhibited tumor growth by transforming tumor with low immunoreactivity into inflamed ('hot') tumor, as demonstrated by increased CD8+granzyme B+ cytotoxic T cell infiltration. Subsequent studies revealed that this process is mediated by vascular normalization and endothelial cell activation. IVIS results showed that neoadjuvant therapy can effectively prevent postoperative recurrence and metastasis. Taken together, these preclinical studies demonstrated that the combination of bevacizumab and pembrolizumab had a synergistic effect in both advanced tumor therapy and neoadjuvant setting and therefore provide a theoretical basis for translating this basic research into clinical applications.
Collapse
Affiliation(s)
- Tianyun Qiao
- Department of Thoracic Surgery, Air Force Specialty Medical Center, Fourth Military Medical University, Xi'an, 710032, China.,Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiangbing Xin
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yanlu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenwen Guo
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, China
| | - Fancheng Meng
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Li
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, China
| | - Yangbo Feng
- Department of Thoracic Surgery, Air Force Specialty Medical Center, Fourth Military Medical University, Xi'an, 710032, China.,Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Xu
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Changhong Shi
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yong Han
- Department of Thoracic Surgery, Air Force Specialty Medical Center, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
49
|
Li X, Fan Y, Tang M, Li H, Zhang Y, Mi J, Wang Y, Zhao M, Wang Z, Su F. PLXDC1 Can Be a Biomarker for Poor Prognosis and Immune Evasion in Gastric Cancer. J Inflamm Res 2022; 15:5439-5455. [PMID: 36147688 PMCID: PMC9488617 DOI: 10.2147/jir.s383191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background Research has revealed that Plexin domain containing 1 (PLXDC1) is correlated with the prognosis of a variety of tumors, but its role in the tumor microenvironment (TME) of gastric cancer has not been reported. Methods In this study, we analyzed PLXDC1 expression in gastric cancer using the Oncomine and the Cancer Genome Atlas (TCGA) databases and immunohistochemical staining experiments, and performed prognostic assessment with data from the TCGA and Kaplan–Meier Plotter databases. The immunomodulatory role of PLXDC1 in the gastric cancer TME was analyzed by signaling pathway enrichment, immune cell correlation analysis, immunomodulator risk model construction and immunohistochemical staining experiments of immune cells. Results The results indicated that PLXDC1 was overexpressed in gastric cancer and that its overexpression was associated with poor prognosis. Multivariate Cox analysis revealed that PLXDC1 could be an independent biomarker of the risk of gastric cancer. Signaling pathway enrichment revealed that high PLXDC1 expression was involved in signaling pathways related to immune activation and stromal activation, and Tumor Immune Dysfunction and Exclusion (TIDE) assessment indicated that high PLXDC1 expression was associated with a significantly higher risk of immune evasion than low PLXDC1 expression. A Cox risk model based on PLXDC1-associated immunomodulators also presented poor prognosis, and immune evasion was significantly higher in the high-risk group than in the low-risk group. In addition, immunohistochemical staining of CD8/CD3/CD4+ T cells in the high and low PLXDC1 expression groups also observed immune cell distribution characteristics of immune evasion. Conclusion This study analyzed PLXDC1 from multiple biological perspectives and revealed that PLXDC1 can be a biomarker for poor prognosis and immune evasion in gastric cancer.
Collapse
Affiliation(s)
- Xinwei Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| | - Yongfei Fan
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, People's Republic of China
| | - Mingyue Tang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| | - Huiyuan Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| | - Yue Zhang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| | - Jiaqi Mi
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| | - Yanyan Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| | - Menglin Zhao
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| | - Zishu Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| | - Fang Su
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| |
Collapse
|
50
|
Sahu A, Kose K, Kraehenbuehl L, Byers C, Holland A, Tembo T, Santella A, Alfonso A, Li M, Cordova M, Gill M, Fox C, Gonzalez S, Kumar P, Wang AW, Kurtansky N, Chandrani P, Yin S, Mehta P, Navarrete-Dechent C, Peterson G, King K, Dusza S, Yang N, Liu S, Phillips W, Guitera P, Rossi A, Halpern A, Deng L, Pulitzer M, Marghoob A, Chen CSJ, Merghoub T, Rajadhyaksha M. In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response. Nat Commun 2022; 13:5312. [PMID: 36085288 PMCID: PMC9463451 DOI: 10.1038/s41467-022-32738-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/12/2022] [Indexed: 12/03/2022] Open
Abstract
Response to immunotherapies can be variable and unpredictable. Pathology-based phenotyping of tumors into ‘hot’ and ‘cold’ is static, relying solely on T-cell infiltration in single-time single-site biopsies, resulting in suboptimal treatment response prediction. Dynamic vascular events (tumor angiogenesis, leukocyte trafficking) within tumor immune microenvironment (TiME) also influence anti-tumor immunity and treatment response. Here, we report dynamic cellular-level TiME phenotyping in vivo that combines inflammation profiles with vascular features through non-invasive reflectance confocal microscopic imaging. In skin cancer patients, we demonstrate three main TiME phenotypes that correlate with gene and protein expression, and response to toll-like receptor agonist immune-therapy. Notably, phenotypes with high inflammation associate with immunostimulatory signatures and those with high vasculature with angiogenic and endothelial anergy signatures. Moreover, phenotypes with high inflammation and low vasculature demonstrate the best treatment response. This non-invasive in vivo phenotyping approach integrating dynamic vasculature with inflammation serves as a reliable predictor of response to topical immune-therapy in patients. Standard assessment of immune infiltration of biopsies is not sufficient to accurately predict response to immunotherapy. Here, the authors show that reflectance confocal microscopy can be used to quantify dynamic vasculature and inflammatory features to better predict treatment response in skin cancers.
Collapse
Affiliation(s)
- Aditi Sahu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Kivanc Kose
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lukas Kraehenbuehl
- Parker Institute for Cancer Immunotherapy, Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Candice Byers
- Roux Institute, Northeastern University, Portland, ME, USA.,Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Aliya Holland
- Parker Institute for Cancer Immunotherapy, Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Teguru Tembo
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.,SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Anabel Alfonso
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Madison Li
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miguel Cordova
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melissa Gill
- SUNY Downstate Health Sciences University, Brooklyn, NY, USA.,Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital Solna, Stockholm, Sweden.,Faculty of Medicine and Health Sciences, University of Alcala, Madrid, Spain
| | - Christi Fox
- Caliber Imaging and Diagnostics, Rochester, NY, USA
| | - Salvador Gonzalez
- Faculty of Medicine and Health Sciences, University of Alcala, Madrid, Spain
| | - Piyush Kumar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Shen Yin
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paras Mehta
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cristian Navarrete-Dechent
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gary Peterson
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kimeil King
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen Dusza
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ning Yang
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shuaitong Liu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Pascale Guitera
- Sydney Melanoma Diagnostic Center, Sydney, NSW, Australia.,Melanoma Institute Australia, Wollstonecraft, NSW, Australia
| | - Anthony Rossi
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Allan Halpern
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Liang Deng
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Taha Merghoub
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Parker Institute for Cancer Immunotherapy, Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|