1
|
Feng L, Li B, Yong SS, Wu X, Tian Z. Exercise and nutrition benefit skeletal muscle: From influence factor and intervention strategy to molecular mechanism. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:302-314. [PMID: 39309454 PMCID: PMC11411340 DOI: 10.1016/j.smhs.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 09/25/2024] Open
Abstract
Sarcopenia is a progressive systemic skeletal muscle disease induced by various physiological and pathological factors, including aging, malnutrition, denervation, and cardiovascular diseases, manifesting as the decline of skeletal muscle mass and function. Both exercise and nutrition produce beneficial effects on skeletal muscle growth and are viewed as feasible strategies to prevent sarcopenia. Mechanisms involve regulating blood flow, oxidative stress, inflammation, apoptosis, protein synthesis and degradation, and satellite cell activation through exerkines and gut microbiomes. In this review, we summarized and discussed the latest progress and future development of the above mechanisms for providing a theoretical basis and ideas for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Lili Feng
- College of Education, Physical Education Department, Zhejiang University, Hangzhou, 310058, China
| | - Bowen Li
- College of Education, Physical Education Department, Zhejiang University, Hangzhou, 310058, China
| | - Su Sean Yong
- College of Education, Physical Education Department, Zhejiang University, Hangzhou, 310058, China
| | - Xiaonan Wu
- The Information and Communication College, National University of Defense Technology, Xi'an, 710106, China
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
2
|
Kavyani B, Ahmadi S, Nabizadeh E, Abdi M. Anti-oxidative activity of probiotics; focused on cardiovascular disease, cancer, aging, and obesity. Microb Pathog 2024; 196:107001. [PMID: 39384024 DOI: 10.1016/j.micpath.2024.107001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
By disturbing the prooxidant-antioxidant balance in the cell, a condition called oxidative stress is created, causing severe damage to the nucleic acid, protein, and lipid of the host cell, and as a result, endangers the viability of the host cell. A relationship between oxidative stress and several different diseases such as cardiovascular diseases, cancer, and obesity has been reported. Therefore, maintaining this prooxidant-antioxidant balance is vital for the cell. Probiotics as one of the potent antioxidants have recently received attention. Many health-promoting and beneficial effects of probiotics are known, and it has been found that the consumption of certain strains of probiotics alone or in combination with food exerts antioxidant efficacy and reduces oxidative damage. Studies have reported that certain probiotic strains implement their antioxidant effects by producing metabolites and antioxidant enzymes, increasing the antioxidant capacity, and reducing host oxidant metabolites. Therefore, we aimed to review and summarize the latest anti-oxidative activity of probiotics and its efficacy in aging, cardiovascular diseases, cancer, and obesity.
Collapse
Affiliation(s)
- Batoul Kavyani
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Ahmadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Edris Nabizadeh
- Imam Khomeini Hospital of Piranshahr City, Urmia University of Medical Sciences, Piranshahr, Iran
| | - Milad Abdi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Shiu WC, Liu ZS, Chen BY, Ku YW, Chen PW. Evaluation of a Standard Dietary Regimen Combined with Heat-Inactivated Lactobacillus gasseri HM1, Lactoferrin-Producing HM1, and Their Sonication-Inactivated Variants in the Management of Metabolic Disorders in an Obesity Mouse Model. Foods 2024; 13:1079. [PMID: 38611383 PMCID: PMC11011380 DOI: 10.3390/foods13071079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This study investigated the impact of incorporating various inactivated probiotic formulations, with or without recombinant lactoferrin (LF) expression, into a standard chow diet on metabolic-related disorders in obese mice. After inducing obesity through a 13-week high-fat diet followed by a standard chow diet, mice received daily oral administrations of different probiotics for 6 weeks using the oral gavage approach. These probiotic formulations consisted of a placebo (MRS), heat-inactivated Lactobacillus gasseri HM1 (HK-HM1), heat-killed LF-expression HM1 (HK-HM1/LF), sonication-killed HM1 (SK-HM1), and sonication-killed LF-expression HM1 (SK-HM1/LF). The study successfully induced obesity, resulting in worsened glucose tolerance and insulin sensitivity. Interestingly, the regular diet alone improved glucose tolerance, and the addition of inactivated probiotics further enhanced this effect, with SK-HM1/LF demonstrating the most noticeable improvement. However, while regular dietary intervention alone improved insulin sensitivity, probiotic supplementation did not provide additional benefits in this aspect. Inflammation in perirenal and epididymal fat tissues was partially alleviated by the regular diet and further improved by probiotics, particularly by SK-HM1, which showed the most significant reduction. Additionally, HK-HM1 and HK-HM1/LF supplements could contribute to the improvement of serum total triglycerides or total cholesterol, respectively. Overall, incorporating inactivated probiotics into a regular diet may enhance metabolic indices, and recombinant LF may offer potential benefits for improving glucose tolerance.
Collapse
Affiliation(s)
- Wei-Chen Shiu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402202, Taiwan; (W.-C.S.); (B.-Y.C.); (Y.-W.K.)
| | - Zhen-Shu Liu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan;
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 33302, Taiwan
| | - Bo-Yuan Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402202, Taiwan; (W.-C.S.); (B.-Y.C.); (Y.-W.K.)
| | - Yu-We Ku
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402202, Taiwan; (W.-C.S.); (B.-Y.C.); (Y.-W.K.)
- Animal and Plant Disease Control Center Yilan County, Wujie Township, Yilan County 268015, Taiwan
| | - Po-Wen Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402202, Taiwan; (W.-C.S.); (B.-Y.C.); (Y.-W.K.)
| |
Collapse
|
4
|
Wheeler AE, Stoeger V, Owens RM. Lab-on-chip technologies for exploring the gut-immune axis in metabolic disease. LAB ON A CHIP 2024; 24:1266-1292. [PMID: 38226866 DOI: 10.1039/d3lc00877k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The continued rise in metabolic diseases such as obesity and type 2 diabetes mellitus poses a global health burden, necessitating further research into factors implicated in the onset and progression of these diseases. Recently, the gut-immune axis, with diet as a main regulator, has been identified as a possible role player in their development. Translation of conventional 2D in vitro and animal models is however limited, while human studies are expensive and preclude individual mechanisms from being investigated. Lab-on-chip technology therefore offers an attractive new avenue to study gut-immune interactions. This review provides an overview of the influence of diet on gut-immune interactions in metabolic diseases and a critical analysis of the current state of lab-on-chip technology to study this axis. While there has been progress in the development of "immuno-competent" intestinal lab-on-chip models, with studies showing the ability of the technology to provide mechanical cues, support longer-term co-culture of microbiota and maintain in vivo-like oxygen gradients, platforms which combine all three and include intestinal and immune cells are still lacking. Further, immune cell types and inclusion of microenvironment conditions which enable in vivo-like immune cell dynamics as well as host-microbiome interactions are limited. Future model development should focus on combining these conditions to create an environment capable of hosting more complex microbiota and immune cells to allow further study into the effects of diet and related metabolites on the gut-immune ecosystem and their role in the prevention and development of metabolic diseases in humans.
Collapse
Affiliation(s)
- Alexandra E Wheeler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, UK.
| | - Verena Stoeger
- Department of Chemical Engineering and Biotechnology, University of Cambridge, UK.
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, UK.
| |
Collapse
|
5
|
Song X, Liu Y, Zhang X, Weng P, Zhang R, Wu Z. Role of intestinal probiotics in the modulation of lipid metabolism: implications for therapeutic treatments. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
6
|
Lee M, Yun YR, Choi EJ, Song JH, Kang JY, Kim D, Lee KW, Chang JY. Anti-obesity effect of vegetable juice fermented with lactic acid bacteria isolated from kimchi in C57BL/6J mice and human mesenchymal stem cells. Food Funct 2023; 14:1349-1356. [PMID: 36630124 DOI: 10.1039/d2fo02998g] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study aimed to investigate the effect of fermented vegetable juice (VJ) obtained from a blend of four crops (Brassica oleracea var. capitata, B. oleracea var. italica, Daucus carota L., and Beta vulgaris) on adipogenesis along with the identification of active compounds. Two lactic acid bacteria (LAB) (Companilactobacillus allii WiKim39 and Lactococcus lactis WiKim0124), isolated from kimchi, were used to ferment the VJ and their effectiveness was evaluated in differentiated human mesenchymal stem cells and obese mice. In vitro antibody array analysis was done to understand signaling proteins in adipogenesis. Gene Ontology enrichment analysis showed that differentially expressed proteins are related to biological processes including immunological processes. These were effectively regulated by LAB and fermented VJ. Supplementation of fermented VJ reduced the weight gain, blood biochemical indicators, and liver fat accumulation in mice. Oil Red O staining indicated that the fermentation metabolites of VJ (indole-3-lactic acid, leucic acid, and phenyllactic acid) had an inhibitory effect on lipid accumulation in vitro. Therefore, it can be concluded that LAB-fermented VJ and its metabolites have the potential to counter obesity, and thus can be therapeutically effective.
Collapse
Affiliation(s)
- Moeun Lee
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea. .,Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea.
| | - Ye-Rang Yun
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea.
| | - Eun Ji Choi
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea.
| | - Jung Hee Song
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea.
| | - Jin Yong Kang
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea.
| | - Daun Kim
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea.
| | - Ki Won Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea. .,Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Korea
| | - Ji Yoon Chang
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea.
| |
Collapse
|
7
|
Marquez A, Andrada E, Russo M, Bolondi ML, Fabersani E, Medina R, Gauffin-Cano P. Characterization of autochthonous lactobacilli from goat dairy products with probiotic potential for metabolic diseases. Heliyon 2022; 8:e10462. [PMID: 36091951 PMCID: PMC9459688 DOI: 10.1016/j.heliyon.2022.e10462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/27/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022] Open
Abstract
The present study aimed to design functional fermented goat milk with probiotic potential for metabolic diseases. Thereby, autochthonous lactobacilli from goat dairy products that target improving the inflammatory, lipid, and glycemic profile were characterized. We designed fermented goat milk using Lactobacillus delbrueckii subsp. indicus CRL1447 as starter strain, supplemented with different probiotic consortia formed by Limosilactobacillus fermentum CRL1446, Lactiplantibacillus paraplantarum CRL1449, and CRL1472 strains. These lactobacilli were selected for their positive effects on inhibition of α-glucosidase, bile salts hydrolase activity, cholesterol assimilation, and decreased triglyceride percentage in Caenorhabditis elegans. Furthermore, the lactobacilli oral administration to obese mice caused a significant decrease in body weight gain and ameliorated hyperglycemia and hyperlipemia. These results reveal the potential of this goat dairy product as a functional food to prevent obesity and related pathologies. Goat milk-derived products stand out for their marketing potential. Hence, fermented goat milk incorporating novel probiotics represents a group of food products with broad prospects by their promising nutritive and therapeutic properties for metabolic diseases. The goat dairy product designed in this study could be used in the prevention of dyslipidemia and hyperglycemia in obese people. New probiotic consortium (CRL1449, CRL1472, and CRL1446) was selected. The probiotic consortium showed in vitro immuno and adipomodulatory properties. Lactobacillus delbrueckii subsp. indicus CRL1447 was selected as a starter culture for fermented milk elaboration. Manufacturing of a functional fermented goat milk with a new probiotic consortium.
Collapse
Affiliation(s)
- Antonela Marquez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
| | - Estefanía Andrada
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Avda. Pte. N. Kirchner 1900, T4000INH, San Miguel de Tucumán, Tucumán, Argentina
| | - Matias Russo
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
| | - María Lujan Bolondi
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
| | - Emanuel Fabersani
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Avda. Pte. N. Kirchner 1900, T4000INH, San Miguel de Tucumán, Tucumán, Argentina
| | - Roxana Medina
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Avda. Pte. N. Kirchner 1900, T4000INH, San Miguel de Tucumán, Tucumán, Argentina
- Corresponding author.
| | - Paola Gauffin-Cano
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
- Corresponding author.
| |
Collapse
|
8
|
Effects of Probiotic Supplementation during Pregnancy on the Future Maternal Risk of Metabolic Syndrome. Int J Mol Sci 2022; 23:ijms23158253. [PMID: 35897822 PMCID: PMC9330652 DOI: 10.3390/ijms23158253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics are live microorganisms that induce health benefits in the host. Taking probiotics is generally safe and well tolerated by pregnant women and their children. Consumption of probiotics can result in both prophylactic and therapeutic effects. In healthy adult humans, the gut microbiome is stable at the level of the dominant taxa: Bacteroidetes, Firmicutes and Actinobacteria, and has a higher presence of Verrucomicrobia. During pregnancy, an increase in the number of Proteobacteria and Actinobacteria phyla and a decrease in the beneficial species Roseburia intestinalis and Faecalibacterium prausnitzii are observed. Pregnancy is a "window" to the mother's future health. The aim of this paper is to review studies assessing the potentially beneficial effects of probiotics in preventing the development of diseases that appear during pregnancy, which are currently considered as risk factors for the development of metabolic syndrome, and consequently, reducing the risk of developing maternal metabolic syndrome in the future. The use of probiotics in gestational diabetes mellitus, preeclampsia and excessive gestational weight gain is reviewed. Probiotics are a relatively new intervention that can prevent the development of these disorders during pregnancy, and thus, would reduce the risk of metabolic syndrome resulting from these disorders in the mother's future.
Collapse
|
9
|
Strategies for the Identification and Assessment of Bacterial Strains with Specific Probiotic Traits. Microorganisms 2022; 10:microorganisms10071389. [PMID: 35889107 PMCID: PMC9323131 DOI: 10.3390/microorganisms10071389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Early in the 1900s, it was proposed that health could be improved and senility delayed by manipulating gut microbiota with the host-friendly bacteria found in yogurt. Later, in 1990, the medical community reconsidered this idea and today probiotics represent a developed area of research with a billion-dollar global industry. As a result, in recent decades, increased attention has been paid to the isolation and characterization of novel probiotic bacteria from fermented foods and dairy products. Most of the identified probiotic strains belong to the lactic acid bacteria group and the genus Bifidobacterium. However, current molecular-based knowledge has allowed the identification and culture of obligatory anaerobic commensal bacteria from the human gut, such as Akkermansia spp. and Faecalibacterium spp., among other human symbionts. We are aware that the identification of new strains of these species does not guarantee their probiotic effects and that each effect must be proved through in vitro and in vivo preclinical studies before clinical trials (before even considering it as a probiotic strain). In most cases, the identification and characterization of new probiotic strain candidates may lack the appropriate set of in vitro experiments allowing the next assessment steps. Here, we address some innovative strategies reported in the literature as alternatives to classical characterization: (i) identification of alternatives using whole-metagenome shotgun sequencing, metabolomics, and multi-omics analysis; and (ii) probiotic characterization based on molecular effectors and/or traits to target specific diseases (i.e., inflammatory bowel diseases, colorectal cancer, allergies, among others).
Collapse
|
10
|
Bhatia R, Sharma S, Bhadada SK, Bishnoi M, Kondepudi KK. Lactic Acid Bacterial Supplementation Ameliorated the Lipopolysaccharide-Induced Gut Inflammation and Dysbiosis in Mice. Front Microbiol 2022; 13:930928. [PMID: 35770157 PMCID: PMC9235405 DOI: 10.3389/fmicb.2022.930928] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
Lipopolysaccharide (LPS), a gut-transmitted endotoxin from Gram-negative bacteria, causes inflammatory diseases leading to the loss of gut barrier integrity and has been identified as a major pathogenic stimulator in many dysfunctions. Hence, supplementation with probiotics is believed to be one of the most effective strategies for treating many inflammatory gut disorders. Although probiotics are known to have a variety of therapeutic characteristics and to play a beneficial role in host defense responses, the molecular mechanisms by which they achieve these beneficial effects are unknown due to species- and strain-specific behaviors. Therefore, in this study, the protective role of five indigenous lactic acid bacterial strains in ameliorating LPS-induced gut barrier impairment in the C57BL/6 mice model was elucidated. Lacticaseibacillus rhamnosus LAB3, Levilactobacillus brevis LAB20, and Lactiplantibacillus plantarum LAB31 were isolated from infant feces; Pediococcus acidilactici LAB8 from fermented food (Bekang); and Lactiplantibacillus plantarum LAB39 from beetroot. Intraperitoneal injection of LPS (10 mg/kg of body weight) increased the levels of lipocalin and serum markers TNF-α, IL-6, and IL-1β, and the overall disease activity index in the treated group. Furthermore, gene expression of NF-kB, IL-12, and Cox-2; mucin-producing genes Muc-2 and Muc-4; and intestinal alkaline phosphatase (IAP) was deleteriously altered in the ileum of LPS-treated mice. Furthermore, LPS also induced dysbiosis in gut microbiota where higher abundances of Klebsiella, Enterobacter, and Salmonella and decreased abundances of Lactobacillus, Bifidobacteria, Roseburia, and Akkermansia were observed. Western blotting results also suggested that LPS treatment causes the loss of gut barrier integrity relative to the pre-supplementation with LAB strains, which enhanced the expression of tight junction proteins and ameliorated the LPS-induced changes and inflammation. Taken together, the study suggested that LAB3 and LAB39 were more potent in ameliorating LPS-induced gut inflammation and dysbiosis.
Collapse
Affiliation(s)
- Ruchika Bhatia
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Shikha Sharma
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
- Department of Biotechnology, Panjab University, Chandigarh, India
- Regional Centre of Biotechnology, Faridabad, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
- Department of Biotechnology, Panjab University, Chandigarh, India
- Regional Centre of Biotechnology, Faridabad, India
- *Correspondence: Kanthi Kiran Kondepudi, ; orcid.org/0000-0001-8036-7555
| |
Collapse
|
11
|
Mahdizade Ari M, Teymouri S, Fazlalian T, Asadollahi P, Afifirad R, Sabaghan M, Valizadeh F, Ghanavati R, Darbandi A. The effect of probiotics on gestational diabetes and its complications in pregnant mother and newborn: A systematic review and meta-analysis during 2010-2020. J Clin Lab Anal 2022; 36:e24326. [PMID: 35243684 PMCID: PMC8993604 DOI: 10.1002/jcla.24326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022] Open
Abstract
This study was aimed to evaluate the effect of probiotics consumption on gestational diabetes (GD) and its complications in pregnant mother and newborn. The study was registered on PROSPERO (CRD42021243409) and all the enrolled articles were collected from four databases (Medline, Scopus, Embase, and Google Scholar) as randomized controlled trials (RCTs) from 2010 to 2020. A total of 4865 study participants from 28 selected studies were included in this review. The present meta‐analysis showed that the consumption of probiotics supplementation has the potential to decrease GD‐predisposing metabolic parameters such as blood glucose level, lipid profile, inflammation, and oxidative markers which may reduce GD occurrence among pregnant women.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Samane Teymouri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Fazlalian
- Department of Microbial Biotechnology, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parisa Asadollahi
- Department of Microbiology, Faculty of medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Roghayeh Afifirad
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fateme Valizadeh
- Department of Endodontics, School of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Scardaci R, Bietto F, Racine PJ, Boukerb AM, Lesouhaitier O, Feuilloley MGJ, Scutera S, Musso T, Connil N, Pessione E. Norepinephrine and Serotonin Can Modulate the Behavior of the Probiotic Enterococcus faecium NCIMB10415 towards the Host: Is a Putative Surface Sensor Involved? Microorganisms 2022; 10:microorganisms10030487. [PMID: 35336063 PMCID: PMC8954575 DOI: 10.3390/microorganisms10030487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
The human gut microbiota has co-evolved with humans by exchanging bidirectional signals. This study aims at deepening the knowledge of this crucial relationship by analyzing phenotypic and interactive responses of the probiotic Enterococcus faecium NCIMB10415 (E. faecium SF68) to the top-down signals norepinephrine (NE) and serotonin (5HT), two neuroactive molecules abundant in the gut. We treated E. faecium NCIMB10415 with 100 µM NE and 50 µM 5HT and tested its ability to form static biofilm (Confocal Laser Scanning Microscopy), adhere to the Caco-2/TC7 monolayer, affect the epithelial barrier function (Transepithelial Electrical Resistance) and human dendritic cells (DC) maturation, differentiation, and cytokines production. Finally, we evaluated the presence of a putative hormone sensor through in silico (whole genome sequence and protein modelling) and in vitro (Micro-Scale Thermophoresis) analyses. The hormone treatments increase biofilm formation and adhesion on Caco-2/TC7, as well as the epithelial barrier function. No differences concerning DC differentiation and maturation between stimulated and control bacteria were detected, while an enhanced TNF-α production was observed in NE-treated bacteria. Investigations on the sensor support the hypothesis that a two-component system on the bacterial surface can sense 5HT and NE. Overall, the data demonstrate that E. faecium NCIMB10415 can sense both NE and 5HT and respond accordingly.
Collapse
Affiliation(s)
- Rossella Scardaci
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (F.B.); (E.P.)
- Correspondence:
| | - Francesca Bietto
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (F.B.); (E.P.)
| | - Pierre-Jean Racine
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Amine M. Boukerb
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Olivier Lesouhaitier
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Marc G. J. Feuilloley
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Sara Scutera
- Laboratory of Immunology, Department of Public Health and Pediatric Sciences, University of Turin, Via Santena 9, 10126 Torino, Italy; (S.S.); (T.M.)
| | - Tiziana Musso
- Laboratory of Immunology, Department of Public Health and Pediatric Sciences, University of Turin, Via Santena 9, 10126 Torino, Italy; (S.S.); (T.M.)
| | - Nathalie Connil
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Enrica Pessione
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (F.B.); (E.P.)
| |
Collapse
|
13
|
SAITO S, OKUNO A, KAKIZAKI N, MAEKAWA T, TSUJI NM. <i>Lactococcus lactis</i> subsp. <i>cremoris</i> C60 induces macrophages activation that enhances CD4+ T cell-based adaptive immunity. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:130-136. [PMID: 35854694 PMCID: PMC9246417 DOI: 10.12938/bmfh.2021-057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/08/2022] [Indexed: 12/17/2022]
Abstract
Lactococcus lactis subsp. cremoris C60 is a probiotic
strain that induces diverse functional modifications in immune cells. In this report, as a
novel effect of C60 on myeloid lineage cells, we show that C60 enhances the immunological
function of macrophages that consequently promotes CD4+ T cell activity in an
antigen-dependent manner. Heat-killed (HK) C60 induced the production of pro-inflammatory
cytokines in thioglycolate-elicited peritoneal macrophages (TPMs) much stronger than
Toll-like receptor (TLR) ligand stimulation. The HK-C60 treatment also augmented the
expression of antigen-presenting and co-stimulatory molecules, such as major
histocompatibility complex (MHC) class II, CD80, and CD86, as well as antigen uptake in
TPMs. These HK-C60-mediated functional upregulations in TPMs resulted in the promotion of
CD4+ T cell activation in an antigen-dependent manner. Interestingly, the TPMs that
originated from the mice fed the HK-C60 diet showed pre-activated characteristics, which
was confirmed by the upregulation of cytokine production and antigen presentation-related
molecule expression under lipopolysaccharide (LPS) stimulation. Furthermore, the
antigen-dependent CD4+ T cell activation was also enhanced by the TPMs. This implied that
antigen presentation activity was enhanced in the TPMs that originated from the HK-C60
diet mice. Thus, C60 effectively upregulates the immunological function of macrophages
that directly connects to CD4+ T cell-based adaptive immunity.
Collapse
Affiliation(s)
- Suguru SAITO
- Division of Virology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0431, Japan
| | - Alato OKUNO
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8560, Japan
| | - Nanae KAKIZAKI
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8560, Japan
| | - Toshio MAEKAWA
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8560, Japan
| | - Noriko M. TSUJI
- Department of Food Science, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan
| |
Collapse
|
14
|
Wu D, Wang H, Xie L, Hu F. Cross-Talk Between Gut Microbiota and Adipose Tissues in Obesity and Related Metabolic Diseases. Front Endocrinol (Lausanne) 2022; 13:908868. [PMID: 35865314 PMCID: PMC9294175 DOI: 10.3389/fendo.2022.908868] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
The rapid increase of obesity and associated diseases has become a major global health problem. Adipose tissues are critical for whole-body homeostasis. The gut microbiota has been recognized as a significant environmental factor in the maintenance of energy homeostasis and host immunity. A growing body of evidence suggests that the gut microbiota regulates host metabolism through a close cross-talk with adipose tissues. It modulates energy expenditure and alleviates obesity by promoting energy expenditure, but it also produces specific metabolites and structural components that may act as the central factors in the pathogenesis of inflammation, insulin resistance, and obesity. Understanding the relationship between gut microbiota and adipose tissues may provide potential intervention strategies to treat obesity and associated diseases. In this review, we focus on recent advances in the gut microbiota and its actions on adipose tissues and highlight the joint actions of the gut microbiota and adipose tissue with each other in the regulation of energy metabolism.
Collapse
|
15
|
Martínez-Montoro JI, Damas-Fuentes M, Fernández-García JC, Tinahones FJ. Role of the Gut Microbiome in Beta Cell and Adipose Tissue Crosstalk: A Review. Front Endocrinol (Lausanne) 2022; 13:869951. [PMID: 35634505 PMCID: PMC9133559 DOI: 10.3389/fendo.2022.869951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
In the last decades, obesity has reached epidemic proportions worldwide. Obesity is a chronic disease associated with a wide range of comorbidities, including insulin resistance and type 2 diabetes mellitus (T2D), which results in significant burden of disease and major consequences on health care systems. Of note, intricate interactions, including different signaling pathways, are necessary for the establishment and progression of these two closely related conditions. Altered cell-to-cell communication among the different players implicated in this equation leads to the perpetuation of a vicious circle associated with an increased risk for the development of obesity-related complications, such as T2D, which in turn contributes to the development of cardiovascular disease. In this regard, the dialogue between the adipocyte and pancreatic beta cells has been extensively studied, although some connections are yet to be fully elucidated. In this review, we explore the potential pathological mechanisms linking adipocyte dysfunction and pancreatic beta cell impairment/insulin resistance. In addition, we evaluate the role of emerging actors, such as the gut microbiome, in this complex crosstalk.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Málaga, Málaga, Spain
- *Correspondence: José Ignacio Martínez-Montoro, ; Francisco J. Tinahones,
| | - Miguel Damas-Fuentes
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Carlos Fernández-García
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: José Ignacio Martínez-Montoro, ; Francisco J. Tinahones,
| |
Collapse
|
16
|
Pacheco R, Ferro P, Pereira M, Jesus G, Borges Y, Jatobá A, Moreira F, Schleder D. Probiotic supplementation affects IGF-1 and leptin levels in Nile tilapia hepatopancreatic tissue. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT This work aimed to assess the effect of the probiotic strain, Lactobacillus plantarum, on the levels of leptin, IGF-1 and their receptors on the hepatopancreatic tissues of Nile tilapia (Oreochromis niloticus) and then correlate fish growth performance and gut microbiological parameters. Fish juveniles (±23g) were reared in a recirculation system with constant aeration and temperature (25°C). They were distributed into six polyethylene tanks (45L) and fed twice a day at 5% of the tank biomass with the respective diets: control (commercial diet without probiotic) and supplemented with L. plantarum inoculum (1 x 108 CFU mL-1), both in triplicate. After 30 days of feeding, L. plantarum-fed fishes showed greater weekly growth rate, final weight, and feed conversion rate, in addition to higher count of lactic-acid bacteria and lower count of pathogenic bacteria in the intestinal tract, when compared to the control group. The immunostaining intensity for IGF-1 and leptin hormones was lower after L. plantarum supplementation than in the control group, with no change in the level for receptors. This reduction could implicate important changes in fish metabolism and homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - A. Jatobá
- Instituto Federal Catarinense, Brazil
| | | | | |
Collapse
|
17
|
Fabersani E, Marquez A, Russo M, Ross R, Torres S, Fontana C, Puglisi E, Medina R, Gauffin-Cano P. Lactic Acid Bacteria Strains Differently Modulate Gut Microbiota and Metabolic and Immunological Parameters in High-Fat Diet-Fed Mice. Front Nutr 2021; 8:718564. [PMID: 34568404 PMCID: PMC8458958 DOI: 10.3389/fnut.2021.718564] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/06/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Dietary strategies, including the use of probiotics as preventive agents that modulate the gut microbiota and regulate the function of adipose tissue, are suitable tools for the prevention or amelioration of obesity and its comorbidities. We aimed to evaluate the effect of lactic acid bacteria (LAB) with different adipo- and immuno-modulatory capacities on metabolic and immunological parameters and intestinal composition microbiota in high-fat-diet-induced in mice fed a high-fat diet Methods: Balb/c weaning male mice were fed a standard (SD) or high-fat diet (HFD) with or without supplementation with Limosilactobacillus fermentum CRL1446 (CRL1446), Lactococcus lactis CRL1434 (CRL1434), or Lacticaseibacillus casei CRL431 (CRL431) for 45 days. Biochemical and immunological parameters, white-adipose tissue histology, gut microbiota composition, and ex vivo cellular functionality (adipocytes and macrophages) were evaluated in SD and HFD mice. Results: CRL1446 and CRL1434 administration, unlike CRL431, induced significant changes in the body and adipose tissue weights and the size of adipocytes. Also, these strains caused a decrease in plasmatic glucose, cholesterol, triglycerides, leptin, TNF-α, IL-6 levels, and an increase of IL-10. The CRL1446 and CRL1434 obese adipocyte in ex vivo functionality assays showed, after LPS stimulus, a reduction in leptin secretion compared to obese control, while with CRL431, no change was observed. In macrophages from obese mice fed with CRL1446 and CRL1434, after LPS stimulus, lower levels of MCP-1, TNF-α, IL-6 compared to obese control were observed. In contrast, CRL431 did not induce modification of cytokine values. Regarding gut microbiota, all strain administration caused a decrease in Firmicutes/Bacteroidetes index and diversity. As well as, related to genus results, all strains increased, mainly the genera Alistipes, Dorea, Barnesiella, and Clostridium XIVa. CRL1446 induced a higher increase in the Lactobacillus genus during the study period. Conclusions: The tested probiotic strains differentially modulated the intestinal microbiota and metabolic/immunological parameters in high-fat-diet-induced obese mice. These results suggest that CRL1446 and CRL1434 strains could be used as adjuvant probiotics strains for nutritional treatment to obesity and overweight. At the same time, the CRL431 strain could be more beneficial in pathologies that require regulation of the immune system.
Collapse
Affiliation(s)
- Emanuel Fabersani
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Antonela Marquez
- Centro de Referencia para Lactobacilos -CONICET, Tucumán, Argentina
| | - Matías Russo
- Centro de Referencia para Lactobacilos -CONICET, Tucumán, Argentina
| | - Romina Ross
- Instituto de Biotecnología Farmacéutica y Alimentaria -CONICET, Tucumán, Argentina
- Facultad Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino, Tucumán, Argentina
| | - Sebastián Torres
- Instituto de Bioprospección y Fisiología Vegetal -CONICET, Tucumán, Argentina
| | - Cecilia Fontana
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Roxana Medina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina
- Centro de Referencia para Lactobacilos -CONICET, Tucumán, Argentina
| | - Paola Gauffin-Cano
- Centro de Referencia para Lactobacilos -CONICET, Tucumán, Argentina
- Facultad Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino, Tucumán, Argentina
| |
Collapse
|
18
|
Ashrafian F, Keshavarz Azizi Raftar S, Shahryari A, Behrouzi A, Yaghoubfar R, Lari A, Moradi HR, Khatami S, Omrani MD, Vaziri F, Masotti A, Siadat SD. Comparative effects of alive and pasteurized Akkermansia muciniphila on normal diet-fed mice. Sci Rep 2021; 11:17898. [PMID: 34504116 PMCID: PMC8429653 DOI: 10.1038/s41598-021-95738-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023] Open
Abstract
Recently, Akkermansia muciniphila an anaerobic member of the gut microbiota, has been proposed as a next-generation probiotic. The aim of this study was evaluation of the effect of alive and pasteurized A. muciniphila on health status, intestinal integrity, immune response, lipid metabolism, and gut microbial composition in normal-diet fed mice as well as direct effects of the bacterium on Caco-2 cell line. A total of 30 mice were distributed into three different groups, control, alive, and pasteurized A. muciniphila-treated group. After acclimation, control and treatment groups were administrated with PBS and 109 CFU/200µL of bacterial suspension for 5 weeks, respectively. Besides, Caco-2 separately exposed to alive, pasteurized A. muciniphila and PBS for 24 h. The results showed that administration of A. muciniphila leads to reduction in body, liver, and white adipose weight. Histology data revealed both treatments had no adverse effects in colon, liver, and adipose tissues as well as induced better gut structure. Moreover, biochemical parameters and inflammatory biomarkers in plasma demonstrated that pasteurized A. muciniphila had more pronounce effect. Furthermore, alive A. muciniphia had better effects on the modulation of gene expression related to fatty acid synthesis, energy homeostasis, and immune response in the liver; meanwhile, these effects in the adipose was more in the pasteurized A. muciniphila administration. More importantly, the improvement of gut health by enhancing strengthen intestinal integrity and maintaining immune homeostasis was seen in both treatments; notably, pasteurized A. muciniphila had more effective. Similarly, treatment with the pasteurized form more effectively upregulated tight junction and regulated immune response-related genes in Caco-2 cell line. Both treatments triggered the improvement of microbiota communities, particularly the alive form. Therefore, both forms of A. muciniphila could modulate lipid and immune homeostasis, improved some gut microbiota, and promoted the overall health, while all these effects were dominantly observed in pasteurized form. In conclusion, pasteurized A. muciniphila can be considered as new medical supplement to maintain health state and prevent diseases in normal mice through different mechanisms.
Collapse
Affiliation(s)
- Fatemeh Ashrafian
- grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran ,grid.420169.80000 0000 9562 2611Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Arefeh Shahryari
- grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Ava Behrouzi
- grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran ,grid.411463.50000 0001 0706 2472Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Rezvan Yaghoubfar
- grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Arezou Lari
- grid.420169.80000 0000 9562 2611Systems Biomedicine Unit, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Reza Moradi
- grid.412573.60000 0001 0745 1259Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Shohreh Khatami
- grid.420169.80000 0000 9562 2611Biochemistry Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mir Davood Omrani
- grid.411600.2Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzam Vaziri
- grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran ,grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Andrea Masotti
- grid.414125.70000 0001 0727 6809Research Laboratories, Children’s Hospital Bambino Gesù-IRCCS, Rome, Italy
| | - Seyed Davar Siadat
- grid.420169.80000 0000 9562 2611Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran ,grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Ashaolu TJ, Fernández-Tomé S. Gut mucosal and adipose tissues as health targets of the immunomodulatory mechanisms of probiotics. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Ghadimi D, Nielsen A, Hassan MFY, Fölster-Holst R, Ebsen M, Frahm SO, Röcken C, de Vrese M, Heller KJ. Modulation of Proinflammatory Bacteria- and Lipid-Coupled Intracellular Signaling Pathways in a Transwell Triple Co-Culture Model by Commensal Bifidobacterium Animalis R101-8. Antiinflamm Antiallergy Agents Med Chem 2021; 20:161-181. [PMID: 33135616 DOI: 10.2174/1871523019999201029115618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Following a fat-rich diet, alterations in gut microbiota contribute to enhanced gut permeability, metabolic endotoxemia, and low grade inflammation-associated metabolic disorders. To better understand whether commensal bifidobacteria influence the expression of key metaflammation-related biomarkers (chemerin, MCP-1, PEDF) and modulate the pro-inflammatory bacteria- and lipid-coupled intracellular signaling pathways, we aimed at i) investigating the influence of the establishment of microbial signaling molecules-based cell-cell contacts on the involved intercellular communication between enterocytes, immune cells, and adipocytes, and ii) assessing their inflammatory mediators' expression profiles within an inflamed adipose tissue model. MATERIAL AND METHODS Bifidobacterium animalis R101-8 and Escherichia coli TG1, respectively, were added to the apical side of a triple co-culture model consisting of intestinal epithelial HT-29/B6 cell line, human monocyte-derived macrophage cells, and adipose-derived stem cell line in the absence or presence of LPS or palmitic acid. mRNA expression levels of key lipid metabolism genes HILPDA, MCP-1/CCL2, RARRES2, SCD, SFRP2 and TLR4 were determined using TaqMan qRT-PCR. Protein expression levels of cytokines (IL-1β, IL-6, and TNF-α), key metaflammation-related biomarkers including adipokines (chemerin and PEDF), chemokine (MCP- 1) as well as cellular triglycerides were assessed by cell-based ELISA, while those of p-ERK, p-JNK, p-p38, NF-κB, p-IκBα, pc-Fos, pc-Jun, and TLR4 were assessed by Western blotting. RESULTS B. animalis R101-8 inhibited LPS- and palmitic acid-induced protein expression of inflammatory cytokines IL-1β, IL-6, TNF-α concomitant with decreases in chemerin, MCP-1, PEDF, and cellular triglycerides, and blocked NF-kB and AP-1 activation pathway through inhibition of p- IκBα, pc-Jun, and pc-Fos phosphorylation. B. animalis R101-8 downregulated mRNA and protein levels of HILPDA, MCP-1/CCL2, RARRES2, SCD and SFRP2 and TLR4 following exposure to LPS and palmitic acid. CONCLUSION B. animalis R101-8 improves biomarkers of metaflammation through at least two molecular/signaling mechanisms triggered by pro-inflammatory bacteria/lipids. First, B. animalis R101-8 modulates the coupled intracellular signaling pathways via metabolizing saturated fatty acids and reducing available bioactive palmitic acid. Second, it inhibits NF-kB's and AP-1's transcriptional activities, resulting in the reduction of pro-inflammatory markers. Thus, the molecular basis may be formed by which commensal bifidobacteria improve intrinsic cellular tolerance against excess pro-inflammatory lipids and participate in homeostatic regulation of metabolic processes in vivo.
Collapse
Affiliation(s)
- Darab Ghadimi
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany
| | - Annegret Nielsen
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany
| | | | - Regina Fölster-Holst
- Clinic of Dermatology, University Hospital Schleswig-Holstein, Schittenhelmstr. 7, D-24105 Kiel, Germany
| | - Michael Ebsen
- Department of Pathology, Städtisches MVZ Kiel GmbH (Kiel City Hospital), Chemnitzstr.33, 24116 Kiel, Germany
| | - Sven Olaf Frahm
- Medizinisches Versorgungszentrum (MVZ), Pathology and Laboratory Medicine Dr. Rabenhorst, Prüner Gang 7, 24103 Kiel, Germany
| | - Christoph Röcken
- Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein, Arnold-Heller-Straße 3/14, D-24105 Kiel, Germany
| | - Michael de Vrese
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany
| | - Knut J Heller
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany
| |
Collapse
|
21
|
Narasimhan H, Ren CC, Deshpande S, Sylvia KE. Young at Gut-Turning Back the Clock with the Gut Microbiome. Microorganisms 2021; 9:microorganisms9030555. [PMID: 33800340 PMCID: PMC8001982 DOI: 10.3390/microorganisms9030555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Over the past century, we have witnessed an increase in life-expectancy due to public health measures; however, we have also seen an increase in susceptibility to chronic disease and frailty. Microbiome dysfunction may be linked to many of the conditions that increase in prevalence with age, including type 2 diabetes, cardiovascular disease, Alzheimer's disease, and cancer, suggesting the need for further research on these connections. Moreover, because both non-modifiable (e.g., age, sex, genetics) and environmental (e.g., diet, infection) factors can influence the microbiome, there are vast opportunities for the use of interventions related to the microbiome to promote lifespan and healthspan in aging populations. To understand the mechanisms mediating many of the interventions discussed in this review, we also provide an overview of the gut microbiome's relationships with the immune system, aging, and the brain. Importantly, we explore how inflammageing (low-grade chronic inflammation that often develops with age), systemic inflammation, and senescent cells may arise from and relate to the gut microbiome. Furthermore, we explore in detail the complex gut-brain axis and the evidence surrounding how gut dysbiosis may be implicated in several age-associated neurodegenerative diseases. We also examine current research on potential interventions for healthspan and lifespan as they relate to the changes taking place in the microbiome during aging; and we begin to explore how the reduction in senescent cells and senescence-associated secretory phenotype (SASP) interplay with the microbiome during the aging process and highlight avenues for further research in this area.
Collapse
Affiliation(s)
| | - Clarissa C. Ren
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | | | - Kristyn E. Sylvia
- The Society for Cardiovascular Angiography and Interventions, Washington, DC 20036, USA
- Correspondence: ; Tel.: +1-774-226-6214
| |
Collapse
|
22
|
Lactococcus lactis subsp. Cremoris C60 restores T Cell Population in Small Intestinal Lamina Propria in Aged Interleukin-18 Deficient Mice. Nutrients 2020; 12:nu12113287. [PMID: 33121026 PMCID: PMC7693701 DOI: 10.3390/nu12113287] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Lactic acid bacteria (LAB), a major commensal bacterium in the small intestine, are well known beneficial bacteria which promote establishment of gut-centric immunity, such as anti-inflammation and anti-infection. In this report, we show that a LAB strain Lactococcus lactis subsp. Cremoris C60 possess an ability to activate antigen presenting cells, such as dendritic cells (DCs), and intestinal T cells which possibly support to maintain healthy intestinal immunological environment in aging process. We found that CD4+ T cells in the small intestine are dramatically decreased in aged Interleukin-18 knock out (IL-18KO) mice, associated with the impairment of IFN-γ production in the CD4+ T cells, especially in small intestinal lamina propria (LP). Surprisingly, heat killed-C60 (HK-C60) diet completely recovered the CD4+ T cells population and activity in SI-LP and over activated the population in Peyer's patches (PPs) of IL-18KO mice. The HK-C60 diet was effective approach not only to restore the number of cells, but also to recover IFN-γ production in the CD4+ T cell population in the small intestine of IL-18-deficient mice. As a possible cause in the age-associated impairment of CD4+ T cells activity in IL-18KO mice, we found that the immunological activity was downregulated in the IL-18-deficient DCs. The cytokines production and cellular activation markers expression were downregulated in the IL-18-deficient bone marrow derived dendritic cells (BMDCs) at the basal level, however, both activities were highly upregulated in HK-C60 stimulation as compared to those of WT cells. Antigen uptake was also attenuated in the IL-18-deficient BMDCs, and it was significantly enhanced in the cells as compared to WT cells in HK-60 stimulation. An in vitro antigen presentation assay showed that IFN-γ production in the CD4+ T cells was significantly enhanced in the culture of IL-18-deficient BMDCs compared with WT cells in the presence of HK-C60. Thus, we conclude that HK-C60 diet possesses an ability to restore T cells impairment in the small intestine of IL-18-deficient environment. In addition, the positive effect is based on the immunological modification of DCs function which directory influences into the promotion of effector CD4+ T cells generation in the small intestine.
Collapse
|
23
|
Evaluation of Fat Accumulation and Adipokine Production during the Long-Term Adipogenic Differentiation of Porcine Intramuscular Preadipocytes and Study of the Influence of Immunobiotics. Cells 2020; 9:cells9071715. [PMID: 32708964 PMCID: PMC7408200 DOI: 10.3390/cells9071715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
The degree of fat accumulation and adipokine production are two major indicators of obesity that are correlated with increased adipose tissue mass and chronic inflammatory responses. Adipocytes have been considered effector cells for the inflammatory responses due to their capacity to express Toll-like receptors (TLRs). In this study, we evaluated the degree of fat accumulation and adipokine production in porcine intramuscular preadipocyte (PIP) cells maintained for in vitro differentiation over a long period without or with stimulation of either TNF-α or TLR2-, TLR3-, or TLR4-ligands. The cytosolic fat accumulation was measured by liquid chromatography and the expression of adipokines (CCL2, IL-6, IL-8 and IL-10) were quantified by RT-qPCR and ELISA at several time points (0 to 20 days) of PIP cells differentiation. Long-term adipogenic differentiation (LTAD) induced a progressive fat accumulation in the adipocytes over time. Activation of TLR3 and TLR4 resulted in an increased rate of fat accumulation into the adipocytes over the LTAD. The production of CCL2, IL-8 and IL-6 were significantly increased in unstimulated adipocytes during the LTAD, while IL-10 expression remained stable over the studied period. An increasing trend of adiponectin and leptin production was also observed during the LTAD. On the other hand, the stimulation of adipocytes with TLRs agonists or TNF-α resulted in an increasing trend of CCL2, IL-6 and IL-8 production while IL-10 remained stable in all four treatments during the LTAD. We also examined the influences of several immunoregulatory probiotic strains (immunobiotics) on the modulation of the fat accumulation and adipokine production using supernatants of immunobiotic-treated intestinal immune cells and the LTAD of PIP cells. Immunobiotics have shown a strain-specific ability to modulate the fat accumulation and adipokine production, and differentiation of adipocytes. Here, we expanded the utility and potential application of our in vitro PIP cells model by evaluating an LTAD period (20 days) in order to elucidate further insights of chronic inflammatory pathobiology of adipocytes associated with obesity as well as to explore the prospects of immunomodulatory intervention for obesity such as immunobiotics.
Collapse
|
24
|
Ghadimi D, Yoness Hassan MF, Fölster-Holst R, Röcken C, Ebsen M, de Vrese M, Heller KJ. Regulation of hepcidin/iron-signalling pathway interactions by commensal bifidobateria plays an important role for the inhibition of metaflammation-related biomarkers. Immunobiology 2020; 225:151874. [DOI: 10.1016/j.imbio.2019.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
|
25
|
Verón HE, Gauffin Cano P, Fabersani E, Sanz Y, Isla MI, Fernández Espinar MT, Gil Ponce JV, Torres S. Cactus pear (Opuntia ficus-indica) juice fermented with autochthonous Lactobacillus plantarum S-811. Food Funct 2019; 10:1085-1097. [PMID: 30720817 DOI: 10.1039/c8fo01591k] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study aimed at investigating the lactic fermentation of cactus pear (Opuntia ficus-indica) fruit juice with the autochthonous and potentially probiotic strain Lactobacillus plantarum S-811. L. plantarum S-811 was able to quickly acidify the juice with a decrease in the pH from 5.5 to 3.7 and a production of 5.06 g l-1 of lactic acid. Fermentation of cactus pear juice led to conservation of its health-promoting properties and it markedly promoted antioxidant mechanisms in yeast cells, showing in a Saccharomyces cerevisiae model a protective effect of up to 11 times against H2O2 (4 mM), compared to yeasts not supplemented with the fermented juice. Administration of fermented juice to obese mice caused a significant decrease in the body weight gain and ameliorated the insulin resistance, hyperglycemia, and hyperlipemia that characterize obesity. These results reveal the potential of the cactus pear juice fermented with L. plantarum S-811 as a functional beverage for the prevention of obesity and related pathologies.
Collapse
Affiliation(s)
- Hernán E Verón
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV) - CONICET, San Miguel de Tucumán, Tucumán, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Intestinal Immunomodulation and Shifts on the Gut Microbiota of BALB/c Mice Promoted by Two Bifidobacterium and Lactobacillus Strains Isolated from Human Samples. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2323540. [PMID: 31119156 PMCID: PMC6500685 DOI: 10.1155/2019/2323540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/07/2019] [Indexed: 01/22/2023]
Abstract
Bifidobacterium animalis subsp. lactis IPLA 20020 and Lactobacillus gasseri IPLA 20212, two strains isolated from human samples, were evaluated for safety and influence over the intestinal microbiota and cytokine production by the intestinal tissue of adult BALB/c mice. Mice were divided into four groups receiving during 8 days PBS or a suspension of each strain, prepared fresh or lyophilized (bifidobacteria), at an amount of 4x108 viable cells/day. This dose could be comparable to the probiotic intake of a human adult who consumed about 100-200 mL of functional fermented milk per day, considering the usual level of probiotics in commercial products. No microbial translocation to liver or alterations in food intake, weight, and behavior were observed in treated mice. Intestinal content of secretory immunoglobulin A (s-IgA) was not affected, discarding any adverse effect on the mucosa-associated immunity. The profile of intestinal proinflammatory/regulatory cytokines after intervention evidenced that the microbial strain administered and its cellular state (fresh or lyophilized) as well as the host tissue analyzed (small or large intestine) influenced the immune response and suggests a moderate shift towards a T helper 1 profile (Th1) in the large intestine after the administration of both strains. Changes on relative levels of some intestinal microbial groups were evidenced after intervention. It is noteworthy that butyrate was positively associated with a balanced pro-Th1 immune response. Therefore, B. animalis subsp. lactis IPLA20020 and L. gasseri IPLA 20212 could be considered potential probiotic candidates to be included in functional foods for balancing the intestinal immune response.
Collapse
|
27
|
Vallejos A, Olivares P, Varela D, Echeverria C, Cabello-Verrugio C, Pérez-Leighton C, Simon F. Preventive Leptin Administration Protects Against Sepsis Through Improving Hypotension, Tachycardia, Oxidative Stress Burst, Multiple Organ Dysfunction, and Increasing Survival. Front Physiol 2018; 9:1800. [PMID: 30618812 PMCID: PMC6299116 DOI: 10.3389/fphys.2018.01800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/29/2018] [Indexed: 02/04/2023] Open
Abstract
Sepsis syndrome is the most important cause of mortality in critically ill patients admitted to intensive care units (ICUs). However, current therapies for its prevention and treatment are still unsatisfactory, and the mortality rate is still high. Non-septic ICU patients are vulnerable to acquire sepsis syndrome. Thus, a preventive treatment for this population is needed. During sepsis syndrome and endotoxemia, severe hypotension, tachycardia, oxidative and immune response increase, multiple organ dysfunction syndrome (MODS) and decreased survival are observed. Leptin administration protects against negative effects of sepsis syndrome and endotoxemia. Furthermore, it is has been reported that leptin elevates blood pressure mediated by sympathetic nervous system activation. However, whether leptin administration before sepsis induction mediates its protective effects during sepsis through blood pressure regulation is not known. Therefore, we investigated whether pre-treatment of leptin improves blood pressure and MODS, resulting in survival increase during endotoxemia. The results showed that leptin administration before endotoxemia induction reduced both the hypotension and tachycardia characteristically observed during endotoxemia. Notably, this protective effect was observed early and late in the course of endotoxemia. Endotoxemia-induced MODS decreased in leptin-treated rats, which was reflected in normal values for liver and kidney function, inhibition of muscle mass wasting and maintenance of glycemia. Furthermore, leptin pre-treatment decreased the oxidative stress burst in blood and blunted the increased pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 observed during endotoxemia. Remarkably, according to the leptin-induced increase in survival, leptin pre-administration decreased the risk for death associated with sepsis syndrome at early and late times after endotoxemia induction. These results show a potential preventive therapy against sepsis syndrome and endotoxemia in vulnerable patients, based in the beneficial actions of leptin.
Collapse
Affiliation(s)
- Alejandro Vallejos
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Pedro Olivares
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Diego Varela
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Universidad de Chile, Santiago, Chile
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copiapo, Chile.,Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudio Pérez-Leighton
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Simon
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
28
|
Sabico S, Al-Mashharawi A, Al-Daghri NM, Wani K, Amer OE, Hussain DS, Ahmed Ansari MG, Masoud MS, Alokail MS, McTernan PG. Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: A randomized, double-blind, placebo-controlled trial. Clin Nutr 2018; 38:1561-1569. [PMID: 30170781 DOI: 10.1016/j.clnu.2018.08.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The aim of this trial was to characterize the beneficial effects of probiotics on decreasing endotoxin levels and other cardiometabolic parameters in Arab patients with type 2 diabetes mellitus (T2DM). METHODS Saudi adults with naïve T2DM (n = 30; 12 males and 18 females) were randomly allocated to receive twice daily placebo or 2.5 × 109 cfu/g of Ecologic®Barrier (multi-strain probiotics; n = 31; 14 males and 17 females) in a double-blind manner over a 6 month period, respectively. Anthropometrics were measured and fasting blood samples were collected to analyze endotoxin, glycemic parameters [glucose, insulin, c-peptide and homeostasis model assessment for insulin resistance (HOMA-IR)], lipids [triglycerides, total cholesterol, low and high-density lipoprotein (LDL and HDL, respectively) cholesterol and total/HDL-cholesterol ratio], inflammatory markers [tumor-necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and C-reactive protein (CRP)] and adipocytokines [leptin, adiponectin and resistin] at baseline and after 3 and 6 months of intervention. RESULTS Multi-strain probiotics supplementation for 6 months caused a significant decrease in circulating levels of endotoxin by almost 70% over 6 months, as well as glucose (38%), insulin (38%), HOMA-IR (64%), triglycerides (48%), total cholesterol (19%), total/HDL-cholesterol ratio (19%), TNF-α (67%), IL-6 (77%), CRP (53%), resistin (53%), and a significant increase in adiponectin (72%) as compared with baseline. Only HOMA-IR had a clinically significant reduction (-3.4, 64.2%) in the probiotics group as compared to placebo group at all time points. No other clinically significant changes were observed between the probiotic or placebo group at 3 and 6 months in other markers. CONCLUSION Multi-strain probiotic supplementation over 6 months as a monotherapy significantly decreased HOMA-IR in T2DM patients, with the probiotic treatment group highlighting reduced inflammation and improved cardiometabolic profile. As such, multi-strain probiotics is a promising adjuvant anti-diabetes therapy. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01765517.
Collapse
Affiliation(s)
- Shaun Sabico
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, UHCW Trust, Clifford Bridge Road, Walsgrave, Coventry, CV2 2DX, UK; Prince Mutaib bin Abdullah Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Ayah Al-Mashharawi
- Prince Mutaib bin Abdullah Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nasser M Al-Daghri
- Prince Mutaib bin Abdullah Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kaiser Wani
- Prince Mutaib bin Abdullah Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Osama E Amer
- Prince Mutaib bin Abdullah Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Danish S Hussain
- Prince Mutaib bin Abdullah Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed Ghouse Ahmed Ansari
- Prince Mutaib bin Abdullah Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad S Masoud
- Prince Mutaib bin Abdullah Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Majed S Alokail
- Prince Mutaib bin Abdullah Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Philip G McTernan
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG1 8NS, UK.
| |
Collapse
|
29
|
Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. Eur J Nutr 2018; 58:27-43. [PMID: 30043184 DOI: 10.1007/s00394-018-1790-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE The first part of this review focuses on the role of cells and molecules of adipose tissue involved in metabolic syndrome-induced inflammation and in the maintenance of this pathology. In the second part of the review, the potential role of probiotics-modulating metabolic syndrome-related inflammatory components is summarized and discussed. METHODS The search for the current scientific literature was carried out using ScienceDirect, PubMed, and Google Scholar search engines. The keywords used were: metabolic syndrome, obesity, insulin resistant, adipose tissue, adipose tissue inflammation, chronic low-grade inflammation, immune cells, adipokines, cytokines, probiotics, and gut microbiota. RESULTS AND CONCLUSIONS Chronic low-grade inflammation that characterized metabolic syndrome can contribute to the development of the metabolic dysfunctions involved in the pathogenesis of its comorbidities. Adipose tissue is a complex organ that performs metabolic and immune functions. During metabolic syndrome, an imbalance in the inflammatory components of adipose tissue (immune cells, cytokines, and adipocytokines), which shift from an anti-inflammatory to a pro-inflammatory profile, can provoke metabolic syndrome linked complications. Further knowledge concerning the immune function of adipose tissue may contribute to finding better alternatives for the treatment or prevention of such disorders. The control of inflammation could result in the management of many of the pathologies related to metabolic syndrome. Due to the strong evidence that gut microbiota composition plays a role modulating the body weight, adipose tissue, and the prevalence of a low-grade inflammatory status, probiotics emerge as valuable tools for the prevention of metabolic syndrome and health recovery.
Collapse
|
30
|
Draft Genome Sequence of the Feruloyl Esterase-Producing Strain Lactobacillus fermentum CRL1446, a Probiotic for Malnutrition. GENOME ANNOUNCEMENTS 2018; 6:6/21/e00225-18. [PMID: 29798910 PMCID: PMC5968731 DOI: 10.1128/genomea.00225-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
We report here the draft genome sequence of Lactobacillus fermentum CRL1446 (2,148,781 bp, 51.4% G+C content). This strain exhibits feruloyl esterase activity and important technological and probiotic properties. Because of its proven beneficial effects in vivo, it represents an interesting candidate for the development of functional foods or pharmabiotics for malnutrition.
Collapse
|
31
|
Shonyela SM, Wang G, Yang W, Yang G, Wang C. New Progress regarding the Use of Lactic Acid Bacteria as Live Delivery Vectors, Treatment of Diseases and Induction of Immune Responses in Different Host Species Focusing on <i>Lactobacillus</i> Species. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/wjv.2017.74004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|