1
|
Jash R, Maparu K, Seksaria S, Das S. Decrypting the Pathological Pathways in IgA Nephropathy. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:43-56. [PMID: 37870060 DOI: 10.2174/0127722708275167231011102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
IgAN is the most common form of glomerulonephritis affecting 2000000 people annually. The disease ultimately progresses to chronic renal failure and ESRD. In this article, we focused on a comprehensive understanding of the pathogenesis of the disease and thus identifying different target proteins that could be essential in therapeutic approaches in the management of the disease. Aberrantly glycosylated IgA1 produced by the suppression of the enzyme β-1, 3 galactosyltransferase ultimately triggered the formation of IgG autoantibodies which form complexes with Gd-IgA1. The complex gets circulated through the blood vessels through monocytes and ultimately gets deposited in the glomerular mesangial cells via CD71 receptors present locally. This complex triggers the inflammatory pathways activating the alternate complement system, various types of T Cells, toll-like receptors, cytokines, and chemokines ultimately recruiting the phagocytic cells to eliminate the Gd-IgA complex. The inflammatory proteins cause severe mesangial and podocyte damage in the kidney which ultimately initiates the repair process following chronic inflammation by an important protein named TGFβ1. TGF β1 is an important protein produced during chronic inflammation mediating the repair process via various downstream transduction proteins and ultimately producing fibrotic proteins which help in the repair process but permanently damage the glomerular cells.
Collapse
Affiliation(s)
- Rajiv Jash
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| | - Kousik Maparu
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Sanket Seksaria
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Saptarshi Das
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| |
Collapse
|
2
|
Hou YB, Chang S, Chen S, Zhang WJ. Intravenous immunoglobulin in kidney transplantation: Mechanisms of action, clinical applications, adverse effects, and hyperimmune globulin. Clin Immunol 2023; 256:109782. [PMID: 37742791 DOI: 10.1016/j.clim.2023.109782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Intravenous immunoglobulin (IVIG) has been developed for over 40 years. The mechanisms of action of IVIG are complex and diverse, and there may be multiple mechanisms that combine to influence it. IVIG has been used in kidney transplantation for desensitization, treatment of antibody-mediated rejection, and ABO-incompatible transplantation. and treatment or prevention of some infectious diseases. Hyperimmune globulins such as cytomegalovirus hyperimmune globulin (CMV-IG) and hepatitis B hyperimmune globulin (HBIG) have also been used to protect against cytomegalovirus and hepatitis B virus, respectively. However, IVIG is also associated with some rare but serious adverse effects and some application risks, and clinicians need to weigh the pros and cons and develop individualized treatment programs to benefit more patients. This review will provide an overview of the multiple mechanisms of action, clinical applications, adverse effects, and prophylactic measures of IVIG, and hyperimmune globulin will also be introduced in it.
Collapse
Affiliation(s)
- Yi-Bo Hou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Wei-Jie Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China.
| |
Collapse
|
3
|
Ding L, Chen X, Cheng H, Zhang T, Li Z. Advances in IgA glycosylation and its correlation with diseases. Front Chem 2022; 10:974854. [PMID: 36238099 PMCID: PMC9552352 DOI: 10.3389/fchem.2022.974854] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Immunoglobulin A (IgA) is the most abundant immunoglobulin synthesized in the human body. It has the highest concentration in the mucosa and is second only to IgG in serum. IgA plays an important role in mucosal immunity, and is the predominant antibody used to protect the mucosal surface from pathogens invasion and to maintain the homeostasis of intestinal flora. Moreover, The binding IgA to the FcαRI (Fc alpha Receptor I) in soluble or aggregated form can mediate anti- or pro- inflammatory responses, respectively. IgA is also known as one of the most heavily glycosylated antibodies among human immunoglobulins. The glycosylation of IgA has been shown to have a significant effect on its immune function. Variation in the glycoform of IgA is often the main characteration of autoimmune diseases such as IgA nephropathy (IgAN), IgA vasculitis (IgAV), systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). However, compared with the confirmed glycosylation function of IgG, the pathogenic mechanism of IgA glycosylation involved in related diseases is still unclear. This paper mainly summarizes the recent reports on IgA’s glycan structure, its function, its relationship with the occurrence and development of diseases, and the potential application of glycoengineered IgA in clinical antibody therapeutics, in order to provide a potential reference for future research in this field.
Collapse
|
4
|
IgA-Based Secretory Response in Tears of COVID-19 Patients: A Potential Biomarker of Pro-Inflammatory State in Course of SARS-CoV-2 Infection. Pathogens 2022; 11:pathogens11101098. [PMID: 36297155 PMCID: PMC9610380 DOI: 10.3390/pathogens11101098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Mucosal immunity, including secretory IgA (sIgA), plays an important role in the early defence against SARS-CoV-2 infection. However, a comprehensive evaluation of the local immune response in tears in relation to blood antibody reservoirs has not yet been conducted. A total of 179 symptomatic laboratory-confirmed COVID-19 patients were included in this single-centre study. Conjunctival swabs were analysed by a reverse transcription polymerase chain reaction for the detection of SARS-CoV-2 RNA. In parallel, tear samples collected by Schirmer test strips and plasma samples were analysed by ELISA to detect anti-S1 IgA levels. The concentrations of selected inflammatory cytokines in tears were determined by a magnetic bead assay. Anti-SARS-CoV-2 sIgA was present in the tears of 81 (45.25%) confirmed COVID-19 patients, and the tear IgA levels were correlated with the plasma IgA levels (Rs = +0.29, p = 0.0003). SARS-CoV-2 RNA in the conjunctival sac was identified in 18 COVID-19 patients (10%). Positive correlations between the tear IgA level and the concentrations of several cytokines TNF-α (Rs = +0.23, p = 0.002), IL-1β (Rs = +0.25, p < 0.001), IL-2 (Rs = +0.20, p = 0.007), IL-4 (Rs = +0.16, p = 0.04), IL-5 (Rs = +0.36, p < 0.001), IL-6 (Rs = +0.32, p < 0.001), IL-8 (Rs = +0.31, p < 0.001), VEGF (Rs = +0.25, p < 0.001) and GM-CSF (Rs = +0.27, p < 0.001) were also found. Quantitative tear film-based sIgA could potentially serve as a rapid and easily accessible biomarker of external mucosal immunity to SARS-CoV-2. The concentration of sIgA is directly related to individual host immune responses to SARS-CoV-2 infection.
Collapse
|
5
|
Aggarwal R, Dewan A, Pandey A, Trehan N, Majid MA. Efficacy of high-dose intravenous immunoglobulin in severe and critical COVID-19: A retrospective cohort study. Int Immunopharmacol 2022; 106:108615. [PMID: 35168081 PMCID: PMC8825318 DOI: 10.1016/j.intimp.2022.108615] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 01/08/2023]
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Ritesh Aggarwal
- Department of Critical Care, Max Smart Super Speciality Hospital, New Delhi 110017, India.
| | - Arun Dewan
- Department of Critical Care, Max Smart Super Speciality Hospital, New Delhi 110017, India
| | - Ankita Pandey
- Department of Internal Medicine, Max Smart Super Speciality Hospital, New Delhi 110017, India
| | - Nikita Trehan
- Department of Critical Care, Max Smart Super Speciality Hospital, New Delhi 110017, India
| | - Muhammad Aamir Majid
- Department of Critical Care, Max Smart Super Speciality Hospital, New Delhi 110017, India
| |
Collapse
|
6
|
Fridman WH, Meylan M, Petitprez F, Sun CM, Italiano A, Sautès-Fridman C. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat Rev Clin Oncol 2022; 19:441-457. [PMID: 35365796 DOI: 10.1038/s41571-022-00619-z] [Citation(s) in RCA: 235] [Impact Index Per Article: 117.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 02/08/2023]
Abstract
B cells are a major component of the tumour microenvironment, where they are predominantly associated with tertiary lymphoid structures (TLS). In germinal centres within mature TLS, B cell clones are selectively activated and amplified, and undergo antibody class switching and somatic hypermutation. Subsequently, these B cell clones differentiate into plasma cells that can produce IgG or IgA antibodies targeting tumour-associated antigens. In tumours without mature TLS, B cells are either scarce or differentiate into regulatory cells that produce immunosuppressive cytokines. Indeed, different tumours vary considerably in their TLS and B cell content. Notably, tumours with mature TLS, a high density of B cells and plasma cells, as well as the presence of antibodies to tumour-associated antigens are typically associated with favourable clinical outcomes and responses to immunotherapy compared with those lacking these characteristics. However, polyclonal B cell activation can also result in the formation of immune complexes that trigger the production of pro-inflammatory cytokines by macrophages and neutrophils. In complement-rich tumours, IgG antibodies can also activate the complement cascade, resulting in the production of anaphylatoxins that sustain tumour-promoting inflammation and angiogenesis. Herein, we review the phenotypic heterogeneity of intratumoural B cells and the importance of TLS in their generation as well as the potential of B cells and TLS as prognostic and predictive biomarkers. We also discuss novel therapeutic approaches that are being explored with the aim of increasing mature TLS formation, B cell differentiation and anti-tumour antibody production within tumours.
Collapse
Affiliation(s)
- Wolf H Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France. .,Equipe labellisée Ligue contre le Cancer, Paris, France.
| | - Maxime Meylan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Florent Petitprez
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Cheng-Ming Sun
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Antoine Italiano
- Faculty of Medicine, University of Bordeaux, Bordeaux, France.,Department of Medicine, Institute Bergonié, Bordeaux, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| |
Collapse
|
7
|
Abstract
In 2016, the European Hematology Association (EHA) published the EHA Roadmap for European Hematology Research1 aiming to highlight achievements in the diagnostics and treatment of blood disorders, and to better inform European policy makers and other stakeholders about the urgent clinical and scientific needs and priorities in the field of hematology. Each section was coordinated by 1–2 section editors who were leading international experts in the field. In the 5 years that have followed, advances in the field of hematology have been plentiful. As such, EHA is pleased to present an updated Research Roadmap, now including eleven sections, each of which will be published separately. The updated EHA Research Roadmap identifies the most urgent priorities in hematology research and clinical science, therefore supporting a more informed, focused, and ideally a more funded future for European hematology research. The 11 EHA Research Roadmap sections include Normal Hematopoiesis; Malignant Lymphoid Diseases; Malignant Myeloid Diseases; Anemias and Related Diseases; Platelet Disorders; Blood Coagulation and Hemostatic Disorders; Transfusion Medicine; Infections in Hematology; Hematopoietic Stem Cell Transplantation; CAR-T and Other Cell-based Immune Therapies; and Gene Therapy.
Collapse
|
8
|
Zhong Z, Nan K, Weng M, Yue Y, Zhou W, Wang Z, Chu Y, Liu R, Miao C. Pro- and Anti- Effects of Immunoglobulin A- Producing B Cell in Tumors and Its Triggers. Front Immunol 2021; 12:765044. [PMID: 34868013 PMCID: PMC8640120 DOI: 10.3389/fimmu.2021.765044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
B cells are well known as key mediators of humoral immune responses via the production of antibodies. Immunoglobulin A (IgA) is the most abundantly produced antibody isotype and provides the first line of immune protection at mucosal surfaces. However, IgA has long been a divisive molecule with respect to tumor progression. IgA exerts anti- or pro-tumor effect in different tumor types. In this review, we summarize emerging evidence regarding the production and effects of IgA and IgA+ cells in the tumor microenvironment (TME). Moreover, we discuss that the TME cytokines, host diet, microbiome, and metabolites play a pivotal role in controlling the class-switch recombination (CSR) of IgA. The analysis of intratumoral Ig repertoires and determination of metabolites that influence CSR may help establish novel therapeutic targets for the treatment of cancers.
Collapse
Affiliation(s)
- Ziwen Zhong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ke Nan
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meilin Weng
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenchang Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Fifth People's Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ronghua Liu
- Shanghai Fifth People's Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Danieli MG, Piga MA, Paladini A, Longhi E, Mezzanotte C, Moroncini G, Shoenfeld Y. Intravenous immunoglobulin as an important adjunct in the prevention and therapy of coronavirus 2019 disease. Scand J Immunol 2021; 94:e13101. [PMID: 34940980 PMCID: PMC8646640 DOI: 10.1111/sji.13101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
The coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenged globally with its morbidity and mortality. A small percentage of affected patients (20%) progress into the second stage of the disease clinically presenting with severe or fatal involvement of lung, heart and vascular system, all contributing to multiple-organ failure. The so-called 'cytokines storm' is considered the pathogenic basis of severe disease and it is a target for treatment with corticosteroids, immunotherapies and intravenous immunoglobulin (IVIg). We provide an overview of the role of IVIg in the therapy of adult patients with COVID-19 disease. After discussing the possible underlying mechanisms of IVIg immunomodulation in COVID-19 disease, we review the studies in which IVIg was employed. Considering the latest evidence that show a link between new coronavirus and autoimmunity, we also discuss the use of IVIg in COVID-19 and anti-SARS-CoV-2 vaccination related autoimmune diseases and the post-COVID-19 syndrome. The benefit of high-dose IVIg is evident in almost all studies with a rapid response, a reduction in mortality and improved pulmonary function in critically ill COVID-19 patients. It seems that an early administration of IVIg is crucial for a successful outcome. Studies' limitations are represented by the small number of patients, the lack of control groups in some and the heterogeneity of included patients. IVIg treatment can reduce the stay in ICU and the demand for mechanical ventilation, thus contributing to attenuate the burden of the disease.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- Clinica Medica, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di Ancona and DISCLIMOUniversità Politecnica delle Marche, Clinica MedicaAnconaItaly
- School of Specialisation in Allergology and Clinical Immunology, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Mario Andrea Piga
- School of Specialisation in Allergology and Clinical Immunology, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Alberto Paladini
- School of Specialisation in Internal Medicine, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Eleonora Longhi
- Scuola di Medicina e ChirurgiaAlma Mater StudiorumUniversità degli Studi di BolognaBolognaItaly
| | - Cristina Mezzanotte
- School of Specialisation in Internal Medicine, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Gianluca Moroncini
- Clinica Medica, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di Ancona and DISCLIMOUniversità Politecnica delle Marche, Clinica MedicaAnconaItaly
- School of Specialisation in Internal Medicine, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Yehuda Shoenfeld
- Ariel UniversityArielIsrael
- The Zabludowicz Center for Autoimmune DiseasesSheba Medical CenterRamat GanIsrael
- Saint Petersburg State UniversitySt. PetersburgRussia
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)MoscowRussia
| |
Collapse
|
10
|
Amadori M, Listorti V, Razzuoli E. Reappraisal of PRRS Immune Control Strategies: The Way Forward. Pathogens 2021; 10:pathogens10091073. [PMID: 34578106 PMCID: PMC8469074 DOI: 10.3390/pathogens10091073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
The control of porcine reproductive and respiratory syndrome (PRRS) is still a major issue worldwide in the pig farming sector. Despite extensive research efforts and the practical experience gained so far, the syndrome still severely affects farmed pigs worldwide and challenges established beliefs in veterinary virology and immunology. The clinical and economic repercussions of PRRS are based on concomitant, additive features of the virus pathogenicity, host susceptibility, and the influence of environmental, microbial, and non-microbial stressors. This makes a case for integrated, multi-disciplinary research efforts, in which the three types of contributing factors are critically evaluated toward the development of successful disease control strategies. These efforts could be significantly eased by the definition of reliable markers of disease risk and virus pathogenicity. As for the host's susceptibility to PRRSV infection and disease onset, the roles of both the innate and adaptive immune responses are still ill-defined. In particular, the overt discrepancy between passive and active immunity and the uncertain role of adaptive immunity vis-à-vis established PRRSV infection should prompt the scientific community to develop novel research schemes, in which apparently divergent and contradictory findings could be reconciled and eventually brought into a satisfactory conceptual framework.
Collapse
Affiliation(s)
- Massimo Amadori
- Italian Network of Veterinary Immunology, 25125 Brescia, Italy
- Correspondence:
| | - Valeria Listorti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genoa, Italy; (V.L.); (E.R.)
| | - Elisabetta Razzuoli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genoa, Italy; (V.L.); (E.R.)
| |
Collapse
|
11
|
Kumar D, Gauthami S, Bayry J, Kaveri SV, Hegde NR. Antibody Therapy: From Diphtheria to Cancer, COVID-19, and Beyond. Monoclon Antib Immunodiagn Immunother 2021; 40:36-49. [PMID: 33900819 DOI: 10.1089/mab.2021.0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dawn of the 20th century saw the formative years of developments in immunology. In particular, immunochemistry, specifically pertaining to antibodies, was extensively studied. These studies laid the foundations for employing antibodies in a variety of ways. Not surprisingly, antibodies have been used for applications ranging from biomedical research to disease diagnostics and therapeutics to evaluation of immune responses during natural infection and those elicited by vaccines. Despite recent advancements in cellular immunology and the excitement of T cell therapy, use of antibodies represents a large proportion of immunotherapeutic approaches as well as clinical interventions. Polyclonal antibodies in the form of plasma or sera continue to be used to treat a number of diseases, including autoimmune disorders, cancers, and infectious diseases. Historically, antisera to toxins have been the longest serving biotherapeutics. In addition, intravenous immunoglobulins (IVIg) have been extensively used to treat not only immunodeficiency conditions but also autoimmune disorders. Beyond the simplistic suppositions of their action, the IVIg have also unraveled the immune regulatory and homeostatic ramifications of their use. The advent of monoclonal antibodies (MAbs), on the other hand, has provided a clear pathway for their development as drug molecules. MAbs have found a clear place in the treatment of cancers and extending lives and have been used in a variety of other conditions. In this review, we capture the important developments in the therapeutic applications of antibodies to alleviate disease, with a focus on some of the recent developments.
Collapse
Affiliation(s)
| | - Sulgey Gauthami
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Indian Institute of Technology Palakkad, Palakkad, Kerala, India
| | - Srinivas V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique (CNRS) Bureau India, IFI, New Delhi, India
| | | |
Collapse
|
12
|
Abstract
The opposing roles of innate and adaptive immune cells in suppressing or supporting cancer initiation, progression, metastasis and response to therapy has been long debated. The mechanisms by which different monocyte and T cell subtypes affect and modulate cancer have been extensively studied. However, the role of B cells and their subtypes have remained elusive, perhaps partially due to their heterogeneity and range of actions. B cells can produce a variety of cytokines and present tumor-derived antigens to T cells in combination with co-stimulatory or inhibitory ligands based on their phenotype. Unlike most T cells, B cells can be activated by innate immune stimuli, such as endotoxin. Furthermore, the isotype and specificity of the antibodies produced by plasma cells regulate distinct immune responses, including opsonization, antibody-mediated cellular cytotoxicity (ADCC) and complement activation. B cells are shaped by the tumor environment (TME), with the capability to regulate the TME in return. In this review, we will describe the mechanisms of B cell action, including cytokine production, antigen presentation, ADCC, opsonization, complement activation and how they affect tumor development and response to immunotherapy. We will also discuss how B cell fate within the TME is affected by tumor stroma, microbiome and metabolism.
Collapse
Affiliation(s)
- Shabnam Shalapour
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Michael Karin
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093, USA; Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Natural Antibodies: from First-Line Defense Against Pathogens to Perpetual Immune Homeostasis. Clin Rev Allergy Immunol 2020; 58:213-228. [PMID: 31161341 DOI: 10.1007/s12016-019-08746-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural antibodies (nAbs) are most commonly defined as immunoglobulins present in the absence of pathological conditions or deliberate immunizations. Occurrence of nAbs in germ- and antigen-free mice suggest that their production is driven, at least in part, by self-antigens. Accordingly, nAbs are constituted of natural autoantibodies (nAAbs), and can belong to the IgM, IgG, or IgA subclasses. These nAbs provide immediate protection against infection while the adaptive arm of the immune system mounts a specific and long-term response. Beyond immediate protection from infection, nAbs have been shown to play various functional roles in the immune system, which include clearance of apoptotic debris, suppression of autoimmune and inflammatory responses, regulation of B cell responses, selection of the B cell repertoires, and regulation of B cell development. These various functions of nAbs are afforded by their reactivity, which is broad, cross-reactive, and shown to recognize evolutionarily fixed epitopes shared between foreign and self-antigens. Furthermore, nAbs have unique characteristics that also contribute to their functional roles and set them apart from antigen-specific antibodies. In further support for the role of nAbs in the protection against infections and in the maintenance of immune homeostasis, the therapeutic preparation of polyclonal immunoglobulins, intravenous immunoglobulin (IVIG), rich in nAbs is commonly used in the replacement therapy of primary and secondary immunodeficiencies and in the immunotherapy of a large number of autoimmune and inflammatory diseases. Here, we review several topics on nAbs features and functions, and therapeutic applications in human diseases.
Collapse
|
14
|
Liu X, Cao W, Li T. High-Dose Intravenous Immunoglobulins in the Treatment of Severe Acute Viral Pneumonia: The Known Mechanisms and Clinical Effects. Front Immunol 2020; 11:1660. [PMID: 32760407 PMCID: PMC7372093 DOI: 10.3389/fimmu.2020.01660] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022] Open
Abstract
The current outbreak of viral pneumonia, caused by novel coronavirus SARS-CoV-2, is the focus of worldwide attention. The WHO declared the COVID-19 outbreak a pandemic event on Mar 12, 2020, and the number of confirmed cases is still on the rise worldwide. While most infected individuals only experience mild symptoms or may even be asymptomatic, some patients rapidly progress to severe acute respiratory failure with substantial mortality, making it imperative to develop an efficient treatment for severe SARS-CoV-2 pneumonia alongside supportive care. So far, the optimal treatment strategy for severe COVID-19 remains unknown. Intravenous immunoglobulin (IVIg) is a blood product pooled from healthy donors with high concentrations of immunoglobulin G (IgG) and has been used in patients with autoimmune and inflammatory diseases for more than 30 years. In this review, we aim to highlight the known mechanisms of immunomodulatory effects of high-dose IVIg therapy, the immunopathological hypothesis of viral pneumonia, and the clinical evidence of IVIg therapy in viral pneumonia. We then make cautious therapeutic inferences about high-dose IVIg therapy in treating severe COVID-19. These inferences may provide relevant and useful insights in order to aid treatment for COVID-19.
Collapse
Affiliation(s)
- Xiaosheng Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Taisheng Li
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Gayet R, Michaud E, Nicoli F, Chanut B, Paul M, Rochereau N, Guillon C, He Z, Papagno L, Bioley G, Corthesy B, Paul S. Impact of IgA isoforms on their ability to activate dendritic cells and to prime T cells. Eur J Immunol 2020; 50:1295-1306. [PMID: 32277709 DOI: 10.1002/eji.201948177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 02/20/2020] [Accepted: 04/07/2020] [Indexed: 12/23/2022]
Abstract
Human IgA could be from different isotypes (IgA1/IgA2) and/or isoforms (monomeric, dimeric, or secretory). Monomeric IgA mainly IgA1 are considered as an anti-inflammatory isotype whereas dimeric/secretory IgA have clearly dual pro- and anti-inflammatory effects. Here, we show that IgA isotypes and isoforms display different binding abilities to FcαRI, Dectin-1, DC-SIGN, and CD71 on monocyte-derived dendritic cells (moDC). We describe that IgA regulate the expression of their own receptors and trigger modulation of moDC maturation. We also demonstrate that dimeric IgA2 and IgA1 induce different inflammatory responses leading to cytotoxic CD8+ T cells activation. moDC stimulation by dimeric IgA2 was followed by a strong pro-inflammatory effect. Our study highlights differences regarding IgA isotypes and isoforms in the context of DC conditioning. Further investigations are needed on the activation of adaptive immunity by IgA in the context of microbiota/IgA complexes during antibody-mediated immune selection.
Collapse
Affiliation(s)
- Rémi Gayet
- GIMAP/EA3064, Université de Lyon, Saint-Etienne, France
| | - Eva Michaud
- GIMAP/EA3064, Université de Lyon, Saint-Etienne, France
| | - Francesco Nicoli
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Universités, Paris, France
| | | | - Mireille Paul
- SAINBIOSE, INSERM U1059, University of Lyon, Saint-Etienne, France
| | | | - Christophe Guillon
- Retroviruses and Structural Biochemistry, Institut de Biologie et Chimie des Protéines, University of Lyon, CNRS, UMR5086, Lyon, France
| | - Zhiguo He
- BiiGC/EA2521, Université de Lyon, Saint-Etienne, France
| | - Laura Papagno
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Universités, Paris, France
| | - Gilles Bioley
- BiiGC/EA2521, Université de Lyon, Saint-Etienne, France
| | - Blaise Corthesy
- R&D Laboratory of the Division of Immunology and Allergy, CHUV, Centre des Laboratoires d'Epalinges, Epalinges, Switzerland
| | - Stéphane Paul
- GIMAP/EA3064, Université de Lyon, Saint-Etienne, France
| |
Collapse
|
16
|
Das M, Karnam A, Stephen-Victor E, Gilardin L, Bhatt B, Kumar Sharma V, Rambabu N, Patil V, Lecerf M, Käsermann F, Bruneval P, Narayanaswamy Balaji K, Benveniste O, Kaveri SV, Bayry J. Intravenous immunoglobulin mediates anti-inflammatory effects in peripheral blood mononuclear cells by inducing autophagy. Cell Death Dis 2020; 11:50. [PMID: 31974400 PMCID: PMC6978335 DOI: 10.1038/s41419-020-2249-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Autophagy plays an important role in the regulation of autoimmune and autoinflammatory responses of the immune cells. Defective autophagy process is associated with various autoimmune and inflammatory diseases. Moreover, in many of these diseases, the therapeutic use of normal immunoglobulin G or intravenous immunoglobulin (IVIG), a pooled normal IgG preparation, is well documented. Therefore, we explored if IVIG immunotherapy exerts therapeutic benefits via induction of autophagy in the immune cells. Here we show that IVIG induces autophagy in peripheral blood mononuclear cells (PBMCs). Further dissection of this process revealed that IVIG-induced autophagy is restricted to inflammatory cells like monocytes, dendritic cells, and M1 macrophages but not in cells associated with Th2 immune response like M2 macrophages. IVIG induces autophagy by activating AMP-dependent protein kinase, beclin-1, class III phosphoinositide 3-kinase and p38 mitogen-activated protein kinase and by inhibiting mammalian target of rapamycin. Mechanistically, IVIG-induced autophagy is F(ab')2-dependent but sialylation independent, and requires endocytosis of IgG by innate cells. Inhibition of autophagy compromised the ability of IVIG to suppress the inflammatory cytokines in innate immune cells. Moreover, IVIG therapy in inflammatory myopathies such as dermatomyositis, antisynthetase syndrome and immune-mediated necrotizing myopathy induced autophagy in PBMCs and reduced inflammatory cytokines in the circulation, thus validating the translational importance of these results. Our data provide insight on how circulating normal immunoglobulins maintain immune homeostasis and explain in part the mechanism by which IVIG therapy benefits patients with autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Mrinmoy Das
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France
| | - Anupama Karnam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France
| | - Emmanuel Stephen-Victor
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France
| | - Laurent Gilardin
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France.,Département de Médecine Interne et Immunologie Clinique, Hôpital Pitié-Salpêtrière, AP-HP, 75013, Paris, France
| | - Bharat Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Varun Kumar Sharma
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France
| | - Naresh Rambabu
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France
| | - Veerupaxagouda Patil
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France
| | - Maxime Lecerf
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Fabian Käsermann
- CSL Behring, Research, CSL Biologics Research Center, 3014, Bern, Switzerland
| | - Patrick Bruneval
- Service d'anatomie pathologique, Hôpital Européen Georges Pompidou, 75015, Paris, France
| | | | - Olivier Benveniste
- Département de Médecine Interne et Immunologie Clinique, Hôpital Pitié-Salpêtrière, AP-HP, 75013, Paris, France.,Institut National de la Santé et de la Recherche Médicale Unité 974, Sorbonne Université, 75013, Paris, France
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
| |
Collapse
|
17
|
Peppas I, George G, Sollie S, Josephs DH, Hammar N, Walldius G, Karagiannis SN, Van Hemelrijck M. Association of Serum Immunoglobulin Levels with Solid Cancer: A Systematic Review and Meta-analysis. Cancer Epidemiol Biomarkers Prev 2020; 29:527-538. [DOI: 10.1158/1055-9965.epi-19-0953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022] Open
|
18
|
IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nat Commun 2020; 11:120. [PMID: 31913287 PMCID: PMC6949214 DOI: 10.1038/s41467-019-13992-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Monomeric serum immunoglobulin A (IgA) can contribute to the development of various autoimmune diseases, but the regulation of serum IgA effector functions is not well defined. Here, we show that the two IgA subclasses (IgA1 and IgA2) differ in their effect on immune cells due to distinct binding and signaling properties. Whereas IgA2 acts pro-inflammatory on neutrophils and macrophages, IgA1 does not have pronounced effects. Moreover, IgA1 and IgA2 have different glycosylation profiles, with IgA1 possessing more sialic acid than IgA2. Removal of sialic acid increases the pro-inflammatory capacity of IgA1, making it comparable to IgA2. Of note, disease-specific autoantibodies in patients with rheumatoid arthritis display a shift toward the pro-inflammatory IgA2 subclass, which is associated with higher disease activity. Taken together, these data demonstrate that IgA effector functions depend on subclass and glycosylation, and that disturbances in subclass balance are associated with autoimmune disease. Immunoglobulin A (IgA) has two subclasses, IgA1 and IgA2, but differential effects on inflammation are unclear. Here the authors show that IgA2, when compared with IgA1, has stronger pro-inflammatory functions associated with changed glycosylation and higher disease scores in patients with rheumatoid arthritis.
Collapse
|
19
|
Saha C, Kothapalli P, Patil V, ManjunathaReddy GB, Kaveri SV, Bayry J. Intravenous immunoglobulin suppresses the polarization of both classically and alternatively activated macrophages. Hum Vaccin Immunother 2019; 16:233-239. [PMID: 30945973 DOI: 10.1080/21645515.2019.1602434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is one of the widely used immunotherapeutic molecules in the therapy of autoimmune and inflammatory diseases. Previous reports demonstrate that one of the anti-inflammatory actions of IVIG implicates suppression of macrophage activation and release of their inflammatory mediators. However, macrophages are highly plastic and depending on the microenvironmental signals, macrophages can be polarized into pro-inflammatory classic (M1) or anti-inflammatory alternative (M2) type. This plasticity of macrophages raised additional questions on the role of IVIG towards macrophage polarization. In the present report, we show that IVIG affects the polarization of both classically and alternatively activated macrophages and this process is F(ab')2-independent. Our data thus indicate the lack of reciprocal regulation of inflammatory and non-inflammatory macrophages by IVIG.
Collapse
Affiliation(s)
- Chaitrali Saha
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université Paris Descartes, Paris, France.,UMR CNRS 6022, Université de Technologie de Compiègne, Compiègne, France
| | - Prathap Kothapalli
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université Paris Descartes, Paris, France
| | - Veerupaxagouda Patil
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université Paris Descartes, Paris, France
| | - Gundallahalli Bayyappa ManjunathaReddy
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université Paris Descartes, Paris, France.,Department of Veterinary Pathology, ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, India
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université Paris Descartes, Paris, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université Paris Descartes, Paris, France
| |
Collapse
|
20
|
Adibzadeh Sereshgi MM, Abdollahpour-Alitappeh M, Mahdavi M, Ranjbar R, Ahmadi K, Taheri RA, Fasihi-Ramandi M. Immunologic balance of regulatory T cell/T helper 17 responses in gastrointestinal infectious diseases: Role of miRNAs. Microb Pathog 2019; 131:135-143. [PMID: 30914387 DOI: 10.1016/j.micpath.2019.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
Gastrointestinal Infectious diseases (GIDs) are the second cause of death worldwide. T helper17 cells (Th17) play an important role in GIDs through production of IL-17A, IL-17F, and IL-22 cytokines. Because of their increased activities in GID, Th17 and its inflammatory cytokines can inhibit the progression and eliminate the infection. Actually, although Th17 have the best performance in the acute phase, regulatory T cells (Treg cells) are enhanced in the chronic phase and infection progress through its suppressive function. In addition, Treg cells prevent undesirable inflammatory damages developed by immune system components. On the other hand, miRNAs have important roles in the regulation of immune responses to eliminate bacterial infections and protect host organisms from harmful effects. Actually, miRNAs can reinforce innate and adaptive immunity to remove infections. Of note, miRNAs can develop a regulatory network with the immune system. Additionally, miRNAs can also serve in favor of bacteria to reduce immune responses. Therefore, balance of immune responses in Treg and Th17 cells can influence outcome of many infectious diseases. In conclusion, there is an imbalance in the Treg/Th17 ratio in GIDs; importantly, sets of miRNAs, particularly miR155 and miR146, were determined to be involved clearly in GIDs.
Collapse
Affiliation(s)
| | | | - Mehdi Mahdavi
- Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kazem Ahmadi
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
João C, Negi VS, Kazatchkine MD, Bayry J, Kaveri SV. Passive Serum Therapy to Immunomodulation by IVIG: A Fascinating Journey of Antibodies. THE JOURNAL OF IMMUNOLOGY 2019; 200:1957-1963. [PMID: 29507120 DOI: 10.4049/jimmunol.1701271] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022]
Abstract
The immunoregulatory and anti-infective properties of normal circulating polyclonal Abs have been exploited for the therapeutic purposes in the form of IVIG as well as several hyperimmune globulins. Current knowledge on the therapeutic use of normal Igs is based on the discoveries made by several pioneers of the field. In this paper, we review the evolution of IVIG over the years. More importantly, the process started as an s.c. replacement in γ globulin-deficient patients, underwent metamorphosis into i.m. Ig, was followed by IVIG, and is now back to s.c. forms. Following successful use of IVIG in immune thrombocytopenic purpura, there has been an explosion in the therapeutic applications of IVIG in diverse autoimmune and inflammatory conditions. In addition to clinically approved pathological conditions, IVIG has been used as an off-label drug in more than 100 different indications. The current worldwide consumption of IVIG is over 100 tons per year.
Collapse
Affiliation(s)
- Cristina João
- Hematology Department, Champalimaud Center for the Unknown, Lisbon 1400-038, Portugal.,Immunology Department, Nova Medical School, Nova University of Lisbon, Lisbon 1169-056, Portugal
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Michel D Kazatchkine
- United Nations Special Envoy for AIDS in Eastern Europe and Central Asia, Geneva CH-1211, Switzerland
| | - Jagadeesh Bayry
- INSERM Unité 1138, Paris F-75006, France; .,Sorbonne Université, UMR S 1138, Paris F-75006, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris F-75006, France; and.,Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immuno-Intervention Thérapeutique, Paris F-75006, France
| | - Srini V Kaveri
- INSERM Unité 1138, Paris F-75006, France; .,Sorbonne Université, UMR S 1138, Paris F-75006, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris F-75006, France; and.,Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immuno-Intervention Thérapeutique, Paris F-75006, France
| |
Collapse
|
22
|
Galeotti C, Kaveri SV, Bayry J. IVIG-mediated effector functions in autoimmune and inflammatory diseases. Int Immunol 2019; 29:491-498. [PMID: 28666326 DOI: 10.1093/intimm/dxx039] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is a pooled preparation of normal IgG obtained from several thousand healthy donors. It is widely used in the immunotherapy of a large number of autoimmune and inflammatory diseases. The mechanisms of action of IVIG are complex and, as discussed in this review, experimental and clinical data provide an indicator that the therapeutic benefit of IVIG therapy is due to several mutually non-exclusive mechanisms affecting soluble mediators as well as cellular components of the immune system. These mechanisms depend on Fc and/or F(ab')2 fragments. A better understanding of the effector functions of IVIG should help in identification of biomarkers of responses to IVIG in autoimmune patients.
Collapse
Affiliation(s)
- Caroline Galeotti
- Institut National de la Santé et de la Recherche Médicale Unité, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Centre de Recherche des Cordeliers, Equipe -Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Department of Pediatric Rheumatology, National Referral Centre of Auto-inflammatory Diseases, CHU de Bicêtre, France
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale Unité, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Centre de Recherche des Cordeliers, Equipe -Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale Unité, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Centre de Recherche des Cordeliers, Equipe -Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| |
Collapse
|
23
|
Humbert L, Cornu M, Proust-Lemoine E, Bayry J, Wemeau JL, Vantyghem MC, Sendid B. Chronic Mucocutaneous Candidiasis in Autoimmune Polyendocrine Syndrome Type 1. Front Immunol 2018; 9:2570. [PMID: 30510552 PMCID: PMC6254185 DOI: 10.3389/fimmu.2018.02570] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/18/2018] [Indexed: 11/13/2022] Open
Abstract
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is an autosomal recessive disease caused by mutations in the autoimmune regulator (AIRE) gene, characterized by the clinical triad of chronic mucocutaneous candidiasis (CMC), hypoparathyroidism, and adrenal insufficiency. CMC can be complicated by systemic candidiasis or oral squamous cell carcinoma (SCC), and may lead to death. The role of chronic Candida infection in the etiopathogenesis of oral SCC is unclear. Long-term use of fluconazole has led to the emergence of Candida albicans strains with decreased susceptibility to azoles. CMC is associated with an impaired Th17 cell response; however, it remains unclear whether decreased serum IL-17 and IL-22 levels are related to a defect in cytokine production or to neutralizing autoantibodies resulting from mutations in the AIRE gene.
Collapse
Affiliation(s)
- Linda Humbert
- Department of Endocrinology and Metabolism, CHU Lille, Lille, France
| | - Marjorie Cornu
- Department Parasitology-Mycology, CHU, Lille, France
- Inserm, U995-LIRIC, Fungal Associated Invasive & Inflammatory Diseases, Lille, France
| | | | - Jagadeesh Bayry
- Inserm, Center de Recherche des Cordeliers, Sorbonne Université, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Louis Wemeau
- Department of Endocrinology and Metabolism, CHU Lille, Lille, France
| | - Marie-Christine Vantyghem
- Department of Endocrinology and Metabolism, CHU Lille, Lille, France
- UMR 1190, Translational Research in Diabetes Inserm, Lille, France
- European Genomic Institute for Diabetes, Univ Lille, Lille, France
| | - Boualem Sendid
- Department Parasitology-Mycology, CHU, Lille, France
- Inserm, U995-LIRIC, Fungal Associated Invasive & Inflammatory Diseases, Lille, France
| |
Collapse
|