1
|
Martinson AK, Chin AT, Butte MJ, Rider NL. Artificial Intelligence and Machine Learning for Inborn Errors of Immunity: Current State and Future Promise. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2695-2704. [PMID: 39127104 DOI: 10.1016/j.jaip.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Artificial intelligence (AI) and machine learning (ML) research within medicine has exponentially increased over the last decade, with studies showcasing the potential of AI/ML algorithms to improve clinical practice and outcomes. Ongoing research and efforts to develop AI-based models have expanded to aid in the identification of inborn errors of immunity (IEI). The use of larger electronic health record data sets, coupled with advances in phenotyping precision and enhancements in ML techniques, has the potential to significantly improve the early recognition of IEI, thereby increasing access to equitable care. In this review, we provide a comprehensive examination of AI/ML for IEI, covering the spectrum from data preprocessing for AI/ML analysis to current applications within immunology, and address the challenges associated with implementing clinical decision support systems to refine the diagnosis and management of IEI.
Collapse
Affiliation(s)
| | - Aaron T Chin
- Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, University of California, Los Angeles, Los Angeles, Calif
| | - Manish J Butte
- Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, University of California, Los Angeles, Los Angeles, Calif
| | - Nicholas L Rider
- Department of Health Systems & Implementation Science, Virginia Tech Carilion School of Medicine, Roanoke, Va; Department of Medicine, Division of Allergy-Immunology, Carilion Clinic, Roanoke, Va.
| |
Collapse
|
2
|
Materne E, Zhou B, DiGiacomo D, Farmer JR, Fuleihan R, Sullivan KE, Cunningham-Rundles C, Ballas ZK, Suez D, Barmettler S. Renal complications in patients with predominantly antibody deficiency in the United States Immune Deficiency Network (USIDNET). J Allergy Clin Immunol 2024; 154:237-242.e1. [PMID: 38555979 DOI: 10.1016/j.jaci.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/03/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Prior studies have reported that renal insufficiency occurs in a small percentage of patients with predominantly antibody deficiency (PAD) and in about 2% of patients with common variable immunodeficiency. OBJECTIVE The goal of our study was to understand and evaluate the prevalence and type of renal complications in patients with PAD in the United States Immunodeficiency Network (USIDNET) cohort. We hypothesized that there is an association between certain renal complications and severity of immunophenotype in patients with PAD. METHODS We performed a query of patients with PAD from the USIDNET cohort with renal complications. Patients with documented renal disease such as chronic kidney disease (CKD), nephrolithiasis, nephritis, and renal failure syndrome were included. We compared immunophenotype, flow cytometry findings, and immunoglobulin levels of patients with PAD accompanied by renal complications with those of the total USIDNET cohort of patients with PAD. RESULTS We determined that 140 of 2071 patients with PAD (6.8%) had renal complications. Of these 140 patients, 50 (35.7%) had CKD, 46 (32.9%) had nephrolithiasis, 18 (12.9 %) had nephritis, and 50 (35.7%) had other renal complications. Compared with the total USIDNET cohort of patients with PAD, patients with CKD had lower absolute lymphocyte counts, CD3+ T-cell counts, CD4+ T-cell counts, CD19+ B-cell counts, CD20+ B-cell counts, and CD27+IgD- B-cell counts (P < .05 for all). Patients with nephritis had lower absolute lymphocyte counts, CD19+ B-cell counts, CD27+ B-cell counts, and IgE levels (P < .05 for all) than patients with PAD without renal disease. CONCLUSIONS We determined that 6.8% of the USIDNET cohort of patients with PAD had a documented renal complication. Compared with the overall cohort of patients with PAD, those patients with nephritis and CKD had a more severe immunophenotype.
Collapse
Affiliation(s)
- Emma Materne
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.
| | - Baijun Zhou
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass
| | - Daniel DiGiacomo
- Hackensack Meridian Health, Jersey Shore University Medical Center, Neptune, NJ
| | - Jocelyn R Farmer
- Clinical Immunodeficiency Program, Division of Allergy and Inflammation, Beth Israel Lahey Health, Burlington, Mass
| | - Ramsay Fuleihan
- Division of Pediatric Allergy, Immunology and Rheumatology, Columbia University, New York, NY
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, Children's Hospital of Pennsylvania, Philadelphia, Pa
| | | | - Zuhair K Ballas
- Division of Internal Medicine, Immunology, University of Iowa, Iowa City, Iowa
| | | | - Sara Barmettler
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| |
Collapse
|
3
|
Ganapathi L, Cochran RL, Robbins GK, Barmettler S, Holland SM, Ababneh EI. Case 20-2024: A 73-Year-Old Man with Recurrent Fever and Liver Lesions. N Engl J Med 2024; 390:2309-2319. [PMID: 38924735 DOI: 10.1056/nejmcpc2309383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Affiliation(s)
- Lakshmi Ganapathi
- From the Departments of Pediatrics (L.G.), Radiology (R.L.C.), Medicine (G.K.R., S.B.), and Pathology (E.I.A.), Massachusetts General Hospital, and the Departments of Pediatrics (L.G.), Radiology (R.L.C.), Medicine (G.K.R., S.B.), and Pathology (E.I.A.), Harvard Medical School - both in Boston; and the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.M.H.)
| | - Rory L Cochran
- From the Departments of Pediatrics (L.G.), Radiology (R.L.C.), Medicine (G.K.R., S.B.), and Pathology (E.I.A.), Massachusetts General Hospital, and the Departments of Pediatrics (L.G.), Radiology (R.L.C.), Medicine (G.K.R., S.B.), and Pathology (E.I.A.), Harvard Medical School - both in Boston; and the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.M.H.)
| | - Gregory K Robbins
- From the Departments of Pediatrics (L.G.), Radiology (R.L.C.), Medicine (G.K.R., S.B.), and Pathology (E.I.A.), Massachusetts General Hospital, and the Departments of Pediatrics (L.G.), Radiology (R.L.C.), Medicine (G.K.R., S.B.), and Pathology (E.I.A.), Harvard Medical School - both in Boston; and the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.M.H.)
| | - Sara Barmettler
- From the Departments of Pediatrics (L.G.), Radiology (R.L.C.), Medicine (G.K.R., S.B.), and Pathology (E.I.A.), Massachusetts General Hospital, and the Departments of Pediatrics (L.G.), Radiology (R.L.C.), Medicine (G.K.R., S.B.), and Pathology (E.I.A.), Harvard Medical School - both in Boston; and the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.M.H.)
| | - Steven M Holland
- From the Departments of Pediatrics (L.G.), Radiology (R.L.C.), Medicine (G.K.R., S.B.), and Pathology (E.I.A.), Massachusetts General Hospital, and the Departments of Pediatrics (L.G.), Radiology (R.L.C.), Medicine (G.K.R., S.B.), and Pathology (E.I.A.), Harvard Medical School - both in Boston; and the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.M.H.)
| | - Emad I Ababneh
- From the Departments of Pediatrics (L.G.), Radiology (R.L.C.), Medicine (G.K.R., S.B.), and Pathology (E.I.A.), Massachusetts General Hospital, and the Departments of Pediatrics (L.G.), Radiology (R.L.C.), Medicine (G.K.R., S.B.), and Pathology (E.I.A.), Harvard Medical School - both in Boston; and the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (S.M.H.)
| |
Collapse
|
4
|
DiGiacomo DV, Roelstraete B, Lebwohl B, Green PHR, Hammarström L, Farmer JR, Khalili H, Ludvigsson JF. Predominantly antibody deficiency and the association with celiac disease in Sweden: A nationwide case-control study. Ann Allergy Asthma Immunol 2024; 132:752-758.e2. [PMID: 38331244 DOI: 10.1016/j.anai.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Predominantly antibody deficiency (PAD) is associated with noninfectious inflammatory gastrointestinal disease. Population estimates of celiac disease (CeD) risk in those with PAD are limited. OBJECTIVE To estimate population risk of PAD in individuals with CeD. METHODS We conducted a nationwide case-control study in Swedish individuals who received a diagnosis of CeD between 1997 and 2017 (n = 34,980), matched to population comparators by age, sex, calendar year, and county. The CeD was confirmed through the Epidemiology Strengthened by histopathology Reports in Sweden study, which provided information on biopsy specimens from each of Sweden's pathology departments. PAD was identified using International Classification of Diseases, 10th Revision coding and categorized according to the International Union of Immunologic Societies. Logistic regression was used to calculate adjusted odds ratios (aORs) and 95% CIs. RESULTS PAD was more prevalent in CeD than in population controls (n = 105 [0.3%] vs n = 57 [0.033%], respectively). This translated to an aOR of 8.23 (95% CI 5.95-11.48). The association was strongest with common variable immunodeficiency (aOR 17.25; 95% CI 6.86-52.40), and slightly lower in other PAD (aOR 8.39; 95% CI 5.79-12.32). The risk of CeD remained increased at least 5 years after diagnosis of PAD (aOR 4.79; 95% CI 2.89-7.97, P-heterogeneity ≤ 0.001). CONCLUSION PAD was associated with an increased risk of CeD. A particularly strong association was seen in those with CVID, although this should be interpreted cautiously given the limited understanding of the mechanisms of histopathologic changes in these patients.
Collapse
Affiliation(s)
- Daniel V DiGiacomo
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, Massachusetts; Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bjorn Roelstraete
- Sachs' Children and Youth Hospital, Stockholm South General Hospital, Stockholm, Sweden
| | - Benjamin Lebwohl
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Peter H R Green
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Jocelyn R Farmer
- Division of Allergy and Inflammation, Beth Israel Lahey Health, Harvard Medical School, Boston, Massachusetts
| | - Hamed Khalili
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Clinical Epidemiology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Jonas F Ludvigsson
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Pediatrics, Orebro University Hospital, Orebro, Sweden.
| |
Collapse
|
5
|
Johnson R, Stephens AV, Mester R, Knyazev S, Kohn LA, Freund MK, Bondhus L, Hill BL, Schwarz T, Zaitlen N, Arboleda VA, Bastarache LA, Pasaniuc B, Butte MJ. Electronic health record signatures identify undiagnosed patients with common variable immunodeficiency disease. Sci Transl Med 2024; 16:eade4510. [PMID: 38691621 PMCID: PMC11402387 DOI: 10.1126/scitranslmed.ade4510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/10/2024] [Indexed: 05/03/2024]
Abstract
Human inborn errors of immunity include rare disorders entailing functional and quantitative antibody deficiencies due to impaired B cells called the common variable immunodeficiency (CVID) phenotype. Patients with CVID face delayed diagnoses and treatments for 5 to 15 years after symptom onset because the disorders are rare (prevalence of ~1/25,000), and there is extensive heterogeneity in CVID phenotypes, ranging from infections to autoimmunity to inflammatory conditions, overlapping with other more common disorders. The prolonged diagnostic odyssey drives excessive system-wide costs before diagnosis. Because there is no single causal mechanism, there are no genetic tests to definitively diagnose CVID. Here, we present PheNet, a machine learning algorithm that identifies patients with CVID from their electronic health records (EHRs). PheNet learns phenotypic patterns from verified CVID cases and uses this knowledge to rank patients by likelihood of having CVID. PheNet could have diagnosed more than half of our patients with CVID 1 or more years earlier than they had been diagnosed. When applied to a large EHR dataset, followed by blinded chart review of the top 100 patients ranked by PheNet, we found that 74% were highly probable to have CVID. We externally validated PheNet using >6 million records from disparate medical systems in California and Tennessee. As artificial intelligence and machine learning make their way into health care, we show that algorithms such as PheNet can offer clinical benefits by expediting the diagnosis of rare diseases.
Collapse
Affiliation(s)
- Ruth Johnson
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alexis V. Stephens
- Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rachel Mester
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sergey Knyazev
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lisa A. Kohn
- Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Malika K. Freund
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leroy Bondhus
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Brian L. Hill
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tommer Schwarz
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Noah Zaitlen
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Valerie A. Arboleda
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lisa A. Bastarache
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA 37203
| | - Bogdan Pasaniuc
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Manish J. Butte
- Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Kasahara TDM, Gupta S. IgD +IgM - B Cells in Common Variable Immunodeficiency. Pathogens 2024; 13:136. [PMID: 38392874 PMCID: PMC10891963 DOI: 10.3390/pathogens13020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent form of primary hypogammaglobulinemia in adults. In addition to recurrent infections and respiratory manifestations, CVID patients may present several non-infection complications such as autoimmune diseases. The mechanisms that lead to immune dysregulation in CVID are not completely understood. Given the role of IgD on naïve B cells in the maintenance of tolerance and secreted IgD in the respiratory mucosa, we evaluated the frequency of IgD+ naïve and IgD+ memory B cells in CVID patients. Here, no differences were observed in the percentages and proliferative responses of anergic IgD+IgM-CD27- B cells between CVID patients, with or without autoimmune disease, and the control group. Interestingly, in the compartment of memory B cells, the percentage of IgD+IgM- cells was higher only in CVID patients with allergic rhinitis/allergic asthma. Our results may indicate that anergic IgD+IgM-CD27- B cells may not be compromised in our CVID cohort. However, IgD+IgM- memory B cells may play a role in the immunopathogenesis of allergic rhinitis/allergic asthma in CVID patients. Further studies are needed to better understand the participation of IgD+IgM- memory B cells in the immunopathogenesis of allergic rhinitis/allergic asthma in CVID patients.
Collapse
Affiliation(s)
- Taissa de M. Kasahara
- Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro 21941-853, Brazil;
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Halliday N, Eden N, Somers H, Burke N, Silva H, Brito CGX, Hall A, Quaglia A, Burns SO, Lowe DM, Thorburn D. Common variable immunodeficiency disorder-related liver disease is common and results in portal hypertension and an increased risk of death. Hepatol Commun 2024; 8:e0322. [PMID: 38099861 PMCID: PMC10727572 DOI: 10.1097/hc9.0000000000000322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Common variable immunodeficiency disorder (CVID) manifests with recurrent infections and inflammatory complications, including liver disease. We report the clinical features, natural history, and outcomes of patients with CVID-related liver disease (CVID-rLD) from a tertiary immunology and hepatology center. METHODS Two hundred eighteen patients were identified; CVID-rLD was defined by persistently abnormal liver function tests or evidence of chronic liver disease (CLD) or portal hypertension (PHTN) by radiological or endoscopic investigation, after exclusion of other causes. Patients with CVID-rLD were investigated and managed following a joint pathway between immunology and hepatology services. Data, including clinical parameters, investigations, and outcomes, were retrospectively collected. RESULTS A total of 91/218 (42%) patients had evidence of CVID-rLD, and 40/91 (44%) had PHTN. Patients with CVID-rLD were more likely to have other noninfectious complications of CVID (85/91, 93.4% vs. 75/127, 59.1%, p<0.001) including interstitial lung disease, gut disease, and autoimmune cytopenias. Nodular regenerative hyperplasia (NRH) was identified in 63.8% of liver biopsies, and fibrosis in 95.3%. Liver stiffness measurements (LSMs) were frequently elevated (median 9.95 kPa), and elevated LSM was associated with PHTN. All-cause mortality was higher in those with CVID-rLD (24/91, 26.4% vs. 14/127, 11%, p=0.003), which was the only organ complication associated with mortality (HR 2.24, 1.06-4.74, p=0.04). Factors predicting mortality in CVID-rLD included PHTN, increasing fibrosis, and LSM. CONCLUSIONS Liver disease is a common complication of CVID as part of complex, multi-organ involvement and is associated with high rates of PHTN and an increased hazard of mortality.
Collapse
Affiliation(s)
- Neil Halliday
- UCL Institute for Liver and Digestive Health, University College London, London, UK
- Sheila Sherlock liver centre, Royal Free London NHS Foundation Trust, London, UK
| | - Nadia Eden
- UCL Institute for Liver and Digestive Health, University College London, London, UK
- Sheila Sherlock liver centre, Royal Free London NHS Foundation Trust, London, UK
| | - Henry Somers
- UCL Institute for Liver and Digestive Health, University College London, London, UK
- Sheila Sherlock liver centre, Royal Free London NHS Foundation Trust, London, UK
| | - Niall Burke
- UCL Institute for Liver and Digestive Health, University College London, London, UK
- Sheila Sherlock liver centre, Royal Free London NHS Foundation Trust, London, UK
| | - Hiroshi Silva
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Camila GX Brito
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Andrew Hall
- Sheila Sherlock liver centre, Royal Free London NHS Foundation Trust, London, UK
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Alberto Quaglia
- UCL Institute for Liver and Digestive Health, University College London, London, UK
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Siobhan O. Burns
- Institute of Immunity and Transplantation, University College London, UK
- Department of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - David M. Lowe
- Institute of Immunity and Transplantation, University College London, UK
- Department of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Douglas Thorburn
- UCL Institute for Liver and Digestive Health, University College London, London, UK
- Sheila Sherlock liver centre, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
8
|
Hanitsch LG, Steiner S, Schumann M, Wittke K, Kedor C, Scheibenbogen C, Fischer A. Portal hypertension in common variable immunodeficiency disorders - a single center analysis on clinical and immunological parameter in 196 patients. Front Immunol 2023; 14:1268207. [PMID: 38187397 PMCID: PMC10769488 DOI: 10.3389/fimmu.2023.1268207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
Background Liver manifestations and in particular portal hypertension (PH) contribute significantly to morbidity and mortality of patients with common variable immunodeficiency disorders (CVID). Screening strategies and early detection are limited due to the lack of specific diagnostic tools. Methods We evaluated clinical, immunological, histological, and imaging parameters in CVID patients with clinical manifestation of portal hypertension (CVID+PH). Results Portal hypertension was present in 5.6% of CVID patients and was associated with high clinical burden and increased mortality (18%). Longitudinal data on clinical and immunological parameters in patients before and during clinically manifest portal hypertension revealed a growing splenomegaly and increasing gamma-glutamyl transferase (GGT) and soluble interleukin 2 receptor (SIL-2R) levels with decreasing platelets over time. While ultrasound of the liver failed to detect signs of portal hypertension in most affected patients, transient elastography was elevated in all patients. All CVID+PH patients had reduced naïve CD45RA+CD4+ T-cells (mean of 6,2%). The frequency of severe B-lymphocytopenia (Euroclass B-) was higher in CVID+PH patients. The main histological findings included lymphocytic infiltration, nodular regenerative hyperplasia-like changes (NRH-LC), and porto(-septal) fibrosis. Conclusion CVID patients with lower naïve CD45RA+CD4+ T-cells or severely reduced B-cells might be at higher risk for portal hypertension. The combination of biochemical (increasing sIL-2R, GGT, and decreasing platelets) and imaging parameters (increasing splenomegaly) should raise suspicion of the beginning of portal hypertension.
Collapse
Affiliation(s)
- Leif G. Hanitsch
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Sophie Steiner
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Michael Schumann
- Department of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Kirsten Wittke
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Claudia Kedor
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Andreas Fischer
- Department of Internal Medicine and Gastroenterology, Caritas-Klinik Maria Heimsuchung Berlin-Pankow, Berlin, Germany
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
9
|
Zonozi R, Walters LC, Shulkin A, Naranbhai V, Nithagon P, Sauvage G, Kaeske C, Cosgrove K, Nathan A, Tano-Menka R, Gayton AC, Getz MA, Senjobe F, Worrall D, Iafrate AJ, Fromson C, Montesi SB, Rao DA, Sparks JA, Wallace ZS, Farmer JR, Walker BD, Charles RC, Laliberte K, Niles JL, Gaiha GD. T cell responses to SARS-CoV-2 infection and vaccination are elevated in B cell deficiency and reduce risk of severe COVID-19. Sci Transl Med 2023; 15:eadh4529. [PMID: 38019932 DOI: 10.1126/scitranslmed.adh4529] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Individuals with primary and pharmacologic B cell deficiencies have high rates of severe disease and mortality from coronavirus disease 2019 (COVID-19), but the immune responses and clinical outcomes after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination have yet to be fully defined. Here, we evaluate the cellular immune responses after both SARS-CoV-2 infection and vaccination in patients receiving the anti-CD20 therapy rituximab (RTX) and those with low B cell counts due to common variable immune deficiency (CVID) disease. Assessment of effector and memory CD4+ and CD8+ T cell responses to SARS-CoV-2 revealed elevated reactivity and proliferative capacity after both infection and vaccination in B cell-deficient individuals, particularly within the CD8+ T cell compartment, in comparison with healthy controls. Evaluation of clinical outcomes demonstrates that vaccination of RTX-treated individuals was associated with about 4.8-fold reduced odds of moderate or severe COVID-19 in the absence of vaccine-induced antibodies. Analysis of T cell differentiation demonstrates that RTX administration increases the relative frequency of naïve CD8+ T cells, potentially by depletion of CD8+CD20dim T cells, which are primarily of an effector memory or terminal effector memory (TEMRA) phenotype. However, this also leads to a reduction in preexisting antiviral T cell immunity. Collectively, these data indicate that individuals with B cell deficiencies have enhanced T cell immunity after both SARS-CoV-2 infection and vaccination that potentially accounts for reduced hospitalization and severe disease from subsequent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Reza Zonozi
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lucy C Walters
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Aaron Shulkin
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Vivek Naranbhai
- Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
- Monash University, Melbourne, VIC 3022, Australia
| | - Pravarut Nithagon
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gabriel Sauvage
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Clarety Kaeske
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Katherine Cosgrove
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anusha Nathan
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA 02115, USA
| | - Rhoda Tano-Menka
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Alton C Gayton
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Matthew A Getz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Fernando Senjobe
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Daniel Worrall
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Caroline Fromson
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sydney B Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary S Wallace
- Division of Rheumatology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jocelyn R Farmer
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Division of Allergy and Inflammation, Beth Israel Lahey Health, Boston, MA 02215, USA
| | - Bruce D Walker
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Center for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Institute for Medical Engineering and Science and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Karen Laliberte
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - John L Niles
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gaurav D Gaiha
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
10
|
Baumert LS, Shih A, Chung RT. Management of liver disease and portal hypertension in common variable immunodeficiency (CVID). JHEP Rep 2023; 5:100882. [PMID: 37869072 PMCID: PMC10585302 DOI: 10.1016/j.jhepr.2023.100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/30/2023] [Accepted: 07/22/2023] [Indexed: 10/24/2023] Open
Abstract
Patients with common variable immunodeficiency (CVID) frequently develop liver disease and associated complications, which represent an increasingly prevalent unmet medical need. The main hepatic manifestation of CVID is nodular regenerative hyperplasia (NRH), resulting in non-cirrhotic portal hypertension (NCPH). Liver disease is often underdiagnosed, leading to poor outcomes and decreased survival. The increasing numbers of patients with CVID who are diagnosed late with progressive liver disease underscores the importance of appropriate clinical management and treatment of liver complications. At the same time, specific guidelines for the clinical management of CVID-related liver disease are still lacking. Here, we review the epidemiology of CVID-related liver disease, reveal new insights into NRH and NCPH biology and highlight recently uncovered opportunities for NCPH diagnostics in CVID. Finally, we focus on current management of liver disease, portal hypertension and its complications - the key challenge in patients with CVID. Specifically, we review recent data regarding the role of transjugular intrahepatic portosystemic shunt and liver transplantation in clinical management. The role for anticoagulants and immunosuppressants targeting the pathogenesis of NRH will also be discussed. We propose an updated algorithm for the diagnostic work-up and treatment of NCPH in CVID. Finally, we consider future needs and therapeutic opportunities for CVID-related liver disease.
Collapse
Affiliation(s)
- Lukas S. Baumert
- Liver Center, Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Medicine, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Angela Shih
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raymond T. Chung
- Liver Center, Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Poto R, Pecoraro A, Ferrara AL, Punziano A, Lagnese G, Messuri C, Loffredo S, Spadaro G, Varricchi G. Cytokine dysregulation despite immunoglobulin replacement therapy in common variable immunodeficiency (CVID). Front Immunol 2023; 14:1257398. [PMID: 37841257 PMCID: PMC10568625 DOI: 10.3389/fimmu.2023.1257398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency. CVID is a heterogeneous disorder with a presumed multifactorial etiology. Intravenous or subcutaneous immunoglobulin replacement therapy (IgRT) can prevent severe infections but not underlying immune dysregulation. Methods In this study, we evaluated the serum concentrations of proinflammatory (TNF-α, IL-1β, IL-6) and immunoregulatory cytokines (IL-10), as well as lipopolysaccharide (LPS) and soluble CD14 (sCD14) in CVID individuals with infectious only (INF-CVID), and those with additional systemic autoimmune and inflammatory disorders (NIC-CVID), and healthy donors (HD). Results Our results showed increased serum concentrations of TNF-α, IL-1β, IL-6, and IL-10 in both INF-CVID and NIC-CVID subjects compared to HD. However, elevations of TNF-α, IL-1β, IL-6, and IL-10 were significantly more marked in NIC-CVID than INF-CVID. Additionally, LPS concentrations were increased only in NIC-CVID but not in INF-CVID compared to HD. Circulating levels of sCD14 were significantly increased in NIC-CVID compared to both INF-CVID and HD. Discussion These findings indicate persistent cytokine dysregulation despite IgRT in individuals with CVID. Moreover, the circulating cytokine profile reveals the heterogeneity of immune dysregulation in different subgroups of CVID subjects.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Unità Operativa (UO) Medicina Trasfusionale, Azienda Sanitaria Territoriale, Ascoli Piceno, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Carla Messuri
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, Italy
| |
Collapse
|
12
|
Daza-Cajigal V, Segura-Guerrero M, López-Cueto M, Robles-Marhuenda Á, Camara C, Gerra-Galán T, Gómez-de-la-Torre R, Avendaño-Monje CL, Sánchez-Ramón S, Bosque-Lopez MJ, Quintero-Duarte A, Bonet-Vidal ML, Pons J. Clinical manifestations and approach to the management of patients with common variable immunodeficiency and liver disease. Front Immunol 2023; 14:1197361. [PMID: 37342345 PMCID: PMC10277479 DOI: 10.3389/fimmu.2023.1197361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Purpose The clinical spectrum of common variable immunodeficiency (CVID) includes predisposition to infections, autoimmune/inflammatory complications and malignancy. Liver disease is developed by a proportion of patients with CVID, but limited evidence is available about its prevalence, pathogenesis and prognostic outcome. This lack of evidence leads to the absence of guidelines in clinical practice. In this study, we aimed at defining the characteristics, course and management of this CVID complication in Spain. Methods Spanish reference centers were invited to complete a cross-sectional survey. Thirty-eight patients with CVID-related liver disease from different hospitals were evaluated by a retrospective clinical course review. Results In this cohort, abnormal liver function and thrombocytopenia were found in most of the patients (95% and 79% respectively), in keeping with the higher incidence of abnormal liver imaging and splenomegaly. The most common histological findings included nodular regenerative hyperplasia (NRH) and lymphocytic infiltration, which have been associated with portal hypertension (PHTN) leading to a poorer prognosis. Autoimmune/inflammatory complications occurred in 82% of the CVID patients that developed liver disease and 52% of the patients treated with immunomodulators showed a reduction in the liver function tests' abnormalities during treatment. Among the experts that conducted the survey, there was 80% or more consensus that the workup of CVID-related liver disease requires liver profile, abdominal ultrasound and transient elastography. The majority agreed that liver biopsy should be essential for diagnosis. There was 94% consensus that endoscopic studies should be performed in the presence of PHTN. However, there was 89% consensus that there is insufficient evidence on the management of these patients. Conclusion Liver disease varies in severity and may contribute substantially to morbidity and mortality in patients with CVID. Hence the importance of close follow-up and screening of this CVID complication to prompt early targeted intervention. Further research is needed to evaluate the pathophysiology of liver disease in patients with CVID to identify personalized treatment options. This study emphasizes the urgent need to develop international guidelines for the diagnosis and management of this CVID complication.
Collapse
Affiliation(s)
- Vanessa Daza-Cajigal
- Department of Immunology, Hospital Universitario Son Espases, Palma, Spain
- Research Unit, Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Marina Segura-Guerrero
- Department of Immunology, Hospital Universitario Son Espases, Palma, Spain
- Research Unit, Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - María López-Cueto
- Department of Immunology, Hospital Universitario Son Espases, Palma, Spain
- Research Unit, Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | | | - Carmen Camara
- Department of Immunology, Hospital Universitario La Paz, Madrid, Spain
| | - Teresa Gerra-Galán
- Department of Clinical Immunology, Instituto de Medicina del Laboratorio (IML), Hospital Clínico San Carlos, Madrid, Spain
| | | | | | - Silvia Sánchez-Ramón
- Department of Clinical Immunology, Instituto de Medicina del Laboratorio (IML), Hospital Clínico San Carlos, Madrid, Spain
| | | | | | - María L. Bonet-Vidal
- Department of Gastroenterology, Hospital Universitario Son Espases, Palma, Spain
| | - Jaime Pons
- Department of Immunology, Hospital Universitario Son Espases, Palma, Spain
- Research Unit, Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| |
Collapse
|
13
|
DiGiacomo DV, Roelstraete B, Hammarström L, Farmer JR, Khalili H, Ludvigsson JF. Predominant Antibody Deficiency and Risk of Microscopic Colitis: a Nationwide Case-Control Study in Sweden. J Clin Immunol 2023:10.1007/s10875-023-01499-3. [PMID: 37162615 DOI: 10.1007/s10875-023-01499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE : Predominant antibody deficiency (PAD) disorders, including common variable immunodeficiency (CVID), have been linked to increased risk of gastrointestinal infections and inflammatory bowel diseases. However, there are limited data on the relationship between PAD, specifically CVID, and risk of microscopic colitis (MC). METHODS We performed a nationwide case-control study of Swedish adults with MC diagnosed between 1997 and 2017 (n = 13,651). Data on biopsy-verified MC were retrieved from all of Sweden's pathology departments through the Epidemiology Strengthened by histoPathology Reports in Sweden (ESPRESSO) study. We defined predominant antibody deficiency using International Union of Immunologic Societies (IUIS) phenotypic classification. Individuals with MC were matched to population controls by age, sex, calendar year, and county. We used logistic regression to estimate adjusted odds ratios (aORs) and 95% confidence intervals (CIs). RESULTS The prevalence of PAD in MC was 0.4% as compared to 0.05% in controls. After adjustment for potential confounders, this corresponded to an aOR of 7.29 (95%CI 4.64-11.63). The magnitude of the association was higher for CVID (aOR 21.01, 95% 5.48-137.44) compared to other antibody deficiencies (aOR 6.16, 95% CI 3.79-10.14). In exploratory analyses, the association between PAD and MC was particularly strong among males (aOR 31.73, 95% CI 10.82-135.04). CONCLUSION In this population-based study, predominant antibody deficiency was associated with increased risk of MC, particularly among males. Clinicians who encounter these patients should consider a detailed infectious history and screening for antibody deficiency.
Collapse
Affiliation(s)
- Daniel V DiGiacomo
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bjorn Roelstraete
- Sachs' Children and Youth Hospital, Stockholm South General Hospital, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jocelyn R Farmer
- Division of Allergy and Inflammation, Beth Israel Lahey Health, Harvard Medical School, Boston, MA, USA
| | - Hamed Khalili
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA.
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Clinical Epidemiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatrics, Orebro University Hospital, Orebro, Sweden
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
14
|
Mancuso G, Bechi Genzano C, Fierabracci A, Fousteri G. Type 1 diabetes and inborn errors of immunity: Complete strangers or 2 sides of the same coin? J Allergy Clin Immunol 2023:S0091-6749(23)00427-X. [PMID: 37097271 DOI: 10.1016/j.jaci.2023.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023]
Abstract
Type 1 diabetes (T1D) is a polygenic disease and does not follow a mendelian pattern. Inborn errors of immunity (IEIs), on the other hand, are caused by damaging germline variants, suggesting that T1D and IEIs have nothing in common. Some IEIs, resulting from mutations in genes regulating regulatory T-cell homeostasis, are associated with elevated incidence of T1D. The genetic spectrum of IEIs is gradually being unraveled; consequently, molecular pathways underlying human monogenic autoimmunity are being identified. There is an appreciable overlap between some of these pathways and the genetic variants that determine T1D susceptibility, suggesting that after all, IEI and T1D are 2 sides of the same coin. The study of monogenic IEIs with a variable incidence of T1D has the potential to provide crucial insights into the mechanisms leading to T1D. These insights contribute to the definition of T1D endotypes and explain disease heterogeneity. In this review, we discuss the interconnected pathogenic pathways of autoimmunity, β-cell function, and primary immunodeficiency. We also examine the role of environmental factors in disease penetrance as well as the circumstantial evidence of IEI drugs in preventing and curing T1D in individuals with IEIs, suggesting the repositioning of these drugs also for T1D therapy.
Collapse
Affiliation(s)
- Gaia Mancuso
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camillo Bechi Genzano
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | | | - Georgia Fousteri
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
15
|
Hajjar J, Voigt A, Conner M, Swennes A, Fowler S, Calarge C, Mendonca D, Armstrong D, Chang CY, Walter J, Butte M, Savidge T, Oh J, Kheradmand F, Petrosino J. Common Variable Immunodeficiency Patient Fecal Microbiota Transplant Recapitulates Gut Dysbiosis. RESEARCH SQUARE 2023:rs.3.rs-2640584. [PMID: 36993518 PMCID: PMC10055500 DOI: 10.21203/rs.3.rs-2640584/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Purpose Patients with non-infectious complications have worse clinical outcomes in common variable immunodeficiency (CVID) than those with infections-only. Non-infectious complications are associated with gut microbiome aberrations, but there are no reductionist animal models that emulate CVID. Our aim in this study was to uncover potential microbiome roles in the development of non-infectious complications in CVID. Methods We examined fecal whole genome shotgun sequencing from patients CVID, and non-infectious complications, infections-only, and their household controls. We also performed Fecal Microbiota transplant from CVID patients to Germ-Free Mice. Results We found potentially pathogenic microbes Streptococcus parasanguinis and Erysipelatoclostridium ramosum were enriched in gut microbiomes of CVID patients with non-infectious complications. In contrast, Fusicatenibacter saccharivorans and Anaerostipes hadrus, known to suppress inflammation and promote healthy metabolism, were enriched in gut microbiomes of infections-only CVID patients. Fecal microbiota transplant from non-infectious complications, infections-only, and their household controls into germ-free mice revealed gut dysbiosis patterns in recipients from CVID patients with non-infectious complications, but not infections-only CVID, or household controls recipients. Conclusion Our findings provide a proof of concept that fecal microbiota transplant from CVID patients with non-infectious complications to Germ-Free mice recapitulates microbiome alterations observed in the donors.
Collapse
|
16
|
Peng XP, Caballero-Oteyza A, Grimbacher B. Common Variable Immunodeficiency: More Pathways than Roads to Rome. ANNUAL REVIEW OF PATHOLOGY 2023; 18:283-310. [PMID: 36266261 DOI: 10.1146/annurev-pathmechdis-031521-024229] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fifty years have elapsed since the term common variable immunodeficiency (CVID) was introduced to accommodate the many and varied antibody deficiencies being identified in patients with suspected inborn errors of immunity (IEIs). Since then, how the term is understood and applied for diagnosis and management has undergone many revisions, though controversy persists on how exactly to define and classify CVID. Many monogenic disorders have been added under its aegis, while investigations into polygenic, epigenetic, and somatic contributions to CVID susceptibility have gained momentum. Expansion of the overall IEI landscape has increasingly revealed genotypic and phenotypic overlap between CVID and various other immunological conditions, while increasingly routine genotyping of CVID patients continues to identify an incredible diversity of pathophysiological mechanisms affecting even single genes. Though many questions remain to be answered, the lessons we have already learned from CVID biology have greatly informed our understanding of adaptive, but also innate, immunity.
Collapse
Affiliation(s)
- Xiao P Peng
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrés Caballero-Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Resolving Infection Susceptibility (RESIST) Cluster of Excellence, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Resolving Infection Susceptibility (RESIST) Cluster of Excellence, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.,Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany.,German Center for Infection Research (DZIF), Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Autoimmune and autoinflammatory manifestations in inborn errors of immunity. Curr Opin Allergy Clin Immunol 2022; 22:343-351. [PMID: 36165421 DOI: 10.1097/aci.0000000000000860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Autoimmune and inflammatory complications have been shown to arise in all age groups and across the spectrum of inborn errors of immunity (IEI). This review aims to highlight recent ground-breaking research and its impact on our understanding of IEI. RECENT FINDINGS Three registry-based studies of unprecedented size revealed the high prevalence of autoimmune, inflammatory and malignant complications in IEI. Two novel IEI were discovered: an autoinflammatory relopathy, cleavage-resistant RIPK1-induced autoinflammatory syndrome, as well as an inheritable phenocopy of PD-1 blockade-associated complication (as seen in cancer therapy) manifesting with multiorgan autoimmunity and Mycobacterium tuberculosis infection. A study examining patients with partial RAG deficiency pinpointed the specific defects leading to the failure of central and peripheral tolerance resulting in wide-ranging autoimmunity. A novel variant of Immunodeficiency Polyendocrinopathy Enteropathy X-linked syndrome was described, associated with preferential expression of a FOXP3 isoform lacking exon 2, linking exon-specific functions and the phenotypes corresponding to their absence. Lastly, we touch on recent findings pertaining actinopathies, the prototypical IEI with autoimmune, inflammatory and atopic complications. SUMMARY Dysregulated immunity has been associated with IEI since their discovery. Recently, large concerted efforts have shown how common these complications actually are while providing insight into normal and dysregulated molecular mechanisms, as well as describing novel diseases.
Collapse
|
18
|
Cabañero-Navalon MD, Garcia-Bustos V, Nuñez-Beltran M, Císcar Fernández P, Mateu L, Solanich X, Carrillo-Linares JL, Robles-Marhuenda Á, Puchades-Gimeno F, Pelaez Ballesta A, López-Osle N, Torralba-Cabeza MÁ, Bielsa Masdeu AM, Diego Gil J, Tornador Gaya N, Pascual Castellanos G, Sánchez-Martínez R, Barragán-Casas JM, González-García A, Patier de la Peña JL, López-Wolf D, Mora Rufete A, Canovas Mora A, Forner Giner MJ, Moral Moral P. Current clinical spectrum of common variable immunodeficiency in Spain: The multicentric nationwide GTEM-SEMI-CVID registry. Front Immunol 2022; 13:1033666. [PMID: 36389743 PMCID: PMC9650514 DOI: 10.3389/fimmu.2022.1033666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/11/2022] [Indexed: 08/22/2023] Open
Abstract
Common variable immunodeficiency (CVID) constitutes a heterogenic group of primary immunodeficiency disorders with a wide-ranging clinical spectrum. CVID-associated non-infectious morbidity constitutes a major challenge requiring a full understanding of its pathophysiology and its clinical importance and global variability, especially considering the broad clinical, genetic, and regional heterogeneity of CVID disorders. This work aimed to develop a nationwide, multicenter, retrospective study over a 3-year period describing epidemiological, clinical, laboratory, therapeutic, and prognostic features of 250 CVID patients in Spain. The mean diagnostic delay was around 10 years and most patients initially presented with infectious complications followed by non-infectious immune disorders. However, infectious diseases were not the main cause of morbimortality. Non-infectious lung disease was extraordinarily frequent in our registry affecting approximately 60% of the patients. More than one-third of the patients in our cohort showed lymphadenopathies and splenomegaly in their follow-up, and more than 33% presented immune cytopenias, especially Evans' syndrome. Gastrointestinal disease was observed in more than 40% of the patients. Among biopsied organs in our cohort, benign lymphoproliferation was the principal histopathological alteration. Reaching 15.26%, the global prevalence of cancer in our registry was one of the highest reported to date, with non-Hodgkin B lymphoma being the most frequent. These data emphasize the importance of basic and translational research delving into the pathophysiological pathways involved in immune dysregulation and diffuse lymphocytic infiltration. This would reveal new tailored strategies to reduce immune complications, and the associated healthcare burden, and ensure a better quality of life for CVID patients.
Collapse
Affiliation(s)
| | - Victor Garcia-Bustos
- Department of Internal Medicine, University and Polytechnic Hospital LaFe, Valencia, Spain
| | - Maria Nuñez-Beltran
- Department of Internal Medicine, University and Polytechnic Hospital LaFe, Valencia, Spain
| | | | - Lourdes Mateu
- Department of Internal Medicine, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Xavier Solanich
- Department of Internal Medicine, Bellvitge University Hospital, Barcelona, Spain
| | | | | | | | - Ana Pelaez Ballesta
- Department of Internal Medicine, Rafael Méndez University Hospital, Murcia, Spain
| | - Nuria López-Osle
- Department of Internal Medicine, Cruces University Hospital, Bizkaia, Spain
| | | | | | - Jorge Diego Gil
- Department of Internal Medicine, University Hospital October 12, Madrid, Spain
| | - Nuria Tornador Gaya
- Department of Internal Medicine, University General Hospital of Castellón, Castellón, Spain
| | | | | | | | - Andrés González-García
- Department of Internal Medicine, Santiago Ramón y Cajal University Hospital, Madrid, Spain
| | | | - Daniel López-Wolf
- Department of Internal Medicine, University Hospital Alcorcón Foundation, Madrid, Spain
| | - Antonia Mora Rufete
- Department of Internal Medicine, General University Hospital of Elche, Alicante, Spain
| | - Alba Canovas Mora
- Department of Internal Medicine, General University Hospital of Elche, Alicante, Spain
| | | | - Pedro Moral Moral
- Department of Internal Medicine, University and Polytechnic Hospital LaFe, Valencia, Spain
| |
Collapse
|
19
|
Globig AM, Strohmeier V, Surabattula R, Leeming DJ, Karsdal MA, Heeg M, Kindle G, Goldacker S, von Spee-Mayer C, Proietti M, Bausch B, Bettinger D, Schultheiß M, Thimme R, Schuppan D, Warnatz K. Evaluation of Laboratory and Sonographic Parameters for Detection of Portal Hypertension in Patients with Common Variable Immunodeficiency. J Clin Immunol 2022; 42:1626-1637. [PMID: 35821451 DOI: 10.1007/s10875-022-01319-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Timely detection of portal hypertension as a manifestation in a subgroup of patients with common variable immunodeficiency (CVID) represents a challenge since it is usually not associated with liver cirrhosis. To identify relevant markers for portal hypertension, we evaluated clinical history, laboratory parameters, and abdominal ultrasound including liver elastography and biomarkers of extracellular matrix formation. Twenty seven (6%) of 479 CVID patients presented with clinically significant portal hypertension as defined by either the presence of esophageal varices or ascites. This manifestation occurred late during the course of the disease (11.8 years after first diagnosis of CVID) and was typically part of a multiorgan disease and associated with a high mortality (11/27 patients died during follow up). The strongest association with portal hypertension was found for splenomegaly with a longitudinal diameter of > 16 cm. Similarly, most patients presented with a liver stiffness measurement (LSM) of above 6.5 kPa, and a LSM above 20 kPa was always indicative of manifest portal hypertension. Additionally, many laboratory parameters including Pro-C4 were significantly altered in patients with portal hypertension without clearly increasing the discriminatory power to detect non-cirrhotic portal hypertension in CVID. Our data suggest that a spleen size above 16 cm and an elevated liver stiffness above 6.5 kPa should prompt further evaluation of portal hypertension and its sequelae, but earlier and better liquid biomarkers of this serious secondary complication in CVID are needed.
Collapse
Affiliation(s)
- Anna-Maria Globig
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Valentina Strohmeier
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, Breisacher Str. 115, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, Freiburg, Germany
| | - Rambabu Surabattula
- Institute of Translational Immunology and Research Center for Immune Therapy, Mainz University Medical Center, 55131, Mainz, Germany
| | | | | | - Maximilian Heeg
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gerhard Kindle
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sigune Goldacker
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, Breisacher Str. 115, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Caroline von Spee-Mayer
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, Breisacher Str. 115, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Birke Bausch
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik Bettinger
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Schultheiß
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, Mainz University Medical Center, 55131, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, Breisacher Str. 115, 79106, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
20
|
Barmettler S, DiGiacomo DV, Yang NJ, Lam T, Naranbhai V, Dighe AS, Burke KE, Blumenthal KG, Ling M, Hesterberg PE, Saff RR, MacLean J, Ofoman O, Berrios C, St Denis KJ, Lam EC, Gregory D, Iafrate AJ, Poznansky M, Lee H, Balazs A, Pillai S, Farmer JR. Response to Severe Acute Respiratory Syndrome Coronavirus 2 Initial Series and Additional Dose Vaccine in Patients With Predominant Antibody Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1622-1634.e4. [PMID: 35381395 PMCID: PMC8976568 DOI: 10.1016/j.jaip.2022.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/09/2022] [Accepted: 03/06/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in patients with predominant antibody deficiency (PAD) is associated with high morbidity, yet data regarding the response to SARS-CoV-2 immunization in PAD patients, including additional dose vaccine, are limited. OBJECTIVE To characterize antibody response to SARS-CoV-2 vaccine in PAD patients and define correlates of vaccine response. METHODS We assessed the levels and function of anti-SARS-CoV-2 antibodies in 62 PAD patients compared with matched healthy controls at baseline, at 4 to 6 weeks after the initial series of immunization (a single dose of Ad26.COV2.S [Janssen] or two doses of BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna]), and at 4 to 6 weeks after an additional dose immunization, if received. RESULTS After the initial series of SARS-CoV-2 vaccination, PAD patients had lower mean anti-spike antibody levels compared with matched healthy controls (140.1 vs 547.3 U/mL; P = .02). Patients with secondary PAD (eg, B-cell depletion therapy was used) and those with severe primary PAD (eg, common variable immunodeficiency with autoinflammatory complications) had the lowest mean anti-spike antibody levels. Immune correlates of a low anti-spike antibody response included low CD4+ T helper cells, low CD19+ total B cells, and low class-switched memory (CD27+IgD/M-) B cells. In addition, a low (<100 U/mL) anti-spike antibody response was associated with prior exposure to B-cell depletion therapy, both at any time in the past (odds ratio = 5.5; confidence interval, 1.5-20.4; P = .01) and proximal to vaccination (odds ratio = 36.4; confidence interval, 1.7-791.9; P = .02). Additional dose immunization with an mRNA vaccine in a subset of 31 PAD patients increased mean anti-spike antibody levels (76.3 U/mL before to 1065 U/mL after the additional dose; P < .0001). CONCLUSIONS Patients with secondary and severe primary PAD, characterized by low T helper cells, low B cells, and/or low class-switched memory B cells, were at risk for low antibody response to SARS-CoV-2 immunization, which improved after an additional dose vaccination in most patients.
Collapse
Affiliation(s)
- Sara Barmettler
- Division of Rheumatology, Department of Medicine, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.
| | - Daniel V DiGiacomo
- Division of Rheumatology, Department of Medicine, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Nancy J Yang
- Division of Rheumatology, Department of Medicine, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Tiffany Lam
- Division of Rheumatology, Department of Medicine, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Vivek Naranbhai
- Harvard Medical School, Boston, Mass; Dana-Farber Cancer Institute, Boston, Mass
| | - Anand S Dighe
- Harvard Medical School, Boston, Mass; Department of Pathology, Massachusetts General Hospital, Boston, Mass
| | - Kristin E Burke
- Gastroenterology Unit, Department of Medicine, Massachusetts General Hospital, Boston, Mass; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Mass
| | - Kimberly G Blumenthal
- Division of Rheumatology, Department of Medicine, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Morris Ling
- Division of Rheumatology, Department of Medicine, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass
| | - Paul E Hesterberg
- Division of Rheumatology, Department of Medicine, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Rebecca R Saff
- Division of Rheumatology, Department of Medicine, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | | | - Onosereme Ofoman
- Department of Pathology, Massachusetts General Hospital, Boston, Mass
| | - Cristhian Berrios
- Department of Pathology, Massachusetts General Hospital, Boston, Mass
| | - Kerri J St Denis
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Department of Medicine, Harvard University, Cambridge, Mass
| | - Evan C Lam
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Department of Medicine, Harvard University, Cambridge, Mass
| | - David Gregory
- Division of Infectious Diseases Medicine, Department of Medicine, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, Mass; Pediatric Infectious Disease Unit, Department of Pediatrics, Massachusetts General Hospital, Boston, Mass
| | | | - Mark Poznansky
- Division of Infectious Diseases Medicine, Department of Medicine, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, Mass
| | - Hang Lee
- Harvard Medical School, Boston, Mass
| | - Alejandro Balazs
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Department of Medicine, Harvard University, Cambridge, Mass
| | - Shiv Pillai
- Harvard Medical School, Boston, Mass; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Department of Medicine, Harvard University, Cambridge, Mass
| | - Jocelyn R Farmer
- Division of Rheumatology, Department of Medicine, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Department of Medicine, Harvard University, Cambridge, Mass
| |
Collapse
|
21
|
Padron GT, Hernandez-Trujillo VP. Autoimmunity in Primary Immunodeficiencies (PID). Clin Rev Allergy Immunol 2022:10.1007/s12016-022-08942-0. [PMID: 35648371 DOI: 10.1007/s12016-022-08942-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
Abstract
Primary immunodeficiency (PID) may impact any component of the immune system. The number of PID and immune dysregulation disorders is growing steadily with advancing genetic detection methods. These expansive recognition methods have changed the way we characterize PID. While PID were once characterized by their susceptibility to infection, the increase in genetic analysis has elucidated the intertwined relationship between PID and non-infectious manifestations including autoimmunity. The defects permitting opportunistic infections to take hold may also lead the way to the development of autoimmune disease. In some cases, it is the non-infectious complications that may be the presenting sign of PID autoimmune diseases, such as autoimmune cytopenia, enteropathy, endocrinopathies, and arthritis among others, have been reported in PID. While autoimmunity may occur with any PID, this review will look at certain immunodeficiencies most often associated with autoimmunity, as well as their diagnosis and management strategies.
Collapse
Affiliation(s)
- Grace T Padron
- Nicklaus Children's Hospital, Miami, FL, USA.
- Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA.
| | - Vivian P Hernandez-Trujillo
- Nicklaus Children's Hospital, Miami, FL, USA
- Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA
| |
Collapse
|
22
|
Mohammed AD, Mohammed Z, Roland MM, Chatzistamou I, Jolly A, Schoettmer LM, Arroyo M, Kakar K, Tian Y, Patterson A, Nagarkatti M, Nagarkatti P, Kubinak JL. Defective humoral immunity disrupts bile acid homeostasis which promotes inflammatory disease of the small bowel. Nat Commun 2022; 13:525. [PMID: 35082296 PMCID: PMC8792037 DOI: 10.1038/s41467-022-28126-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Mucosal antibodies maintain gut homeostasis by promoting spatial segregation between host tissues and luminal microbes. Whether and how mucosal antibody responses influence gut health through modulation of microbiota composition is unclear. Here, we use a CD19-/- mouse model of antibody-deficiency to demonstrate that a relationship exists between dysbiosis, defects in bile acid homeostasis, and gluten-sensitive enteropathy of the small intestine. The gluten-sensitive small intestine enteropathy that develops in CD19-/- mice is associated with alterations to luminal bile acid composition in the SI, marked by significant reductions in the abundance of conjugated bile acids. Manipulation of bile acid availability, adoptive transfer of functional B cells, and ablation of bacterial bile salt hydrolase activity all influence the severity of small intestine enteropathy in CD19-/- mice. Collectively, results from our experiments support a model whereby mucosal humoral immune responses limit inflammatory disease of the small bowel by regulating bacterial BA metabolism.
Collapse
Affiliation(s)
- Ahmed Dawood Mohammed
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA.,University of Baghdad School of Veterinary Medicine, Baghdad, Iraq
| | - Zahraa Mohammed
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA.,Al-Mustansiriyah University School of Medicine Department of Microbiology, Baghdad, Iraq
| | - Mary M Roland
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Ioulia Chatzistamou
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Amy Jolly
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Lillian M Schoettmer
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Mireya Arroyo
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Khadija Kakar
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Yuan Tian
- Pennsylvania State University Department of Veterinary and Biomedical Sciences, State College, PA, USA
| | - Andrew Patterson
- Pennsylvania State University Department of Veterinary and Biomedical Sciences, State College, PA, USA
| | - Mitzi Nagarkatti
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Prakash Nagarkatti
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Jason L Kubinak
- University of South Carolina School of Medicine Department of Pathology, Microbiology, Immunology 6439 Garners Ferry Rd., Columbia, SC, 29209, USA.
| |
Collapse
|
23
|
Alligon M, Mahlaoui N, Courteille V, Costes L, Afonso V, Randrianomenjanahary P, de Vergnes N, Ranohavimparany A, Vo D, Hafsa I, Bach P, Benoit V, Garcelon N, Fischer A. An appraisal of the frequency and severity of non-infectious manifestations in primary immunodeficiencies. A study of a national retrospective cohort of 1375 patients over 10 years. J Allergy Clin Immunol 2022; 149:2116-2125. [PMID: 35031273 DOI: 10.1016/j.jaci.2021.12.790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Non-infectious manifestations, i.e. allergy, autoimmunity/inflammation, lymphoproliferation and malignancies are known to be observed in many primary immunodeficiency diseases (PID) and to participate to their prognosis. OBJECTIVE In order to have a global view on their occurrence, we retrieved data from a retrospective cohort of 1375 patients included in the French national registry of PID (CEREDIH) for whom we had a 10-year follow-up since inclusion in the registry. METHODS These patients were followed for 10 years (2009-2018) by specialized centers in University Hospitals. This study shows that 20.1% of patients without prior curative therapy (n=1163) developed at least one manifestation (event) encompassing 277 events. RESULTS Autoimmune/inflammatory events (n=138) and malignancies (n=85) affected all age classes and virtually all PID diagnostic groups. They were associated with a risk of death that occurred in 14.2% of them (n=195), being found as causal in 43% of cases. Malignancies (OR: 5.62 [3.66 - 8.62]) and autoimmunity (OR: 1.9 [1.27 - 2.84]) were clearly identified as risk factors for lethality. Patients who underwent curative therapy (i.e. mostly allogeneic hematopoietic stem cell transplantation, a few cases of gene therapy or thymic transplantation) prior to the 10-year study period (n=212) had comparatively reduced but still detectable clinical manifestations (n=16) leading to death in 9.4% of them. CONCLUSION This study points to the frequency and severity of non-infectious manifestations in various PID groups across all age groups. These results warrant further prospective analysis to better assess their consequences and to adapt therapy, notably indication of curative therapy.
Collapse
Affiliation(s)
- Mickaël Alligon
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Nizar Mahlaoui
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Pediatric Immuno-Hematology and Rheumatology Unit, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Virginie Courteille
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laurence Costes
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Veronica Afonso
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Randrianomenjanahary
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Nathalie de Vergnes
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anja Ranohavimparany
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Duy Vo
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Inès Hafsa
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Perrine Bach
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Vincent Benoit
- Université de Paris, Imagine Institute, Data Science Platform, INSERM UMR 1163, F-75015, Paris, France
| | - Nicolas Garcelon
- Université de Paris, Imagine Institute, Data Science Platform, INSERM UMR 1163, F-75015, Paris, France
| | - Alain Fischer
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Pediatric Immuno-Hematology and Rheumatology Unit, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France; Collège de France, Paris, France.
| | | |
Collapse
|
24
|
Sompornrattanaphan M, Tongdee R, Wongsa C, Jitmuang A, Thongngarm T. Fatal liver mass rupture in a common-variable-immunodeficiency patient with probable nodular regenerating hyperplasia. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:2. [PMID: 34996523 PMCID: PMC8742317 DOI: 10.1186/s13223-021-00643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022]
Abstract
Background Nodular regenerating hyperplasia (NRH) is the most common liver involvement in common variable immunodeficiency (CVID). Most patients are asymptomatic with gradually increasing alkaline phosphatase (ALP) and mildly elevated transaminase enzymes over the years. We report the first case of fatal liver mass rupture in a CVID patient with probable NRH. Case presentation A 24-year-old man was diagnosed with CVID at the age of 1.25 years. Genetic testing revealed a transmembrane activator and calcium-modulator and cyclophilin-ligand interactor (TACI) mutation. He had been receiving intravenous immunoglobulin (IVIg) replacement therapy ever since then. The trough level of serum IgG ranged between 750–1200 mg/dL. However, he still had occasional episodes of lower respiratory tract infection until bronchiectasis developed. At 22 years old, computed tomography (CT) chest and abdomen as an investigation for lung infection revealed incidental findings of numerous nodular arterial-enhancing lesions in the liver and mild splenomegaly suggestive of NRH with portal hypertension. Seven months later, he developed sudden hypotension and tense bloody ascites. Emergency CT angiography of the abdomen showed NRH with intrahepatic hemorrhage and hemoperitoneum. Despite successful gel foam embolization, the patient died from prolonged shock and multiple organ failure. Conclusions Although CVID patients with NRH are generally asymptomatic, late complications including portal hypertension, hepatic failure, and hepatic rupture could occur. Therefore, an evaluation of liver function should be included in the regular follow-up of CVID patients.
Collapse
Affiliation(s)
- Mongkhon Sompornrattanaphan
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Ranista Tongdee
- Department of Diagnostic Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chamard Wongsa
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Anupop Jitmuang
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Torpong Thongngarm
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand.
| |
Collapse
|
25
|
Abstract
INTRODUCTION There is a wide spectrum of noninfectious gastrointestinal pathology, causing considerable morbidity and mortality in CVID, where both etiology and effective therapy are under debate. AREAS COVERED This review will focus on the noninfectious inflammation in the GI tract in CVID patients, covering the both the upper and lower GI tract inflammation, including the liver. The controversy of the CVID enteropathy definition and that of gluten-free diet for celiac-like disease in CVID will be discussed. Furthermore, the review will cover the link between GI inflammation and GI cancer. Finally, the role of gut microbiota, IgA, and genetics and its relationship with CVID enteropathy is scrutinized. The authors reviewed literature from PubMed. EXPERT OPINION The heterogeneity and the unknown mechanism behind CVID enteropathy, and thereby the lack of effective treatment, is one of the key challenges in the field of CVID. Celiac-like disease in CVID is due to immune dysregulation, and a gluten-free diet is therefore not indicated. Gut microbial dysbiosis and mucosal IgA can initiate systemic and local inflammation and is involved in the immune dysregulation in CVID. Considering the heterogeneity of CVID enteropathy, personalized medicine is probably the future for these patients.
Collapse
Affiliation(s)
- I M Andersen
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Norway
| | - S F Jørgensen
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Norway
| |
Collapse
|
26
|
DiGiacomo DV, Shay JE, Crotty R, Yang N, Bloom P, Corey K, Barmettler S, Farmer JR. Liver Stiffness by Transient Elastography Correlates With Degree of Portal Hypertension in Common Variable Immunodeficiency Patients With Nodular Regenerative Hyperplasia. Front Immunol 2022; 13:864550. [PMID: 35603209 PMCID: PMC9121126 DOI: 10.3389/fimmu.2022.864550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 01/11/2023] Open
Abstract
Nodular regenerative hyperplasia (NRH) is associated with high morbidity and mortality in patients with common variable immunodeficiency (CVID). While liver biopsy is the gold standard for NRH diagnosis, a non-invasive technique could facilitate early disease recognition, monitoring, and/or immune intervention. We performed a cross-sectional analysis of ultrasound-based transient elastography (TE) in patients with CVID to evaluate liver stiffness and compared this between patients with (N = 12) and without (N = 6) biopsy-proven NRH. Additionally, these data were compared to a cohort followed at our institution for non-alcoholic fatty liver disease (NAFLD) (N = 527), a disease for which TE has routine diagnostic use. Clinical and pathologic features of NRH were evaluated as correlates of liver stiffness, and receiver operating characteristic curves were used to define a liver stiffness cutoff with diagnostic utility for NRH among CVID patients. CVID patients with NRH had a more severe disease presentation compared to those without. This included increased autoinflammatory disease comorbidities, combined B-cell and T-cell dysfunction, and abnormal liver biochemistries (specifically an increased mean alkaline phosphatase level [proximal to TE, 250 vs. 100 U/L; p = 0.03; peak, 314 vs. 114 U/L; p = 0.02). Results of TE demonstrated a significantly elevated liver stiffness in CVID patients with NRH (mean 13.2 ± 6.2 kPa) as compared to both CVID patients without NRH (mean 4.6 ± 0.9 kPa) and non-CVID patients with NAFLD (mean 6.9 ± 5.5 kPa) (p < 0.01). No single or composite histopathologic feature of NRH correlated with liver stiffness including nodule size, nodule density, sinusoidal dilation, fibrosis, and/or lymphocytosis. In contrast, liver stiffness by TE was significantly correlated with clinical parameters of portal hypertension, including an elevated hepatic venous pressure gradient, an increased splenic longitudinal diameter, presence of varices, and presence of peripheral edema. A liver stiffness of greater than or equal to 6.2 kPa was a clinically significant cutoff for NRH in CVID patients. We propose that TE has diagnostic utility in CVID, particularly in the presence of immunophenotypic features such as combined B-cell and T-cell dysfunction, autoinflammatory comorbidities, and/or abnormal liver tests. Elevated liver stiffness by TE should raise suspicion for NRH in patients with CVID and prompt expedited evaluation by hepatology.
Collapse
Affiliation(s)
- Daniel V DiGiacomo
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA, United States
| | - Jessica E Shay
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, United States
| | - Rory Crotty
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | - Nancy Yang
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA, United States
| | - Patricia Bloom
- Department of Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, United States
| | - Kathleen Corey
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, United States
| | - Sara Barmettler
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA, United States
| | - Jocelyn R Farmer
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
27
|
Szczawińska-Popłonyk A, Ta Polska-Jóźwiak K, Schwartzmann E, Popłonyk N. Immune Dysregulation in Pediatric Common Variable Immunodeficiency: Implications for the Diagnostic Approach. Front Pediatr 2022; 10:855200. [PMID: 35402361 PMCID: PMC8983883 DOI: 10.3389/fped.2022.855200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Infections and infectious complications are hallmarks of common variable immunodeficiency (CVID) and the leading cause of morbidity and mortality in affected patients at any age. However, the pediatric CVID is no longer perceived as a primary immunodeficiency associated solely with infectious manifestations; autoimmune, allergic, lymphoproliferative, and malignant disorders and organ-specific immunopathology also characterize the spectrum of non-infectious complications. In this study, we sought to determine the role of immune dysregulation and frequency of non-infectious sequelae in children affected with CVID. We also aimed at providing an insight into the pathogenesis of non-infectious complications and at delineating the diagnostic approach to pediatric CVID with immune dysregulation. An in-depth retrospective analysis of clinical manifestations and their correlations with selected immune parameters was performed in a group of 39 CVID children, followed by our pediatric immunology department. Whereas recurrent sinopulmonary infections were present in all (100%) of the children studied, an unexpectedly high rate of non-infectious disorders and immune dysregulation phenotypes were observed in as many as 32 (82.05%) patients, compared with infection-only phenotypes limited to 7 (17.95%) male patients. The most common inflammatory comorbidity was asthma, diagnosed in 21 (53.85%) patients. The second most frequent immune dysregulation group was autoimmune disorders, present in 18 (46.15%) of the children studied with a high rate of autoimmune thyroiditis in as many as 10 (25.64%) of the CVID-affected children. Lymphoproliferation was seen in 14 children (35.90%), and, among them, lymphadenopathy occurred in nine (23.08%) cases and granulomatous lymphocytic interstitial lung disease in seven (17.95%) cases. Finally, malignancies occurred in two female patients (5.13%), papillary thyroid cancer in the first one and T-cell lymphoblastic leukemia in the other one. The most prominent abnormalities in the B- and T-cell compartment contributing to complex immune deficiency and immune dysregulation phenotypes were seen in the autoimmunity group, showing significant reductions in the switched memory B cell, naive T helper cell, and regulatory T-cell subsets. Herein, we document the previously unreported high rate of immune dysregulation in pediatric CVID as a clinical and diagnostic challenge with the variability of defects in the humoral and cellular immune responses.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| | - Katarzyna Ta Polska-Jóźwiak
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| | | | | |
Collapse
|
28
|
Takasawa K, Kanegane H, Kashimada K, Morio T. Endocrinopathies in Inborn Errors of Immunity. Front Immunol 2021; 12:786241. [PMID: 34887872 PMCID: PMC8650088 DOI: 10.3389/fimmu.2021.786241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Inborn errors of immunity (IEI), caused by hereditary or genetic defects, are a group of more than 400 disorders, in which the immune system, including lymphocytes, neutrophils, macrophages, and complements, does not function properly. The endocrine system is frequently affected by IEI as an associated clinical feature and a complex network of glands which regulate many important body functions, including growth, reproduction, homeostasis, and energy regulation. Most endocrine disorders associated with IEI are hypofunction which would be treated with supplementation therapy, and early diagnosis and appropriate management are essential for favorable long-term outcomes in patients with IEI. In this review, we aimed to comprehensively summarize and discuss the current understanding on the clinical features and the pathophysiology of endocrine disorders in IEI. This review is composed with three parts. First, we discuss the two major pathophysiology of endocrinopathy in IEI, autoimmune response and direct effects of the responsible genes. Next, the details of each endocrinopathy, such as growth failure, hypothyroidism, hypoparathyroidism, adrenal insufficiency, diabetes mellitus (DM) are specified. We also illustrated potential endocrinopathy due to hematopoietic stem cell transplantation, including hypogonadism and adrenal insufficiency due to glucocorticoid therapy.
Collapse
Affiliation(s)
- Kei Takasawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Kanegane
- Deparment of Child Health Development, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
29
|
Sizyakina LP, Andreeva II, Danilova DI. Dysregulatory processes of the cellular link of the immune system in the dynamics of common variable immunodeficiency. Klin Lab Diagn 2021; 66:160-165. [PMID: 33793115 DOI: 10.51620/0869-2084-2021-66-3-160-165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Common variable immunodeficiency (CVID) is a variant of primary immunodeficiency in which inhibition of antibody production is formed due to disorders of intercellular interaction affecting cellular elements of both innate and adaptive immune responses. A feature of CVID is the late start and variability of clinical minifestation. These arguments determine the purpose of the study: to identify the dynamics of changes in the cellular parameters of the adaptive and innate immune response depending on the duration and severity of the infectious manifestation of CVID. In this regard, a retrospective analysis of medical histories and dynamic observation of fifteen patients with CVID were carried out. Selection of specific parameters of cellular indices of factors of innate resistance and adaptive immunity was carried out on the basis of systemic-functional approach of immunodiagnostics. It is shown that in patients with CVID -mediated hypogammaglobulinemia and infectious phenotype of clinical manifestation, enhancement of quantitative and functional potentials of T-link effector cells of adaptive immunity is recorded against the background of reduction of number of regulatory T-helpers. With a more severe clinical course of the disease, the number of CD3+HLA DR + limphocytes is lower than with a more favorable version, there is a tendency to decrease the number of these cells, as well as the number of peripheral Treg with an increase in the length of the disease. Cellular components of innate immunity are characterized by a decrease in neutrophil activity, inhibition of antigen-presenting monocyte activity, the number and cytotoxicity of natural killers. At the same time, the tendency to decrease the cytolytic potential of NK with an increase in the length of illness and statistically significant differences depending on the severity of the manifestation of the infectious phenotype of CVID was recorded. The obtained results determine the importance of evaluating the cellular link of the immune system in patients with CVID, including as a prognostic criterion for the severity of the course.
Collapse
|
30
|
Janssen LMA, van der Flier M, de Vries E. Lessons Learned From the Clinical Presentation of Common Variable Immunodeficiency Disorders: A Systematic Review and Meta-Analysis. Front Immunol 2021; 12:620709. [PMID: 33833753 PMCID: PMC8021796 DOI: 10.3389/fimmu.2021.620709] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Background Diagnostic delay in common variable immunodeficiency disorders (CVID) is considerable. There is no generally accepted symptom-recognition framework for its early detection. Objective To systematically review all existing data on the clinical presentation of CVID. Methods PubMed, EMBASE and Cochrane were searched for cohort studies, published January/1999-December/2019, detailing the clinical manifestations before, at and after the CVID-diagnosis. Results In 51 studies (n=8521 patients) 134 presenting and 270 total clinical manifestations were identified. Recurrent upper and/or lower respiratory infections were present at diagnosis in 75%. Many patients had suffered severe bacterial infections (osteomyelitis 4%, meningitis 6%, septicemia 8%, mastoiditis 8%). Bronchiectasis (28%), lymphadenopathy (27%), splenomegaly (13%), inflammatory bowel disease (11%), autoimmune cytopenia (10%) and idiopathic thrombocytopenia (6%) were also frequently reported. A bimodal sex distribution was found, with male predominance in children (62%) and female predominance in adults (58%). 25% of CVID-patients developed other manifestations besides infections in childhood, this percentage was much higher in adults (62%). Immune-dysregulation features, such as granulomatous-lymphocytic interstitial lung disease and inflammatory bowel disease, were more prominent in adults. Conclusions The shift from male predominance in childhood to female predominance in adults suggests differences in genetic and environmental etiology in CVID and has consequences for pathophysiologic studies. We confirm the high frequency of respiratory infections at presentation, but also show a high incidence of severe bacterial infections such as sepsis and meningitis, and immune dysregulation features including lymphoproliferative, gastrointestinal and autoimmune manifestations. Early detection of CVID may be improved by screening for antibody deficiency in patients with these manifestations.
Collapse
Affiliation(s)
- Lisanne M A Janssen
- Department of Tranzo, Tilburg University, Tilburg, Netherlands.,Department of Pediatrics, Amalia Children's Hospital, Nijmegen, Netherlands
| | - Michiel van der Flier
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Esther de Vries
- Department of Tranzo, Tilburg University, Tilburg, Netherlands.,Laboratory of Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, Netherlands
| |
Collapse
|
31
|
Lee TK, Gereige JD, Maglione PJ. State-of-the-art diagnostic evaluation of common variable immunodeficiency. Ann Allergy Asthma Immunol 2021; 127:19-27. [PMID: 33716149 DOI: 10.1016/j.anai.2021.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To summarize the current understanding of diagnostic and postdiagnostic evaluation of common variable immunodeficiency (CVID). DATA SOURCES PubMed Central database. STUDY SELECTIONS Original research articles and review articles from 2015 to 2020 including seminal articles that shaped the diagnostic and postdiagnostic evaluation of CVID were incorporated. This work focuses on initial diagnosis of CVID, genetic evaluations, and postdiagnostic assessment of respiratory, gastrointestinal, and hepatobiliary diseases including spleen and lymph node enlargement. RESULTS CVID presents not only with frequent infections but also with noninfectious complications such as autoimmunity, gastrointestinal disease, chronic lung disease, granulomas, liver disease, lymphoid hyperplasia, splenomegaly, or malignancy. The risk of morbidity and mortality is higher in patients with CVID and noninfectious complications. Detailed diagnostic approaches, which may incorporate genetic testing, can aid characterization of individual CVID cases and shape treatment in some instances. Moreover, continued evaluation after CVID diagnosis is key to optimal management of this complex disorder. These postdiagnostic evaluations include pulmonary function testing, radiologic studies, and laboratory evaluations that may be conducted at frequencies determined by disease activity. CONCLUSION Although the diagnosis can be achieved similarly in all patients with CVID, those with noninfectious complications have distinct concerns during clinical evaluation. State-of-the-art workup of CVID with noninfectious complications typically includes genetic analysis, which may shape precision therapy, and thoughtful application of postdiagnostic tests that monitor the presence and progression of disease in the myriad of tissues that may be affected. Even with recent advancements, knowledge gaps in diagnosis, prognosis, and treatment of CVID persist, and continued research efforts are needed.
Collapse
Affiliation(s)
- Theodore K Lee
- Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Jessica D Gereige
- Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Paul J Maglione
- Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts.
| |
Collapse
|
32
|
Viallard JF, Lebail B, Begueret H, Fieschi C. [Common variable immunodeficiency disorders: Part 2. Updated clinical manifestations and therapeutic management]. Rev Med Interne 2021; 42:473-481. [PMID: 33516581 DOI: 10.1016/j.revmed.2020.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/04/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
Common variable immunodeficiency disorders (CVID) are the most common symptomatic primary antibody deficiency in adults with an estimated prevalence of 1/25,000. The most frequent clinical manifestations are upper respiratory tract infections (including pneumonia, bronchitis, and sinusitis) predominantly with Streptococcus pneumoniae or H. influenzae. However, CVID are complicated in 20 to 30 % of cases of non-infectious manifestations which have been well characterized in recent years. Several complications can be observed including autoimmune, lymphoproliferative, granulomatous or cancerous manifestations involving one or more organs. These complications, mostly antibody-mediated cytopenias, are correlated with a decrease in the number of circulating switched memory B cells. Replacement therapy with polyvalent gammaglobulins has greatly improved the prognosis of these patients but it remains poor in the presence of digestive complications (especially in the case of chronic enteropathy and/or porto-sinusoidal vascular disease), pulmonary complications (bronchiectasis and/or granulomatous lymphocytic interstitial lung disease) and when progression to lymphoma. Much progress is still to be made, in particular on the therapeutic management of non-infectious complications which should benefit in the future from targeted treatments based on knowledge of genetics and immunology.
Collapse
Affiliation(s)
- J F Viallard
- Service de médecine interne et maladies infectieuses, hôpital Haut-Lévêque, CHU de Bordeaux, 5, avenue de Magellan, 33604 Pessac, France; Université de Bordeaux, Bordeaux, France.
| | - B Lebail
- Université de Bordeaux, Bordeaux, France; Service d'anatomopathologie, hôpital Pellegrin, place Amélie-Rabat-Léon, 33076 Bordeaux, France
| | - H Begueret
- Service d'anatomopathologie, CHU Bordeaux, hôpital Haut-Lévêque, 5, avenue de Magellan, 33604 Pessac, France
| | - C Fieschi
- Département d'immunologie, université de Paris, AP-HP, France; INSERM U1126, centre Hayem, hôpital Saint-Louis, Paris, France
| |
Collapse
|
33
|
van Stigt AC, Dik WA, Kamphuis LSJ, Smits BM, van Montfrans JM, van Hagen PM, Dalm VASH, IJspeert H. What Works When Treating Granulomatous Disease in Genetically Undefined CVID? A Systematic Review. Front Immunol 2021; 11:606389. [PMID: 33391274 PMCID: PMC7773704 DOI: 10.3389/fimmu.2020.606389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022] Open
Abstract
Background Granulomatous disease is reported in at least 8–20% of patients with common variable immunodeficiency (CVID). Granulomatous disease mainly affects the lungs, and is associated with significantly higher morbidity and mortality. In half of patients with granulomatous disease, extrapulmonary manifestations are found, affecting e.g. skin, liver, and lymph nodes. In literature various therapies have been reported, with varying effects on remission of granulomas and related clinical symptoms. However, consensus recommendations for optimal management of extrapulmonary granulomatous disease are lacking. Objective To present a literature overview of the efficacy of currently described therapies for extrapulmonary granulomatous disease in CVID (CVID+EGD), compared to known treatment regimens for pulmonary granulomatous disease in CVID (CVID+PGD). Methods The following databases were searched: Embase, Medline (Ovid), Web-of-Science Core Collection, Cochrane Central, and Google Scholar. Inclusion criteria were 1) CVID patients with granulomatous disease, 2) treatment for granulomatous disease reported, and 3) outcome of treatment reported. Patient characteristics, localization of granuloma, treatment, and association with remission of granulomatous disease were extracted from articles. Results We identified 64 articles presenting 95 CVID patients with granulomatous disease, wherein 117 different treatment courses were described. Steroid monotherapy was most frequently described in CVID+EGD (21 out of 53 treatment courses) and resulted in remission in 85.7% of cases. In CVID+PGD steroid monotherapy was described in 15 out of 64 treatment courses, and was associated with remission in 66.7% of cases. Infliximab was reported in CVID+EGD in six out of 53 treatment courses and was mostly used in granulomatous disease affecting the skin (four out of six cases). All patients (n = 9) treated with anti-TNF-α therapies (infliximab and etanercept) showed remission of extrapulmonary granulomatous disease. Rituximab with or without azathioprine was rarely used for CVID+EGD, but frequently used in CVID+PGD where it was associated with remission of granulomatous disease in 94.4% (17 of 18 treatment courses). Conclusion Although the number of CVID+EGD patients was limited, data indicate that steroid monotherapy often results in remission, and that anti-TNF-α treatment is effective for granulomatous disease affecting the skin. Also, rituximab with or without azathioprine was mainly described in CVID+PGD, and only in few cases of CVID+EGD.
Collapse
Affiliation(s)
- Astrid C van Stigt
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, Netherlands
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, Netherlands
| | - Lieke S J Kamphuis
- Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Pulmonary Medicine, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Bas M Smits
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children's Hospital, University Medical Centre (UMC), Utrecht, Netherlands
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children's Hospital, University Medical Centre (UMC), Utrecht, Netherlands
| | - P Martin van Hagen
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, Netherlands
| | - Virgil A S H Dalm
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hanna IJspeert
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
34
|
Dilley M, Wangberg H, Noone J, Geng B. Primary immunodeficiency diseases treated with immunoglobulin and associated comorbidities. Allergy Asthma Proc 2021; 42:78-86. [PMID: 33404391 DOI: 10.2500/aap.2021.42.200113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Primary immunodeficiency diseases (PIDD) consist of a heterogeneous group of disorders characterized by various aspects of immune dysregulation. Although the most universally recognized manifestation of PIDD is an increased susceptibility to infections, there is a growing body of evidence that patients with PIDD often have a higher incidence of lung disease, autoimmunity, autoinflammatory disorders, and malignancy. Objective: The purpose of this study was to better understand the noninfectious complications of PIDD by determining the comorbid disease prevalence across various age groups, genders, and immunoglobulin replacement types compared with the general population. Methods: A large U.S. insurance claims database was retrospectively analyzed for patients who had a diagnosis of PIDD and who had received intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG). The prevalences of 31 different comorbid conditions in the Elixhauser comorbidity index were compared among the 3125 patients in the PIDD population to > 37 million controls separated by gender and by 10-year age cohorts. Results: In the PIDD population, statistically significantly higher comorbid diagnoses included chronic obstructive pulmonary disease-asthma in 51.5%, rheumatoid disease in 14%, deficiency anemia in 11.8%, hypothyroidism in 21.2%, lymphoma in 16.7%, neurologic disorders in 9.7%, arrhythmias in 19.9%, electrolyte disorders in 23.6%, coagulopathies in 16.9%, and weight loss in 8.4%. Conclusion: PIDD that require immunoglobulin replacement are associated with an increased risk of numerous comorbid conditions that affect morbidity and mortality. Recognition and increased awareness of these noninfectious complications can allow for better monitoring, care coordination, targeted treatments, and improved prognosis.
Collapse
Affiliation(s)
- Michelle Dilley
- From the Division of Allergy, Immunology and Rheumatology, University of California San Diego and Rady Children's Hospital, San Diego, California
| | - Hannah Wangberg
- From the Division of Allergy, Immunology and Rheumatology, University of California San Diego and Rady Children's Hospital, San Diego, California
| | - Joshua Noone
- Department of Public Health Sciences, University of North Carolina, Charlotte, North Carolina
| | - Bob Geng
- From the Division of Allergy, Immunology and Rheumatology, University of California San Diego and Rady Children's Hospital, San Diego, California
| |
Collapse
|
35
|
Farmer JR, Uzel G. Mapping Out Autoimmunity Control in Primary Immune Regulatory Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 9:653-659. [PMID: 33358993 DOI: 10.1016/j.jaip.2020.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
There is a growing understanding of the clinical overlap between primary immune deficiency and autoimmunity. An atypical or treatment-refractory clinical presentation of autoimmunity may in fact signal an underlying congenital condition of primary immune dysregulation (an inborn error of immunity). Detailed profiling of the family history is critical in the diagnostic process and must not be limited to the occurrence of frequent or atypical infections, but additionally should include inquiries into chronic forms of autoimmunity, hyperinflammation, and malignancy. A genetic and a functional diagnostic approach are complementary and nonoverlapping methods of identifying and validating an inborn error of immunity. Extended immune phenotyping of both affected and unaffected family members may provide insight into disease mode of inheritance, penetrance, and secondary inherited or environmentally acquired modifiers. Clinical care of a family with an inborn error of immunity may require local and national expertise in addition to cross-disciplinary care from the disciplines of pediatrics and internal medicine. Physician communication across subspecialties as well as distinct medical institutes can facilitate the appropriate disclosure of genetic testing results toward their prompt incorporation into patient care. Targeted immunomodulation based directly on genetic and functional immune phenotyping has the potential to reduce unnecessary immunosuppression and provide more exacting therapeutic benefit to our patients.
Collapse
Affiliation(s)
- Jocelyn R Farmer
- Division of Rheumatology, Allergy & Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass; Ragon Institute of MGH, MIT and Harvard, Boston, Mass.
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
36
|
Abstract
Common variable immunodeficiency (CVID) has a heterogenous clinical presentation and can be challenging to diagnose. Distinct histologic changes have been linked with CVID in several organ systems, which can help identify the correct diagnosis. In this study we review a cohort of hepatic CVID biopsies, to better define the spectrum of histologic and biochemical alterations. We reviewed 26 liver biopsies from 24 patients with CVID, obtained at 4 institutions between 2010 and 2019. Histologic slides were examined, and pathologic, biochemical, and clinical features were recorded. A control cohort of 21 patients with nodular regenerative hyperplasia (NRH) but lacking CVID was also examined. Liver function tests were frequently abnormal, especially alkaline phosphatase (median: 193 IU/L) and aspartate transaminase (median: 56 U/L), elevated in 23 and 17 of 25 biopsies, respectively. Fifteen patients had CVID involvement of other organs. Histologic features of primary biliary cholangitis were present in 2 patients, with florid duct lesions and prominent bile duct injury, in association with positive antimitochondrial antibodies. Among the other 24 biopsies, mild to moderate portal and lobular inflammation were present in 18 and 17 of 24 biopsies, respectively. Overall, 22 of 24 biopsies showed NRH-like changes. Plasma cell were absent. A distinct pattern of pericellular fibrosis was present in 23 of 26 biopsies overall. Involvement ranged from focal centrizonal fibrosis to bridging fibrosis and was accompanied by increased intrasinusoidal lymphocytes in 13 of 24 biopsies. Pericellular fibrosis was identified in 1 of 21 biopsies in the control cohort. Additional findings included granulomatous inflammation or nonhepatocellular foreign body-type multinucleate giant cells, identified in 4 biopsies. Three of 6 examined biopsies also demonstrated focal hepatocellular copper deposition. Hepatic disease in CVID is often associated with elevated alkaline phosphatase and aspartate transaminase and is characterized histologically by the mild nonspecific portal and lobular hepatitis, absence of plasma cells, NRH-like changes, and less commonly, typical histologic features of primary biliary cholangitis. We have also identified a distinctive pattern of delicate pericellular fibrosis that is a helpful clue to the diagnosis of hepatic disease in CVID, especially when accompanied by NRH-like changes.
Collapse
|
37
|
Maglione PJ. Chronic Lung Disease in Primary Antibody Deficiency: Diagnosis and Management. Immunol Allergy Clin North Am 2020; 40:437-459. [PMID: 32654691 DOI: 10.1016/j.iac.2020.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chronic lung disease is a complication of primary antibody deficiency (PAD) associated with significant morbidity and mortality. Manifestations of lung disease in PAD are numerous. Thoughtful application of diagnostic approaches is imperative to accurately identify the form of disease. Much of the treatment used is adapted from immunocompetent populations. Recent genomic and translational medicine advances have led to specific treatments. As chronic lung disease has continued to affect patients with PAD, we hope that continued advancements in our understanding of pulmonary pathology will ultimately lead to effective methods that alleviate impact on quality of life and survival.
Collapse
Affiliation(s)
- Paul J Maglione
- Pulmonary Center, Boston University School of Medicine, 72 East Concord Street, R304, Boston, MA 02118, USA.
| |
Collapse
|
38
|
The Importance of Primary Immune Deficiency Registries: The United States Immunodeficiency Network Registry. Immunol Allergy Clin North Am 2020; 40:385-402. [PMID: 32654688 DOI: 10.1016/j.iac.2020.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The importance of registries is vital for almost every human disease but crucial for rare disorders, where the centralized collection, organization, and quality check of data create a platform from where multiple analyses and scientific advances are possible. In this article, the authors review the creation of the United States Immunodeficiency Network registry, its role, and the numerous scientific achievements generated from the collective effort of many.
Collapse
|
39
|
Immunological and Clinical Phenotyping in Primary Antibody Deficiencies: a Growing Disease Spectrum. J Clin Immunol 2020; 40:592-601. [PMID: 32239366 DOI: 10.1007/s10875-020-00773-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Although common variable immunodeficiency (CVID) is considered the most prevalent symptomatic primary antibody deficiency (PAD), there is a population with symptomatic PADs that do not meet criteria for CVID. We analyzed clinical and immunological profiles of patients with different PADs to better understand the differences and similarities between CVID and other PADs. METHODS We extracted clinical and laboratory data of patients with PADs from electronic medical records. Patients were categorized into CVID, IgG subclass 2 deficiency (IgG2D), IgG deficiency (IgGD), and specific antibody deficiency (sAbD) based on basal immunoglobulin levels and pneumococcal vaccine responses. We compared clinical and immunological characteristics in these groups. RESULTS All patients, regardless of PAD types, showed similar frequencies of infections, bronchiectasis, and interstitial lung disease (ILD). Hematopoietic malignancies were more frequently found in the CVID than in the IgG2D, IgGD, and sAbD groups, while the latter groups trended towards an increased frequency of connective tissue diseases (CTD). Low counts of natural killer (NK) cells were associated with malignancy, autoimmunity, and ILD in CVID but not in other PAD groups. CONCLUSIONS Higher frequency of hematopoietic malignancy in CVID than in the other PADs and association of lower NK cell counts with non-infectious complications in CVID suggest a relationship between immune alterations and the development of non-infectious manifestations in PADs.
Collapse
|
40
|
Bhatt D, Stan RC, Pinhata R, Machado M, Maity S, Cunningham‐Rundles C, Vogel C, de Camargo MM. Chemical chaperones reverse early suppression of regulatory circuits during unfolded protein response in B cells from common variable immunodeficiency patients. Clin Exp Immunol 2020; 200:73-86. [PMID: 31859362 PMCID: PMC7066380 DOI: 10.1111/cei.13410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2019] [Indexed: 12/19/2022] Open
Abstract
B cells orchestrate pro-survival and pro-apoptotic inputs during unfolded protein response (UPR) to translate, fold, sort, secrete and recycle immunoglobulins. In common variable immunodeficiency (CVID) patients, activated B cells are predisposed to an overload of abnormally processed, misfolded immunoglobulins. Using highly accurate transcript measurements, we show that expression of UPR genes and immunoglobulin chains differs qualitatively and quantitatively during the first 4 h of chemically induced UPR in B cells from CVID patients and a healthy subject. We tested thapsigargin or tunicamycin as stressors and 4-phenylbutyrate, dimethyl sulfoxide and tauroursodeoxycholic acid as chemical chaperones. We found an early and robust decrease of the UPR upon endoplasmic reticulum (ER) stress in CVID patient cells compared to the healthy control consistent with the disease phenotype. The chemical chaperones increased the UPR in the CVID patient cells in response to the stressors, suggesting that misfolded immunoglobulins were stabilized. We suggest that the AMP-dependent transcription factor alpha branch of the UPR is disturbed in CVID patients, underlying the observed expression behavior.
Collapse
Affiliation(s)
- D. Bhatt
- Department of ImmunologyUniversity of São PauloSão PauloBrazil
| | - R. C. Stan
- Department of ImmunologyUniversity of São PauloSão PauloBrazil
- Department of Proteomics and Structural BiologyCantacuzino Military Medical Research Development National InstituteBucharestRomania
| | - R. Pinhata
- Department of ImmunologyUniversity of São PauloSão PauloBrazil
| | - M. Machado
- Department of ImmunologyUniversity of São PauloSão PauloBrazil
| | - S. Maity
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNYUSA
| | - C. Cunningham‐Rundles
- Department of Medicine, Allergy & ImmunologyMount Sinai Medicine SchoolNew YorkNYUSA
| | - C. Vogel
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNYUSA
| | | |
Collapse
|
41
|
Are asthma and allergic diseases phenotypic markers for patients with common variable immunodeficiency? Ann Allergy Asthma Immunol 2020; 124:636. [PMID: 32217189 DOI: 10.1016/j.anai.2020.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
|
42
|
Pecoraro A, Crescenzi L, Varricchi G, Marone G, Spadaro G. Heterogeneity of Liver Disease in Common Variable Immunodeficiency Disorders. Front Immunol 2020; 11:338. [PMID: 32184784 PMCID: PMC7059194 DOI: 10.3389/fimmu.2020.00338] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent primary immunodeficiency (PID) in adulthood and is characterized by severe reduction of immunoglobulin serum levels and impaired antibody production in response to vaccines and pathogens. Beyond the susceptibility to infections, CVID encompasses a wide spectrum of clinical manifestations related to a complex immune dysregulation that also affects liver. Although about 50% CVID patients present persistently deranged liver function, burden, and nature of liver involvement have not been systematically investigated in most cohort studies published in the last decades. Therefore, the prevalence of liver disease in CVID widely varies depending on the study design and the sampling criteria. This review seeks to summarize the evidence about the most relevant causes of liver involvement in CVID, including nodular regenerative hyperplasia (NRH), infections and malignancies. We also describe the clinical features of liver disease in some monogenic forms of PID included in the clinical spectrum of CVID as ICOS, NFKB1, NFKB2, CTLA-4, PI3Kδ pathway, ADA2, and IL21-R genetic defects. Finally, we discuss the clinical applications of the various diagnostic tools and the possible therapeutic approaches for the management of liver involvement in the context of CVID.
Collapse
Affiliation(s)
- Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Ludovica Crescenzi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research, WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Monaldi Hospital, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research, WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| |
Collapse
|
43
|
Ho HE, Cunningham-Rundles C. Non-infectious Complications of Common Variable Immunodeficiency: Updated Clinical Spectrum, Sequelae, and Insights to Pathogenesis. Front Immunol 2020; 11:149. [PMID: 32117289 PMCID: PMC7025475 DOI: 10.3389/fimmu.2020.00149] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Non-infectious complications in common variable immunodeficiency (CVID) have emerged as a major clinical challenge. Detailed clinical spectrum, organ-specific pathologies and associated sequelae from 623 CVID patients followed in New York since 1974 were analyzed, and recent insights to pathogenesis were reviewed. Non-infectious manifestations were present in 68.1% of patients, and they do not tend to be present in isolation. They include autoimmunity (33.2%), chronic lung disease (30.3%), lymphoid hyperplasia/splenomegaly (20.9%), liver disease (12.7%), granulomas (9.3%), gastrointestinal disease (7.3%), lymphoma (6.7%), and other malignancies (6.4%). In the lungs, interstitial disease and bronchiectasis were the most common findings, with lymphoma at this site being a rare (n = 6), but serious, manifestation. Bronchiectasis was not a prerequisite for the development of interstitial disease. In the liver, granulomas and nodular regenerative hyperplasia were the most common. Gastrointestinal disease may affect any segment of the intestinal tract, with lymphoid infiltrations and villous blunting being the leading histologic findings. With progression of organ-specific diseases, a wide spectrum of associated sequelae was observed. Lymphoma was more common in females (P = 0.036)—all B cell types except in one subject. Solid organ transplantations (liver, n = 5; lung, n = 4; combined lung and heart, n = 2) and hematopoietic stem cell transplantations (for B cell lymphoma, n = 1) have rarely been performed in this cohort, with mixed outcomes. Recent identification of monogenic defects, in ~10–30% of various CVID cohorts, has highlighted the molecular pathways that can affect both antibody production and broader immune regulation. In addition, cellular defects in both innate and adaptive immune systems are increasingly recognized in this syndrome.
Collapse
Affiliation(s)
- Hsi-En Ho
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Charlotte Cunningham-Rundles
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
44
|
Moazzami B, Mohayeji Nasrabadi MA, Abolhassani H, Olbrich P, Azizi G, Shirzadi R, Modaresi M, Sohani M, Delavari S, Shahkarami S, Yazdani R, Aghamohammadi A. Comprehensive assessment of respiratory complications in patients with common variable immunodeficiency. Ann Allergy Asthma Immunol 2020; 124:505-511.e3. [PMID: 32007567 DOI: 10.1016/j.anai.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is a heterogeneous group of disorders, characterized by recurrent upper and lower respiratory tract infections and some noninfectious clinical complications. OBJECTIVE To provide a detailed evaluation of respiratory presentations and complications in a cohort of Iranian patients with CVID. METHODS A retrospective cohort study was conducted on 245 CVID patients who were recorded in the Iranian primary immunodeficiency disorders registry network. Respiratory manifestations were evaluated by reviewing clinical hospital records, immunologic findings, pulmonary function tests (PFT), and high-resolution computed tomography (HRCT) scans. RESULTS Most of the patients (n = 208, 85.2%) had experienced at least 1 episode of acute respiratory manifestation, and pneumonia was observed in 31.6 % (n = 77) of cases as a first disease manifestation. During the follow-up, pneumonia, sinusitis, and otitis media were documented in 166 (68.6%), 125 (51.2%), and 103 (42.6%) cases, respectively. Abnormal PFT measurements were documented in 53.8% of patients. Among these patients, 21.5% showed restrictive changes, whereas 18.4% of patients showed an obstructive pattern. Bronchiectasis was the most frequent radiological finding, confirmed in 27.2% of patients. Patients with bronchiectasis were older at the time of immunodeficiency diagnosis (P < .001) and had longer diagnosis delay (P < .001) when compared with patients without bronchiectasis. CONCLUSION This study highlights the importance of monitoring the respiratory tract system even in asymptomatic patients. Pulmonary function tests and CT scans are the most commonly used techniques aiming to identify these patients early, aiming to reduce the rate of long-term respiratory complications.
Collapse
Affiliation(s)
- Bobak Moazzami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Ali Mohayeji Nasrabadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at the Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Peter Olbrich
- Sección de Infectología e Inmunopatología, Unidad de Pediatría, Hospital Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Rohola Shirzadi
- Department of Pediatric Pulmonary and Sleep Medicine, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Modaresi
- Department of Pediatric Pulmonary and Sleep Medicine, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Sohani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
45
|
Gereige JD, Maglione PJ. Current Understanding and Recent Developments in Common Variable Immunodeficiency Associated Autoimmunity. Front Immunol 2019; 10:2753. [PMID: 31921101 PMCID: PMC6914703 DOI: 10.3389/fimmu.2019.02753] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency and comprises a group of disorders with similar antibody deficiency but a myriad of different etiologies, most of which remain undefined. The variable aspect of CVID refers to the approximately half of patients who develop non-infectious complications in addition to heightened susceptibility to infection. The pathogenesis of these complications is poorly understood and somewhat counterintuitive because these patients that are defined by their immune futility simultaneously have elevated propensity for autoimmune disease. There are numerous aspects of immune dysregulation associated with autoimmunity in CVID that have only begun to be studied. These findings include elevations of T helper type 1 and follicular helper T cells and B cells expressing low levels of CD21 as well as reciprocal decreases in regulatory T cells and isotype-switched memory B cells. Recently, advances in genomics have furthered our understanding of the fundamental biology underlying autoimmunity in CVID and led to precision therapeutic approaches. However, these genetic etiologies are also associated with clinical heterogeneity and incomplete penetrance, highlighting the fact that continued research efforts remain necessary to optimize treatment. Additional factors, such as commensal microbial dysbiosis, remain to be better elucidated. Thus, while recent advances in our understanding of CVID-associated autoimmunity have been exciting and substantial, these current scientific advances must now serve as building blocks for the next stages of discovery.
Collapse
Affiliation(s)
- Jessica D Gereige
- Department of Pulmonary, Allergy, Sleep & Critical Care Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, United States
| | - Paul J Maglione
- Department of Pulmonary, Allergy, Sleep & Critical Care Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Primary immunodeficiency disorders (PIDs) are no longer defined by infections alone. First clinical sign or sequelae of PID may include autoimmunity, such as cytopenias, arthritis or enteropathy. This review addresses the latest in multidisciplinary approaches for expanding clinical phenotypes of PIDs with autoimmunity, including new presentations of known entities and novel gene defects. We also discuss diagnostic tools for identifying the distinct changes in immune cells subsets and autoantibodies, mechanistic understanding of the process, and targeted treatment and indications for hematopoietic stem-cell transplantation (HSCT). RECENT FINDINGS In the past years, increased awareness and use of genetic screening, confirmatory functional studies and immunological biomarkers opened the door for early recognition of PIDs among patients with autoimmunity. Large cohort studies detail the clinical spectrum and treatment outcome of PIDs with autoimmunity with specific immune genes (e.g., CTLA4, LRBA, PI3Kδ, NFKB1, RAG). The benefit of early recognition is initiation of targeted therapies with precise re-balancing of the dysregulated immune pathways (e.g., biologicals) or definitive therapy (e.g., HSCT). SUMMARY Clinical presentation of patients with PID and autoimmunity is highly variable and requires in-depth diagnostics and precision medicine approaches.
Collapse
|
47
|
Attardi E, Di Cesare S, Amodio D, Giancotta C, Cotugno N, Cifaldi C, Chiriaco M, Palma P, Finocchi A, Di Matteo G, Rossi P, Cancrini C. Phenotypical T Cell Differentiation Analysis: A Diagnostic and Predictive Tool in the Study of Primary Immunodeficiencies. Front Immunol 2019; 10:2735. [PMID: 31849946 PMCID: PMC6896983 DOI: 10.3389/fimmu.2019.02735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/07/2019] [Indexed: 01/14/2023] Open
Abstract
Multiparametric flow cytometry (MFC) represents a rapid, highly reproducible, and sensitive diagnostic technology for primary immunodeficiencies (PIDs), which are characterized by a wide range of T cell perturbations and a broad clinical and genetic heterogeneity. MFC data from CD4+ and CD8+ T cell subsets were examined in 100 patients referred for Primary Immunodeficiencies to our center. Naïve, central memory, effector memory, and terminal effector memory cell differentiation stages were defined by the combined expression CD45RA/CD27 for CD4 and CD45RA/CCR7 for CD8. Principal component analysis (PCA), a non-hypothesis driven statistical analysis, was applied to analyze MFC data in order to distinguish the diverse PIDs. Among severe lymphopenic patients, those affected by severe combined and combined immunodeficiency (SCID and CID) segregated in a specific area, reflecting a homogenous, and a more severe T cell impairment, compared to other lymphopenic PID, such as thymectomized and partial DiGeorge syndrome patients. PID patients with predominantly antibody defects were distributed in a heterogeneous pattern, but unexpectedly PCA was able to cluster some patients' resembling CID, hence warning for additional and more extensive diagnostic tests and a diverse clinical management. In conclusion, PCA applied to T cell MFC data might help the physician to estimate the severity of specific PID and to diversify the clinical and diagnostic approach of the patients.
Collapse
Affiliation(s)
- Enrico Attardi
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Silvia Di Cesare
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Donato Amodio
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmela Giancotta
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicola Cotugno
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Research Unit of Congenital and Perinatal Infection, Academic Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| | - Cristina Cifaldi
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Chiriaco
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Paolo Palma
- Research Unit of Congenital and Perinatal Infection, Academic Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| | - Andrea Finocchi
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gigliola Di Matteo
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Rossi
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Caterina Cancrini
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
48
|
Joud Hajjar, Nguyen AL, Constantine G, Kutac C, Syed MN, Orange JS, Sullivan KE. Prophylactic Antibiotics Versus Immunoglobulin Replacement in Specific Antibody Deficiency. J Clin Immunol 2019; 40:158-164. [PMID: 31758281 DOI: 10.1007/s10875-019-00716-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/01/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE Prophylactic antibiotics (PA) and immunoglobulin replacement (IGRT) are commonly used in specific antibody deficiency (SAD); however, optimal treatment is not well-established. Our purpose is to compare treatment outcomes with IGRT and/or PA among SAD patients. METHODS A retrospective chart review of SAD patients treated at two tertiary centers between January 2012 and May 2017 was performed. Clinical and laboratory data, and rates of infections prior to and after treatment with IGRT or PA were analyzed. Descriptive analyses, between-group comparisons of rates of infection after 1 year of treatment, and a stepwise logistic regression model were employed to explore factors contributing to treatment outcomes. RESULTS We identified 65 SAD patients with mean age were 18 years (2-71 years). The baseline mean number of infections in the PA group and IGRT group was 4.71 (SD 3.15) and 7.73 (SD 6.65), respectively. Twenty-nine (44.6%) received IGRT, 7 (10.7%) received PA, 7 (10.7%) received both IGRT and PA, 15 (23.1%) failed PA and switched to IGRT, and 7 did not receive any specific treatment. After 1 year of treatment, the difference in the mean number of infections in PA vs. IGRT was not statistically significant [2.86 (2.73) vs. 4.44 (4.74), p = 0.27]. Reporting autoimmunity increased the odds for persistent infections (OR = 4.29; p = 0.047), while higher IgG levels decreased the odds for persistent infections (OR = 0.68, p = 0.018). CONCLUSIONS PA and IGRT are equally effective as first line in preventing infections in SAD patients. However, patients who fail PA would benefit from IGRT.
Collapse
Affiliation(s)
- Joud Hajjar
- Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Baylor College of Medicine, Section of Immunology, 1102 Bates St. FC 330, Houston, TX, 77030, USA. .,The William T Shearer Center for Human Immunobiology at Texas Children's Hospital, Houston, TX, USA.
| | | | | | - Carleigh Kutac
- Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Baylor College of Medicine, Section of Immunology, 1102 Bates St. FC 330, Houston, TX, 77030, USA.,The William T Shearer Center for Human Immunobiology at Texas Children's Hospital, Houston, TX, USA
| | - Maha N Syed
- Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Baylor College of Medicine, Section of Immunology, 1102 Bates St. FC 330, Houston, TX, 77030, USA.,The William T Shearer Center for Human Immunobiology at Texas Children's Hospital, Houston, TX, USA
| | - Jordan S Orange
- Department of Pediatrics, Vagelos College of Physicians and Surgeons Columbia University, New York, NY, USA
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
49
|
Barmettler S, Ong MS, Farmer JR, Yang N, Cobbold M, Walter JE, Long AA, Camargo CA. Gastrointestinal manifestations in common variable immunodeficiency (CVID) are associated with an altered immunophenotype including B- and T-cell dysregulation. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 8:1436-1438.e1. [PMID: 31704440 DOI: 10.1016/j.jaip.2019.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 11/19/2022]
Affiliation(s)
| | - Mei-Sing Ong
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Mass
| | | | - Nancy Yang
- Massachusetts General Hospital, Boston, Mass
| | | | - Jolan E Walter
- Massachusetts General Hospital, Boston, Mass; University of South Florida, Tampa, Fla; Johns Hopkins All Children's Hospital, St Petersburg, Fla
| | | | | |
Collapse
|
50
|
Abstract
Laboratory assays of immune cell function are essential for understanding the type and function of immune defects. These assessments should be performed in conjunction with a detailed history and physical examination, which should guide the evaluation of patients with a suspected immune deficiency. Laboratory assays of immune cell function are critical for assessing and demonstrating the functional impact of genetic mutations. Advances in diagnostic techniques continue to expand the ability of clinicians and researchers to understand the complex immune pathophysiology that underlies these disorders.
Collapse
|