1
|
de la Fuente J, Ghosh S. Evolution of tick vaccinology. Parasitology 2024:1-8. [PMID: 38586999 DOI: 10.1017/s003118202400043x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Ticks represent a major concern for society worldwide. Ticks are also difficult to control, and vaccines represent the most efficacious, safe, economically feasible and environmentally sustainable intervention. The evolution of tick vaccinology has been driven by multiple challenges such as (1) Ticks are difficult to control, (2) Vaccines control tick infestations by reducing ectoparasite fitness and reproduction, (3) Vaccine efficacy against multiple tick species, (4) Impact of tick strain genetic diversity on vaccine efficacy, (5) Antigen combination to improve vaccine efficacy, (6) Vaccine formulations and delivery platforms and (7) Combination of vaccines with transgenesis and paratransgenesis. Tick vaccine antigens evolved from organ protein extracts to recombinant proteins to chimera designed by vaccinomics and quantum vaccinomics. Future directions will advance in these areas together with other novel technologies such as multiomics, AI and Big Data, mRNA vaccines, microbiota-driven probiotics and vaccines, and combination of vaccines with other interventions in collaboration with regions with high incidence of tick infestations and tick-borne diseases for a personalized medicine approach.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Srikant Ghosh
- Entomology Laboratory, Parasitology Division, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, UP, India
- Eastern Regional Station- Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata-700037, West Bengal, India
| |
Collapse
|
2
|
Rivas AL, Smith SD, Basiladze V, Chaligava T, Malania L, Burjanadze I, Chichinadze T, Suknidze N, Bolashvili N, Hoogesteijn AL, Gilbertson K, Bertram JH, Fair JM, Webb CT, Imnadze P, Kosoy M. Geo-temporal patterns to design cost-effective interventions for zoonotic diseases -the case of brucellosis in the country of Georgia. Front Vet Sci 2023; 10:1270505. [PMID: 38179332 PMCID: PMC10765567 DOI: 10.3389/fvets.2023.1270505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Control of zoonosis can benefit from geo-referenced procedures. Focusing on brucellosis, here the ability of two methods to distinguish disease dissemination patterns and promote cost-effective interventions was compared. Method Geographical data on bovine, ovine and human brucellosis reported in the country of Georgia between 2014 and 2019 were investigated with (i) the Hot Spot (HS) analysis and (ii) a bio-geographical (BG) alternative. Results More than one fourth of all sites reported cases affecting two or more species. While ruminant cases displayed different patterns over time, most human cases described similar geo-temporal features, which were associated with the route used by migrant shepherds. Other human cases showed heterogeneous patterns. The BG approach identified small areas with a case density twice as high as the HS method. The BG method also identified, in 2018, a 2.6-2.99 higher case density in zoonotic (human and non-human) sites than in non-zoonotic sites (which only reported cases affecting a single species) -a finding that, if corroborated, could support cost-effective policy-making. Discussion Three dissemination hypotheses were supported by the data: (i) human cases induced by sheep-related contacts; (ii) human cases probably mediated by contaminated milk or meat; and (iii) cattle and sheep that infected one another. This proof-of-concept provided a preliminary validation for a method that may support cost-effective interventions oriented to control zoonoses. To expand these findings, additional studies on zoonosis-related decision-making are recommended.
Collapse
Affiliation(s)
- Ariel L. Rivas
- Center for Global Health, Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | | | - V. Basiladze
- National Food Agency, Ministry of Environmental Protection and Agriculture of Georgia, Tbilisi, Georgia
| | - Tengiz Chaligava
- National Food Agency, Ministry of Environmental Protection and Agriculture of Georgia, Tbilisi, Georgia
| | - Lile Malania
- National Center for Disease Control and Public Health, Tbilisi, Georgia
| | - Irma Burjanadze
- National Center for Disease Control and Public Health, Tbilisi, Georgia
| | - Tamar Chichinadze
- Vakhushti Bagrationi Institute of Geography, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Nikoloz Suknidze
- Vakhushti Bagrationi Institute of Geography, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Nana Bolashvili
- Vakhushti Bagrationi Institute of Geography, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | | | - Kendra Gilbertson
- Graduate Degree Program in Ecology, Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Jonathan H. Bertram
- Graduate Degree Program in Ecology, Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Jeanne Marie Fair
- Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Colleen T. Webb
- Graduate Degree Program in Ecology, Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Paata Imnadze
- National Center for Disease Control and Public Health, Tbilisi, Georgia
| | | |
Collapse
|
3
|
de la Fuente J, Mazuecos L, Contreras M. Innovative approaches for the control of ticks and tick-borne diseases. Ticks Tick Borne Dis 2023; 14:102227. [PMID: 37419001 DOI: 10.1016/j.ttbdis.2023.102227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
Ticks and tick-borne diseases constitute a major threat for human and animal health worldwide. Vaccines for the control of tick infestations and transmitted pathogens still represents a challenge for science and health. Vaccines have evolved with antigens derived from inactivated pathogens to recombinant proteins and vaccinomics approaches. Recently, vaccines for the control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have shown the efficacy of new antigen delivery platforms. However, until now only two vaccines based on recombinant Bm86/Bm95 antigens have been registered and commercialized for the control of cattle-tick infestations. Nevertheless, recently new technologies and approaches are under consideration for vaccine development for the control of ticks and tick-borne pathogens. Genetic manipulation of tick commensal bacteria converted enemies into friends. Frankenbacteriosis was used to control tick pathogen infection. Based on these results, the way forward is to develop new paratransgenic interventions and vaccine delivery platforms for the control of tick-borne diseases.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005, Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Lorena Mazuecos
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| |
Collapse
|
4
|
de la Fuente J, Contreras M. Quantum vaccinomics platforms to advance in vaccinology. Front Immunol 2023; 14:1172734. [PMID: 37398646 PMCID: PMC10307952 DOI: 10.3389/fimmu.2023.1172734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
The opinion flows from Introduction to the immunological quantum that requires a historical perspective, to Quantum vaccine algorithms supported by a bibliometric analysis, to Quantum vaccinomics describing from our perspective the different vaccinomics and quantum vaccinomics algorithms. Finally, in the Discussion and conclusions we propose novel platforms and algorithms developed to further advance on quantum vaccinomics. In the paper we refer to protective epitopes or immunological quantum for the design of candidate vaccine antigens, which may elicit a protective response through both cellular and antibody mediated mechanisms of the host immune system. Vaccines are key interventions for the prevention and control of infectious diseases affecting humans and animals worldwide. Biophysics led to quantum biology and quantum immunology reflecting quantum dynamics within living systems and their evolution. In analogy to quantum of light, immune protective epitopes were proposed as the immunological quantum. Multiple quantum vaccine algorithms were developed based on omics and other technologies. Quantum vaccinomics is the methodological approach with different platforms used for the identification and combination of immunological quantum for vaccine development. Current quantum vaccinomics platforms include in vitro, in music and in silico algorithms and top trends in biotechnology for the identification, characterization and combination of candidate protective epitopes. These platforms have been applied to different infectious diseases and in the future should target prevalent and emerging infectious diseases with novel algorithms.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| |
Collapse
|
5
|
Rivas AL, van Regenmortel MHV. COVID-19 related interdisciplinary methods: Preventing errors and detecting research opportunities. Methods 2021; 195:3-14. [PMID: 34029715 PMCID: PMC8545872 DOI: 10.1016/j.ymeth.2021.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
More than 130,000 peer-reviewed studies have been published within one year after COVID-19 emerged in many countries. This large and rapidly growing field may overwhelm the synthesizing abilities of both researchers and policy-makers. To provide a sinopsis, prevent errors, and detect cognitive gaps that may require interdisciplinary research methods, the literature on COVID-19 is summarized, twice. The overall purpose of this study is to generate a dialogue meant to explain the genesis of and/or find remedies for omissions and contradictions. The first review starts in Biology and ends in Policy. Policy is chosen as a destination because it is the setting where cognitive integration must occur. The second review follows the opposite path: it begins with stated policies on COVID-19 and then their assumptions and disciplinary relationships are identified. The purpose of this interdisciplinary method on methods is to yield a relational and explanatory view of the field -one strategy likely to be incomplete but usable when large bodies of literature need to be rapidly summarized. These reviews identify nine inter-related problems, research needs, or omissions, namely: (1) nation-wide, geo-referenced, epidemiological data collection systems (open to and monitored by the public); (2) metrics meant to detect non-symptomatic cases -e.g., test positivity-; (3) cost-benefit oriented methods, which should demonstrate they detect silent viral spreaders even with limited testing; (4) new personalized tests that inform on biological functions and disease correlates, such as cell-mediated immunity, co-morbidities, and immuno-suppression; (5) factors that influence vaccine effectiveness; (6) economic predictions that consider the long-term consequences likely to follow epidemics that growth exponentially; (7) the errors induced by self-limiting and/or implausible paradigms, such as binary and reductionist approaches; (8) new governance models that emphasize problem-solving skills, social participation, and the use of scientific knowledge; and (9) new educational programs that utilize visual aids and audience-specific communication strategies. The analysis indicates that, to optimally address these problems, disciplinary and social integration is needed. By asking what is/are the potential cause(s) and consequence(s) of each issue, this methodology generates visualizations that reveal possible relationships as well as omissions and contradictions. While inherently limited in scope and likely to become obsolete, these shortcomings are avoided when this 'method on methods' is frequently practiced. Open-ended, inter-/trans-disciplinary perspectives and broad social participation may help researchers and citizens to construct, de-construct, and re-construct COVID-19 related research.
Collapse
Affiliation(s)
- Ariel L Rivas
- Center for Global Health, School of Medicine, University of New Mexico, Albuquerque, NM, United States.
| | - Marc H V van Regenmortel
- University of Vienna, Austria; and Higher School of Biotechnology, University of Strasbourg, and French National Research Center, France
| |
Collapse
|
6
|
Mosa AI. Implications of viral transmitted/founder (T/F) dynamics on vaccine development. Hum Vaccin Immunother 2020; 17:2293-2297. [PMID: 33377822 DOI: 10.1080/21645515.2020.1861878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Viral infection typically originates from a limited number of virions known as transmitted/founder (T/F) viruses. Studies of cross-species transmission, and intra-species transmission of antigenically variable viruses, indicates T/F variants may express distinct, transmissibility enhancing phenotypes. However, with evidence that transmissibility is associated with not only intrinsic virological features, such as virion composition, but also extrinsic factors, such as viral population structure, the challenge of resolving T/F signatures that can be targeted by rational vaccine or antiviral design is substantial. Nonetheless, failure to develop vaccines for antigenically variable viruses, such as HIV/HCV, and the ongoing risk of cross-species transmission with pandemic potential, recommends development of T/F targeting vaccines. In this commentary, the T/F phenomena is introduced, explored in both the classical (HIV) and non-canonical (coronaviruses) instances, and discussed in relation to rational and preemptive vaccine design.
Collapse
Affiliation(s)
- Alexander I Mosa
- Institute of Medical Sciences, University of Toronto, Toronto, Canada.,Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Canada
| |
Collapse
|
7
|
van Regenmortel MHV. What does it mean to develop an HIV vaccine by rational design? Arch Virol 2020; 166:27-33. [PMID: 33251565 DOI: 10.1007/s00705-020-04884-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022]
Abstract
This review argues that the three popular concepts of design, rationality and reductionism, which guided vaccine research for many years, actually contributed to the inability of vaccinologists to develop an effective HIV vaccine. The strong goal-directed intentionality inherent in the concept of design together with excessive confidence in the power of rational thinking convinced investigators that the accumulated structural knowledge on HIV epitopes, derived from crystallographic studies of complexes of neutralizing antibodies bound to HIV Env epitopes, would allow them to rationally design complementary immunogens capable of inducing anti-HIV protective antibodies. This strategy failed because it was not appreciated that the structures observed in epitope-paratope crystallographic complexes result from mutually induced fit between the two partners and do not represent structures present in the free disordered molecules before they had interacted. In addition, reductionist thinking led investigators to accept that biology could be reduced to chemistry, and this made them neglect the fundamental difference between chemical antigenicity and biological immunogenicity. As a result, they did not investigate which inherent constituents of immune systems controlled the induction of protective antibodies and focused instead only on the steric complementarity that exists between bound epitopes and paratopes.
Collapse
|
8
|
Jaiswal S, Kumar M, Mandeep, Sunita, Singh Y, Shukla P. Systems Biology Approaches for Therapeutics Development Against COVID-19. Front Cell Infect Microbiol 2020; 10:560240. [PMID: 33194800 PMCID: PMC7655984 DOI: 10.3389/fcimb.2020.560240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding the systems biology approaches for promoting the development of new therapeutic drugs is attaining importance nowadays. The threat of COVID-19 outbreak needs to be vanished for global welfare, and every section of research is focusing on it. There is an opportunity for finding new, quick, and accurate tools for developing treatment options, including the vaccine against COVID-19. The review at this moment covers various aspects of pathogenesis and host factors for exploring the virus target and developing suitable therapeutic solutions through systems biology tools. Furthermore, this review also covers the extensive details of multiomics tools i.e., transcriptomics, proteomics, genomics, lipidomics, immunomics, and in silico computational modeling aiming towards the study of host-virus interactions in search of therapeutic targets against the COVID-19.
Collapse
Affiliation(s)
- Shweta Jaiswal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Mohit Kumar
- Soil Microbial Ecology and Environmental Toxicology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Department of Zoology, Hindu College, University of Delhi, Delhi, India
| | - Mandeep
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Sunita
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Yogendra Singh
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
9
|
Laher F, Bekker LG, Garrett N, Lazarus EM, Gray GE. Review of preventative HIV vaccine clinical trials in South Africa. Arch Virol 2020; 165:2439-2452. [PMID: 32797338 PMCID: PMC7426202 DOI: 10.1007/s00705-020-04777-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
New HIV infections continue relentlessly in southern Africa, demonstrating
the need for a vaccine to prevent HIV subtype C. In South Africa, the country with the
highest number of new infections annually, HIV vaccine research has been ongoing since
2003 with collaborative public-private-philanthropic partnerships. So far, 21 clinical
trials have been conducted in South Africa, investigating seven viral vectors, three DNA
plasmids, four envelope proteins, five adjuvants and three monoclonal antibodies. Active
vaccine candidates have spanned subtypes A, B, C, E and multi-subtype mosaic sequences.
All were well tolerated. Four concepts were investigated for efficacy: rAd5-gag/pol/nef
showed increased HIV acquisition in males, subtype C ALVAC/gp120/MF59 showed no
preventative efficacy, and the trials for the VRC01 monoclonal antibody and
Ad26.Mos4.HIV/subtype C gp140/ aluminum phosphate are ongoing. Future trials are planned
with DNA/viral vector plus protein combinations in concert with pre-exposure
prophylaxis, and sequential immunization studies with transmitted/founder HIV envelope
to induce broadly neutralizing antibodies. Finally, passive immunization trials are
underway to build on the experience with VRC01, including single and combination
antibody trials with an antibody derived from a subtype-C-infected South African donor.
Future consideration should be given to the evaluation of novel strategies, for example,
inactivated-whole-virus vaccines.
Collapse
Affiliation(s)
- Fatima Laher
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Linda-Gail Bekker
- The Desmond Tutu HIV Foundation, University of Cape Town, Cape Town, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa.,Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Erica M Lazarus
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Glenda E Gray
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
10
|
HIV-1 Envelope Glycoprotein Amino Acids Signatures Associated with Clade B Transmitted/Founder and Recent Viruses. Viruses 2019; 11:v11111012. [PMID: 31683782 PMCID: PMC6893788 DOI: 10.3390/v11111012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/10/2019] [Accepted: 10/29/2019] [Indexed: 12/01/2022] Open
Abstract
Background: HIV-1 transmitted/founder viruses (TF) are selected during the acute phase of infection from a multitude of virions present during transmission. They possess the capacity to establish infection and viral dissemination in a new host. Deciphering the discrete genetic determinant of infectivity in their envelope may provide clues for vaccine design. Methods: One hundred twenty-six clade B HIV-1 consensus envelope sequences from untreated acute and early infected individuals were compared to 105 sequences obtained from chronically infected individuals using next generation sequencing and molecular analyses. Results: We identified an envelope amino acid signature associated with TF viruses. They are more likely to have an isoleucine (I) in position 841 instead of an arginine (R). This mutation of R to I (R841I) in the gp41 cytoplasmic tail (gp41CT), specifically in lentivirus lytic peptides segment 1 (LLP-1), is significantly enriched compared to chronic viruses (OR = 0.2, 95% CI (0.09, 0.44), p = 0.00001). Conversely, a mutation of lysine (K) to isoleucine (I) located in position six (K6I) of the envelope signal peptide was selected by chronic viruses and compared to TF (OR = 3.26, 95% CI (1.76–6.02), p = 0.0001). Conclusions: The highly conserved gp41 CT_ LLP-1 domain plays a major role in virus replication in mediating intracellular traffic and Env incorporation into virions in interacting with encoded matrix protein. The presence of an isoleucine in gp41 in the TF viruses’ envelope may sustain its role in the successful establishment of infection during the acute stage.
Collapse
|
11
|
Hittner JB, Hoogesteijn AL, Fair JM, van Regenmortel MH, Rivas AL. The Third Cognitive Revolution: The consequences and possibilities for biomedical research. EMBO Rep 2019; 20:embr.201847647. [PMID: 30926631 PMCID: PMC6446201 DOI: 10.15252/embr.201847647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Third Cognitive Revolution poses particular challenges for biomedical research to adopt new knowledge. Interdisciplinary education at all levels would help to address these.![]()
Collapse
Affiliation(s)
- James B Hittner
- Department of Psychology, College of Charleston, Charleston, SC, USA
| | - Almira L Hoogesteijn
- Human Ecology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mérida, Yucatán, México
| | - Jeanne M Fair
- Biosecurity & Public Health, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Marc Hv van Regenmortel
- School of Biotechnology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France
| | - Ariel L Rivas
- Center for Global Health-Division of Infectious Diseases, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
12
|
Rivas AL, Hoogesteijn AL, Antoniades A, Tomazou M, Buranda T, Perkins DJ, Fair JM, Durvasula R, Fasina FO, Tegos GP, van Regenmortel MHV. Assessing the Dynamics and Complexity of Disease Pathogenicity Using 4-Dimensional Immunological Data. Front Immunol 2019; 10:1258. [PMID: 31249569 PMCID: PMC6582751 DOI: 10.3389/fimmu.2019.01258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/17/2019] [Indexed: 02/05/2023] Open
Abstract
Investigating disease pathogenesis and personalized prognostics are major biomedical needs. Because patients sharing the same diagnosis can experience different outcomes, such as survival or death, physicians need new personalized tools, including those that rapidly differentiate several inflammatory phases. To address these topics, a pattern recognition-based method (PRM) that follows an inverse problem approach was designed to assess, in <10 min, eight concepts: synergy, pleiotropy, complexity, dynamics, ambiguity, circularity, personalized outcomes, and explanatory prognostics (pathogenesis). By creating thousands of secondary combinations derived from blood leukocyte data, the PRM measures synergic, pleiotropic, complex and dynamic data interactions, which provide personalized prognostics while some undesirable features-such as false results and the ambiguity associated with data circularity-are prevented. Here, this method is compared to Principal Component Analysis (PCA) and evaluated with data collected from hantavirus-infected humans and birds that appeared to be healthy. When human data were examined, the PRM predicted 96.9 % of all surviving patients while PCA did not distinguish outcomes. Demonstrating applications in personalized prognosis, eight PRM data structures sufficed to identify all but one of the survivors. Dynamic data patterns also distinguished survivors from non-survivors, as well as one subset of non-survivors, which exhibited chronic inflammation. When the PRM explored avian data, it differentiated immune profiles consistent with no, early, or late inflammation. Yet, PCA did not recognize patterns in avian data. Findings support the notion that immune responses, while variable, are rather deterministic: a low number of complex and dynamic data combinations may be enough to, rapidly, unmask conditions that are neither directly observable nor reliably forecasted.
Collapse
Affiliation(s)
- Ariel L. Rivas
- School of Medicine, Center for Global Health-Division of Infectious Diseases, University of New Mexico, Albuquerque, NM, United States
- *Correspondence: Ariel L. Rivas
| | - Almira L. Hoogesteijn
- Human Ecology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mérida, Mexico
| | | | | | - Tione Buranda
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Douglas J. Perkins
- School of Medicine, Center for Global Health-Division of Infectious Diseases, University of New Mexico, Albuquerque, NM, United States
| | - Jeanne M. Fair
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Ravi Durvasula
- Loyola University Medical Center, Chicago, IL, United States
| | - Folorunso O. Fasina
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- Food and Agriculture Organization of the United Nations, Dar es Salaam, Tanzania
| | | | - Marc H. V. van Regenmortel
- Centre National de la Recherche Scientifique (CNRS), School of Biotechnology, University of Strasbourg, Strasbourg, France
| |
Collapse
|
13
|
Viral species, viral genomes and HIV vaccine design: is the rational design of biological complexity a utopia? Arch Virol 2018; 163:2047-2054. [PMID: 30051341 DOI: 10.1007/s00705-018-3955-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 01/24/2023]
Abstract
A common logical confusion is prevalent in the whole of biology, namely that biological species are viewed both as an abstract category in an hierarchical classification and as a concrete kind of organism. This is partly due to the fact that the vast majority of living organisms do not have common names that differ from the Latin name of the species to which the organism belongs. However, it is somewhat astonishing that the same confusion exists in virology since every virus has a common name, different from the species name to which the virus belongs, which could be used to refer to the infectious viral entity as a concrete material object. The original 1991 ICTV definition of virus species stated that a virus species is a polythetic class of viruses and thus that a species is a class, namely a conceptual construction of the mind and not a physical, real object located in space and time. In 2013, the ICTV redefined a virus species no longer as a class but as a material object consisting of a monophyletic group of viruses that were all physically part of the species. This new definition is reminiscent of an earlier school of thought known as bionominalism which considered species to be concrete individuals rather than classes. Both bionominalism and the new ICTV definition are based on the logical fallacy of reification which treats abstractions such as classes as if they were concrete physical entities. The implications of this new ontology of virus species for virus taxonomy and for the possibility of incorporating nucleotide metagenomic sequences in the current ICTV classification is discussed.
Collapse
|
14
|
Van Regenmortel MHV. Editorial overview: Preventive and therapeutic vaccines. Curr Opin Virol 2018; 29:vii-xi. [DOI: 10.1016/j.coviro.2018.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|