1
|
Cai Y, Huang Y, Wang Y, Lin C, Qiu L, Wei H. Lactobacillus johnsonii GLJ001 prevents DSS-induced colitis in mice by inhibiting M1 macrophage polarization via gut microbiota-SCFAs axis. Int Immunopharmacol 2025; 144:113671. [PMID: 39615110 DOI: 10.1016/j.intimp.2024.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 12/15/2024]
Abstract
Inflammatory Bowel Disease (IBD) is increasing worldwide and has become a global emergent disease. Probiotics have been reported to be effective in relieving colitis. Previous studies found ripened Pu-erh tea (RPT) promoted gut microbiota resilience against dextran sulfate sodium (DSS)-induced colitis in mice by increasing relative abundance of Lactobacillus. However, whether and how it alleviated DSS-induced colitis in mice need to be explored. Here, we screened a probiotic Lactobacillus johnsonii GLJ001 from feces of ripened Pu-erh tea (RPT)-administrated mice. In this study, L. johnsonii GLJ001 attenuated symptoms of DSS-induced colitis in mice, including weight loss, increased disease activity index (DAI), colon shortening and colon tissue damage, as well as high expression of inflammatory cytokines and disturbances of intestine barrier function. Furthermore, abundances of short-chain fatty acids (SCFAs)-producing bacteria (i.e. Clostridium cluster IV and XIVa, Lachnospiracea_incertae_sedis and Ruminococcus) were enhanced in the cecum of mice treated with L. johnsonii GLJ001, accompanying by an increase of SCFAs. It was also found that SCFAs inhibited mRNA expression of M1 macrophage markers (Inos and CD86), inflammatory cytokines (TNF-α and Il-1β) and SCFAs receptors (Gpr41 and Gpr43) induced by lipopolysaccharide (LPS) and interferon-γ (IFN-γ) in THP-1 cell line. Collectively, L. johnsonii GLJ001 prevented DSS-induced colitis in mice by inhibiting M1 macrophage polarization via gut microbiota-SCFAs axis, and can be administered for management of colitis.
Collapse
Affiliation(s)
- Yunjie Cai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Yina Huang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Cuiyao Lin
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Liang Qiu
- Centre for Translational Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, People's Republic of China.
| | - Hua Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China.
| |
Collapse
|
2
|
Khalaf R, Sciberras M, Ellul P. The role of the fecal microbiota in inflammatory bowel disease. Eur J Gastroenterol Hepatol 2024; 36:1249-1258. [PMID: 38973540 DOI: 10.1097/meg.0000000000002818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The understanding of the potential role of the microbiota in the pathogenesis of inflammatory bowel disease (IBD) is ever-evolving. Traditionally, the management of IBD has involved medical therapy and/or surgical intervention. IBD can be characterized by gut microbiome alterations through various pathological processes. Various studies delve into nontraditional methods such as probiotics and fecal microbiota transplant and their potential therapeutic effects. Fecal microbiota transplant involves the delivery of a balanced composition of gut microorganisms into an affected patient via multiple possible routes and methods, while probiotics consist of live microorganisms given via the oral route. At present, neither method is considered first-line treatment, however, fecal microbiota transplant has shown potential success in inducing and maintaining remission in ulcerative colitis. In a study by Kruis and colleagues, Escherichia coli Nissle 1917 was considered to be equivalent to mesalamine in mild ulcerative colitis. Alteration of the microbiome in the management of Crohn's disease is less well defined. Furthermore, variation in the clinical usefulness of 5-aminosalicylic acid medication has been attributed, in part, to its acetylation and inactivation by gut microbes. In summary, our understanding of the microbiome's role is continually advancing, with the possibility of paving the way for personalized medicine based on the microbiome.
Collapse
Affiliation(s)
- Rami Khalaf
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Pierre Ellul
- Division of Gastroenterology, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
3
|
Wang W, Han Y, Yin W, Wang Q, Wu Y, Du M. Intestinal and hepatic benefits of BBR-EVO on DSS-induced experimental colitis in mice. Front Microbiol 2024; 15:1428327. [PMID: 39296302 PMCID: PMC11408294 DOI: 10.3389/fmicb.2024.1428327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/02/2024] [Indexed: 09/21/2024] Open
Abstract
Ulcerative colitis (UC), characterized by disrupted intestinal barrier integrity and chronic inflammation, was modeled in mice via dextran sulfate sodium (DSS) induction. This study explored the therapeutic potential of berberine-evodiamine (BBR-EVO), bioactive components of the traditional Chinese medicine Yulian decoction, in DSS colitis. BBR-EVO intervention ameliorated weight loss, diarrhea, colonic shortening, and histopathological damage in colitic mice. The substance increased antioxidant activity while reducing high levels of pro-inflammatory cytokines in the colon, including as TNF-α, IL-1β, and IL-6. BBR-EVO inhibited the DSS-induced decrease in the tight junction proteins ZO-1 and occludin, according to immunohistochemistry. 16S rRNA sequencing demonstrated BBR-EVO partially attenuated DSS-elicited intestinal dysbiosis, reducing opportunistic pathogens and restoring diminished beneficial taxa. Critically, BBR-EVO alleviated secondary hepatic injury in colitic mice, mitigating immune cell infiltration, oxidative stress, cytokine production, and ultrastructural damage, likely by beneficially modulating gut-liver crosstalk. This study reveals BBR-EVO, derived from a traditional Chinese medicine, confers multi-target protective effects in experimental colitis and associated hepatic pathology, warranting further evaluation as a potential therapy for inflammatory bowel diseases like UC. The mechanisms may involve simultaneous augmentation of intestinal barrier integrity, inhibition of inflammation, microbiota regulation, and gut-liver axis optimization.
Collapse
Affiliation(s)
- Wenjia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- College of Animal Science, Ningxing University, Yinchuan, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yiheng Han
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Wen Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Qiaozhi Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Maobo Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
van Lingen E, Nooij S, Terveer EM, Crossette E, Prince AL, Bhattarai SK, Watson A, Galazzo G, Menon R, Szabady RL, Bucci V, Norman JM, van der Woude CJ, van der Marel S, Verspaget HW, van der Meulen-de Jong AE, Keller JJ. Faecal Microbiota Transplantation Engraftment After Budesonide or Placebo in Patients With Active Ulcerative Colitis Using Pre-selected Donors: A Randomized Pilot Study. J Crohns Colitis 2024; 18:1381-1393. [PMID: 38572716 PMCID: PMC11369067 DOI: 10.1093/ecco-jcc/jjae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/30/2023] [Indexed: 04/05/2024]
Abstract
BACKGROUND Faecal microbiota transplantation [FMT] shows some efficacy in treating patients with ulcerative colitis [UC], although variability has been observed among donors and treatment regimens. We investigated the effect of FMT using rationally selected donors after pretreatment with budesonide or placebo in active UC. METHODS Patients ≥18 years old with mild to moderate active UC were randomly assigned to 3 weeks of budesonide [9 mg] or placebo followed by 4-weekly infusions of a donor faeces suspension. Two donors were selected based on microbiota composition, regulatory T cell induction and short-chain fatty acid production in mice. The primary endpoint was engraftment of donor microbiota after FMT. In addition, clinical efficacy was assessed. RESULTS In total, 24 patients were enrolled. Pretreatment with budesonide did not increase donor microbiota engraftment [p = 0.56] nor clinical response, and engraftment was not associated with clinical response. At week 14, 10/24 [42%] patients achieved [partial] remission. Remarkably, patients treated with FMT suspensions from one donor were associated with clinical response [80% of responders, p < 0.05] but had lower overall engraftment of donor microbiota. Furthermore, differences in the taxonomic composition of the donors and the engraftment of certain taxa were associated with clinical response. CONCLUSION In this small study, pretreatment with budesonide did not significantly influence engraftment or clinical response after FMT. However, clinical response appeared to be donor-dependent. Response to FMT may be related to transfer of specific strains instead of overall engraftment, demonstrating the need to characterize mechanisms of actions of strains that maximize therapeutic benefit in UC.
Collapse
Affiliation(s)
- Emilie van Lingen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sam Nooij
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth M Terveer
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Shakti K Bhattarai
- University of Massachusetts Chan Medical School, Department of Microbiology and Physiological Systems, Worcester, MA, USA
| | | | | | | | - Rose L Szabady
- Vedanta Biosciences, Cambridge, MA, USA
- Ferring Pharmaceuticals, San Diego, CA, USA
| | - Vanni Bucci
- University of Massachusetts Chan Medical School, Department of Microbiology and Physiological Systems, Worcester, MA, USA
| | | | - C Janneke van der Woude
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sander van der Marel
- Department of Gastroenterology and Hepatology, Haaglanden Medisch Centrum, den Haag, The Netherlands
| | - Hein W Verspaget
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Josbert J Keller
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gastroenterology and Hepatology, Haaglanden Medisch Centrum, den Haag, The Netherlands
| |
Collapse
|
5
|
Xu B, Fu Y, Yin N, Qin W, Huang Z, Xiao W, Huang H, Mei Q, Fan J, Zeng Y, Huang C. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii served as key components of fecal microbiota transplantation to alleviate colitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G607-G621. [PMID: 38502145 PMCID: PMC11376976 DOI: 10.1152/ajpgi.00303.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Fecal microbiota transplantation (FMT) is a promising therapy for inflammatory bowel disease (IBD) via rectifying gut microbiota. The aim of this study was to identify a mechanism of how specific bacteria-associated immune response contributes to alleviated colitis. Forty donors were divided into high (donor H) and low (donor L) groups according to the diversity and the abundance of Bacteroides and Faecalibacterium by 16S rRNA sequencing. FMT was performed on dextran sulfate sodium (DSS)-induced colitis in mice. Mice with colitis showed significant improvement in intestinal injury and immune imbalance after FMT with group donor H (P < 0.05). Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii were identified as targeted strains in donor feces by real-time PCR and droplet digital PCR. Mice with colitis were treated with mono- or dual-bacterial gavage therapy. Dual-bacterial therapy significantly ameliorated intestinal injury compared with mono-bacterial therapy (P < 0.05). Dual-bacterial therapy increased the M2/M1 macrophage polarization and improved the Th17/Treg imbalance and elevated IL-10 production by Tregs compared with the DSS group (P < 0.05). Metabolomics showed increased abundance of lecithin in the glycerophospholipid metabolism pathway. In conclusion, B. thetaiotaomicron and F. prausnitzii, as the key bacteria in donor feces, alleviate colitis in mice. The mechanism may involve increasing lecithin and regulating IL-10 production of intestinal Tregs.NEW & NOTEWORTHY We demonstrate that donors with high abundance of Bacteroides and Faecalibacterium ameliorate dextran sulfate sodium (DSS)-induced colitis in mice by fecal microbiota transplantation (FMT). The combination therapy of Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii is superior to mono-bacterial therapy in ameliorating colitis in mice, of which mechanism may involve promoting lecithin and inducing IL-10 production of intestinal Tregs.
Collapse
Affiliation(s)
- Binqiang Xu
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Yang Fu
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Nuoming Yin
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Wenfei Qin
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Zehua Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Xiao
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Huizhen Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Shanghai General Hospital of Nanjing Medical University, Shanghai, People's Republic of China
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Junjie Fan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Yue Zeng
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Chunlan Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Ke P, Zhu DN, Liu MZ, Yan H, Zhao QJ, Du J, Wei W, Chen XW, Liu C. Macrophage β-arrestin-1 deteriorates DSS-induced colitis through interaction with NF-κB signaling. Int Immunopharmacol 2024; 130:111676. [PMID: 38367465 DOI: 10.1016/j.intimp.2024.111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
β-arrestin-1 has been demonstrated to participate in the regulation of inflammatory reactions in several diseases. Thus, this study aimed to investigate the role of macrophage β-arrestin-1 in the pathogenesis and progression of ulcerative colitis (UC). A myeloid β-arrestin-1 conditional knockout mouse model was generated to explore the role of macrophage β-arrestin-1. DSS was employed for the establishment of an ulcerative colitis mouse model, using TNF-α as an inflammatory stressor in vitro. The expression level of β-arrestin-1 was detected via western blot and immunofluorescence assays, whilst disease severity was evaluated by clinical score and H&E staining in the DSS-induced colitis model. In the in vitro experiments, the levels of inflammatory cytokines were examined using real-time PCR. NF-κB activation was detected through the double luciferase reporter system, western blot, and electrophoretic mobility shift assay (EMSA). BAY11-7082 was used to inhibit NF-κB activation. Our results exposed that the level of β-arrestin-1 was increased in monocytes/macrophages derived from DSS-induced colitis mice or under the TNF-α challenge. Moreover, conditionally knocking out the expression of myeloid β-arrestin-1 alleviated disease severity, while knocking out the expression of β-arrestin-1 decreased the levels of inflammatory cytokines. Additionally, NF-κB was identified as a central regulatory element of β-arrestin-1 promoter, and using BAY11-7082 to inhibit NF-κB activation lowered the level of β-arrestin-1 under TNF-α challenge. β-arrestin-1 led to the activation of the NF-κB signaling pathway by enhancing binding to IκBα and IKK under the TNF-α challenge. Taken together, our findings demonstrated macrophage β-arrestin-1 contributes to the deterioration of DSS-induced colitis through the interaction with NF-κB signaling, thus highlighting a novel target for the treatment of UC.
Collapse
Affiliation(s)
- Ping Ke
- Department of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 20043 China; Air Force Hangzhou Special Service Recuperation Center, Sanatorium Area 4, Nanjing 211131 China
| | - Dan-Ni Zhu
- Department of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 20043 China
| | - Meng-Zhen Liu
- Department of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 20043 China
| | - Hui Yan
- Department of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 20043 China
| | - Qing-Jie Zhao
- Department of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 20043 China
| | - Jing Du
- Department of Basic Medicine, School of Pharmacology, Jining Medical University, Jining 272067 China
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiong-Wen Chen
- Department of Biopharmaceuticals & Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Heping District, Tianjin, China
| | - Chong Liu
- Department of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 20043 China.
| |
Collapse
|
7
|
Kim HS, Kim B, Holzapfel WH, Kang H. Lactiplantibacillusplantarum APsulloc331261 (GTB1 ™) promotes butyrate production to suppress mucin hypersecretion in a murine allergic airway inflammation model. Front Microbiol 2024; 14:1292266. [PMID: 38449878 PMCID: PMC10915089 DOI: 10.3389/fmicb.2023.1292266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/15/2023] [Indexed: 03/08/2024] Open
Abstract
Introduction Allergic airway diseases are one of the serious health problems in worldwide and allergic airway inflammation is a prerequisite led to the exacerbated situation such as mucus hypersecretion, epithelial barrier damage and microbiota dysbiosis. Because of side effects and low efficiencies of current therapeutics, the need for novel alternatives has been urged. Probiotics in which have diverse and beneficial modulatory effects have been applied to the airway inflammation model and the underlying mechanism needs to be investigated. Methods We aimed to evaluate whether our target strain, Lactiplantibacillus plantarum APsulloc331261 (GTB1TM) isolated from green tea, can ameliorate allergic airway inflammation in mice and to figure out the mechanism. We induced allergic airway inflammation to mice by ovalbumin (OVA) and administered GTB1 orally and the immune and epithelial barrier markers were assessed. The gut metabolite and microbiota were also analysed, and the in vitro cell-line experiment was introduced to confirm the hypothesis of the study. Results GTB1 ameliorated type 2 inflammation and suppressed mucin hypersecretion with the inhibition of MUC5AC in inflamed mice. Moreover, GTB1 increased the butyrate production and the relative abundance of butyrate producer, Clostridium cluster IV. We assumed that butyrate may have a potential role and investigated the effect of butyrate in mucin regulation via human airway epithelial cell line, A549. Butyrate significantly reduced the gene expression of MUC5AC in A549 cells suggesting its regulatory role in mucus production. Conclusion Therefore, our study demonstrates that the oral administration of GTB1 can ameliorate allergic airway inflammation and mucin hypersecretion by butyrate production.
Collapse
Affiliation(s)
- Hye-Shin Kim
- Department of Advanced Convergence, Handong Global University, Pohang, Republic of Korea
- HEM Pharma, Pohang, Republic of Korea
| | - Bobae Kim
- HEM Pharma, Pohang, Republic of Korea
| | - Wilhelm H. Holzapfel
- Department of Advanced Convergence, Handong Global University, Pohang, Republic of Korea
- HEM Pharma, Pohang, Republic of Korea
| | | |
Collapse
|
8
|
Li J, Huang G, Wang J, Wang S, Yu Y. Hydrogen Regulates Ulcerative Colitis by Affecting the Intestinal Redox Environment. J Inflamm Res 2024; 17:933-945. [PMID: 38370464 PMCID: PMC10871146 DOI: 10.2147/jir.s445152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
The redox balance in the intestine plays an important role in maintaining intestinal homeostasis, and it is closely related to the intestinal mucosal barrier, intestinal inflammation, and the gut microbiota. Current research on the treatment of ulcerative colitis has focused on immune disorders, excessive inflammation, and oxidative stress. However, an imbalance in intestinal redox reaction plays a particularly critical role. Hydrogen is produced by some anaerobic bacteria via hydrogenases in the intestine. Increasing evidence suggests that hydrogen, as an inert gas, is crucial for immunity, inflammation, and oxidative stress and plays a protective role in ulcerative colitis. Hydrogen maintains the redox state balance in the intestine in ulcerative colitis and reduces damage to intestinal epithelial cells by exerting its selective antioxidant ability. Hydrogen also regulates the intestinal flora, reduces the harmful effects of bacteria on the intestinal epithelial barrier, promotes the restoration of normal anaerobic bacteria in the intestines, and ultimately improves the integrity of the intestinal epithelial barrier. The present review focuses on the therapeutic mechanisms of hydrogen-targeting ulcerative colitis.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Gang Huang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Juexin Wang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Sui Wang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
9
|
Kavita, Om H, Chand U, Kushawaha PK. Postbiotics: An alternative and innovative intervention for the therapy of inflammatory bowel disease. Microbiol Res 2024; 279:127550. [PMID: 38016379 DOI: 10.1016/j.micres.2023.127550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Inflammatory Bowel Disease (IBD) is a persistent gastrointestinal (GI) tract inflammatory disease characterized by downregulated mucosal immune activities and a disrupted microbiota environment in the intestinal lumen. The involvement of bacterium postbiotics as mediators between the immune system and gut microbiome could be critical in determining why host-microbial relationships are disrupted in IBD. Postbiotics including Short-chain fatty acids (SCFAs), Organic acids, Proteins, Vitamins, Bacteriocins, and Tryptophan (Trp) are beneficial bioactive compounds formed via commensal microbiota in the gut environment during the fermentation process that can be used to improve consumer health. The use of metabolites or fragments from microorganisms can be a very attractive treatment and prevention technique in modern medicine. Postbiotics are essential in the immune system's development since they alter the barrier tightness, and the gut ecology and indirectly shape the microbiota's structure. As a result, postbiotics may be beneficial in treating or preventing various diseases, even some for which there is no effective causative medication. Postbiotics may be a promising tool for the treatment of IBD in individuals of all ages, genders, and even geographical locations. Direct distribution of postbiotics may provide a new frontier in microbiome-based therapy for IBD since it allows both the management of host homeostasis and the correction of the negative implications of dysbiosis. Further studies of the biological effects of these metabolites are expected to reveal innovative applications in medicine and beyond. This review attempts to explore the possible postbiotic-based interventions for the treatment of IBD.
Collapse
Affiliation(s)
- Kavita
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Hari Om
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Umesh Chand
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Pramod Kumar Kushawaha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
10
|
Wang M, Fu R, Xu D, Chen Y, Yue S, Zhang S, Tang Y. Traditional Chinese Medicine: A promising strategy to regulate the imbalance of bacterial flora, impaired intestinal barrier and immune function attributed to ulcerative colitis through intestinal microecology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116879. [PMID: 37419224 DOI: 10.1016/j.jep.2023.116879] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/16/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Globally, plant materials are widely used as an additional and alternative therapy for the treating of diverse diseases. Ulcerative colitis (UC) is a chronic, recurrent and nonspecific inflammation of the bowel, referred to as "modern intractable disease" according to the World Health Organization. With the continuous development of theoretical research in Traditional Chinese Medicine (TCM) and the advantages of TCM in terms of low side effects, TCM has shown great progress in the research of treating UC. AIM OF THIS REVIEW This review aimed to explore the correlation between intestinal microbiota and UC, summarize research advances in TCM for treating UC, and discuss the mechanism of action of TCM remedies in regulating intestinal microbiota and repairing damaged intestinal barrier, which will provide a theoretical basis for future studies to elucidate the mechanism of TCM remedies based on gut microbiota and provide novel ideas for the clinical treatment of UC. METHODS We have collected and collated relevant articles from different scientific databases in recent years on the use of TCM in treating UC in relation to intestinal microecology. Based on the available studies, the therapeutic effects of TCM are analysed and the correlation between the pathogenesis of UC and intestinal microecology is explored. RESULTS TCM is used to further protect the intestinal epithelium and tight junctions, regulate immunity and intestinal flora by regulating intestinal microecology, thereby achieving the effect of treating UC. Additionally, TCM remedies can effectively increase the abundance of beneficial bacteria that produce short-chain fatty acids, decrease the abundance of pathogenic bacteria, restore the balance of intestinal microbiota, and indirectly alleviate intestinal mucosal immune barrier dysfunction and promote the repair of damaged colorectal mucosa. CONCLUSION Intestinal microbiota is closely related to UC pathogenesis. The alleviation of intestinal dysbiosis can be a potential novel therapeutic strategy for UC. TCM remedies can exert protective and therapeutic effects on UC through various mechanisms. Although intestinal microbiota can aid in the identification of different TCM syndromes types, further studies are needed using modern medical technology. This will improve the clinical therapeutic efficacy of TCM remedies in UC and promote the application of precision medicine.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Ruijia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Dingqiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yanyan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Shijun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Sai Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| |
Collapse
|
11
|
Wang Y, Xie Z, Wu X, Du L, Chong Z, Liu R, Han J. Porcine Intestinal Mucosal Peptides Target Macrophage-Modulated Inflammation and Alleviate Intestinal Homeostasis in Dextrose Sodium Sulfate-Induced Colitis in Mice. Foods 2024; 13:162. [PMID: 38201190 PMCID: PMC10778919 DOI: 10.3390/foods13010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Porcine intestinal mucosal proteins are novel animal proteins that contain large amounts of free amino acids and peptides. Although porcine intestinal mucosal proteins are widely used in animal nutrition, the peptide bioactivities of their enzymatic products are not yet fully understood. In the present study, we investigated the effect of porcine intestinal mucosal peptides (PIMP) on the RAW264.7 cell model of LPS-induced inflammation. The mRNA expression of inflammatory factors (interleukin 6, tumor necrosis factor-α, and interleukin-1β) and nitrous oxide levels were all measured by quantitative real-time PCR and cyclooxygenase-2 protein expression measured by Western blot. To investigate the modulating effect of PIMP and to establish a model of dextran sodium sulfate (DSS)-induced colitis in mice, we examined the effects of hematoxylin-eosin staining, myeloperoxidase levels, pro-inflammatory factor mRNA content, tight junction protein expression, and changes in intestinal flora. Nuclear factor κB pathway protein levels were also assessed by Western blot. PIMP has been shown in vitro to control inflammatory responses and prevent the activation of key associated signaling pathways. PIMP at doses of 100 and 400 mg/kg/day also alleviated intestinal inflammatory responses, reduced tissue damage caused by DSS, and improved intestinal barrier function. In addition, PIMP at 400 mg/kg/day successfully repaired the dysregulated gut microbiota and increased short-chain fatty acid levels. These findings suggest that PIMP may positively influence inflammatory responses and alleviate colitis. This study is the first to demonstrate the potential of PIMP as a functional food for the prevention and treatment of colitis.
Collapse
Affiliation(s)
- Yucong Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (X.W.); (L.D.); (Z.C.)
| | - Zhixin Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (X.W.); (L.D.); (Z.C.)
| | - Xiaolong Wu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (X.W.); (L.D.); (Z.C.)
| | - Lei Du
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (X.W.); (L.D.); (Z.C.)
| | - Zhengchen Chong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (X.W.); (L.D.); (Z.C.)
| | - Rongxu Liu
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China;
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (X.W.); (L.D.); (Z.C.)
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China;
| |
Collapse
|
12
|
Kim H, Na JE, Kim S, Kim TO, Park SK, Lee CW, Kim KO, Seo GS, Kim MS, Cha JM, Koo JS, Park DI. A Machine Learning-Based Diagnostic Model for Crohn's Disease and Ulcerative Colitis Utilizing Fecal Microbiome Analysis. Microorganisms 2023; 12:36. [PMID: 38257863 PMCID: PMC10820568 DOI: 10.3390/microorganisms12010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Recent research has demonstrated the potential of fecal microbiome analysis using machine learning (ML) in the diagnosis of inflammatory bowel disease (IBD), mainly Crohn's disease (CD) and ulcerative colitis (UC). This study employed the sparse partial least squares discriminant analysis (sPLS-DA) ML technique to develop a robust prediction model for distinguishing among CD, UC, and healthy controls (HCs) based on fecal microbiome data. Using data from multicenter cohorts, we conducted 16S rRNA gene sequencing of fecal samples from patients with CD (n = 671) and UC (n = 114) while forming an HC cohort of 1462 individuals from the Kangbuk Samsung Hospital Healthcare Screening Center. A streamlined pipeline based on HmmUFOTU was used. After a series of filtering steps, 1517 phylotypes and 1846 samples were retained for subsequent analysis. After 100 rounds of downsampling with age, sex, and sample size matching, and division into training and test sets, we constructed two binary prediction models to distinguish between IBD and HC and CD and UC using the training set. The binary prediction models exhibited high accuracy and area under the curve (for differentiating IBD from HC (mean accuracy, 0.950; AUC, 0.992) and CD from UC (mean accuracy, 0.945; AUC, 0.988)), respectively, in the test set. This study underscores the diagnostic potential of an ML model based on sPLS-DA, utilizing fecal microbiome analysis, highlighting its ability to differentiate between IBD and HC and distinguish CD from UC.
Collapse
Affiliation(s)
- Hyeonwoo Kim
- Department of Bioinformatics, Soongsil University, Seoul 06978, Republic of Korea; (H.K.); (S.K.)
| | - Ji Eun Na
- Department of Internal Medicine, College of Medicine, Inje University Haeundae Paik Hospital, Busan 48108, Republic of Korea; (J.E.N.); (T.-O.K.)
| | - Sangsoo Kim
- Department of Bioinformatics, Soongsil University, Seoul 06978, Republic of Korea; (H.K.); (S.K.)
| | - Tae-Oh Kim
- Department of Internal Medicine, College of Medicine, Inje University Haeundae Paik Hospital, Busan 48108, Republic of Korea; (J.E.N.); (T.-O.K.)
| | - Soo-Kyung Park
- Division of Gastroenterology, Department of Internal Medicine and Inflammatory Bowel Disease Center, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 03181, Republic of Korea;
- Medical Research Institute, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 03181, Republic of Korea;
| | - Chil-Woo Lee
- Medical Research Institute, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 03181, Republic of Korea;
| | - Kyeong Ok Kim
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea;
| | - Geom-Seog Seo
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Min Suk Kim
- Department of Human Intelligence and Robot Engineering, Sangmyung University, Cheonan-si 31066, Republic of Korea;
| | - Jae Myung Cha
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea;
| | - Ja Seol Koo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea;
| | - Dong-Il Park
- Division of Gastroenterology, Department of Internal Medicine and Inflammatory Bowel Disease Center, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 03181, Republic of Korea;
- Medical Research Institute, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 03181, Republic of Korea;
| |
Collapse
|
13
|
Wang X, Wu J, Huang R, Wang S. Moxibustion improved the effect of fecal microbiota transplantation donor to dextran sulfate sodium-induced colitis in mice. Anat Rec (Hoboken) 2023; 306:3144-3155. [PMID: 36495304 DOI: 10.1002/ar.25135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/31/2022] [Accepted: 11/20/2022] [Indexed: 11/14/2023]
Abstract
Fecal microbiota transplantation (FMT) is beneficial for several gastrointestinal diseases because it alters the intestinal microbiota of recipients. The efficacy of FMT is related to the microbial structure and composition of the donor. Mild moxibustion is a non-invasive and safe traditional Chinese therapy that can regulate the gut microbiota. In this study, we investigated whether moxibustion improved the efficacy of FMT in donors using a dextran sulfate sodium (DSS)-induced colitis mouse model. Normal mice were treated with mild moxibustion at acupoints ST25 and ST36 for 7 days. DSS (2%) was administered for 7 days to induce colitis. FMT was performed on Day 8 and lasted for 7 days. The effect of FMT on mice with DSS was observed on Day 21. Using hematoxylin and eosin staining and immunofluorescence, we analyzed the pathology and cell proliferation after FMT in DSS mice. In addition, using 16 S rDNA sequencing analysis, we investigated the gut microbiota of mice. The results indicated that moxibustion altered the colonic microbial community and increased the relative abundance of specific bacteria without changes in morphology and physiological function in normal mice. FMT using donors with moxibustion reduced body weight loss, inflammation, abnormal microbial community structure, and the relative abundance of some bacteria. These results provide potential strategies for the safe and targeted improvement of FMT donors.
Collapse
Affiliation(s)
- Xinting Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jihong Wu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Huang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Shenglan Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Prame Kumar K, Ooi JD, Goldberg R. The interplay between the microbiota, diet and T regulatory cells in the preservation of the gut barrier in inflammatory bowel disease. Front Microbiol 2023; 14:1291724. [PMID: 38107848 PMCID: PMC10722198 DOI: 10.3389/fmicb.2023.1291724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Inflammatory bowel disease (IBD) is becoming more common in the Western world due to changes in diet-related microbial dysbiosis, genetics and lifestyle. Incidences of gut permeability can predate IBD and continued gut barrier disruptions increase the exposure of bacterial antigens to the immune system thereby perpetuating chronic inflammation. Currently, most of the approved IBD therapies target individual pro-inflammatory cytokines and pathways. However, they fail in approximately 50% of patients due to their inability to overcome the redundant pro inflammatory immune responses. There is increasing interest in the therapeutic potential of T regulatory cells (Tregs) in inflammatory conditions due to their widespread capability to dampen inflammation, promote tolerance of intestinal bacteria, facilitate healing of the mucosal barrier and ability to be engineered for more targeted therapy. Intestinal Treg populations are inherently shaped by dietary molecules and gut microbiota-derived metabolites. Thus, understanding how these molecules influence Treg-mediated preservation of the intestinal barrier will provide insights into immune tolerance-mediated mucosal homeostasis. This review comprehensively explores the interplay between diet, gut microbiota, and immune system in influencing the intestinal barrier function to attenuate the progression of colitis.
Collapse
Affiliation(s)
- Kathryn Prame Kumar
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | | | | |
Collapse
|
15
|
Liao H, Shang J, Sun Y. GDmicro: classifying host disease status with GCN and deep adaptation network based on the human gut microbiome data. Bioinformatics 2023; 39:btad747. [PMID: 38085234 PMCID: PMC10749762 DOI: 10.1093/bioinformatics/btad747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023] Open
Abstract
MOTIVATION With advances in metagenomic sequencing technologies, there are accumulating studies revealing the associations between the human gut microbiome and some human diseases. These associations shed light on using gut microbiome data to distinguish case and control samples of a specific disease, which is also called host disease status classification. Importantly, using learning-based models to distinguish the disease and control samples is expected to identify important biomarkers more accurately than abundance-based statistical analysis. However, available tools have not fully addressed two challenges associated with this task: limited labeled microbiome data and decreased accuracy in cross-studies. The confounding factors, such as the diet, technical biases in sample collection/sequencing across different studies/cohorts often jeopardize the generalization of the learning model. RESULTS To address these challenges, we develop a new tool GDmicro, which combines semi-supervised learning and domain adaptation to achieve a more generalized model using limited labeled samples. We evaluated GDmicro on human gut microbiome data from 11 cohorts covering 5 different diseases. The results show that GDmicro has better performance and robustness than state-of-the-art tools. In particular, it improves the AUC from 0.783 to 0.949 in identifying inflammatory bowel disease. Furthermore, GDmicro can identify potential biomarkers with greater accuracy than abundance-based statistical analysis methods. It also reveals the contribution of these biomarkers to the host's disease status. AVAILABILITY AND IMPLEMENTATION https://github.com/liaoherui/GDmicro.
Collapse
Affiliation(s)
- Herui Liao
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), 518057, China
| | - Jiayu Shang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), 518057, China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), 518057, China
| |
Collapse
|
16
|
Do KH, Ko SH, Kim KB, Seo K, Lee WK. Comparative Study of Intestinal Microbiome in Patients with Ulcerative Colitis and Healthy Controls in Korea. Microorganisms 2023; 11:2750. [PMID: 38004761 PMCID: PMC10673479 DOI: 10.3390/microorganisms11112750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Ulcerative colitis (UC) poses a contemporary medical challenge, with its exact cause still eluding researchers. This is due to various factors, such as the rising incidence, diagnostic complexities, and difficulties associated with its management. We compared the intestinal microbiome of patients with UC to that of healthy controls to determine the qualitative and quantitative changes associated with UC that occur in the intestinal microbiota. The intestinal bacterial abundance in 40 Korean patients with UC and 25 healthy controls was assayed using via next-generation sequencing. There were five major phyla in both groups: Firmicutes (UC patients: 51.12%; healthy controls: 46.90%), Bacteroidota (UC patients: 37.04%; healthy controls: 40.34%), Proteobacteria (UC patients: 6.01%; healthy controls: 11.05%), Actinobacteriota (UC patients: 5.71%; healthy controls: 1.56%), and Desulfobacteriota (UC patients: 0.13%; healthy controls: 0.14%). Firmicutes was more prevalent in patients with UC (51.12%) compared to that of healthy controls (46.90%). Otherwise, Bacteroidota was more prevalent in healthy controls (40.34%) compared to patients with UC (37.04%). Although there was no significant difference, our results showed a substantially lower gut microbiome diversity in patients with UC (mean: 16.5; 95% confidence interval (CI) = 14.956-18.044) than in healthy controls (mean: 17.84; 95% CI = 15.989-19.691), the beta diversity and the flora structure of the microbiome in patients with UC differed from those in healthy controls. This will be helpful for the development of new treatment options and lay the groundwork for future research on UC. To understand the disease mechanism, it is essential to define the different types of microbes in the guts of patients with UC.
Collapse
Affiliation(s)
- Kyung-Hyo Do
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Seung-Hyun Ko
- GutBiomeTech Co., Ltd., Cheongju 28644, Republic of Korea
| | - Ki Bae Kim
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Kwangwon Seo
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Wan-Kyu Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea;
- GutBiomeTech Co., Ltd., Cheongju 28644, Republic of Korea
| |
Collapse
|
17
|
Wang X, Shen C, Wang X, Tang J, Wu Z, Huang Y, Shao W, Geng K, Xie H, Pu Z. Schisandrin protects against ulcerative colitis by inhibiting the SGK1/NLRP3 signaling pathway and reshaping gut microbiota in mice. Chin Med 2023; 18:112. [PMID: 37674245 PMCID: PMC10481484 DOI: 10.1186/s13020-023-00815-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND According to the Chinese Pharmacopoeia, the fruit of Schisandra chinensis (Turcz.) Baill. (SC) is an important traditional Chinese medicine that can be used to treat diarrhea. Despite the increasing research on the anti-inflammatory and anti-oxidant aspects of SC, the studies on the anti-ulcerative colitis of Schisandrin (SCH), the main constituent of SC, are relatively few. METHODS The mice used in the study were randomly distributed into 6 groups: control, model, 5-ASA, and SCH (20, 40, 80 mg/kg/d). The mice in the model group were administered 3% (w/v) dextran sulfate sodium (DSS) through drinking water for 7 days, and the various parameters of disease activity index (DAI) such as body weight loss, stool consistency, and gross blood were measured. ELISA was used to detect inflammatory factors, and bioinformatics combined with transcriptome analysis was done to screen and verify relevant targets. 16S rDNA high-throughput sequencing was used to analyze the composition of the gut microbiota(GM), while mass spectrometry was done to analyze the changes in the content of bile acids (BAs) in the intestine. RESULTS Mice treated with SCH experienced significant weight gain, effectively alleviating the severity of colitis, and decreasing the levels of inflammatory factors such as TNF-α, IL-1β, IL-18, IL-6, and other related proteins (NLRP3, Caspase-1, SGK1) in UC mice. Furthermore, the analysis of GM and BAs in mice revealed that SCH increased the relative abundance of Lactobacilli spp, reduced the relative abundance of Bacteroides, and promoted the conversion of primary BAs to secondary BAs. These effects contributed to a significant improvement in the DSS-induced GM imbalance and the maintenance of intestinal homeostasis. CONCLUSION It seems that there is a close relationship between the SCH mechanism and the regulation of SGK1/NLRP3 pathway and the restoration of GM balance. Therefore, it can be concluded that SCH could be a potential drug for the treatment of UC.
Collapse
Affiliation(s)
- Xiaohu Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
- Graduate School of Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Chaozhuang Shen
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Xingwen Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Jin Tang
- Graduate School of Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Zijing Wu
- Department of Pharmacy, Bengbu First People's Hospital, Bengbu, 233000, China
| | - Yunzhe Huang
- Graduate School of Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Wenxin Shao
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Kuo Geng
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China.
| | - Zhichen Pu
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China.
| |
Collapse
|
18
|
Peng W, Liu M, Dai W, Chen T, Fu Y, Pan Y. Multi-View Feature Aggregation for Predicting Microbe-Disease Association. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2748-2758. [PMID: 34871177 DOI: 10.1109/tcbb.2021.3132611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microbes play a crucial role in human health and disease. Figuring out the relationship between microbes and diseases leads to significant potential applications in disease treatments. It is an urgent need to devise robust and effective computational methods for identifying disease-related microbes. This work proposes a Multi-View Feature Aggregation (MVFA) scheme that integrates the linear and nonlinear features to identify disease-related microbes. We introduce a non-negative matrix tri-factorization (NMTF) model to extract linear features for diseases and microbes. Then we learn another type of linear feature by utilizing a bi-random walk model. The nonlinear feature is obtained by inputting the two kinds of linear features into a capsule neural network. These three types of features describe the associations between diseases and microbes from different views. Finally, considering the complementary of these features, we leverage a logistic regression model to combine the NMTF model predictions, bi-random walk model predictions, and the capsule neural network predictions to obtain the final microbe-disease pair scores. We apply our method to predict human microbe-disease associations on two datasets. Experimental results show that our multi-view model outperforms the state-of-the-art models in recovering missing microbe-disease associations and predicting associations for new microbes. The ablation study shows that aggregating multi-view linear and nonlinear features can improve the prediction performance. Case studies on two diseases, i.e. Type 1 diabetes and Liver cirrhosis, further validate our method effectiveness.
Collapse
|
19
|
Chen K, McCulloch J, Das Neves R, Rodrigues G, Hsieh WT, Gong W, Yoshimura T, Huang J, O'hUigin C, Difilippantonio S, McCollum M, Jones G, Durum SK, Trinchieri G, Wang JM. The beneficial effects of commensal E. coli for colon epithelial cell recovery are related with Formyl peptide receptor 2 (Fpr2) in epithelial cells. Gut Pathog 2023; 15:28. [PMID: 37322488 PMCID: PMC10268441 DOI: 10.1186/s13099-023-00557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Formyl peptide receptor 2 (Fpr2) plays a crucial role in colon homeostasis and microbiota balance. Commensal E. coli is known to promote the regeneration of damaged colon epithelial cells. The aim of the study was to investigate the connection between E. coli and Fpr2 in the recovery of colon epithelial cells. RESULTS The deficiency of Fpr2 was associated with impaired integrity of the colon mucosa and an imbalance of microbiota, characterized by the enrichment of Proteobacteria in the colon. Two serotypes of E. coli, O22:H8 and O91:H21, were identified in the mouse colon through complete genome sequencing. E. coli O22:H8 was found to be prevalent in the gut of mice and exhibited lower virulence compared to O91:H21. Germ-free (GF) mice that were pre-orally inoculated with E. coli O22:H8 showed reduced susceptibility to chemically induced colitis, increased proliferation of epithelial cells, and improved mouse survival. Following infection with E. coli O22:H8, the expression of Fpr2 in colon epithelial cells was upregulated, and the products derived from E. coli O22:H8 induced migration and proliferation of colon epithelial cells through Fpr2. Fpr2 deficiency increased susceptibility to chemically induced colitis, delayed the repair of damaged colon epithelial cells, and heightened inflammatory responses. Additionally, the population of E. coli was observed to increase in the colons of Fpr2-/- mice with colitis. CONCLUSION Commensal E. coli O22:H8 stimulated the upregulation of Fpr2 expression in colon epithelial cells, and the products from E. coli induced migration and proliferation of colon epithelial cells through Fpr2. Fpr2 deficiency led to an increased E. coli population in the colon and delayed recovery of damaged colon epithelial cells in mice with colitis. Therefore, Fpr2 is essential for the effects of commensal E. coli on colon epithelial cell recovery.
Collapse
Affiliation(s)
- Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| | - John McCulloch
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Rodrigo Das Neves
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Gisele Rodrigues
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Wang-Ting Hsieh
- Animal Health Diagnostic Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc, Frederick, MD, 21702, USA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Jiaqiang Huang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
- College of Life Sciences, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Colm O'hUigin
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Simone Difilippantonio
- Gnotobiotics Facility, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Matthew McCollum
- Gnotobiotics Facility, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Georgette Jones
- Gnotobiotics Facility, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Scott K Durum
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
20
|
Cong J, Wang P, Gai H, Zhou S, Zhang Y, Zhao T. Effects of compound prebiotics as prophylactic and therapeutic supplementation in a mouse model of acute colitis. Appl Microbiol Biotechnol 2023; 107:2597-2609. [PMID: 36869880 DOI: 10.1007/s00253-023-12453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023]
Abstract
Compound prebiotics (CP) have been explored in modulation of intestinal microbiota and remission of inflammatory responses in the acute colitis (AC). Yet, research on the roles of simultaneous prophylactic and therapeutic CP intervention in relation to AC remains lacking. Here, CP were pre-fed to examine preventive effects. CP, CP combined with mesalazine (5-aminosalicylic acid) (CPM), and mesalazine were used to evaluate therapeutic effects on the dextran sulfate sodium (DSS)-induced AC. Results showed that prophylactic CP and therapeutic CPM alleviated AC, evidenced by variations of body weight, colon length, spleen index, disease activity index score, histological score, and intestinal mucosa. Ruminococcus and Bifidobacterium were detected in significant abundance in the prophylactic CP and therapeutic CPM groups, respectively. Phylogenetic ecological network analysis revealed that therapeutic CPM probably had the strongest coupling between microbes in changing intestinal microbiota to influence treatment. However, changes in short-chain fatty acids (SCFAs) seemed to have no persuasive results, probably due to reduced SCFA level in feces and variability in transit, absorption, and utilization. Furthermore, therapeutic CP exerted higher value in terms of observed species and Shannon diversity, as well as a more concentrated distribution by principal coordinates analysis. Together, the favorable roles of CP in colitis provide directions for prebiotics in designing effective prophylactic functional diets and treatment strategies. KEY POINTS: • Prebiotics as prophylactic intervention effectively inhibited acute colitis. • Prebiotics as prophylactic and therapeutic interventions had distinct effects on gut microbiota. • Prebiotics combined with drug intervention had higher efficacy in treating acute colitis.
Collapse
Affiliation(s)
- Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| | - Peng Wang
- Department of Radiology, Shanghai 411 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Shanghai, 200080, China
| | - Huirong Gai
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, 266000, China
| | - Siyu Zhou
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| |
Collapse
|
21
|
Deng C, Hu Y, Conceição M, Wood MJA, Zhong H, Wang Y, Shao P, Chen J, Qiu L. Oral delivery of layer-by-layer coated exosomes for colitis therapy. J Control Release 2023; 354:635-650. [PMID: 36634710 DOI: 10.1016/j.jconrel.2023.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) have attracted much attention as a potential cell-free therapy for ulcerative colitis (UC), mainly due to their anti-inflammatory, tissue repair, and immunomodulatory properties. Although intravenous injection of MSC-Exos is able to improve UC to a certain extent, oral administration of exosomes is the preferred method to treat gastrointestinal diseases such as UC. However, exosomes contain proteins and nucleic acids that are vulnerable to degradation by the gastrointestinal environment, making oral administration difficult to implement. Layer-by-layer (LbL) self-assembly technology provides a promising strategy for the oral delivery of exosomes. Therefore, an efficient LbL-Exos self-assembly system was constructed in this study for the oral delivery of exosomes targeted to the colon to improve UC treatment. Biocompatible and biodegradable N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) and oxidized konjac glucomannan (OKGM) polysaccharides were used as the outer layers to provide colon targeting and to protect exosomes from degradation. Similar to plain exosomes, LbL-Exos had a similar structure and features, but LbL provided controlled release of exosomes in the inflammatory colon. Compared with intravenous administration, oral administration of LbL-Exos could effectively alleviate UC using half the number of exosomes. Mechanistic studies showed that LbL-Exos were internalized by macrophages and intestinal epithelial cells to exert anti-inflammatory and tissue repair effects and therefore alleviate UC. Furthermore, the LbL-Exos system was able to improve UC via MAPK/NF-κB signaling pathway inhibition. Overall, our data show that LbL-MSC-Exos can alleviate UC after oral administration and therefore may constitute a new strategy for UC treatment in the future.
Collapse
Affiliation(s)
- Chao Deng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yiwei Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Jiangyin Center for Disease Control and Prevention, Jiangyin 214434, China
| | | | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Hongyao Zhong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yan Wang
- Yixing Hospital of Traditional Chinese Medicine, Wuxi 214200, China
| | - Ping Shao
- Yixing Hospital of Traditional Chinese Medicine, Wuxi 214200, China.
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Lipeng Qiu
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK; School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
22
|
Dietary-Induced Bacterial Metabolites Reduce Inflammation and Inflammation-Associated Cancer via Vitamin D Pathway. Int J Mol Sci 2023; 24:ijms24031864. [PMID: 36768196 PMCID: PMC9914969 DOI: 10.3390/ijms24031864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Environmental factors, including westernised diets and alterations to the gut microbiota, are considered risk factors for inflammatory bowel diseases (IBD). The mechanisms underpinning diet-microbiota-host interactions are poorly understood in IBD. We present evidence that feeding a lard-based high-fat (HF) diet can protect mice from developing DSS-induced acute and chronic colitis and colitis-associated cancer (CAC) by significantly reducing tumour burden/incidence, immune cell infiltration, cytokine profile, and cell proliferation. We show that HF protection was associated with increased gut microbial diversity and a significant reduction in Proteobacteria and an increase in Firmicutes and Clostridium cluster XIVa abundance. Microbial functionality was modulated in terms of signalling fatty acids and bile acids (BA). Faecal secondary BAs were significantly induced to include moieties that can activate the vitamin D receptor (VDR), a nuclear receptor richly represented in the intestine and colon. Indeed, colonic VDR downstream target genes were upregulated in HF-fed mice and in combinatorial lipid-BAs-treated intestinal HT29 epithelial cells. Collectively, our data indicate that HF diet protects against colitis and CAC risk through gut microbiota and BA metabolites modulating vitamin D targeting pathways. Our data highlights the complex relationship between dietary fat-induced alterations of microbiota-host interactions in IBD/CAC pathophysiology.
Collapse
|
23
|
Shin SY, Kim Y, Kim WS, Moon JM, Lee KM, Jung SA, Park H, Huh EY, Kim BC, Lee SC, Choi CH. Compositional changes in fecal microbiota associated with clinical phenotypes and prognosis in Korean patients with inflammatory bowel disease. Intest Res 2023; 21:148-160. [PMID: 35692191 PMCID: PMC9911276 DOI: 10.5217/ir.2021.00168] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/10/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND/AIMS The fecal microbiota of Korean patients with inflammatory bowel disease (IBD) was investigated with respect to disease phenotypes and taxonomic biomarkers for diagnosis and prognosis of IBD. METHODS Fecal samples from 70 ulcerative colitis (UC) patients, 39 Crohn's disease (CD) patients, and 100 healthy control individuals (HC) were collected. The fecal samples were amplified via polymerase chain reaction and sequenced using Illumina MiSeq. The relationships between fecal bacteria and clinical phenotypes were analyzed using the EzBioCloud database and 16S microbiome pipeline. RESULTS The alpha-diversity of fecal bacteria was significantly lower in UC and CD (P<0.05) compared to that in HC. Bacterial community compositions in UC and CD were significantly different from that of HC according to Bray-Curtis dissimilarities, and there was also a difference between community composition in UC and CD (P=0.01). In UC, alpha-diversity was further decreased when the disease was more severe and the extent of disease was greater, and community composition significantly differed depending on the extent of the disease. We identified 9 biomarkers of severity and 6 biomarkers of the extent of UC. We also identified 5 biomarkers of active disease and 3 biomarkers of ileocolonic involvement in CD. Lachnospiraceae and Ruminococcus gnavus were biomarkers for better prognosis in CD. CONCLUSIONS The fecal microbiota profiles of IBD patients were different from those of HC, and several bacterial taxa may be used as biomarkers to determine disease phenotypes and prognosis. These data may also help discover new therapeutic targets for IBD.
Collapse
Affiliation(s)
- Seung Yong Shin
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Young Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Won-Seok Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jung Min Moon
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kang-Moon Lee
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Sung-Ae Jung
- Department of Internal Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University College of Medicine, Seoul, Korea
| | - Hyesook Park
- Department of Preventive Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University College of Medicine, Seoul, Korea
| | - Eun Young Huh
- South Texas Center of Emerging Infectious Diseases (STCEID) and Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Byung Chang Kim
- Division of Gastroenterology, Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Soo Chan Lee
- South Texas Center of Emerging Infectious Diseases (STCEID) and Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, USA,Co-Correspondence to Soo Chan Lee, South Texas Center of Emerging Infectious Diseases (STCEID), Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA. Tel: +1-210-458-5398, E-mail:
| | - Chang Hwan Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea,Correspondence to Chang Hwan Choi, Department of Internal Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea. Tel: +82-2-6299-1418, Fax: +82-2-6299-2064, E-mail:
| | | |
Collapse
|
24
|
Chen D, Tang H, Li Y, Yang H, Wang H, Tan B, Qian J. Vitamin D3 and Lactobacillus rhamnosus GG/p40 Synergize to Protect Mice From Colitis by Promoting Vitamin D Receptor Expression and Epithelial Proliferation. Inflamm Bowel Dis 2022; 29:620-632. [PMID: 36562589 DOI: 10.1093/ibd/izac238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND While vitamin D (VitD) levels are negatively correlated with inflammatory bowel disease (IBD) activity, VitD supplementation does not reduce IBD severity. The probiotic Lactobacillus rhamnosus GG (LGG), which secretes p40, can upregulate colonic VitD receptor (VDR) expression. We therefore evaluated synergy between VitD3 and LGG/p40 in the treatment of mouse colitis. METHODS A dextran sulfate sodium (DSS) colitis model was established in Vdr+/+ and Vdr-/- mice, and mice were treated with VitD3, LGG, or p40 alone or in combination for 7 to 14 days. Colitis severity was assessed by weight loss, disease activity index (DAI), colon length, histology, and inflammatory cytokine expression together with VDR expression, proliferation, and apoptosis. In vitro, VDR expression and cell viability were assessed in HCT116 cells after stimulation with p40. RESULTS Total and nuclear VDR protein expression were lower in DSS-treated Vdr+/+ mice compared with control mice (P < .05). Compared with the DSS group, VitD3 + LGG alleviated colitis as assessed by significantly improved DAI and histological scores, increased colon length, decreased colonic Tnf, and increased Il10 expression together with increased colonic VDR gene and protein expression and increased Ki-67 proliferation index (P < .05). In Vdr-/- mice, VitD3 + LGG had no effect on DSS colitis. In Vdr+/+ mice, VitD3 + p40 also reduced colitis severity according to clinicopathological and immunological metrics and increased VDR expression and epithelial proliferation (P < .05). In HCT116 cells, p40 stimulation increased VDR protein expression and viability (P < .05). CONCLUSIONS VitD3 and LGG/p40 synergistically improve the severity of colitis by increasing colonic VDR expression and promoting colonic epithelial proliferation.
Collapse
Affiliation(s)
- Dan Chen
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Gastroenterology, Beijing Hospital, National Center of Gerontology.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Tang
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Chinaand
| | - Yue Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bei Tan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Wu J, Man D, Shi D, Wu W, Wang S, Wang K, Li Y, Yang L, Bian X, Wang Q, Li L. Intermittent Fasting Alleviates Risk Markers in a Murine Model of Ulcerative Colitis by Modulating the Gut Microbiome and Metabolome. Nutrients 2022; 14:nu14245311. [PMID: 36558471 PMCID: PMC9788567 DOI: 10.3390/nu14245311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Clinical trials have demonstrated the health benefits of intermittent fasting (IF). However, the potential mechanism of IF in alleviating dextran sulfate sodium (DSS)-induced colitis is not fully understood. The present study was mainly designed to explore the dynamic changes in the gut microbiota and metabolome after short-term (2 weeks) or long-term (20 weeks) IF and therefore clarify the potential mechanisms by which IF ameliorates DSS-induced colitis in a murine model. Thirty-two C57BL/6 male mice were equally divided into four groups and underwent IF intervention for 2 weeks (SIF group, n = 8), 20 weeks (LIF group, n = 8), or were allowed free access to food for 2 weeks (SAL group, n = 8) or 20 weeks (LAL group, n = 8). The thirty-two C57BL/6 male mice were accepted for the diet intervention of 2 weeks of IF or fed ad libitum. Colitis was induced by drinking 2% DSS for 7 days. Our findings showed that short-term IF prominently elevates the abundance of Bacteroides, Muibaculum and Akkermansia (p < 0.001, p < 0.001, p < 0.001, respectively), and decreased the abundance of Ruminiclostridium (p < 0.05). Long-term IF, however, decreased the abundance of Akkermansia and obviously increased the abundance of Lactobacillus (p < 0.05, p < 0.001, respectively). Metabolites mainly associated with nucleoside, carbohydrate, amino acid, bile acid, fatty acid, polyol, steroid and amine metabolism were identified in the faeces using untargeted GC/MS. In particular, inosine was extremely enriched after short-term IF and long-term IF (p < 0.01, p < 0.01, respectively); butyrate, 2-methyl butyric acid and valeric acid were significantly decreased after short-term IF (p < 0.001, p < 0.001, p < 0.01, respectively); and 2-methyl butyric acid was significantly increased after long-term IF (p < 0.001). The abundance of lithocholic acid (LCA), one of the secondary bile acids, increased significantly after short-term and long-term IF based on UPLC−MS/MS (p < 0.001, p < 0.5, respectively). Of note, IF markedly mitigated DSS-induced acute colitis symptoms and down-regulated pro-inflammatory cytokines IL-1α, IL-6, keratinocyte-derived chemokine (KC) and G-CSF levels in the serum (p < 0.01, p < 0.001, p < 0.05, p < 0.001, respectively). Furthermore, a correlation analysis indicated that the disease activity index (DAI) score and serum levels of IL-1α, IL-6, KC, and G-CSF were negatively correlated with the relative abundance of Akkermansia and the faecal metabolites LCA and inosine. This study confirmed that IF altered microbiota and reprogramed metabolism, which was a promising development in the attempt to prevent DSS-induced colitis. Moreover, our findings provide new insights regarding the correlations among the mucosal barrier dysfunction, metabolome, and microbiome.
Collapse
Affiliation(s)
- Jingjing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Da Man
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shuting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Correspondence: ; Tel./Fax: +86-571-8723-6759
| |
Collapse
|
26
|
Old but Fancy: Curcumin in Ulcerative Colitis-Current Overview. Nutrients 2022; 14:nu14245249. [PMID: 36558408 PMCID: PMC9781182 DOI: 10.3390/nu14245249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Ulcerative colitis (UC) is one of the inflammatory bowel diseases (IBD). It is a chronic autoimmune inflammation of unclear etiology affecting the colon and rectum, characterized by unpredictable exacerbation and remission phases. Conventional treatment options for UC include mesalamine, glucocorticoids, immunosuppressants, and biologics. The management of UC is challenging, and other therapeutic options are constantly being sought. In recent years more attention is being paid to curcumin, a main active polyphenol found in the turmeric root, which has numerous beneficial effects in the human body, including anti-inflammatory, anticarcinogenic, and antioxidative properties targeting several cellular pathways and making an impact on intestinal microbiota. This review will summarize the current knowledge on the role of curcumin in the UC therapy.
Collapse
|
27
|
Talapko J, Včev A, Meštrović T, Pustijanac E, Jukić M, Škrlec I. Homeostasis and Dysbiosis of the Intestinal Microbiota: Comparing Hallmarks of a Healthy State with Changes in Inflammatory Bowel Disease. Microorganisms 2022; 10:microorganisms10122405. [PMID: 36557658 PMCID: PMC9781915 DOI: 10.3390/microorganisms10122405] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota, which represent a community of different microorganisms in the human intestinal tract, are crucial to preserving human health by participating in various physiological functions and acting as a metabolic organ. In physiological conditions, microbiota-host partnership exerts homeostatic stability; however, changes in intestinal microbiota composition (dysbiosis) are an important factor in the pathogenesis of inflammatory bowel disease and its two main disease entities: ulcerative colitis and Crohn's disease. The incidence and prevalence of these inflammatory conditions have increased rapidly in the last decade, becoming a significant problem for the healthcare system and a true challenge in finding novel therapeutic solutions. The issue is that, despite numerous studies, the etiopathogenesis of inflammatory bowel disease is not completely clear. Based on current knowledge, chronic intestinal inflammation occurs due to altered intestinal microbiota and environmental factors, as well as a complex interplay between the genetic predisposition of the host and an inappropriate innate and acquired immune response. It is important to note that the development of biological and immunomodulatory therapy has led to significant progress in treating inflammatory bowel disease. Certain lifestyle changes and novel approaches-including fecal microbiota transplantation and nutritional supplementation with probiotics, prebiotics, and synbiotics-have offered solutions for dysbiosis management and paved the way towards restoring a healthy microbiome, with only minimal long-term unfavorable effects.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Aleksandar Včev
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation and the Department of Health Metrics Sciences, University of Washington, Seattle, WA 98195, USA
- Correspondence: (T.M.); (I.Š.)
| | - Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Melita Jukić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
- General Hospital Vukovar, Županijska 35, 32000 Vukovar, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
- Correspondence: (T.M.); (I.Š.)
| |
Collapse
|
28
|
Li X, Cui L, Feng G, Yu S, Shao G, He N, Li S. Collagen peptide promotes DSS-induced colitis by disturbing gut microbiota and regulation of macrophage polarization. Front Nutr 2022; 9:957391. [PMID: 36313077 PMCID: PMC9608506 DOI: 10.3389/fnut.2022.957391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease caused by mucosal immune system disorder, which has increased steadily all over the world. Previous studies have shown that collagen peptide (CP) has various beneficial biological activities, it is not clear whether the effect of CP on UC is positive or negative. In this study, 2.5% dextran sulfate sodium (DSS) was used to establish acute colitis in mice. Our results suggested that CP supplementation (200, 400 mg/kg/day) promoted the progression of colitis, increased the expression of inflammatory factors and the infiltration of colonic lamina propria macrophages. Gut microbiota analysis showed the composition changed significantly and inflammation promoted bacteria was after CP treatment. Meanwhile, the effect of CP on macrophage polarization was further determined in Raw264.7 cell line. The results showed that CP treatment could increase the polarization of M1 macrophages and promote the expression of inflammatory factors. In conclusion, our results showed that CP treatment could disrupt the gut microbiota of host, promote macrophage activation and aggravate DSS-induced colitis. This may suggest that patients with intestinal inflammation should not take marine derived CP.
Collapse
Affiliation(s)
| | | | | | | | | | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
29
|
Rees NP, Shaheen W, Quince C, Tselepis C, Horniblow RD, Sharma N, Beggs AD, Iqbal TH, Quraishi MN. Systematic review of donor and recipient predictive biomarkers of response to faecal microbiota transplantation in patients with ulcerative colitis. EBioMedicine 2022; 81:104088. [PMID: 35660786 PMCID: PMC9163485 DOI: 10.1016/j.ebiom.2022.104088] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/14/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Nia Paddison Rees
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, UK
| | - Walaa Shaheen
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, UK
| | | | - Chris Tselepis
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK; Institute of Clinical Sciences, School of Biomedical Sciences, University of Birmingham, UK
| | - Richard D Horniblow
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK; Institute of Clinical Sciences, School of Biomedical Sciences, University of Birmingham, UK
| | - Naveen Sharma
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Andrew D Beggs
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Tariq H Iqbal
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Institute of Microbiology and Infection, University of Birmingham, UK
| | - Mohammed Nabil Quraishi
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|
30
|
Krela-Kaźmierczak I, Zakerska-Banaszak O, Skrzypczak-Zielińska M, Łykowska-Szuber L, Szymczak-Tomczak A, Zawada A, Rychter AM, Ratajczak AE, Skoracka K, Skrzypczak D, Marcinkowska E, Słomski R, Dobrowolska A. Where Do We Stand in the Behavioral Pathogenesis of Inflammatory Bowel Disease? The Western Dietary Pattern and Microbiota-A Narrative Review. Nutrients 2022; 14:nu14122520. [PMID: 35745251 PMCID: PMC9230670 DOI: 10.3390/nu14122520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the increasing knowledge with regard to IBD (inflammatory bowel disease), including ulcerative colitis (UC) and Crohn’s disease (CD), the etiology of these conditions is still not fully understood. Apart from immunological, environmental and nutritional factors, which have already been well documented, it is worthwhile to look at the possible impact of genetic factors, as well as the composition of the microbiota in patients suffering from IBD. New technologies in biochemistry allow to obtain information that can add to the current state of knowledge in IBD etiology.
Collapse
Affiliation(s)
- Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Correspondence: (I.K.-K.); (O.Z.-B.); (D.S.)
| | - Oliwia Zakerska-Banaszak
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.S.-Z.); (R.S.)
- Correspondence: (I.K.-K.); (O.Z.-B.); (D.S.)
| | | | - Liliana Łykowska-Szuber
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| | - Aleksandra Szymczak-Tomczak
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Alicja Ewa Ratajczak
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Dorota Skrzypczak
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Correspondence: (I.K.-K.); (O.Z.-B.); (D.S.)
| | - Emilia Marcinkowska
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.S.-Z.); (R.S.)
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| |
Collapse
|
31
|
Pednekar DD, Liguori MA, Marques CNH, Zhang T, Zhang N, Zhou Z, Amoako K, Gu H. From Static to Dynamic: A Review on the Role of Mucus Heterogeneity in Particle and Microbial Transport. ACS Biomater Sci Eng 2022; 8:2825-2848. [PMID: 35696291 DOI: 10.1021/acsbiomaterials.2c00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucus layers (McLs) are on the front line of the human defense system that protect us from foreign abiotic/biotic particles (e.g., airborne virus SARS-CoV-2) and lubricates our organs. Recently, the impact of McLs on human health (e.g., nutrient absorption and drug delivery) and diseases (e.g., infections and cancers) has been studied extensively, yet their mechanisms are still not fully understood due to their high variety among organs and individuals. We characterize these variances as the heterogeneity of McLs, which lies in the thickness, composition, and physiology, making the systematic research on the roles of McLs in human health and diseases very challenging. To advance mucosal organoids and develop effective drug delivery systems, a comprehensive understanding of McLs' heterogeneity and how it impacts mucus physiology is urgently needed. When the role of airway mucus in the penetration and transmission of coronavirus (CoV) is considered, this understanding may also enable a better explanation and prediction of the CoV's behavior. Hence, in this Review, we summarize the variances of McLs among organs, health conditions, and experimental settings as well as recent advances in experimental measurements, data analysis, and model development for simulations.
Collapse
Affiliation(s)
- Dipesh Dinanath Pednekar
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Madison A Liguori
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | | | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States.,BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zejian Zhou
- Department of Electrical and Computer Engineering and Computer Science, University of New Haven, West Haven, Connecticut 06516, United States
| | - Kagya Amoako
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Huan Gu
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| |
Collapse
|
32
|
Higher levels of Bifidobacteria and tumor necrosis factor in children with drug-resistant epilepsy are associated with anti-seizure response to the ketogenic diet. EBioMedicine 2022; 80:104061. [PMID: 35598439 PMCID: PMC9126955 DOI: 10.1016/j.ebiom.2022.104061] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
Background Recently, studies have suggested a role for the gut microbiota in epilepsy. Gut microbial changes during ketogenic diet (KD) treatment of drug-resistant epilepsy have been described. Inflammation is associated with certain types of epilepsy and specific inflammation markers decrease during KD. The gut microbiota plays an important role in the regulation of the immune system and inflammation. Methods 28 children with drug-resistant epilepsy treated with the ketogenic diet were followed in this observational study. Fecal and serum samples were collected at baseline and three months after dietary intervention. Findings We identified both gut microbial and inflammatory changes during treatment. KD had a general anti-inflammatory effect. Novel bioinformatics and machine learning approaches identified signatures of specific Bifidobacteria and TNF (tumor necrosis factor) associated with responders before starting KD. During KD, taxonomic and inflammatory profiles between responders and non-responders were more similar than at baseline. Interpretation Our results suggest that children with drug-resistant epilepsy are more likely to benefit from KD treatment when specific Bifidobacteria and TNF are elevated. We here present a novel signature of interaction of the gut microbiota and the immune system associated with anti-epileptic response to KD treatment. This signature could be used as a prognostic biomarker to identify potential responders to KD before starting treatment. Our findings may also contribute to the development of new anti-seizure therapies by targeting specific components of the gut microbiota. Funding This study was supported by the Swedish Brain Foundation, Margarethahemmet Society, Stiftelsen Sunnerdahls Handikappfond, Linnea & Josef Carlssons Foundation, and The McCormick Genomic & Proteomic Center.
Collapse
|
33
|
Ganesan R, Jeong JJ, Kim DJ, Suk KT. Recent Trends of Microbiota-Based Microbial Metabolites Metabolism in Liver Disease. Front Med (Lausanne) 2022; 9:841281. [PMID: 35615096 PMCID: PMC9125096 DOI: 10.3389/fmed.2022.841281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome and microbial metabolomic influences on liver diseases and their diagnosis, prognosis, and treatment are still controversial. Research studies have provocatively claimed that the gut microbiome, metabolomics understanding, and microbial metabolite screening are key approaches to understanding liver cancer and liver diseases. An advance of logical innovations in metabolomics profiling, the metabolome inclusion, challenges, and the reproducibility of the investigations at every stage are devoted to this domain to link the common molecules across multiple liver diseases, such as fatty liver, hepatitis, and cirrhosis. These molecules are not immediately recognizable because of the huge underlying and synthetic variety present inside the liver cellular metabolome. This review focuses on microenvironmental metabolic stimuli in the gut-liver axis. Microbial small-molecule profiling (i.e., semiquantitative monitoring, metabolic discrimination, target profiling, and untargeted profiling) in biological fluids has been incompletely addressed. Here, we have reviewed the differential expression of the metabolome of short-chain fatty acids (SCFAs), tryptophan, one-carbon metabolism and bile acid, and the gut microbiota effects are summarized and discussed. We further present proof-of-evidence for gut microbiota-based metabolomics that manipulates the host's gut or liver microbes, mechanosensitive metabolite reactions and potential metabolic pathways. We conclude with a forward-looking perspective on future attention to the “dark matter” of the gut microbiota and microbial metabolomics.
Collapse
|
34
|
Cheng M, Liu H, Han M, Li SC, Bu D, Sun S, Hu Z, Yang P, Wang R, Liu Y, Chen F, Peng J, Peng H, Song H, Xia Y, Chu L, Zhou Q, Guan F, Wu J, Tan G, Ning K. Microbiome Resilience and Health Implications for People in Half-Year Travel. Front Immunol 2022; 13:848994. [PMID: 35281043 PMCID: PMC8907539 DOI: 10.3389/fimmu.2022.848994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Travel entail change in geography and diet, both of which are known as determinant factors in shaping the human gut microbiome. Additionally, altered gut microbiome modulates immunity, bringing about health implications in humans. To explore the effects of the mid-term travel on the gut microbiome, we generated 16S rRNA gene and metagenomic sequencing data from longitudinal samples collected over six months. We monitored dynamic trajectories of the gut microbiome variation of a Chinese volunteer team (VT) in their whole journey to Trinidad and Tobago (TAT). We found gut microbiome resilience that VT’s gut microbial compositions gradually transformed to the local TAT’s enterotypes during their six-month stay in TAT, and then reverted to their original enterotypes after VT’s return to Beijing in one month. Moreover, we identified driven species in this bi-directional plasticity that could play a role in immunity modulation, as exemplified by Bacteroides dorei that attenuated atherosclerotic lesion formation and effectively suppressed proinflammatory immune response. Another driven species P. copri could play a crucial role in rheumatoid arthritis pathogenesis, a chronic autoimmune disease. Carbohydrate-active enzymes are often implicated in immune and host-pathogen interactions, of which glycoside hydrolases were found decreased but glycosyltransferases and carbohydrate esterases increased during the travel; these functions were then restored after VT’ returning to Beijing. Furthermore, we discovered these microbial changes and restoration were mediated by VT people’s dietary changes. These findings indicate that half-year travel leads to change in enterotype and functional patterns, exerting effects on human health. Microbial intervention by dietary guidance in half-year travel would be conducive to immunity modulation for maintaining health.
Collapse
Affiliation(s)
- Mingyue Cheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dongbo Bu
- Key Lab of Intelligent Information Processing, State Lab of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,School of Computer and Control, University of Chinese Academy of Sciences, Beijing, China
| | - Shiwei Sun
- Key Lab of Intelligent Information Processing, State Lab of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,School of Computer and Control, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiqiang Hu
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yawen Liu
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Feng Chen
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jianjun Peng
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hong Peng
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hongxing Song
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yang Xia
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Liqun Chu
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Quan Zhou
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Feng Guan
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jing Wu
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Guangming Tan
- Key Lab of Intelligent Information Processing, State Lab of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,School of Computer and Control, University of Chinese Academy of Sciences, Beijing, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Zhu T, Hu B, Ye C, Hu H, Yin M, Zhang Z, Li S, Liu Y, Liu H. Bletilla striata Oligosaccharides Improve Ulcerative Colitis by Regulating Gut Microbiota and Intestinal Metabolites in Dextran Sulfate Sodium-Induced Mice. Front Pharmacol 2022; 13:867525. [PMID: 35548331 PMCID: PMC9081565 DOI: 10.3389/fphar.2022.867525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
This study aimed to elucidate the mechanism of Bletilla striata oligosaccharides (BO) in the treatment of ulcerative colitis (UC). A UC mouse model was induced by 3% Dextran sodium sulfate (DSS), and BO (200 mg/kg/d) were administered for intervention. The results show that BO effectively inhibited the release of intestinal inflammatory cytokines such as IL-6, TNF-α, and IL-1β. Also, BO profoundly elevated the secretion of mucins and the expression of tight junction (TJ) proteins to attenuate dysfunction of the intestinal barrier. The 16S rDNA sequencing and liquid chromatography/gas chromatography-mass spectrometer (LC/GC-MS) analysis of mouse feces revealed that BO regulated the disturbance of gut microbiota and intestinal metabolites. By using the in vitro fermentation broth of BO and gut microbiota-depleted mice treated with antibiotics, we confirmed the protection of BO against UC. In conclusion, BO played a role in improving UC by modulating gut microbial composition and intestinal metabolites, which provided new therapeutic strategies for UC treatment.
Collapse
Affiliation(s)
- Tianxiang Zhu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Baifei Hu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Cheng Ye
- Wuhan Customs Technology Center, Wuhan, China
| | - Haiming Hu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Mingzhu Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhigang Zhang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Shuiqing Li
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yanju Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Yanju Liu, ; Hongtao Liu,
| | - Hongtao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Yanju Liu, ; Hongtao Liu,
| |
Collapse
|
36
|
Zhang WH, Jin ZY, Yang ZH, Zhang JY, Ma XH, Guan J, Sun BL, Chen X. Fecal Microbiota Transplantation Ameliorates Active Ulcerative Colitis by Downregulating Pro-inflammatory Cytokines in Mucosa and Serum. Front Microbiol 2022; 13:818111. [PMID: 35444617 PMCID: PMC9014222 DOI: 10.3389/fmicb.2022.818111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/14/2022] [Indexed: 12/26/2022] Open
Abstract
Background Ulcerative colitis (UC) is a multi-factor disease characterized by alternating remission periods and repeated occurrence. It has been shown that fecal microbiota transplantation (FMT) is an emerging and effective approach for UC treatment. Since most existing studies chose adults as donors for fecal microbiota, we conducted this study to determine the long-term efficacy and safety of the microbiota from young UC patient donors and illustrate its specific physiological effects. Methods Thirty active UC patients were enrolled and FMT were administered with the first colonoscopy and two subsequent enema/transendoscopic enteral tubing (TET) practical regimens in The First Affiliated Hospital of Anhui Medical University in China. Disease activity and inflammatory biomarkers were assessed 6 weeks/over 1 year after treatment. The occurrence of adverse events was also recorded. The samples from blood and mucosa were collected to detect the changes of inflammatory biomarkers and cytokines. The composition of gut and oral microbiota were also sampled and sequenced to confirm the alteration of microbial composition. Results Twenty-seven patients completed the treatment, among which 16 (59.3%) achieved efficacious clinical response and 11 (40.7%) clinical remission. Full Mayo score and calprotectin dropped significantly and remained stable over 1 year. FMT also significantly reduced the levels of C-reactive protein (CRP), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6). The gut microbiota altered significantly with increased bacterial diversity and decreased metabolic diversity in responsive patients. The pro-inflammatory enterobacteria decreased after FMT and the abundance of Collinsella increased. Accordingly, the altered metabolic functions, including antigen synthesis, amino acids metabolism, short chain fatty acid production, and vitamin K synthesis of microbiota, were also corrected by FMT. Conclusion Fecal microbiota transplantation seems to be safe and effective for active UC patients who are nonresponsive to mesalazine or prednisone in the long-term. FMT could efficiently downregulate pro-inflammatory cytokines to ameliorate the inflammation.
Collapse
Affiliation(s)
- Wen-Hui Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ze-Yu Jin
- USTC-IAT and Chorain Health Joint Laboratory for Human Microbiome, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Zhong-Hua Yang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jia-Yi Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Han Ma
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Guan
- Anhui Provincial Key Laboratory of Digestive Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bao-Lin Sun
- USTC-IAT and Chorain Health Joint Laboratory for Human Microbiome, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Xi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
37
|
Abstract
In this study, we investigated the influence of fungal extracellular vesicles (EVs) during biofilm formation and morphogenesis in Candida albicans. Using crystal violet staining and scanning electron microscopy (SEM), we demonstrated that C. albicans EVs inhibited biofilm formation in vitro. By time-lapse microscopy and SEM, we showed that C. albicans EV treatment stopped filamentation and promoted pseudohyphae formation with multiple budding sites. The ability of C. albicans EVs to regulate dimorphism was further compared to EVs isolated from different C. albicans strains, Saccharomyces cerevisiae, and Histoplasma capsulatum. C. albicans EVs from distinct strains inhibited yeast-to-hyphae differentiation with morphological changes occurring in less than 4 h. EVs from S. cerevisiae and H. capsulatum modestly reduced morphogenesis, and the effect was evident after 24 h of incubation. The inhibitory activity of C. albicans EVs on phase transition was promoted by a combination of lipid compounds, which were identified by gas chromatography-tandem mass spectrometry analysis as sesquiterpenes, diterpenes, and fatty acids. Remarkably, C. albicans EVs were also able to reverse filamentation. Finally, C. albicans cells treated with C. albicans EVs for 24 h lost their capacity to penetrate agar and were avirulent when inoculated into Galleria mellonella. Our results indicate that fungal EVs can regulate yeast-to-hypha differentiation, thereby inhibiting biofilm formation and attenuating virulence.
Collapse
|
38
|
Li Q, Li L, Li Q, Wang J, Nie S, Xie M. Influence of Natural Polysaccharides on Intestinal Microbiota in Inflammatory Bowel Diseases: An Overview. Foods 2022; 11:foods11081084. [PMID: 35454671 PMCID: PMC9029011 DOI: 10.3390/foods11081084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
The incidence of inflammatory bowel disease (IBD) has increased in recent years. Considering the potential side effects of conventional drugs, safe and efficient treatment methods for IBD are required urgently. Natural polysaccharides (NPs) have attracted considerable attention as potential therapeutic agents for IBD owing to their high efficiency, low toxicity, and wide range of biological activities. Intestinal microbiota and their fermentative products, mainly short-chain fatty acids (SCFAs), are thought to mediate the effect of NPs in IBDs. This review explores the beneficial effects of NPs on IBD, with a special focus on the role of intestinal microbes. Intestinal microbiota exert alleviation effects via various mechanisms, such as increasing the intestinal immunity, anti-inflammatory activities, and intestinal barrier protection via microbiota-dependent and microbiota-independent strategies. The aim of this paper was to document evidence of NP–intestinal microbiota-associated IBD prevention, which would be helpful for guidance in the treatment and management of IBD.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China; (Q.L.); (L.L.); (S.N.); (M.X.)
| | - Linyan Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China; (Q.L.); (L.L.); (S.N.); (M.X.)
| | - Qiqiong Li
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Junqiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China; (Q.L.); (L.L.); (S.N.); (M.X.)
- Correspondence:
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China; (Q.L.); (L.L.); (S.N.); (M.X.)
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China; (Q.L.); (L.L.); (S.N.); (M.X.)
| |
Collapse
|
39
|
Huang B, Wang L, Liu M, Wu X, Lu Q, Liu R. The underlying mechanism of A-type procyanidins from peanut skin on DSS-induced ulcerative colitis mice by regulating gut microbiota and metabolism. J Food Biochem 2022; 46:e14103. [PMID: 35218055 DOI: 10.1111/jfbc.14103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 12/18/2022]
Abstract
Ulcerative colitis (UC) is a kind of inflammatory bowel disease. Procyanidins have been found to prevent UC. However, most research has been focused on the alleviation effect of B-type procyanidins on UC and ignored those of A-type procyanidins. Hence, this study aims to investigate the anti-UC effect and the potential mechanism of A-type procyanidins by combining gut microbiome and metabolic profile. UC was induced by dextran sulfate sodium (DSS) in Balb/c mice, and then the mice were administrated with peanut skin procyanidins (PSP; rich in A-type procyanidins) for 9 days. Administration of PSP can ameliorate DSS-induced UC by mediating the intestinal barrier, the expression of inflammatory cytokines (TNF-α, IL-β, IL-6, and IL-10) and oxidative stress (MDA, T-SOD, NO, and iNOS) in mice. We observed that PSP affects the gut microbiota and colon metabolomic patterns of mice. The 16S rDNA sequencing showed increase in abundance of Lachnospiraceae_NK4A136_group, Oscillibacter and Roseburia and decrease of Bacteroides, Helicobacter, Parabacteroides, Escherichia-Shigella, and Enterobacter after PSP treatment. The colon tissue metabolome was significantly altered, as reflected by regulating taste transduction, mTOR signaling pathway, PI3K-Akt signaling pathway, and FoxO signaling pathway to improve the protection against UC. PRACTICAL APPLICATIONS: We investigated the anti-ulcerative colitis (UC) effect and its potential mechanism of peanut skin procyanidins (PSP). This suggests that PSP with abundant A-type procyanidins may be an effective candidate for dietary supplementation to alleviate the symptoms of UC by regulating gut microbiota and metabolism.
Collapse
Affiliation(s)
- Bijun Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han, China.,Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han, China
| | - Li Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han, China.,Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han, China
| | - Min Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han, China.,Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han, China
| | - Xin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han, China.,Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han, China.,Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han, China.,Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wu Han, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han, China.,Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han, China.,Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wu Han, China.,Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wu Han, P. R. China
| |
Collapse
|
40
|
Takeda T, Chiba Y. Evaluation of a natural S-equol supplement in treating premenstrual symptoms and the effect of the gut microbiota: An open-label pilot study. Neuropsychopharmacol Rep 2022; 42:127-134. [PMID: 35128842 PMCID: PMC9216369 DOI: 10.1002/npr2.12234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Abstract
AIM Premenstrual syndrome causes disturbances in many women's daily activities. Isoflavones might cause changes in the estrogen cycle by their selective estrogen receptor modulator-like activities. Equol, which is a metabolite of a soy isoflavone, has greater biological activity than other soy isoflavones. In this preliminary study, we aimed to examine the effect of a natural S-equol supplement (SE5-OH) on premenstrual symptoms. The gut microbiota has recently been suggested to play an important role in brain function in psychiatric disease, such as depression. Therefore, we further aimed to evaluate the relationship of the effect of SE5-OH and the gut microbiota at preintervention. METHODS Twenty women who showed premenstrual symptoms and were nonequol producers were enrolled in an open-label, single-arm, clinical study in which they received oral SE5-OH for two period cycles. The Daily Record of Severity of Problems (DRSP) total score was evaluated during the intervention cycles. Before taking SE5-OH, fecal samples were obtained and subjected to terminal restriction fragment length polymorphism analysis. RESULTS The response rate to treatment (≥50% reduction from baseline in the DRSP total score) was 10.5%. Post hoc analysis showed a significant improvement in the change in the DRSP total score (P = .008) and DRSP scores for four core premenstrual dysphoric disorder symptoms. Multiple regression analysis showed that the percentage improvement of the DRSP total score was positively related to Bifidobacterium and negatively related to Clostridium cluster IV. CONCLUSION SE5-OH supplementation may be an acceptable treatment for premenstrual symptoms. The intestinal microbiota may have an effect on SE5-OH.
Collapse
Affiliation(s)
- Takashi Takeda
- Division of Women's Health, Research Institute of Traditional Asian Medicine, Kindai University, Osaka-Sayama, Japan
| | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Japan
| |
Collapse
|
41
|
Painong San, a Traditional Chinese Compound Herbal Medicine, Restores Colon Barrier Function on DSS-Induced Colitis in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2810915. [PMID: 34966434 PMCID: PMC8712168 DOI: 10.1155/2021/2810915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/10/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
Objective The intestinal barrier decreases in colitis and restores the integrity of the mucosal barriers that could be used for the treatment of colitis. Painong San (PNS), a traditional Chinese compound herbal medicine originally recorded in “Jingui Yaolve” by Zhongjing Zhang in the Later Han Dynasty, is often used in China and Japan to treat various purulent diseases including intestinal carbuncle. This study was to investigate the effect of PNS on mucosal barrier function in mice with DSS-induced colitis and its related mechanisms. Methods BALB/C mice were given 3% DSS to induce colitis. The body weight and stool status of the mice were recorded daily, and the histopathological changes of the colon were observed after execution. The permeability of the intestinal mucosa was measured by fluorescein isothiocyanate-dextran 4000, the change of intestinal microbiota was measured by 16S rDNA, and the tight junction-related proteins and Muc-2 were investigated by immunohistochemical or immunofluorescence. The possible signaling pathways were detected by western blot. Results Compared with the control group, the composition of the microbiota in the PNS group was close to that of the normal group, the number of goblet cells was improved, and the mucosal permeability was significantly reduced. PNS could upregulate the expression of tight junction-related proteins (ZO-1, claudin-1, and occludin) and Muc-2, and at the same time, regulate the Notch pathway. Conclusion PNS could effectively improve the mucosal barrier function through multiple ways, including restoring the balance of intestine flora, enhancement of the mucous layer barrier, and mechanical barrier function. These protective effects may relate to inhibiting the Notch signaling pathway activated by DSS.
Collapse
|
42
|
Zhang J, Xu X, Li N, Cao L, Sun Y, Wang J, He S, Si J, Qing D. Licoflavone B, an isoprene flavonoid derived from licorice residue, relieves dextran sodium sulfate-induced ulcerative colitis by rebuilding the gut barrier and regulating intestinal microflora. Eur J Pharmacol 2021; 916:174730. [PMID: 34968462 DOI: 10.1016/j.ejphar.2021.174730] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is a major inflammatory disease worldwide. We previously demonstrated that licorice residue flavones (LFs) showed satisfactory efficacy in the treatment of UC. Therefore, research into the ingredients of LFs may lead to the discovery of novel anti-UC targets. In the current study, we separated licoflavone B (LB) from LFs and administered it to dextran sodium sulfate (DSS)-exposed C57BL/6 mice for 14 days. Our results demonstrated that high dose LB (120mg/kg) significantly prevented DSS-induced weight loss, disease activity index (DAI) increase, histological damage, and colonic inflammation, indicating that LB has ameliorative effects on UC. We also investigated the composition of the intestinal barrier and microflora in an attempt to explore the mechanisms of LB against UC. As a result, we found that LB preserved the integrity of the colonic barrier by inhibiting colonic cell apoptosis and protecting the expression of occludin, claudin-1, and ZO-1. Moreover, LB reshaped the microflora composition by suppressing harmful bacteria (Enterococcus et al.) and boosting beneficial microorganisms (Bacteroides et al.). Further molecular exploration implied that LB exerted anti-UC activity through blocking the MAPK pathway. Here, we explored anti-UC activity of LB for the first time and clarified its mechanisms. These results will provide valuable clues for the discovery of novel anti-UC agents.
Collapse
Affiliation(s)
- Juan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830002, China
| | - Xiaoqin Xu
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830002, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Li Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yu Sun
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830002, China
| | - Junchi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Shuaibing He
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, 313000, China
| | - Jianyong Si
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Degang Qing
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, 830002, China.
| |
Collapse
|
43
|
Zheng Y, Yu Y, Chen XF, Yang SL, Tang XL, Xiang ZG. Intestinal Macrophage Autophagy and its Pharmacological Application in Inflammatory Bowel Disease. Front Pharmacol 2021; 12:803686. [PMID: 34899362 PMCID: PMC8652230 DOI: 10.3389/fphar.2021.803686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn’s disease (CD) and ulcerative colitis (UC), is a group of chronic inflammatory disorders. IBD is regarded as a severe healthcare problem worldwide, with high morbidity and lethality. So far, despite of numerous studies on this issue, the specific mechanisms of IBD still remain unclarified and ideal treatments are not available for IBD. The intestinal mucosal barrier is vital for maintaining the function of the intestinal self-defensive system. Among all of the components, macrophage is an important one in the intestinal self-defensive system, normally protecting the gut against exotic invasion. However, the over-activation of macrophages in pathological conditions leads to the overwhelming induction of intestinal inflammatory and immune reaction, thus damaging the intestinal functions. Autophagy is an important catabolic mechanism. It has been proven to participate the regulation of various kinds of inflammation- and immune-related disorders via the regulation of inflammation in related cells. Here in this paper, we will review the role and mechanism of intestinal macrophage autophagy in IBD. In addition, several well-studied kinds of agents taking advantage of intestinal macrophage autophagy for the treatment of IBD will also be discussed. We aim to bring novel insights in the development of therapeutic strategies against IBD.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| | - Yang Yu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xu-Feng Chen
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| | - Sheng-Lan Yang
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| | - Xiao-Long Tang
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| | - Zheng-Guo Xiang
- Department of Gastroenterology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, China
| |
Collapse
|
44
|
Tan YY, Ding Y, Zheng X, Dai GJ, Zhang SM, Yang X, Xu DC, Chen P, Zhang JM, Ma JZ, Li M, Huang SC, Liu Y, Zhang YT, Xing H, Ding K, Ding YJ. Ding's herbal enema treats dextran sulfate sodium-induced colitis in mice by regulating the gut microbiota and maintaining the Treg/Th17 cell balance. Exp Ther Med 2021; 22:1368. [PMID: 34659514 PMCID: PMC8515548 DOI: 10.3892/etm.2021.10802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/18/2021] [Indexed: 01/02/2023] Open
Abstract
Ding's herbal enema (DHEP) is a traditional Chinese medicinal therapy that has been used to treat ulcerative colitis (UC) in China. The present study determined the molecular mechanism of the effect of DHEP in UC treatment. C57BL/6J mice were treated with 3.5% (w/v) dextran sulfate sodium (DSS) for 7 days to establish an animal model of colitis. The mice were divided into five groups (n=5): Control, vehicle, DHEP, mesalazine and β-sitosterol. After oral administration for 7 days, the body weight, disease activity index, histopathology and inflammatory factors were analyzed. The fractions of CD4+Foxp3+ regulatory T (Treg) cells and CD4+IL-17A+ T helper (Th) cells were determined by flow cytometry. Gut microbiota composition was analyzed by next-generation sequencing. The results revealed that DHEP and β-sitosterol could significantly alleviate the symptoms of DSS-induced UC. Furthermore, the levels of IL-6, cyclooxygenase-2, TNF-α and p65 were reduced after administration of DHEP. Additionally, the data indicated that DHEP could increase the abundance of seven operational taxonomic units (OTUs) and decrease the abundance of 12 OTUs in the gut microbiota. The content of short-chain fatty acids in the colon remodeled the balance of Treg/Th17 cells in DSS-induced UC in mice. The present study preliminarily defined the mechanism of action of DHEP in UC that may be associated with the regulation of the gut microbiota composition, and maintenance of the balance between Treg and Th17 cells. Furthermore, β-sitosterol exhibited the same effects with DHEP and it could be a possible substitute for DHEP in UC treatment.
Collapse
Affiliation(s)
- Yan-Yan Tan
- Department of National Center of Colorectal Surgery, Jiangsu Integrate Colorectal Oncology Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Yang Ding
- Department of First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xueping Zheng
- Department of National Center of Colorectal Surgery, Jiangsu Integrate Colorectal Oncology Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Gong-Jian Dai
- Department of National Center of Colorectal Surgery, Jiangsu Integrate Colorectal Oncology Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Su-Min Zhang
- Department of National Center of Colorectal Surgery, Jiangsu Integrate Colorectal Oncology Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Xu Yang
- Department of National Center of Colorectal Surgery, Jiangsu Integrate Colorectal Oncology Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Da-Chao Xu
- Department of National Center of Colorectal Surgery, Jiangsu Integrate Colorectal Oncology Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Peng Chen
- Department of First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jia-Min Zhang
- Department of First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jia-Ze Ma
- Department of First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Meng Li
- Department of First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Shi-Cai Huang
- Department of First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yan Liu
- Department of First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yu-Ting Zhang
- Department of First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Han Xing
- Department of First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Kang Ding
- Department of National Center of Colorectal Surgery, Jiangsu Integrate Colorectal Oncology Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Yi-Jiang Ding
- Department of National Center of Colorectal Surgery, Jiangsu Integrate Colorectal Oncology Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| |
Collapse
|
45
|
Sannathimmappa MB, Nambiar V, Aravindakshan R. Antibiotics at the crossroads - Do we have any therapeutic alternatives to control the emergence and spread of antimicrobial resistance? JOURNAL OF EDUCATION AND HEALTH PROMOTION 2021; 10:438. [PMID: 35071644 PMCID: PMC8719572 DOI: 10.4103/jehp.jehp_557_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/26/2021] [Indexed: 06/01/2023]
Abstract
Antibiotics once regarded as magic bullets are no more considered so. Overuse of antibiotics in humans, agriculture, and animal husbandry has resulted in the emergence of a wide range of multidrug-resistant (MDR) pathogens which are difficult to treat. Antimicrobial resistance (AMR) is a serious global health problem associated with high mortality in the era of modern medicine. Moreover, in the absence of an effective antibiotic, medical and surgical interventions can highly become a risk. In recent times, the decreased incline of pharmaceutical industries toward research and development of newer effective antibiotics to fight this MDR pathogens have further fuelled the scarcity of antibiotics, thus the number of antibiotics in the pipeline is extremely limited. Hence it is high time for the development of new strategies to fight against dangerous MDR pathogens. Currently, several novel approaches explored by scientists have shown promising results pertaining to their antimicrobial activity against pathogens. In this article, the authors have summarized various novel therapeutic options explored to contain AMR with special attention to the mechanism of action, advantages, and disadvantages of different approaches.
Collapse
Affiliation(s)
- Mohan Bilikallahalli Sannathimmappa
- Department of Microbiology, College of Medicine and Health Sciences, National University of Science and Technology, Sohar Campus, Sohar, Sultanate of Oman
| | - Vinod Nambiar
- Department of Microbiology, College of Medicine and Health Sciences, National University of Science and Technology, Sohar Campus, Sohar, Sultanate of Oman
| | - Rajeev Aravindakshan
- Department of Community Medicine, All India Institute of Medical Sciences, Mangalagiri, Andhra Pradesh, India
| |
Collapse
|
46
|
Muehlbauer AL, Richards AL, Alazizi A, Burns MB, Gomez A, Clayton JB, Petrzelkova K, Cascardo C, Resztak J, Wen X, Pique-Regi R, Luca F, Blekhman R. Interspecies variation in hominid gut microbiota controls host gene regulation. Cell Rep 2021; 37:110057. [PMID: 34818542 PMCID: PMC8647622 DOI: 10.1016/j.celrep.2021.110057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 07/22/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
The gut microbiome exhibits extreme compositional variation between hominid hosts. However, it is unclear how this variation impacts host physiology across species and whether this effect can be mediated through microbial regulation of host gene expression in interacting epithelial cells. Here, we characterize the transcriptional response of human colonic epithelial cells in vitro to live microbial communities extracted from humans, chimpanzees, gorillas, and orangutans. We find that most host genes exhibit a conserved response, whereby they respond similarly to the four hominid microbiomes. However, hundreds of host genes exhibit a divergent response, whereby they respond only to microbiomes from specific host species. Such genes are associated with intestinal diseases in humans, including inflammatory bowel disease and Crohn’s disease. Last, we find that inflammation-associated microbial species regulate the expression of host genes previously associated with inflammatory bowel disease, suggesting health-related consequences for species-specific host-microbiome interactions across hominids. Muehlbauer et al. investigate how variation between different hominid microbiomes drives host gene expression in colonic epithelial cell cultures. They find that host genes that respond only to microbiomes from a specific hominid species are linked to gastrointestinal diseases, suggesting implications for understanding how the microbiome can impact human health.
Collapse
Affiliation(s)
- Amanda L Muehlbauer
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA; Department of Ecology, Evolution and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Allison L Richards
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Michael B Burns
- Department of Biology, Loyola University, Chicago, IL 60660, USA
| | - Andres Gomez
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA
| | - Jonathan B Clayton
- Department of Biology, University of Nebraska at Omaha, Omaha, NB, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NB, USA
| | - Klara Petrzelkova
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic; Liberec Zoo, Liberec, Czech Republic; The Czech Academy of Sciences, Institute of Parasitology, Ceske Budejovice, Czech Republic
| | - Camilla Cascardo
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Justyna Resztak
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA.
| | - Ran Blekhman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA; Department of Ecology, Evolution and Behavior, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
47
|
Zhang W, Cheng H, Gui Y, Zhan Q, Li S, Qiao W, Tong A. Mannose Treatment: A Promising Novel Strategy to Suppress Inflammation. Front Immunol 2021; 12:756920. [PMID: 34646279 PMCID: PMC8502929 DOI: 10.3389/fimmu.2021.756920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 02/05/2023] Open
Abstract
High glucose and fructose intake have been proven to display pro-inflammatory roles during the progression of inflammatory diseases. However, mannose has been shown to be a special type of hexose that has immune regulatory functions. In this review, we trace the discovery process of the regulatory functions of mannose and summarize some past and recent studies showing the therapeutic functions of mannose in inflammatory diseases. We conclude that treatment with mannose can suppress inflammation by inducing regulatory T cells, suppressing effector T cells and inflammatory macrophages, and increasing anti-inflammatory gut microbiome. By summarizing all the important findings, we highlight that mannose treatment is a safe and promising novel strategy to suppress inflammatory diseases, including autoimmune disease and allergic disease.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Gui
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qipeng Zhan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Si Li
- Discovery Project Unit, HitGen Inc. Tianfu International Bio-Town, Chengdu, China
| | - Wenliang Qiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Gao H, Cao M, Yao Y, Hu W, Sun H, Zhang Y, Zeng C, Tang J, Luan S, Chen P. Dysregulated Microbiota-Driven Gasdermin D Activation Promotes Colitis Development by Mediating IL-18 Release. Front Immunol 2021; 12:750841. [PMID: 34721422 PMCID: PMC8551709 DOI: 10.3389/fimmu.2021.750841] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023] Open
Abstract
The balance between gut microbiota and host is critical for maintaining host health. Although dysregulation of the gut microbiota triggers the development of various inflammatory diseases, including colitis, the molecular mechanism of microbiota-driven colitis development is largely unknown. Here, we found that gasdermin D (GSDMD) was activated during acute colitis. In the dextran sulfate sodium (DSS)-induced colitis model, compared to wild-type mice, Gsdmd-deficient mice had less colitis severity. Mechanistically, GSDMD expression in intestinal epithelial cells (IECs), but not infiltrating immune cells, was critical for GSDMD-mediated colitis progression. Moreover, commensal Escherichia coli (E. coli) largely overgrew during colitis, and then the dysregulated commensal E. coli mediated GSDMD activation. Furthermore, the activated GSDMD promoted the release of interleukin-18 (IL-18), but not the transcript or maturation level of IL-18, which in turn mediated goblet cell loss to induce colitis development. Thus, GSDMD promotes colitis development by mediating IL-18 release, and the microbiota can mediate colitis pathogenesis through regulation of GSDMD activation. Our results provide a potential molecular mechanism by which the microbiota-driven GSDMD activation contributes to colitis pathogenesis.
Collapse
Affiliation(s)
- Hanchao Gao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Mengtao Cao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Yikun Yao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, United States
| | - Wenjun Hu
- Department of Anesthesiology, 305 Hospital of People’s Liberation Army of China (PLA), Beijing, China
| | - Huimin Sun
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Yingwei Zhang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jia Tang
- National Health Commission (NHC), Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Shaodong Luan
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Pengfei Chen
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
49
|
Effects of ShenLing BaiZhu San Supplementation on Gut Microbiota and Oxidative Stress in Rats with Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3960989. [PMID: 34630607 PMCID: PMC8500740 DOI: 10.1155/2021/3960989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/15/2021] [Indexed: 01/22/2023]
Abstract
The aim of this study was to evaluate the effect of gut microbiota and antioxidation of Shenling Baizhu San (SLBZS) as a supplement in a rat model of ulcerative colitis (UC) induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). Acute intestinal inflammation was induced in 40 male SD rats aged 4 weeks with 100 mg/kg TNBS, and then three dosages of SLBZS (0.5 g/kg, 1 g/kg, and 1.5 g/kg) were administered for eight days, respectively. Faecal microbiome composition was assessed by 16S rRNA high-throughput sequencing. The result indicated that SLBZS could reduce the diversity of gut microbiota and increased its abundance. At the genus level, the relative abundance of SCFAs producing bacteria including Prevotella and Oscillospira increased, while the relative abundance of opportunistic pathogens including Desulfovibrio and Bilophila decreased. Meanwhile, SLBZS could improve the lesions of colon and significantly reduce the level of MPO, increase the levels of SOD and CAT in rats' serum. These findings revealed that SLBZS was effective and possessed anticolitic activities in a rat model of UC by reducing macroscopical and microscopical colon injury, enhancing antioxidant capacity, and regulating gut microbiota.
Collapse
|
50
|
Guo M, Liu X, Tan Y, Kang F, Zhu X, Fan X, Wang C, Wang R, Liu Y, Qin X, Jiang M, Wang X. Sucralose enhances the susceptibility to dextran sulfate sodium (DSS) induced colitis in mice with changes in gut microbiota. Food Funct 2021; 12:9380-9390. [PMID: 34606537 DOI: 10.1039/d1fo01351c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sucralose is one of the most widely used artificial sweeteners, free of nutrients and calories. Its approval and uses correlate with many of the worldwide epidemiological changes in inflammatory bowel disease (IBD). Multiple animal studies by us and others showed that sucralose exacerbated ileitis in SAMP1/YitFc mice and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. In this study, we further investigated the effect of sucralose on dextran sulfate sodium (DSS)-induced colitis in mice and the associated mechanisms. Male C57BL/6 mice received 1.5 mg ml-1 sucralose in drinking water for 6 weeks. Then, 2.5% DSS was added to drinking water for 7 days to induce ulcerative colitis (UC). The results showed that, compared with the DSS group, administration of sucralose exacerbated the severity of colitis as indicated by the further decrease in body weight, increase in disease activity index (DAI) and the expression of pro-inflammatory cytokines, as well as the activation of the TLR5-MyD88-NF-κB signaling pathway, and the disturbances of intestinal barrier function, along with changes in the intestinal microbiota. Our findings indicate that sucralose may increase the susceptibility to DSS-induced colitis through causing dysbiosis of intestinal microbiota and damage to the intestinal barrier.
Collapse
Affiliation(s)
- Mengru Guo
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, 150000, China.
| | - Xinran Liu
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, 150000, China.
| | - Yiwei Tan
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, 150000, China.
| | - Fangyuan Kang
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, 150000, China.
| | - Xinghua Zhu
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, 150000, China.
| | - Xingguo Fan
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, 150000, China.
| | - Chenxi Wang
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, 150000, China.
| | - Rui Wang
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, 150000, China.
| | - Yuanli Liu
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, 150000, China.
| | | | - Mingshan Jiang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiuhong Wang
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|