1
|
Gao G, Sun N, Zhang Y, Li J, Jiang Y, Chen N, Tang Y, Shi W. Single-cell sequencing in diffuse large B-cell lymphoma: C1qC is a potential tumor-promoting factor. Int Immunopharmacol 2024; 143:113319. [PMID: 39388888 DOI: 10.1016/j.intimp.2024.113319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Complement component 1q (C1q) is central to the classical complement pathway. High C1q expression has been linked to poor prognosis in patients with cancer. However, the precise mechanism via which C1q contributes to diffuse large B-cell lymphoma (DLBCL) is still unknown. We aimed to explore the potential mechanism by which C1qC promoting DLBCL. METHODS Using multiplex immunohistochemistry (mIHC) to identify immunocyte subgroups associated with prognosis in DLBCL tissues. Constructing a risk prediction model based on immunocytes using least absolute shrinkage and selection operator (LASSO) regression. Single-cell sequencing detects the expression level of C1qC in immunocytes in the DLBCL microenvironment. Using Wb and qPCR to detect markers of M2 macrophages after knocking down C1qC, and exploring the interactions between lymphoma cells and macrophages through co-culture. Analyzing clinical data from DLBCL patients to investigate the clinical significance of C1qC+ M2 macrophages. Lastly, using bioinformatics in conjunction with mIHC to elucidate the potential pro-tumor mechanism of C1qC. RESULTS First, we found T cell subtypes, neutrophils, and M2 macrophages are associated with prognosis. Subsequently, the risk model identified C1qC as a differential gene relevant to DLBCL prognosis. Furthermore, single-cell sequencing suggested high C1qC expression in M2 macrophages. The expression level of CD163 is significantly lower following siC1qC. Co-culture experiments have shown that M2 macrophages can promote the proliferation of tumor cells and reduce their drug sensitivity. Furthermore, as an independent predictive indicator, high expression of C1qC+ M2 macrophages is associated with poor prognosis in patients. Finally, a positive correlation between increased C1qC expression and immune checkpoints, as well as an increase in the infiltration of regulatory T cells (Tregs) and M2 macrophages. CONCLUSIONS C1qC offering new insights into pathogenesis and presenting a potential therapeutic target in DLBCL.
Collapse
Affiliation(s)
- Guangcan Gao
- Department of Oncology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, China; Nantong University Medical School, 19 Qixiu Road, Nantong 226001, Jiangsu, China; Department of Clinical Biobank & Institute of Oncology, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu, China
| | - Naitong Sun
- Department of Hematology, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China
| | - Yaping Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, China
| | - Jinqiao Li
- Department of Oncology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, China; Nantong University Medical School, 19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yongning Jiang
- Department of Oncology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, China; Nantong University Medical School, 19 Qixiu Road, Nantong 226001, Jiangsu, China; Department of Clinical Biobank & Institute of Oncology, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu, China
| | - Nan Chen
- Department of Oncology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, China; Nantong University Medical School, 19 Qixiu Road, Nantong 226001, Jiangsu, China; Department of Clinical Biobank & Institute of Oncology, Nantong University Affiliated Hospital, Nantong 226001, Jiangsu, China
| | - Yunlong Tang
- Department of Hematology, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China
| | - Wenyu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, China; Nantong University Medical School, 19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
2
|
Ferreira AM, Silva-Álvarez V, Kraev I, Uysal-Onganer P, Lange S. Extracellular vesicles and citrullination signatures are novel biomarkers in sturgeon (Acipenser gueldenstaedtii) during chronic stress due to seasonal temperature challenge. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109974. [PMID: 39426640 DOI: 10.1016/j.fsi.2024.109974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Acipenser gueldenstaedtii is one of the most cultured sturgeon species worldwide and of considerable economic value for caviar production. There are though considerable challenges around chronic stress responses due to increased summer temperatures, impacting sturgeons' immune responses and their susceptibility to opportunistic infections. The identification of molecular and cellular pathways involved in stress responses may contribute to identifying novel biomarkers reflective of fish health status, crucial for successful sturgeon aquaculture. Protein citrullination is a calcium-catalysed post-translational modification caused by peptidylarginine deiminases (PADs), altering target protein function and affecting protein interactions in physiological and pathobiological processes. PADs can also modulate extracellular vesicle (EVs) profiles, which play critical roles in cellular communication, via transport of their cargoes (proteins, including post-translationally modified proteins, genetic material and micro-RNAs). This study identified differences in EV signatures, and citrullinated proteins in sera from winter and summer farmed sturegeons. EVs were significantly elevated in sera of the summer chronically stressed group. The citrullinated proteins and associated gene ontology (GO) pathways in sera and serum-EVs of chronically heat stressed A. gueldenstaedtii, showed some changes, with specific citrullinated serum protein targets including alpa-2-macroglobulin, alpha globin, calcium-dependent secretion activator, ceruloplasmin, chemokine XC receptor, complement C3 isoforms, complement C9, plectin, selenoprotein and vitellogenin. In serum-EVs, citrullinated protein cargoes identified only in the chronically stressed summer group included alpha-1-antiproteinase, apolipoprotein B-100, microtubule actin crosslinking factor and histone H3. Biological gene ontology (GO) pathways related to citrullinated serum proteins in the chronically stressed group were associated with innate and adaptive immune responses, stress responses and metabolic processes. In serum-EVs of the heat-stressed group the citrullinome associated with various metabolic GO pathways. In addition to modified citrullinated protein content, Serum-EVs from the stressed summer group showed significantly increased levels of the inflammatory associated miR-155 and the hypoxia-associated miR-210, but significantly reduced levels of the growth-associated miR-206. Our findings highlight roles for protein citrullination and EV signatures in response to chronic heat stress in A. gueldenstaedtii, indicating a trade-off in immunity versus growth and may be of value for sturgeon aquaculture.
Collapse
Affiliation(s)
- Ana María Ferreira
- Laboratorio de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, UdelaR, Uruguay; Área de Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, UdelaR, Uruguay.
| | - Valeria Silva-Álvarez
- Laboratorio de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, UdelaR, Uruguay; Área de Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, UdelaR, Uruguay.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK.
| | - Pinar Uysal-Onganer
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Sigrun Lange
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
3
|
Frischauf N, Strasser J, Borg EG, Labrijn AF, Beurskens FJ, Preiner J. Complement activation by IgG subclasses is governed by their ability to oligomerize upon antigen binding. Proc Natl Acad Sci U S A 2024; 121:e2406192121. [PMID: 39436656 PMCID: PMC11536094 DOI: 10.1073/pnas.2406192121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024] Open
Abstract
Complement activation through antibody-antigen complexes is crucial in various pathophysiological processes and utilized in immunotherapies to eliminate infectious agents, regulatory immune cells, or cancer cells. The tertiary structures of the four IgG antibody subclasses are largely comparable, with the most prominent difference being the hinge regions connecting the Fab and Fc domains, providing them with unique structural flexibility. Complement recruitment and activation depend strongly on IgG subclass, which is commonly rationalized by differences in hinge flexibility and the respective affinities for C1, the first component of the classical complement pathway. However, a unifying mechanism of how these different IgG subclass properties combine to modulate C1 activation has not yet been proposed. We here demonstrate that complement activation is determined by their varying ability to form IgG oligomers on antigenic surfaces large enough to multivalently bind and activate C1. We directly visualize the resulting IgG oligomer structures and characterize their distribution by means of high-speed atomic force microscopy, quantify their complement recruitment efficiency from quartz crystal microbalance experiments, and characterize their ability to activate complement on tumor cell lines as well as in vesicle-based complement lysis assays. We present a mechanistic model of the multivalent interactions that govern C1 binding to IgG oligomers and use it to extract kinetic rate constants from real-time interaction data from which we further calculate equilibrium dissociation constants. Together, we provide a comprehensive view on the parameters that govern complement activation by the different IgG subclasses, which may inform the design of future antibody therapies.
Collapse
Affiliation(s)
- Nikolaus Frischauf
- Medical Engineering, Nano Structuring and Bio-Analytics, University of Applied Sciences Upper Austria, Linz4020, Austria
| | - Jürgen Strasser
- Medical Engineering, Nano Structuring and Bio-Analytics, University of Applied Sciences Upper Austria, Linz4020, Austria
| | | | | | | | - Johannes Preiner
- Medical Engineering, Nano Structuring and Bio-Analytics, University of Applied Sciences Upper Austria, Linz4020, Austria
| |
Collapse
|
4
|
Zhao W, Niu Y, Wen JX, Cao XS, Han YL, Wen XH, Wang MY, Hai L, Gao WH, Yan L, Zheng WQ, Hu ZD. Diagnostic accuracy of pleural fluid complement C1q for tuberculous pleural effusion in elderly patients. Cytokine 2024; 184:156778. [PMID: 39395311 DOI: 10.1016/j.cyto.2024.156778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Previous studies indicated that pleural fluid complement C1q was helpful for diagnosing tuberculous pleural effusion (TPE), but the participants in these studies were young. The diagnostic accuracy of C1q for TPE in elderly patients remains unknown. This study aimed to investigate the diagnostic accuracy of C1q for TPE in elderly patients. METHODS We prospectively recruited patients with undiagnosed pleural effusion who visited the Affiliated Hospital of Inner Mongolia Medical University between September 2018 and July 2021. Their C1q in pleural fluid was detected, and the diagnostic accuracy of C1q was assessed by the receiver operating characteristic (ROC) curve analysis. RESULTS The median ages of patients with TPE and non-TPE were 75 and 71 years, respectively. TPE patients had significantly higher C1q than non-TPE. The area under the ROC curve (AUC) of C1q was 0.67 (95 %CI: 0.51-0.82). At the threshold of 100 mg/L, C1q had a sensitivity of 0.44 (95 %CI: 0.19-0.69) and specificity of 0.79 (95 %CI: 0.71-0.86). CONCLUSION C1q in pleural fluid has low diagnostic accuracy for TPE in elderly patients.
Collapse
Affiliation(s)
- Wen Zhao
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Yan Niu
- Department of Medical Experimental Center, Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Jian-Xun Wen
- Department of Medical Experimental Center, Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Xi-Shan Cao
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Yu-Ling Han
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Xu-Hui Wen
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Mei-Ying Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Ling Hai
- Department of Pathology, Basic Medical College, Inner Mongolia Medical University, Hohhot, China; Department of Pathology, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen-Hui Gao
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Li Yan
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China; Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
5
|
Li Z, Li X, Guo H, Zhang Z, Ge Y, Dong F, Zhang F, Zhang F. Identification and analysis of key immunity-related genes in experimental ischemic stroke. Heliyon 2024; 10:e36837. [PMID: 39263122 PMCID: PMC11388793 DOI: 10.1016/j.heliyon.2024.e36837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
The regulation of the immune system and the occurrence of inflammation are vital factors in the pathophysiology of ischemic stroke. This study aims to screen target molecules which play key roles in alleviating the brain injury following ischemic stroke via regulating neuroinflammation. Several bioinformatics methods were used to identify immune-related genes in ischemic stroke. A total of 218 genes were identified as differentially expressed genes within the GSE97537 dataset. By performing GO, KEGG, and GSEA analyses, DEGs were mainly enriched in pathways related to immunity and inflammation. By utilizing the MCODE plugin in conjunction with Cytoscape software, a total of six crucial genes were identified, including C1qb, C1qc, Fcer1g, Fcgr3a, Tyrobp, and CD14. Based on the above crucial genes, 13 miRNAs were predicted. Furthermore, 71 potential drugs with therapeutic properties that target the crucial genes were screened, including lovastatin, ASPIRIN, and PREDNISOLONE. Moreover, the results of RT-qPCR showed that compared with Sham group, the expressions of C1qb, C1qc, Fcer1g, Fcgr3a, Tyrobp, and CD14 in MCAO group were significantly increased, which was consistent with the expression trend of validation dataset and training dataset. In conclusion, immune-related genes may play a key role in ischemic stroke. In addition, six crucial genes were identified as potential biomarkers and 71 promising drugs were screened to treat ischemic stroke patients.
Collapse
Affiliation(s)
- Zekun Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, PR China
| | - Xiaohan Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, PR China
| | - Hongmin Guo
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, PR China
| | - Zibo Zhang
- Metabolic Diseases and Cancer Research Center, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yihao Ge
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, PR China
| | - Fan Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education and Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, PR China
| |
Collapse
|
6
|
Scott-Hewitt N, Mahoney M, Huang Y, Korte N, Yvanka de Soysa T, Wilton DK, Knorr E, Mastro K, Chang A, Zhang A, Melville D, Schenone M, Hartigan C, Stevens B. Microglial-derived C1q integrates into neuronal ribonucleoprotein complexes and impacts protein homeostasis in the aging brain. Cell 2024; 187:4193-4212.e24. [PMID: 38942014 DOI: 10.1016/j.cell.2024.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/08/2024] [Accepted: 05/31/2024] [Indexed: 06/30/2024]
Abstract
Neuroimmune interactions mediate intercellular communication and underlie critical brain functions. Microglia, CNS-resident macrophages, modulate the brain through direct physical interactions and the secretion of molecules. One such secreted factor, the complement protein C1q, contributes to complement-mediated synapse elimination in both developmental and disease models, yet brain C1q protein levels increase significantly throughout aging. Here, we report that C1q interacts with neuronal ribonucleoprotein (RNP) complexes in an age-dependent manner. Purified C1q protein undergoes RNA-dependent liquid-liquid phase separation (LLPS) in vitro, and the interaction of C1q with neuronal RNP complexes in vivo is dependent on RNA and endocytosis. Mice lacking C1q have age-specific alterations in neuronal protein synthesis in vivo and impaired fear memory extinction. Together, our findings reveal a biophysical property of C1q that underlies RNA- and age-dependent neuronal interactions and demonstrate a role of C1q in critical intracellular neuronal processes.
Collapse
Affiliation(s)
- Nicole Scott-Hewitt
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Matthew Mahoney
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Youtong Huang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nils Korte
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - T Yvanka de Soysa
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel K Wilton
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Emily Knorr
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kevin Mastro
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Allison Chang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Allison Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - David Melville
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Monica Schenone
- The Broad Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christina Hartigan
- The Broad Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Investigator, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Liu N, Xie Z, Li H, Wang L. The numerous facets of 1q21 + in multiple myeloma: Pathogenesis, clinicopathological features, prognosis and clinical progress (Review). Oncol Lett 2024; 27:258. [PMID: 38646497 PMCID: PMC11027100 DOI: 10.3892/ol.2024.14391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/08/2024] [Indexed: 04/23/2024] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm characterized by the clonal proliferation of abnormal plasma cells (PCs) in the bone marrow and recurrent cytogenetic abnormalities. The incidence of MM worldwide is on the rise. 1q21+ has been found in ~30-40% of newly diagnosed MM (NDMM) patients.1q21+ is associated with the pathophysiological mechanisms of disease progression and drug resistance in MM. In the present review, the pathogenesis and clinicopathological features of MM patients with 1q21+ were studied, the key data of 1q21+ on the prognosis of MM patients were summarized, and the clinical treatment significance of MM patients with 1q21+ was clarified, in order to provide reference for clinicians to develop treatment strategies targeting 1q21+.
Collapse
Affiliation(s)
- Na Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhanzhi Xie
- Sanofi China Investment Co., Ltd. Shanghai Branch, Shanghai 200000, P.R. China
| | - Hao Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Luqun Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
8
|
St. Louis BM, Quagliato SM, Su YT, Dyson G, Lee PC. The Hippo kinases control inflammatory Hippo signaling and restrict bacterial infection in phagocytes. mBio 2024; 15:e0342923. [PMID: 38624208 PMCID: PMC11078001 DOI: 10.1128/mbio.03429-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
The Hippo kinases MST1 and MST2 initiate a highly conserved signaling cascade called the Hippo pathway that limits organ size and tumor formation in animals. Intriguingly, pathogens hijack this host pathway during infection, but the role of MST1/2 in innate immune cells against pathogens is unclear. In this report, we generated Mst1/2 knockout macrophages to investigate the regulatory activities of the Hippo kinases in immunity. Transcriptomic analyses identified differentially expressed genes (DEGs) regulated by MST1/2 that are enriched in biological pathways, such as systemic lupus erythematosus, tuberculosis, and apoptosis. Surprisingly, pharmacological inhibition of the downstream components LATS1/2 in the canonical Hippo pathway did not affect the expression of a set of immune DEGs, suggesting that MST1/2 control these genes via alternative inflammatory Hippo signaling. Moreover, MST1/2 may affect immune communication by influencing the release of cytokines, including TNFα, CXCL10, and IL-1ra. Comparative analyses of the single- and double-knockout macrophages revealed that MST1 and MST2 differentially regulate TNFα release and expression of the immune transcription factor MAF, indicating that the two homologous Hippo kinases individually play a unique role in innate immunity. Notably, both MST1 and MST2 can promote apoptotic cell death in macrophages upon stimulation. Lastly, we demonstrate that the Hippo kinases are critical factors in mammalian macrophages and single-cell amoebae to restrict infection by Legionella pneumophila, Escherichia coli, and Pseudomonas aeruginosa. Together, these results uncover non-canonical inflammatory Hippo signaling in macrophages and the evolutionarily conserved role of the Hippo kinases in the anti-microbial defense of eukaryotic hosts. IMPORTANCE Identifying host factors involved in susceptibility to infection is fundamental for understanding host-pathogen interactions. Clinically, individuals with mutations in the MST1 gene which encodes one of the Hippo kinases experience recurrent infection. However, the impact of the Hippo kinases on innate immunity remains largely undetermined. This study uses mammalian macrophages and free-living amoebae with single- and double-knockout in the Hippo kinase genes and reveals that the Hippo kinases are the evolutionarily conserved determinants of host defense against microbes. In macrophages, the Hippo kinases MST1 and MST2 control immune activities at multiple levels, including gene expression, immune cell communication, and programmed cell death. Importantly, these activities controlled by MST1 and MST2 in macrophages are independent of the canonical Hippo cascade that is known to limit tissue growth and tumor formation. Together, these findings unveil a unique inflammatory Hippo signaling pathway that plays an essential role in innate immunity.
Collapse
Affiliation(s)
- Brendyn M. St. Louis
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, Michigan, USA
| | - Sydney M. Quagliato
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, Michigan, USA
| | - Yu-Ting Su
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, Michigan, USA
| | - Gregory Dyson
- Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Pei-Chung Lee
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
9
|
Guo S, Wan Q, Xu M, Chen M, Chen Z. Transcriptome analysis of host anti-Aeromonas hydrophila infection revealed the pathogenicity of A. hydrophila to American eels (Anguilla rostrata). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109504. [PMID: 38508539 DOI: 10.1016/j.fsi.2024.109504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Aeromonas hydrophila is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-A. hydrophila infection remains uncertain. In this study, LD50 of A. hydrophila to American eels was determined and bacterial load in the liver and kidney of eels was assessed post 2.56 doses of LD50 of A. hydrophila infection. The results showed that the LD50 of A. hydrophila to American eels was determined to be 3.9 × 105 cfu/g body weight (7.8 × 106 cfu/fish), and the bacterial load peaked at 36 h post the infection (hpi) in the liver. Then, the histopathology was highlighted by congestion in splenic blood vessels, atrophied glomeruli, and necrotic hepatocytes. Additionally, the results of qRT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 10 hub DEGs and 7 encoded proteins play essential role to the anti-A. hydrophila infection in American eels. Pathogenicity of A. hydrophila to American eels and RNA-seq of host anti-A. hydrophila infection were firstly reported in this study, shedding new light on our understanding of the A. hydrophila pathogenesis and the host immune response to the A. hydrophila infection strategies in gene transcript.
Collapse
Affiliation(s)
- Songlin Guo
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China.
| | - Qijuan Wan
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Ming Xu
- Fisheries College, Jimei University, China
| | - Minxia Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Zihao Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| |
Collapse
|
10
|
Götz MP, Duque Villegas MA, Fageräng B, Kerfin A, Skjoedt MO, Garred P, Rosbjerg A. Transient Binding Dynamics of Complement System Pattern Recognition Molecules on Pathogens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1493-1503. [PMID: 38488502 DOI: 10.4049/jimmunol.2300768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 04/17/2024]
Abstract
Previous studies of pattern recognition molecules (PRMs) of the complement system have revealed difficulties in observing binding on pathogens such as Aspergillus fumigatus and Escherichia coli, despite complement deposition indicative of classical and lectin pathway activation. Thus, we investigated the binding dynamics of PRMs of the complement system, specifically C1q of the classical pathway and mannose-binding lectin (MBL) of the lectin pathway. We observed consistently increasing deposition of essential complement components such as C4b, C3b, and the terminal complement complex on A. fumigatus and E. coli. However, C1q and MBL binding to the surface rapidly declined during incubation after just 2-4 min in 10% plasma. The detachment of C1q and MBL can be linked to complement cascade activation, as the PRMs remain bound in the absence of plasma. The dissociation and the fate of C1q and MBL seem to have different mechanistic functions. Notably, C1q dynamics were associated with local C1 complex activation. When C1s was inhibited in plasma, C1q binding not only remained high but further increased over time. In contrast, MBL binding was inversely correlated with total and early complement activation due to MBL binding being partially retained by complement inhibition. Results indicate that detached MBL might be able to functionally rebind to A. fumigatus. In conclusion, these results reveal a (to our knowledge) novel "hit-and-run" complement-dependent PRM dynamic mechanism on pathogens. These dynamics may have profound implications for host defense and may help increase the functionality and longevity of complement-dependent PRMs in circulation.
Collapse
Affiliation(s)
- Maximilian Peter Götz
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Infectious Diseases, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute for Systemic Inflammation Research, Medicine Section, University of Lübeck, Lübeck, Germany
| | - Mario Alejandro Duque Villegas
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Infection Immunology, Research Center Borstel, Borstel, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Beatrice Fageräng
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Immunology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Aileen Kerfin
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Institute for Systemic Inflammation Research, Medicine Section, University of Lübeck, Lübeck, Germany
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Chen M, Wan Q, Xu M, Chen Z, Guo S. Transcriptome Analysis of Host Anti-Vibrio harveyi Infection Revealed the Pathogenicity of V. harveyi to American Eel (Anguilla rostrata). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:306-323. [PMID: 38367180 DOI: 10.1007/s10126-024-10298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Vibrio harveyi, a recently discovered pathogenic bacterium isolated from American eels (Anguilla rostrata), poses uncertainties regarding its pathogenesis in American eel and the molecular mechanisms underlying host defense against V. harveyi infection. This study aimed to determine the LD50 of V. harveyi in American eel and assess the bacterial load in the liver, spleen, and kidney post-infection with the LD50 dose. The results showed that the LD50 of V. harveyi via intraperitoneal injection in American eels over a 14d period was determined to be 1.24 × 103 cfu/g body weight (6.2 × 104 cfu/fish). The peak bacterial load occurred at 36 h post-infection (hpi) in all three organs examined. Histopathology analysis revealed hepatic vein congestion and thrombi, tubular vacuolar degeneration, and splenic bleeding. Moreover, quantitative reverse transcription polymerase chain reaction (qRT-PCR) results indicated significant up or downregulation of 18 host immune- or anti-infection-related genes post 12 to 60 hpi following the infection. Additionally, RNA sequencing (RNA-seq) unveiled 7 hub differentially expressed genes (DEGs) and 11 encoded proteins play crucial roles in the anti-V. harveyi response in American eels. This study firstly represents the comprehensive report on the pathogenicity of V. harveyi to American eels and RNA-seq of host's response to V. harveyi infection. These findings provide valuable insights into V. harveyi pathogenesis and the strategies employed by the host's immune system at the transcriptomic level to combat V. harveyi infection.
Collapse
Affiliation(s)
- Minxia Chen
- Fisheries College, Jimei University, Xiamen, 361021, China
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Qijuan Wan
- Fisheries College, Jimei University, Xiamen, 361021, China
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Ming Xu
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Zihao Chen
- Fisheries College, Jimei University, Xiamen, 361021, China
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China
| | - Songlin Guo
- Fisheries College, Jimei University, Xiamen, 361021, China.
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China.
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China.
| |
Collapse
|
12
|
Gan Q, Zhang L, Fang Y, Yang L, Shi M, Xiao Z. Low pulse pressure and high serum complement C1q are risk factors for hemodialysis headache: A case-control study. Headache 2024; 64:285-298. [PMID: 38429985 DOI: 10.1111/head.14688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 03/03/2024]
Abstract
BACKGROUND AND OBJECTIVE Hemodialysis headache (HDH) is a common complication of dialysis that negatively affects the patient's quality of life. The etiology and triggering factors of HDH are not fully understood. This study aims to assess the prevalence and characteristics of HDH among patients undergoing hemodialysis across multiple centers in China. Furthermore, we conducted a case-control study at one hospital to identify risk factors associated with HDH. METHODS The study consisted of two phases including a cross-sectional observational study and a case-control study. Participants underwent neurological examinations and interviews. Demographic and medical information were collected from both medical records and patient files. Serum creatinine, uric acid, urea, estimated glomerular filtration rate (eGFR), plasma osmolarity, glucose, C1q, and a variety of electrolytes including potassium, sodium, chloride, calcium, magnesium, and phosphorus were measured before and after dialysis. Blood pressure variables including systolic blood pressure, diastolic blood pressure, pulse pressure (PP), and heart rate were monitored hourly. Serum levels of inflammatory factors, including tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-4, IL-6, and IL-10 were quantified using a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS The prevalence of HDH was 37.7% (183/485). HDH was characterized by a bilateral tightening headache of moderate intensity and duration of <2 h, occurring in different locations. The case-control study included 50 patients with HDH and 84 control patients, pre-dialysis PP was found to be lower in the HDH group than in the control group (mean ± standard deviation 51.5 ± 18.2 vs. 67.9 ± 14.9, p = 0.027). Furthermore, the pre-dialysis serum complement C1q level was significantly higher for the HDH group than the control group (median and interquartile range 201.5 [179.0-231.5] vs. 189.0 [168.9-209.0], p = 0.021). Pre-dialysis PP was associated with 5.1% decreased odds of HDH (odds ratio [OR] = 0.96; 95% confidence interval [CI], 0.93-0.99, p = 0.026), body weight was associated with a 5.4% decreased risk of HDH (OR = 0.95; 95% CI, 0.91-0.99, p = 0.013), and pre-dialysis C1q levels increased the odds of HDH by 1.9% (OR = 1.02; 95% CI, 1.01-1.03, p = 0.005). CONCLUSION Low PP, low body weight, and high blood complement C1q may be potential risk factors associated with HDH.
Collapse
Affiliation(s)
- Quan Gan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lily Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuting Fang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liu Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Shi
- Department of Dialysis Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Zhong J, Zha H, Cong H, Zhang H, Zhao L, Yu S, Zhu Q, Liu Y. Recombinant expression and immune function analysis of C-reactive protein (CRP) from Hexagrammos otakii. Gene 2024; 897:148048. [PMID: 38042212 DOI: 10.1016/j.gene.2023.148048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
C-reactive protein (CRP) belongs to the short-chain pentraxin family and functions as a soluble pattern recognition molecule (PRM) aiding in host defense against pathogens. In the present study, a CRP gene, designated HoCRP, was cloned from Hexagrammos otakii for the first time. The full length of the HoCRP cDNA sequence is 821 bp, which contains an open reading frame (ORF) of 675 bp encoding a 224 amino acid protein. The deduced protein is predicted to have a theoretical isoelectric point (pI) of 5.30 and a molecular weight of 25.4 kDa. The recombinant HoCRP protein (rHoCRP) was expressed in E. coli to further characterize the functions of HoCRP. Saccharide binding experiments demonstrated that rHoCRP exhibited a high affinity for various pathogen-associated molecular patterns (PAMPs). Furthermore, bacterial binding and agglutination assays indicated that rHoCRP had the capability to recognize a wide spectrum of microorganisms. These findings suggest that HoCRP functions not only as a PRM for binding PAMPs but also as an immune effector molecule. Considering the role CRP plays in the classical complement pathway, the interaction between rHoCRP and rHoC1q was assessed and proven by a Pull-down and Elisa assay, which implied that rHoCRP may be able to activate complement. In addition, phagocytosis enhancement by rHoCRP in the presence or absence of complement components was analysed by flow cytometry. The results showed that rHoCRP could synergistically enhance the phagocytosis of RAW264.7 cells with complement, providing further evidence of complement activation by rHoCRP through the opsonization of specific complement components. In summary, our findings suggest that rHoCRP may play a crucial role in host antibacterial defense by recognizing pathogens, activating the complement system, and enhancing macrophage function.
Collapse
Affiliation(s)
- Jinmiao Zhong
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Haidong Zha
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Haiyan Cong
- Department of Central Lab, Weihai Municipal Hospital, Weihai, Shandong 264200, China
| | - Haoyue Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Lihua Zhao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shanshan Yu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Qian Zhu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yingying Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
14
|
Xu D, Zhou S, Liu Y, Scott AL, Yang J, Wan F. Complement in breast milk modifies offspring gut microbiota to promote infant health. Cell 2024; 187:750-763.e20. [PMID: 38242132 PMCID: PMC10872564 DOI: 10.1016/j.cell.2023.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024]
Abstract
Breastfeeding offers demonstrable benefits to newborns and infants by providing nourishment and immune protection and by shaping the gut commensal microbiota. Although it has been appreciated for decades that breast milk contains complement components, the physiological relevance of complement in breast milk remains undefined. Here, we demonstrate that weanling mice fostered by complement-deficient dams rapidly succumb when exposed to murine pathogen Citrobacter rodentium (CR), whereas pups fostered on complement-containing milk from wild-type dams can tolerate CR challenge. The complement components in breast milk were shown to directly lyse specific members of gram-positive gut commensal microbiota via a C1-dependent, antibody-independent mechanism, resulting in the deposition of the membrane attack complex and subsequent bacterial lysis. By selectively eliminating members of the commensal gut community, complement components from breast milk shape neonate and infant gut microbial composition to be protective against environmental pathogens such as CR.
Collapse
Affiliation(s)
- Dongqing Xu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Yue Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Alan L Scott
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
15
|
Wang L, Zhou H, Zheng W, Wang H, Wang Z, Dong X, Du Q. Clinical value of serum complement component 1q levels in the prognostic analysis of aneurysmal subarachnoid hemorrhage: a prospective cohort study. Front Neurol 2024; 15:1341731. [PMID: 38356892 PMCID: PMC10864439 DOI: 10.3389/fneur.2024.1341731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Objective To analyze the relationship between serum complement component 1q (C1q) levels and functional prognosis in patients with aneurysmal subarachnoid hemorrhage (aSAH), and to reveal its clinical value. Methods In this prospective cohort study, we collected clinical data of aSAH patients admitted to the Department of Neurosurgery, Hangzhou First People's Hospital from January 2020 to October 2022. Parameters such as serum C1q levels, Hunt-Hess grade, modified Fisher grade, and the modified Rankin scale (mRS) at 3 months were included for evaluation. Patients were grouped based on the occurrence of delayed cerebral ischemia (DCI). Spearman rank correlation test and Kruskal-Wallis rank sum test were used to analyze the correlation between serum C1q levels, disease severity, and prognosis. Potential risk factors affecting prognosis and the occurrence of DCI were screened through Independent sample t-test or Mann-Whitney U test. Variables with significant differences (p < 0.05) were incorporated into a logistic regression model to identify independent risk factors affecting prognosis and DCI occurrence. Serum C1q levels were plotted as a ROC curve for predicting prognosis and DCI, and the area under the curve was calculated. Results A total of 107 aSAH patients were analyzed. Serum C1q levels positively correlated with Hunt-Hess grade, modified Fisher grade and mRS (all p < 0.001). Significant differences were observed in C1q levels among different Hunt-Hess grade, mFisher grade and mRS (all p < 0.001). Notably, higher serum C1q levels were seen in the poor prognosis group and DCI group, and correlated with worse prognosis (OR = 36.927, 95%CI 2.003-680.711, p = 0.015), and an increased risk for DCI (OR = 17.334, 95%CI 1.161-258.859, p = 0.039). ROC analysis revealed the significant discriminative power of serum C1q levels for poor prognosis (AUC 0.781; 95%CI 0.673-0.888; p < 0.001) and DCI occurrence (AUC 0.763; 95%CI 0.637-0.888; p < 0.001). Higher C1q levels independently predicted a poor prognosis and DCI with equivalent predictive abilities to Hunt-Hess grade and modified Fisher grade (both p < 0.05). Conclusion High levels of C1q in the blood is an independent risk factor for poor prognosis and the development of DCI in patients with aSAH. This can more objectively and accurately predict functional outcomes and the incidence of DCI. C1q may have a significant role in the mechanism behind DCI after aSAH.
Collapse
Affiliation(s)
- Linjie Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haotian Zhou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenhao Zheng
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Heng Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoqiao Dong
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Quan Du
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
16
|
Becza N, Liu Z, Chepke J, Gao XH, Lehmann PV, Kirchenbaum GA. Assessing the Affinity Spectrum of the Antigen-Specific B Cell Repertoire via ImmunoSpot ®. Methods Mol Biol 2024; 2768:211-239. [PMID: 38502396 DOI: 10.1007/978-1-0716-3690-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The affinity distribution of the antigen-specific memory B cell (Bmem) repertoire in the body is a critical variable that defines an individual's ability to rapidly generate high-affinity protective antibody specificities. Detailed measurement of antibody affinity so far has largely been confined to studies of monoclonal antibodies (mAbs) and are laborious since each individual mAb needs to be evaluated in isolation. Here, we introduce two variants of the B cell ImmunoSpot® assay that are suitable for simultaneously assessing the affinity distribution of hundreds of individual B cells within a test sample at single-cell resolution using relatively little labor and with high-throughput capacity. First, we experimentally validated that both ImmunoSpot® assay variants are suitable for establishing functional affinity hierarchies using B cell hybridoma lines as model antibody-secreting cells (ASC), each producing mAb with known affinity for a defined antigen. We then leveraged both ImmunoSpot® variants for characterizing the affinity distribution of SARS-CoV-2 Spike-specific ASC in PBMC following COVID-19 mRNA vaccination. Such ImmunoSpot® assays promise to offer tremendous value for future B cell immune monitoring efforts, owing to their ease of implementation, applicability to essentially any antigenic system, economy of PBMC utilization, high-throughput capacity, and suitability for regulated testing.
Collapse
Affiliation(s)
- Noémi Becza
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Zhigang Liu
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Jack Chepke
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Xing-Huang Gao
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Paul V Lehmann
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Greg A Kirchenbaum
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA.
| |
Collapse
|
17
|
Xu M, Wang Y, Wan Q, Chen M, Guo S. RNA-seq analysis revealed the pathogenicity of Vibrio vulnificus to American eel (Anguilla rostrata) and the strategy of host anti-V. vulnificus infection. Microb Pathog 2024; 186:106498. [PMID: 38097116 DOI: 10.1016/j.micpath.2023.106498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Vibrio vulnificus is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-V. vulnificus infection remains uncertain. In this study, American eels were infected with different dose of V. vulnificus to determine the LD50. Then, bacterial load in the liver and kidney histopathology were assessed post the LD50 of V. vulnificus infection. Additionally, gene expressions of 18 immune related genes in the liver, spleen and kidney were detected. Furthermore, transcriptome sequencing and enrichment of differentially expressed genes (DEGs) were analyzed in the eel spleens between pre-infection (Con_0), post-36 h (Vv_36), and post-60 h (Vv_60) infection. The results showed that LD50 of V. vulnificus to American eels was determined to be 5.0 × 105 cfu/g body weight, and the bacterial load peaked at 24 and 12 h post the infection (hpi) in the kidney and liver, respectively. The histopathology was highlighted by necrotic hepatocytes and splenic cells, congestion blood vessels in liver and spleen, atrophied glomeruli and vacuolization of renal tubular epithelial cells. The results of RT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated expression post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 16 DEGs play essential role to the immunosuppression in American eels, and the protein-protein interactions shed light on the widespread upregulation GEGs related to metabolism and immune response maintained the host cell homeostasis post the V. vulnificus infection, shedding new light on our understanding of the V. vulnificus pathogenesis towards understudied American eel and the host anti-V. vulnificus infection strategies in gene transcript.
Collapse
Affiliation(s)
- Ming Xu
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Yue Wang
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Qijuan Wan
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Minxia Chen
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Songlin Guo
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China.
| |
Collapse
|
18
|
Xu D, Jiang C, Xiao Y, Ding H. Identification and validation of disulfidptosis-related gene signatures and their subtype in diabetic nephropathy. Front Genet 2023; 14:1287613. [PMID: 38028597 PMCID: PMC10658004 DOI: 10.3389/fgene.2023.1287613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Diabetic nephropathy (DN) is the most common complication of diabetes, and its pathogenesis is complex involving a variety of programmed cell death, inflammatory responses, and autophagy mechanisms. Disulfidptosis is a newly discovered mechanism of cell death. There are little studies about the role of disulfidptosis on DN. Methods: First, we obtained the data required for this study from the GeneCards database, the Nephroseq v5 database, and the GEO database. Through differential analysis, we obtained differential disulfidptosis-related genes. At the same time, through WGCNA analysis, we obtained key module genes in DN patients. The obtained intersecting genes were further screened by Lasso as well as SVM-RFE. By intersecting the results of the two, we ended up with a key gene for diabetic nephropathy. The diagnostic performance and expression of key genes were verified by the GSE30528, GSE30529, GSE96804, and Nephroseq v5 datasets. Using clinical information from the Nephroseq v5 database, we investigated the correlation between the expression of key genes and estimated glomerular filtration rate (eGFR) and serum creatinine content. Next, we constructed a nomogram and analyzed the immune microenvironment of patients with DN. The identification of subtypes facilitates individualized treatment of patients with DN. Results: We obtained 91 differential disulfidptosis-related genes. Through WGCNA analysis, we obtained 39 key module genes in DN patients. Taking the intersection of the two, we preliminarily screened 20 genes characteristic of DN. Through correlation analysis, we found that these 20 genes are positively correlated with each other. Further screening by Lasso and SVM-RFE algorithms and intersecting the results of the two, we identified CXCL6, CD48, C1QB, and COL6A3 as key genes in DN. Clinical correlation analysis found that the expression levels of key genes were closely related to eGFR. Immune cell infiltration is higher in samples from patients with DN than in normal samples. Conclusion: We identified and validated 4 DN key genes from disulfidptosis-related genes that CXCL6, CD48, C1QB, and COL6A3 may be key genes that promote the onset of DN and are closely related to the eGFR and immune cell infiltrated in the kidney tissue.
Collapse
Affiliation(s)
- Danping Xu
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Chonghao Jiang
- Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Yonggui Xiao
- North China University of Science and Technology, Tangshan, China
| | - Hanlu Ding
- Renal Division and Institute of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Ye J, Wen Z, Wu T, Chen L, Sheng L, Wang C, Teng C, Wu B, Xu J, Wei W. Single-Cell Sequencing Reveals the Optimal Time Window for Anti-Inflammatory Treatment in Spinal Cord Injury. Adv Biol (Weinh) 2023; 7:e2300098. [PMID: 37085744 DOI: 10.1002/adbi.202300098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/02/2023] [Indexed: 04/23/2023]
Abstract
Though the occurrence of neuroinflammation after spinal cord injury (SCI) is essential for antigen clearance and tissue repair, excessive inflammation results in cell death and axon dieback. The effect of anti-inflammatory medicine used in clinical treatment remains debatable owing to the inappropriate therapeutic schedule that does not align with the biological process of immune reaction. A better understanding of the immunity process is critical to promote effective anti-inflammatory therapeutics. However, cellular heterogeneity, which results in complex cellular functions, is a major challenge. This study performs single-cell RNA sequencing by profiling the tissue proximity to the injury site at different time points after SCI. Depending on the analysis of single-cell data and histochemistry observation, an appropriate time window for anti-inflammatory medicine treatment is proposed. This work also verifies the mechanism of typical anti-inflammatory medicine methylprednisolone sodium succinate (MPSS), which is found attributable to the activation inhibition of cells with pro-inflammatory phenotype through the downregulation of pathways such as TNF, IL2, and MIF. These pathways can also be provided as targets for anti-inflammatory treatment. Collectively, this work provides a therapeutic schedule of 1-3 dpi (days post injury) to argue against classical early pulse therapy and provides some pathways for target therapy in the future.
Collapse
Affiliation(s)
- Jingjia Ye
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Zhengfa Wen
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Tianxin Wu
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Liangliang Chen
- College of Computer Science and Technology, Zhejiang University, Hangzhou, 310000, China
| | - Lingchao Sheng
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Chenhuan Wang
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Chong Teng
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Bingbing Wu
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Jian Xu
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Wei Wei
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| |
Collapse
|
20
|
Wang Y, Zhai S, Wan Q, Xu M, Chen M, Guo S. Pathogenicity of Edwardsiella anguillarum to American eels (Anguilla rostrata) and RNA-seq analysis of host immune response to the E. anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109042. [PMID: 37657556 DOI: 10.1016/j.fsi.2023.109042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Edwardsiella anguillarum is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-E. anguillarum infection remains uncertain. In this study, LD50 of E. anguillarum to American eels was determined and bacterial load in the liver and kidney of eels was assessed post the LD50 of E. anguillarum infection. The results showed that LD50 of E. anguillarum to American eels was determined to be 2.5 × 105 cfu/g body weight, and the bacterial load peaked at 36 and 72 h post the infection (hpi) in the kidney and liver, respectively. Then, the histopathology was highlighted by congestion in splenic blood vessels, atrophied glomeruli, and necrotic hepatocytes, as well as ultrastructural pathology in the kidney were charactered by acute nephritis, showing necrosis of the renal tubular epithelial cells, glomerular capillaries dilate, mitochondria swelling and ribosomes separate from the endoplasmic reticulum. Furthermore, the results of qRT-PCR revealed that 12 host immune-related genes showed significantly up or downregulated post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 6 hub DEGs play essential role to the anti-E. anguillarum infection in American eels. Pathogenicity of E. anguillarum to American eels and hub genes related host anti- E. anguillarum infection were firstly reported in this study, shedding new light on our understanding of the E. anguillarum pathogenesis and the host immune response to the E. anguillarum infection strategies in gene transcript.
Collapse
Affiliation(s)
- Yue Wang
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Shaowei Zhai
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Qijuan Wan
- Fisheries College, Jimei University, China
| | - Ming Xu
- Fisheries College, Jimei University, China
| | - Minxia Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Songlin Guo
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China.
| |
Collapse
|
21
|
Yu H, Ni P, Tian Y, Zhao L, Li M, Li X, Wei W, Wei J, Du X, Wang Q, Guo W, Deng W, Ma X, Coid J, Li T. Association of the plasma complement system with brain volume deficits in bipolar and major depressive disorders. Psychol Med 2023; 53:6102-6112. [PMID: 36285542 DOI: 10.1017/s0033291722003282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Inflammation plays a crucial role in the pathogenesis of major depressive disorder (MDD) and bipolar disorder (BD). This study aimed to examine whether the dysregulation of complement components contributes to brain structural defects in patients with mood disorders. METHODS A total of 52 BD patients, 35 MDD patients, and 53 controls were recruited. The human complement immunology assay was used to measure the levels of complement factors. Whole brain-based analysis was performed to investigate differences in gray matter volume (GMV) and cortical thickness (CT) among the BD, MDD, and control groups, and relationships were explored between neuroanatomical differences and levels of complement components. RESULTS GMV in the medial orbital frontal cortex (mOFC) and middle cingulum was lower in both patient groups than in controls, while the CT of the left precentral gyrus and left superior frontal gyrus were affected differently in the two disorders. Concentrations of C1q, C4, factor B, factor H, and properdin were higher in both patient groups than in controls, while concentrations of C3, C4 and factor H were significantly higher in BD than in MDD. Concentrations of C1q, factor H, and properdin showed a significant negative correlation with GMV in the mOFC at the voxel-wise level. CONCLUSIONS BD and MDD are associated with shared and different alterations in levels of complement factors and structural impairment in the brain. Structural defects in mOFC may be associated with elevated levels of certain complement factors, providing insight into the shared neuro-inflammatory pathogenesis of mood disorders.
Collapse
Affiliation(s)
- Hua Yu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peiyan Ni
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Yang Tian
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Liansheng Zhao
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Mingli Li
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Xiaojing Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wei
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinxue Wei
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Xiangdong Du
- Suzhou Psychiatry Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Qiang Wang
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Wanjun Guo
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohong Ma
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Jeremy Coid
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Shughoury A, Sevgi DD, Ciulla TA. The complement system: a novel therapeutic target for age-related macular degeneration. Expert Opin Pharmacother 2023; 24:1887-1899. [PMID: 37691588 DOI: 10.1080/14656566.2023.2257604] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION With the recent FDA approvals of pegcetacoplan (SYFOVRE, Apellis Pharmaceuticals) and avacincaptad pegol (IZERVAY, Astellas Pharmaceuticals), modulation of the complement system has emerged as a promising therapeutic approach for slowing progression of geographic atrophy (GA) in AMD. AREAS COVERED This article reviews the current understanding of the complement system, its role in AMD, and the various complement-targeting therapies in development for the treatment of GA, including monoclonal antibodies, aptamers, protein analogs, and gene therapies. Approved and investigational agents have largely focused on interfering with the activity of complement components 3 and 5, owing to their central roles in the classical, lectin, and alternative complement pathways. Other investigational therapies have targeted formation of membrane attack complex (a terminal step in the complement cascade which leads to cell lysis), complement factors H and I (which serve regulatory functions in the alternative pathway), complement factors B and D (within the alternative pathway), and complement component 1 (within the classical pathway). Clinical trials investigating these agents are summarized, and the potential benefits and limitations of these therapies are discussed. EXPERT OPINION Targeting the complement system is a promising therapeutic approach for slowing the progression of GA in AMD, potentially improving visual outcomes. However, increased risk of exudative conversion must be considered, and further research is required to identify clinical criteria and best practices for initiating complement inhibitor therapy for GA.
Collapse
Affiliation(s)
- Aumer Shughoury
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Duriye D Sevgi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas A Ciulla
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Clearside Biomedical, Inc, Alpharetta, GA, USA
- Midwest Eye Institute, Carmel, IN, USA
| |
Collapse
|
23
|
Hardy E, Sarker H, Fernandez-Patron C. Could a Non-Cellular Molecular Interactome in the Blood Circulation Influence Pathogens' Infectivity? Cells 2023; 12:1699. [PMID: 37443732 PMCID: PMC10341357 DOI: 10.3390/cells12131699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
We advance the notion that much like artificial nanoparticles, relatively more complex biological entities with nanometric dimensions such as pathogens (viruses, bacteria, and other microorganisms) may also acquire a biomolecular corona upon entering the blood circulation of an organism. We view this biomolecular corona as a component of a much broader non-cellular blood interactome that can be highly specific to the organism, akin to components of the innate immune response to an invading pathogen. We review published supporting data and generalize these notions from artificial nanoparticles to viruses and bacteria. Characterization of the non-cellular blood interactome of an organism may help explain apparent differences in the susceptibility to pathogens among individuals. The non-cellular blood interactome is a candidate therapeutic target to treat infectious and non-infectious conditions.
Collapse
Affiliation(s)
- Eugenio Hardy
- Center of Molecular Immunology, P.O. Box 16040, Havana 11600, Cuba
| | - Hassan Sarker
- Department of Biochemistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
24
|
So EC, Zhou H, Greenwell A, Burch EE, Ji Y, Mérigeon EY, Olsen HS, Bentzen SM, Block DS, Zhang X, Strome SE. Complement component C1q is an immunological rheostat that regulates Fc:Fc[Formula: see text]R interactions. Immunogenetics 2023:10.1007/s00251-023-01311-x. [PMID: 37322230 DOI: 10.1007/s00251-023-01311-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Though binding sites for the complement factor C1q and the canonical fragment crystallizable (Fc) gamma receptors (Fc[Formula: see text]Rs) on immunoglobulin G (IgG) molecules overlap, how C1q decoration of immune complexes (ICs) influences their ability to engage Fc[Formula: see text]Rs remains unknown. In this report, we use recombinant human Fc multimers as stable IC mimics to show that C1q engagement of ICs directly and transiently inhibits their interactions with Fc[Formula: see text]RIII (CD16) on human natural killer (NK) cells. This inhibition occurs by C1q engagement alone as well as in concert with other serum factors. Furthermore, the inhibition of Fc[Formula: see text]RIII engagement mediated by avid binding of C1q to ICs is directly associated with IC size and dependent on the concentrations of both C1q and Fc multimers present. Functionally, C1q-mediated Fc blockade limits the ability of NK cells to induce the upregulation of the cosignaling molecule, 4-1BB (CD137), and to mediate antibody-dependent cell-mediated cytotoxicity (ADCC). Although C1q is traditionally viewed as a soluble effector molecule, we demonstrate that C1q may also take on the role of an "immunologic rheostat," buffering Fc[Formula: see text]R-mediated activation of immune cells by circulating ICs. These data define a novel role for C1q as a regulator of immune homeostasis and add to our growing understanding that complement factors mediate pleiotropic effects.
Collapse
Affiliation(s)
- Edward C So
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hua Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ariana Greenwell
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erin E Burch
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yaping Ji
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Søren M Bentzen
- Department of Epidemiology and Public Health, Division of Biostatistics and Bioinformatics, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Xiaoyu Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Scott E Strome
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center (UTHSC), 910 Madison Avenue, 10th floor Suite 1002, Memphis, TN, 38163, USA.
| |
Collapse
|
25
|
Wu S, Chen J, Teo BHD, Wee SYK, Wong MHM, Cui J, Chen J, Leong KP, Lu J. The axis of complement C1 and nucleolus in antinuclear autoimmunity. Front Immunol 2023; 14:1196544. [PMID: 37359557 PMCID: PMC10288996 DOI: 10.3389/fimmu.2023.1196544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Antinuclear autoantibodies (ANA) are heterogeneous self-reactive antibodies that target the chromatin network, the speckled, the nucleoli, and other nuclear regions. The immunological aberration for ANA production remains partially understood, but ANA are known to be pathogenic, especially, in systemic lupus erythematosus (SLE). Most SLE patients exhibit a highly polygenic disease involving multiple organs, but in rare complement C1q, C1r, or C1s deficiencies, the disease can become largely monogenic. Increasing evidence point to intrinsic autoimmunogenicity of the nuclei. Necrotic cells release fragmented chromatins as nucleosomes and the alarmin HMGB1 is associated with the nucleosomes to activate TLRs and confer anti-chromatin autoimmunogenecity. In speckled regions, the major ANA targets Sm/RNP and SSA/Ro contain snRNAs that confer autoimmunogenecity to Sm/RNP and SSA/Ro antigens. Recently, three GAR/RGG-containing alarmins have been identified in the nucleolus that helps explain its high autoimmunogenicity. Interestingly, C1q binds to the nucleoli exposed by necrotic cells to cause protease C1r and C1s activation. C1s cleaves HMGB1 to inactive its alarmin activity. C1 proteases also degrade many nucleolar autoantigens including nucleolin, a major GAR/RGG-containing autoantigen and alarmin. It appears that the different nuclear regions are intrinsically autoimmunogenic by containing autoantigens and alarmins. However, the extracellular complement C1 complex function to dampen nuclear autoimmunogenecity by degrading these nuclear proteins.
Collapse
Affiliation(s)
- Shan Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Junjie Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Boon Heng Dennis Teo
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Seng Yin Kelly Wee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ming Hui Millie Wong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianzhou Cui
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinmiao Chen
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Khai Pang Leong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Jinhua Lu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
26
|
Hu Y, Yu Y, Dong H, Jiang W. Identifying C1QB, ITGAM, and ITGB2 as potential diagnostic candidate genes for diabetic nephropathy using bioinformatics analysis. PeerJ 2023; 11:e15437. [PMID: 37250717 PMCID: PMC10225123 DOI: 10.7717/peerj.15437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Background Diabetic nephropathy (DN), the most intractable complication in diabetes patients, can lead to proteinuria and progressive reduction of glomerular filtration rate (GFR), which seriously affects the quality of life of patients and is associated with high mortality. However, the lack of accurate key candidate genes makes diagnosis of DN very difficult. This study aimed to identify new potential candidate genes for DN using bioinformatics, and elucidated the mechanism of DN at the cellular transcriptional level. Methods The microarray dataset GSE30529 was downloaded from the Gene Expression Omnibus Database (GEO), and the differentially expressed genes (DEGs) were screened by R software. We used Gene Ontology (GO), gene set enrichment analysis (GSEA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to identify the signal pathways and genes. Protein-protein interaction (PPI) networks were constructed using the STRING database. The GSE30122 dataset was selected as the validation set. Receiver operating characteristic (ROC) curves were applied to evaluate the predictive value of genes. An area under curve (AUC) greater than 0.85 was considered to be of high diagnostic value. Several online databases were used to predict miRNAs and transcription factors (TFs) capable of binding hub genes. Cytoscape was used for constructing a miRNA-mRNA-TF network. The online database 'nephroseq' predicted the correlation between genes and kidney function. The serum level of creatinine, BUN, and albumin, and the urinary protein/creatinine ratio of the DN rat model were detected. The expression of hub genes was further verified through qPCR. Data were analyzed statistically using Student's t-test by the 'ggpubr' package. Results A total of 463 DEGs were identified from GSE30529. According to enrichment analysis, DEGs were mainly enriched in the immune response, coagulation cascades, and cytokine signaling pathways. Twenty hub genes with the highest connectivity and several gene cluster modules were ensured using Cytoscape. Five high diagnostic hub genes were selected and verified by GSE30122. The MiRNA-mRNA-TF network suggested a potential RNA regulatory relationship. Hub gene expression was positively correlated with kidney injury. The level of serum creatinine and BUN in the DN group was higher than in the control group (unpaired t test, t = 3.391, df = 4, p = 0.0275, r = 0.861). Meanwhile, the DN group had a higher urinary protein/creatinine ratio (unpaired t test, t = 17.23, df = 16, p < 0.001, r = 0.974). QPCR results showed that the potential candidate genes for DN diagnosis included C1QB, ITGAM, and ITGB2. Conclusions We identified C1QB, ITGAM and ITGB2 as potential candidate genes for DN diagnosis and therapy and provided insight into the mechanisms of DN development at transcriptome level. We further completed the construction of miRNA-mRNA-TF network to propose potential RNA regulatory pathways adjusting disease progression in DN.
Collapse
Affiliation(s)
- Yongzheng Hu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yani Yu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hui Dong
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
27
|
Peña Palomino PA, Black KC, Ressl S. Pleiotropy of C1QL proteins across physiological systems and their emerging role in synapse homeostasis. Biochem Soc Trans 2023:233015. [PMID: 37140354 DOI: 10.1042/bst20220439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
The C1q/TNF superfamily of proteins engages in a pleiotropy of physiological functions associated with various diseases. C1QL proteins demonstrate important protective and regulatory roles in the endocrine, immune, cardiovascular, and nervous systems in both human and rodent studies. Studies in the central nervous system (CNS), adipose, and muscle tissue reveal several C1QL protein and receptor pathways altering multiple cellular responses, including cell fusion, morphology, and adhesion. This review examines C1QL proteins across these systems, summarizing functional and disease associations and highlighting cellular responses based on in vitro and in vivo data, receptor interaction partners, and C1QL-associated protein signaling pathways. We highlight the functions of C1QL proteins in organizing CNS synapses, regulating synapse homeostasis, maintaining excitatory synapses, and mediating signaling and trans-synaptic connections. Yet, while these associations are known, present studies provide insufficient insight into the underlying molecular mechanism of their pleiotropy, including specific protein interactions and functional pathways. Thus, we suggest several areas for more in-depth and interdisciplinary hypothesis testing.
Collapse
Affiliation(s)
- Perla A Peña Palomino
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 208047, U.S.A
| | - Kylie C Black
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 208047, U.S.A
| | - Susanne Ressl
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 208047, U.S.A
| |
Collapse
|
28
|
Zelek WM, Harrison RA. Complement and COVID-19: Three years on, what we know, what we don't know, and what we ought to know. Immunobiology 2023; 228:152393. [PMID: 37187043 PMCID: PMC10174470 DOI: 10.1016/j.imbio.2023.152393] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus was identified in China in 2019 as the causative agent of COVID-19, and quickly spread throughout the world, causing over 7 million deaths, of which 2 million occurred prior to the introduction of the first vaccine. In the following discussion, while recognising that complement is just one of many players in COVID-19, we focus on the relationship between complement and COVID-19 disease, with limited digression into directly-related areas such as the relationship between complement, kinin release, and coagulation. Prior to the 2019 COVID-19 outbreak, an important role for complement in coronavirus diseases had been established. Subsequently, multiple investigations of patients with COVID-19 confirmed that complement dysregulation is likely to be a major driver of disease pathology, in some, if not all, patients. These data fuelled evaluation of many complement-directed therapeutic agents in small patient cohorts, with claims of significant beneficial effect. As yet, these early results have not been reflected in larger clinical trials, posing questions such as who to treat, appropriate time to treat, duration of treatment, and optimal target for treatment. While significant control of the pandemic has been achieved through a global scientific and medical effort to comprehend the etiology of the disease, through extensive SARS-CoV-2 testing and quarantine measures, through vaccine development, and through improved therapy, possibly aided by attenuation of the dominant strains, it is not yet over. In this review, we summarise complement-relevant literature, emphasise its main conclusions, and formulate a hypothesis for complement involvement in COVID-19. Based on this we make suggestions as to how any future outbreak might be better managed in order to minimise impact on patients.
Collapse
Affiliation(s)
- Wioleta M Zelek
- Dementia Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
29
|
Yu LT, Hancu MC, Kreutzberger MAB, Henrickson A, Demeler B, Egelman EH, Hartgerink JD. Hollow Octadecameric Self-Assembly of Collagen-like Peptides. J Am Chem Soc 2023; 145:5285-5296. [PMID: 36812303 PMCID: PMC10131286 DOI: 10.1021/jacs.2c12931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The folding of collagen is a hierarchical process that starts with three peptides associating into the characteristic triple helical fold. Depending on the specific collagen in question, these triple helices then assemble into bundles reminiscent of α-helical coiled-coils. Unlike α-helices, however, the bundling of collagen triple helices is very poorly understood with almost no direct experimental data available. In order to shed light on this critical step of collagen hierarchical assembly, we have examined the collagenous region of complement component 1q. Thirteen synthetic peptides were prepared to dissect the critical regions allowing for its octadecameric self-assembly. We find that short peptides (under 40 amino acids) are able to self-assemble into specific (ABC)6 octadecamers. This requires the ABC heterotrimeric composition as the self-assembly subunit, but does not require disulfide bonds. Self-assembly into this octadecamer is aided by short noncollagenous sequences at the N-terminus, although they are not entirely required. The mechanism of self-assembly appears to begin with the very slow formation of the ABC heterotrimeric helix, followed by rapid bundling of triple helices into progressively larger oligomers, terminating in the formation of the (ABC)6 octadecamer. Cryo-electron microscopy reveals the (ABC)6 assembly as a remarkable, hollow, crown-like structure with an open channel approximately 18 Å at the narrow end and 30 Å at the wide end. This work helps to illuminate the structure and assembly mechanism of a critical protein in the innate immune system and lays the groundwork for the de novo design of higher order collagen mimetic peptide assemblies.
Collapse
Affiliation(s)
- Le Tracy Yu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Maria C. Hancu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Mark A. B. Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia Box 800733, Charlottesville, VA 22908, United States
| | - Amy Henrickson
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Borries Demeler
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia Box 800733, Charlottesville, VA 22908, United States
| | - Jeffrey D. Hartgerink
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, United States
| |
Collapse
|
30
|
Smith LC, Crow RS, Franchi N, Schrankel CS. The echinoid complement system inferred from genome sequence searches. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104584. [PMID: 36343741 DOI: 10.1016/j.dci.2022.104584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The vertebrate complement cascade is an essential host protection system that functions at the intersection of adaptive and innate immunity. However, it was originally assumed that complement was present only in vertebrates because it was activated by antibodies and functioned with adaptive immunity. Subsequently, the identification of the key component, SpC3, in sea urchins plus a wide range of other invertebrates significantly expanded the concepts of how complement functions. Because there are few reports on the echinoid complement system, an alternative approach to identify complement components in echinoderms is to search the deduced proteins encoded in the genomes. This approach identified known and putative members of the lectin and alternative activation pathways, but members of the terminal pathway are absent. Several types of complement receptors are encoded in the genomes. Complement regulatory proteins composed of complement control protein (CCP) modules are identified that may control the activation pathways and the convertases. Other regulatory proteins without CCP modules are also identified, however regulators of the terminal pathway are absent. The expansion of genes encoding proteins with Macpf domains is noteworthy because this domain is a signature of perforin and proteins in the terminal pathway. The results suggest that the major functions of the echinoid complement system are detection of foreign targets by the proteins that initiate the activation pathways resulting in opsonization by SpC3b fragments to augment phagocytosis and destruction of the foreign targets by the immune cells.
Collapse
Affiliation(s)
- L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington DC, USA.
| | - Ryley S Crow
- Department of Biological Sciences, George Washington University, Washington DC, USA
| | - Nicola Franchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Catherine S Schrankel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, CA, USA
| |
Collapse
|
31
|
Astrocytic and microglial interleukin-1β mediates complement C1q-triggered orofacial mechanical allodynia. Neurosci Res 2023; 188:68-74. [PMID: 36334640 DOI: 10.1016/j.neures.2022.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Glial cells, such as microglia and astrocytes, in the trigeminal spinal subnucleus caudalis (Vc) are activated after trigeminal nerve injury and interact with Vc neurons to contribute to orofacial neuropathic pain. Complement C1q released from microglia has been reported to activate astrocytes and causes orofacial mechanical allodynia. However, how C1q-induced phenotypic alterations in Vc astrocytes are involved in orofacial pain remains to be elucidated. Intracisternal administration of C1q caused mechanical allodynia in the whisker pad skin and concurrent significant upregulation of glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1 in the Vc. Immunohistochemical analyses clarified that C1q induces a significant increase in the cytokine interleukin (IL)-1β, predominantly in Vc astrocytes and partially in Vc microglia. The number of c-Fos-positive neurons in the Vc increased significantly in response to C1q. IL-1 receptor antagonist (IL-1Ra) was used to analyze the involvement of IL-1β in C1q-induced mechanical allodynia. Intracisternal administration of IL-1Ra ameliorated C1q-induced orofacial mechanical allodynia. The present findings suggest that IL-1β released from activated astrocytes and microglia in the Vc mediates C1q-induced orofacial pain.
Collapse
|
32
|
Xian S, Chen L, Yan Y, Chen J, Yu G, Shao Y, Zhan B, Wang Y, Zhao L. Echinococcus multilocularis Calreticulin Interferes with C1q-Mediated Complement Activation. Trop Med Infect Dis 2023; 8:tropicalmed8010047. [PMID: 36668954 PMCID: PMC9864966 DOI: 10.3390/tropicalmed8010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
As a zoonotic disease caused by Echinococcus multilocularis larvae, alveolar echinococcosis (AE) is one of the most severe forms of parasitic infection. Over a long evolutional process E. multilocularis has developed complex strategies to escape host immune attack and survive within a host. However, the mechanisms underlying immune evasion remain unclear. Here we investigated the binding activity of E. multilocularis calreticulin (EmCRT), a highly conserved Ca2+-binding protein, to human complement C1q and its ability to inhibit classical complement activation. ELISA, Far Western blotting and immunoprecipitation results demonstrated that both recombinant and natural EmCRTs bound to human C1q, and the interaction of recombinant EmCRT (rEmCRT) inhibited C1q binding to IgM. Consequently, rEmCRT inhibited classical complement activation manifested as decreasing C4/C3 depositions and antibody-sensitized cell lysis. Moreover, rEmCRT binding to C1q suppressed C1q binding to human mast cell, HMC-1, resulting in reduced C1q-induced mast cell chemotaxis. According to these results, E. multilocularis expresses EmCRT to interfere with C1q-mediated complement activation and C1q-dependent non-complement activation of immune cells, possibly as an immune evasion strategy of the parasite in the host.
Collapse
Affiliation(s)
- Siqi Xian
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou 014040, China
| | - Lujuan Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou 014040, China
| | - Yan Yan
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou 014040, China
| | - Jianfang Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou 014040, China
| | - Guixia Yu
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou 014040, China
| | - Yuxiao Shao
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou 014040, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanhai Wang
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (Y.W.); (L.Z.)
| | - Limei Zhao
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou 014040, China
- Correspondence: (Y.W.); (L.Z.)
| |
Collapse
|
33
|
RAGE Inhibitors for Targeted Therapy of Cancer: A Comprehensive Review. Int J Mol Sci 2022; 24:ijms24010266. [PMID: 36613714 PMCID: PMC9820344 DOI: 10.3390/ijms24010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin family that is overexpressed in several cancers. RAGE is highly expressed in the lung, and its expression increases proportionally at the site of inflammation. This receptor can bind a variety of ligands, including advanced glycation end products, high mobility group box 1, S100 proteins, adhesion molecules, complement components, advanced lipoxidation end products, lipopolysaccharides, and other molecules that mediate cellular responses related to acute and chronic inflammation. RAGE serves as an important node for the initiation and stimulation of cell stress and growth signaling mechanisms that promote carcinogenesis, tumor propagation, and metastatic potential. In this review, we discuss different aspects of RAGE and its prominent ligands implicated in cancer pathogenesis and describe current findings that provide insights into the significant role played by RAGE in cancer. Cancer development can be hindered by inhibiting the interaction of RAGE with its ligands, and this could provide an effective strategy for cancer treatment.
Collapse
|
34
|
Cole CC, Misiura M, Hulgan SAH, Peterson CM, Williams JW, Kolomeisky AB, Hartgerink JD. Cation-π Interactions and Their Role in Assembling Collagen Triple Helices. Biomacromolecules 2022; 23:4645-4654. [PMID: 36239387 DOI: 10.1021/acs.biomac.2c00856] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cation-π interactions play a significant role in the stabilization of globular proteins. However, their role in collagen triple helices is less well understood and they have rarely been used in de novo designed collagen mimetic systems. In this study, we analyze the stabilizing and destabilizing effects in pairwise amino acid interactions between cationic and aromatic residues in both axial and lateral sequential relationships. Thermal unfolding experiments demonstrated that only axial pairs are stabilizing, while the lateral pairs are uniformly destabilizing. Molecular dynamics simulations show that pairs with an axial relationship can achieve a near-ideal interaction distance, but pairs in a lateral relationship do not. Arginine-π systems were found to be more stabilizing than lysine-π and histidine-π. Arginine-π interactions were then studied in more chemically diverse ABC-type heterotrimeric helices, where arginine-tyrosine pairs were found to form the best helix. This work helps elucidate the role of cation-π interactions in triple helices and illustrates their utility in designing collagen mimetic peptides.
Collapse
Affiliation(s)
- Carson C Cole
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Mikita Misiura
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Sarah A H Hulgan
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Caroline M Peterson
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Joseph W Williams
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey D Hartgerink
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
35
|
Arnold JN, Mitchell DA. Tinker, tailor, soldier, cell: the role of C-type lectins in the defense and promotion of disease. Protein Cell 2022; 14:4-16. [PMID: 36726757 PMCID: PMC9871964 DOI: 10.1093/procel/pwac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
C-type lectins (CTLs) represent a large family of soluble and membrane-bound proteins which bind calcium dependently via carbohydrate recognition domains (CRDs) to glycan residues presented on the surface of a variety of pathogens. The deconvolution of a cell's glycan code by CTLs underpins several important physiological processes in mammals such as pathogen neutralization and opsonization, leukocyte trafficking, and the inflammatory response. However, as our knowledge of CTLs has developed it has become apparent that the role of this innate immune family of proteins can be double-edged, where some pathogens have developed approaches to subvert and exploit CTL interactions to promote infection and sustain the pathological state. Equally, CTL interactions with host glycoproteins can contribute to inflammatory diseases such as arthritis and cancer whereby, in certain contexts, they exacerbate inflammation and drive malignant progression. This review discusses the 'dual agent' roles of some of the major mammalian CTLs in both resolving and promoting infection, inflammation and inflammatory disease and highlights opportunities and emerging approaches for their therapeutic modulation.
Collapse
|
36
|
Wang Z, Wu X, Yan T, Liu M, Yu W, Du Q, Hu W, Zheng Y, Zhang Z, Wang K, Dong X. Elevated Plasma Complement C1q Levels Contribute to a Poor Prognosis After Acute Primary Intracerebral Hemorrhage: A Prospective Cohort Study. Front Immunol 2022; 13:920754. [PMID: 35812425 PMCID: PMC9259799 DOI: 10.3389/fimmu.2022.920754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The complement cascade is activated early following intracerebral hemorrhage (ICH) and causes acute brain injury. We intended to explore the effects of plasma complement component 1q (C1q) levels on hemorrhagic severity and functional outcome in ICH patients. Methods In this prospective cohort study, we measured the plasma C1q levels of 101 ICH patients and 101 healthy controls. The Glasgow Coma Scale (GCS) score and hematoma volume were used to assess the ICH severity. Poor prognosis was referred to as a Glasgow Outcome Scale (GOS) score of 1-3 at three months following a stroke. A multivariate logistic regression model was configured to determine the independent relation of plasma C1q levels to severity and poor prognosis. Under receiver operating characteristic (ROC) curve, prognostic capability of plasma C1q levels was evaluated. Results There was a significant elevation of plasma C1q levels in patients, as compared to controls [median (percentiles 25th-75th), 225.04 mg/l (156.10-280.15 mg/l) versus 88.18 mg/l (70.12-117.69 mg/l); P<0.001]. Plasma C1q levels of patients were independently related to GCS score (t =-3.281, P=0.001) and hematoma volume (t = 2.401, P=0.018), and were highly correlated with the GOS score at 3 months post-stroke (r=-0.658, P<0.001). Plasma C1q levels were obviously higher in poor prognosis patients than in other remainders (median percentiles 25th-75th), 278.40 mg/l (213.81-340.05 mg/l) versus 174.69 mg/l (141.21-239.93 mg/l); P<0.001). Under the ROC curve, plasma C1q levels significantly discriminated the development of poor prognosis (area under ROC curve 0.795; 95% confidence interval, 0.703–0.869; P<0.001). Using maximum Youden method, plasma C1q levels > 270.11 mg/l distinguished patients at risk of poor prognosis at 3 months with 56.52% sensitivity and 94.55% specificity. Meanwhile, the prognostic predictive ability of plasma C1q levels was equivalent to those of GCS score and hematoma volume (both P>0.05). Moreover, plasma C1q levels > 270.11 mg/l independently predicted a poor prognosis at 3 months (odds ratio, 4.821; 95% confidence interval, 1.211-19.200; P=0.026). Conclusion Plasma C1q levels are closely related to the illness severity and poor prognosis of ICH at 3 months. Hence, complement C1q may play an important role in acute brain injury after ICH and plasma C1q may represent a promising prognostic predictor of ICH.
Collapse
Affiliation(s)
- Zefan Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoyu Wu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tian Yan
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenhua Yu
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quan Du
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Hu
- Department of Intensive Care Unit, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongke Zheng
- Department of Intensive Care Unit, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyong Zhang
- Department of Neurosurgery, Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Keyi Wang
- Central Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqiao Dong
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Xiaoqiao Dong,
| |
Collapse
|
37
|
Freire CA, Silva RM, Ruiz RC, Pimenta DC, Bryant JA, Henderson IR, Barbosa AS, Elias WP. Secreted Autotransporter Toxin (Sat) Mediates Innate Immune System Evasion. Front Immunol 2022; 13:844878. [PMID: 35251044 PMCID: PMC8891578 DOI: 10.3389/fimmu.2022.844878] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Several strategies are used by Escherichia coli to evade the host innate immune system in the blood, such as the cleavage of complement system proteins by secreted proteases. Members of the Serine Proteases Autotransporters of Enterobacteriaceae (SPATE) family have been described as presenting proteolytic effects against complement proteins. Among the SPATE-encoding genes sat (secreted autotransporter toxin) has been detected in high frequencies among strains of E. coli isolated from bacteremia. Sat has been characterized for its cytotoxic action, but the possible immunomodulatory effects of Sat have not been investigated. Therefore, this study aimed to evaluate the proteolytic effects of Sat on complement proteins and the role in pathogenesis of BSI caused by extraintestinal E. coli (ExPEC). E. coli EC071 was selected as a Sat-producing ExPEC strain. Whole-genome sequencing showed that sat sequences of EC071 and uropathogenic E. coli CFT073 present 99% identity. EC071 was shown to be resistant to the bactericidal activity of normal human serum (NHS). Purified native Sat was used in proteolytic assays with proteins of the complement system and, except for C1q, all tested substrates were cleaved by Sat in a dose and time-dependent manner. Moreover, E. coli DH5α survived in NHS pre-incubated with Sat. EC071-derivative strains harboring sat knockout and in trans complementations producing either active or non-active Sat were tested in a murine sepsis model. Lethality was reduced by 50% when mice were inoculated with the sat mutant strain. The complemented strain producing active Sat partially restored the effect caused by the wild-type strain. The results presented in this study show that Sat presents immunomodulatory effects by cleaving several proteins of the three complement system pathways. Therefore, Sat plays an important role in the establishment of bloodstream infections and sepsis.
Collapse
Affiliation(s)
- Claudia A Freire
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Rosa M Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rita C Ruiz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Daniel C Pimenta
- Laboratório de Bioquímica, Instituto Butantan, São Paulo, Brazil
| | - Jack A Bryant
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.,Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Angela S Barbosa
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
38
|
Behairy MY, Abdelrahman ALA, Abdallah HY, Ibrahim EEDA, Sayed AA, Azab MM. In silico analysis of missense variants of the C1qA gene related to infection and autoimmune diseases. J Taibah Univ Med Sci 2022; 17:1074-1082. [PMID: 36212588 PMCID: PMC9519598 DOI: 10.1016/j.jtumed.2022.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/15/2022] Open
Abstract
Objectives C1q is a key activator of the classical pathway of the complement system and exerts consequences relating to opsonization and phagocytosis. The C1qA gene is one of three genes encoding the C1q molecule. Defects in C1q, and especially in C1qA, have been linked to an increased susceptibility to infection, sepsis, and systemic lupus erythematosus. These defects could arise from missense single nucleotide polymorphisms (SNPs) and their deleterious impacts on protein structure and function. Thus, identifying high-risk missense SNPs in C1qA has become a necessity if we are to identify appropriate measures for prevention and management of affected patients. Methods A comprehensive in silico study was conducted to screen the 184 missense SNPs in the C1qA gene using different tools with different algorithms and approaches. We investigated the impact of SNPs on protein function, stability, and structure. In addition, we identified the location of the SNPs on protein domains, secondary structure alignment, and the phylogenetic conservation of their positions. Results Of the 184 missense SNPs, 10 SNPs were predicted to be the most damaging to protein function and structure. Conclusion Ten missense SNPs were predicted to have the highest risk of damaging protein function and structure, thus leading to infection, sepsis, and systemic lupus erythematosus. These 10 SNPs constitute the best candidates for further experimental investigations.
Collapse
|
39
|
Kleer JS, Rabatscher PA, Weiss J, Leonardi J, Vogt SB, Kieninger-Gräfitsch A, Chizzolini C, Huynh-Do U, Ribi C, Trendelenburg M. Epitope-Specific Anti-C1q Autoantibodies in Systemic Lupus Erythematosus. Front Immunol 2022; 12:761395. [PMID: 35087514 PMCID: PMC8788646 DOI: 10.3389/fimmu.2021.761395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Objective In patients with systemic lupus erythematosus (SLE) complement C1q is frequently targeted by autoantibodies (anti-C1q), that correlate best with active renal disease. Anti-C1q bind to largely unknown epitopes on the collagen-like region (CLR) of this highly functional molecule. Here we aimed at exploring the role of epitope-specific anti-C1q in SLE patients. Methods First, 22 sera of SLE patients, healthy controls and anti-C1q positive patients without SLE were screened for anti-C1q epitopes by a PEPperMAP® microarray, expressing CLR of C1q derived peptides with one amino acid (AA) shift in different lengths and conformations. Afterwards, samples of 378 SLE patients and 100 healthy blood donors were analyzed for antibodies against the identified epitopes by peptide-based ELISA. Relationships between peptide-specific autoantibodies and SLE disease manifestations were explored by logistic regression models. Results The epitope mapping showed increased IgG binding to three peptides of the C1q A- and three of the C1q B-chain. In subsequent peptide-based ELISAs, SLE sera showed significantly higher binding to two N-terminally located C1q A-chain peptides than controls (p < 0.0001), but not to the other peptides. While anti-C1q were associated with a broad spectrum of disease manifestations, some of the peptide-antibodies were associated with selected disease manifestations, and antibodies against the N-terminal C1q A-chain showed a stronger discrimination between SLE and controls than conventional anti-C1q. Conclusion In this large explorative study anti-C1q correlate with SLE overall disease activity. In contrast, peptide-antibodies are associated with specific aspects of the disease suggesting epitope-specific effects of anti-C1q in patients with SLE.
Collapse
Affiliation(s)
- Jessica S Kleer
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Division of Internal Medicine, University Hospital, Basel, Switzerland
| | - Pascal A Rabatscher
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jessica Weiss
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Joel Leonardi
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Division of Internal Medicine, University Hospital, Basel, Switzerland
| | - Severin B Vogt
- Department of Clinical Pharmacology and Toxicology, University Hospital, Basel, Switzerland
| | | | - Carlo Chizzolini
- Department of Pathology and Immunology, University Hospital, Geneva, Switzerland
| | - Uyen Huynh-Do
- Department of Nephrology and Hypertension, University Hospital, Bern, Switzerland
| | - Camillo Ribi
- Division of Immunology and Allergy, Department of Internal Medicine, University Hospital, Lausanne, Switzerland
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Division of Internal Medicine, University Hospital, Basel, Switzerland
| |
Collapse
|
40
|
Madeshiya AK, Whitehead C, Tripathi A, Pillai A. C1q deletion exacerbates stress-induced learned helplessness behavior and induces neuroinflammation in mice. Transl Psychiatry 2022; 12:50. [PMID: 35105860 PMCID: PMC8807734 DOI: 10.1038/s41398-022-01794-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/10/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Increased levels of pro-inflammatory cytokines have been reported in postmortem brain samples and in the blood of depressed subjects. However, the inflammatory pathways that lead to depressive-like symptoms are not well understood. Using the learned helplessness (LH) model of depression, we examined the role of C1q, the initiator of classical complement pathway in mediating stress-induced depressive-like behavior in mice. We observed no significant changes in social behavior, despair behavior, spatial memory, and aggressive behavior between the wild type (WT) and C1q knockout (KO) mice. However, C1q deletion exacerbated the inescapable electric foot shock-induced learned helplessness behavior in mice. We found significant reductions in C1q mRNA levels in the prefrontal cortex (PFC) of WT helpless mice as compared to the naïve mice. Increased levels of pro-inflammatory cytokines were found in the PFC of C1q KO mice. These findings suggest that classical complement pathway-mediated learned helplessness behavior is accompanied by neuroinflammatory changes under stressful conditions.
Collapse
Affiliation(s)
- Amit Kumar Madeshiya
- grid.267308.80000 0000 9206 2401Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX USA ,grid.410427.40000 0001 2284 9329Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Carl Whitehead
- grid.410427.40000 0001 2284 9329Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA USA ,grid.413830.d0000 0004 0419 3970Research and Development, Charlie Norwood VA Medical Center, Augusta, GA USA
| | - Ashutosh Tripathi
- grid.267308.80000 0000 9206 2401Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX USA ,grid.410427.40000 0001 2284 9329Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Anilkumar Pillai
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA. .,Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA, USA. .,Research and Development, Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
41
|
Helou DG, Shafiei-Jahani P, Hurrell BP, Painter JD, Quach C, Howard E, Akbari O. LAIR-1 acts as an immune checkpoint on activated ILC2s and regulates the induction of airway hyperreactivity. J Allergy Clin Immunol 2022; 149:223-236.e6. [PMID: 34144112 PMCID: PMC8674385 DOI: 10.1016/j.jaci.2021.05.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Type 2 innate lymphoid cells (ILC2s) are relevant players in type 2 asthma. They initiate eosinophil infiltration and airway hyperreactivity (AHR) through cytokine secretion. Leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) is an inhibitory receptor considered to be an immune checkpoint in different inflammatory diseases. OBJECTIVE Our aim here was to investigate the expression of LAIR-1 and assess its role in human and murine ILC2s. METHODS Wild-type and LAIR-1 knockout mice were intranasally challenged with IL-33, and pulmonary ILC2s were sorted to perform an ex vivo comparative study based on RNA sequencing and flow cytometry. We next studied the impact of LAIR-1 deficiency on AHR and lung inflammation by using knockout mice and adoptive transfer experiments in Rag2-/-Il2rg-/- mice. Knockdown antisense strategies and humanized mice were used to assess the role of LAIR-1 in human ILC2s. RESULTS We have demonstrated that LAIR-1 is inducible on activated ILC2s and downregulates cytokine secretion and effector function. LAIR-1 signaling in ILC2s was mediated via inhibitory pathways, including SHP1/PI3K/AKT, and LAIR-1 deficiency led to exacerbated ILC2-dependent AHR in IL-33 and Alternaria alternata models. In adoptive transfer experiments, we confirmed the LAIR-1-mediated regulation of ILC2s in vivo. Interestingly, LAIR-1 was expressed and inducible in human ILC2s, and knockdown approaches of Lair1 resulted in higher cytokine production. Finally, engagement of LAIR-1 by physiologic ligand C1q significantly reduced ILC2-dependent AHR in a humanized ILC2 murine model. CONCLUSION Our results unravel a novel regulatory axis in ILC2s with the capacity to reduce allergic AHR and lung inflammation.
Collapse
Affiliation(s)
- Doumet Georges Helou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Emily Howard
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif.
| |
Collapse
|
42
|
Hypoxic Processes Induce Complement Activation via Classical Pathway in Porcine Neuroretinas. Cells 2021; 10:cells10123575. [PMID: 34944083 PMCID: PMC8700265 DOI: 10.3390/cells10123575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023] Open
Abstract
Considering the fact that many retinal diseases are yet to be cured, the pathomechanisms of these multifactorial diseases need to be investigated in more detail. Among others, oxidative stress and hypoxia are pathomechanisms that take place in retinal diseases, such as glaucoma, age-related macular degeneration, or diabetic retinopathy. In consideration of these diseases, it is also evidenced that the immune system, including the complement system and its activation, plays an important role. Suitable models to investigate neuroretinal diseases are organ cultures of porcine retina. Based on an established model, the role of the complement system was studied after the induction of oxidative stress or hypoxia. Both stressors led to a loss of retinal ganglion cells (RGCs) accompanied by apoptosis. Hypoxia activated the complement system as noted by higher C3+ and MAC+ cell numbers. In this model, activation of the complement cascade occurred via the classical pathway and the number of C1q+ microglia was increased. In oxidative stressed retinas, the complement system had no consideration, but strong inflammation took place, with elevated TNF, IL6, and IL8 mRNA expression levels. Together, this study shows that hypoxia and oxidative stress induce different mechanisms in the porcine retina inducing either the immune response or an inflammation. Our findings support the thesis that the immune system is involved in the development of retinal diseases. Furthermore, this study is evidence that both approaches seem suitable models to investigate undergoing pathomechanisms of several neuroretinal diseases.
Collapse
|
43
|
Gao Z, Zhang C, Feng Z, Liu Z, Yang Y, Yang K, Chen L, Yao R. C1q inhibits differentiation of oligodendrocyte progenitor cells via Wnt/β-catenin signaling activation in a cuprizone-induced mouse model of multiple sclerosis. Exp Neurol 2021; 348:113947. [PMID: 34902359 DOI: 10.1016/j.expneurol.2021.113947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a chronic central nervous system demyelinating disease of autoimmune originate. Complement C1q, a complex glycoprotein, mediates a variety of immunoregulatory functions considered important in the prevention of autoimmunity. Although we found that the increased serum C1q level was highly associated with the Fazekas scores and T2 lesion volume of MS patients, the effect and mechanism of C1q on demyelination remains unclear. Cluster analysis and protein array results showed that serum Wnt receptors Frizzled-6 and LRP-6 levels in MS patients were both increased, we proposed that C1q may be involved in demyelination via Wnt signaling. The increased C1q protein levels in the serum and brain tissue were confirmed in a cuprizone (CPZ)-induced demyelination mice model. Moreover, CPZ treatment induced significant increase of LRP-6 and Frizzled-6 protein in mice corpus callosum. LRP-6 extra-cellular domain (LRP-6-ECD) level in the serum and cerebrospinal fluid (CSF) of CPZ mice also significantly increased. Knockdown of the subunit C1s of C1 not only substantially attenuated demyelination, promoted M2 microglia polarization and improved neurological function, but inhibited β-catenin expression and its nuclear translocation in oligodendrocyte progenitor cells (OPCs). In vitro, C1s silence reversed the increased level of LRP-6-ECD in the medium and β-catenin expression in OPCs induced by C1q treatment. Meanwhile, inhibition of C1s also markedly lowered the number of EDU positive OPCs, but enhanced the number of CNPase positive oligodendrocyte and the protein of MBP. The present study indicated that C1q was involved in demyelination in response to CPZ in mice by preventing OPC from differentiating into mature oligodendrocyte via Wnt/β-catenin signaling activation.
Collapse
Affiliation(s)
- Zixuan Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Chu Zhang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Zhaowei Feng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Ziqi Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Yaru Yang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Kexin Yang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Lei Chen
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221009, PR China.
| |
Collapse
|
44
|
Complement as a powerful "influencer" in the brain during development, adulthood and neurological disorders. Adv Immunol 2021; 152:157-222. [PMID: 34844709 DOI: 10.1016/bs.ai.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complement system was long considered as only a powerful effector arm of the immune system that, while critically protective, could lead to inflammation and cell death if overactivated, even in the central nervous system (CNS). However, in the past decade it has been recognized as playing critical roles in key physiological processes in the CNS, including neurogenesis and synaptic remodeling in the developing and adult brain. Inherent in these processes are the interactions with cells in the brain, and the cascade of interactions and functional consequences that ensue. As a result, investigations of therapeutic approaches for both suppressing excessive complement driven neurotoxicity and aberrant sculpting of neuronal circuits, require broad (and deep) knowledge of the functional activities of multiple components of this highly evolved and regulated system to avoid unintended negative consequences in the clinic. Advances in basic science are beginning to provide a roadmap for translation to therapeutics, with both small molecule and biologics. Here, we present examples of the critical roles of proper complement function in the development and sculpting of the nervous system, and in enabling rapid protection from infection and clearance of dying cells. Microglia are highlighted as important command centers that integrate signals from the complement system and other innate sensors that are programed to provide support and protection, but that direct detrimental responses to aberrant activation and/or regulation of the system. Finally, we present promising research areas that may lead to effective and precision strategies for complement targeted interventions to promote neurological health.
Collapse
|
45
|
Dahmani M, Cook JH, Zhu JC, Riley SP. Contribution of classical complement activation and IgM to the control of Rickettsia infection. Mol Microbiol 2021; 116:1476-1488. [PMID: 34725868 PMCID: PMC8955150 DOI: 10.1111/mmi.14839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Pathogenic Rickettsia are obligate intracellular bacteria and the etiologic agents of many life‐threatening infectious diseases. Due to the serious nature of these infections, it is imperative to both identify the responsive immune sensory pathways and understand the associated immune mechanisms that restrict Rickettsia proliferation. Previous studies have demonstrated that the mammalian complement system is both activated during Rickettsia infection and contributes to the immune response to infection. To further define this component of the mammalian anti‐Rickettsia immune response, we sought to identify the mechanism(s) of complement activation during Rickettsia infection. We have employed a series of in vitro and in vivo models of infection to investigate the role of the classical complement activation pathway during Rickettsia infection. Depletion or elimination of complement activity demonstrates that both C1q and pre‐existing IgM contribute to complement activation; thus implicating the classical complement system in Rickettsia‐mediated complement activation. Elimination of the classical complement pathway from mice increases susceptibility to R. australis infection with both increased bacterial loads in multiple tissues and decreased immune activation markers. This study highlights the role of the classical complement pathway in immunity against Rickettsia and implicates resident Rickettsia‐responsive IgM in the response to infection.
Collapse
Affiliation(s)
- Mustapha Dahmani
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| | - Jack H Cook
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| | - Jinyi C Zhu
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| | - Sean P Riley
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
46
|
Eni-Aganga I, Lanaghan ZM, Balasubramaniam M, Dash C, Pandhare J. PROLIDASE: A Review from Discovery to its Role in Health and Disease. Front Mol Biosci 2021; 8:723003. [PMID: 34532344 PMCID: PMC8438212 DOI: 10.3389/fmolb.2021.723003] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Prolidase (peptidase D), encoded by the PEPD gene, is a ubiquitously expressed cytosolic metalloproteinase, the only enzyme capable of cleaving imidodipeptides containing C-terminal proline or hydroxyproline. Prolidase catalyzes the rate-limiting step during collagen recycling and is essential in protein metabolism, collagen turnover, and matrix remodeling. Prolidase, therefore plays a crucial role in several physiological processes such as wound healing, inflammation, angiogenesis, cell proliferation, and carcinogenesis. Accordingly, mutations leading to loss of prolidase catalytic activity result in prolidase deficiency a rare autosomal recessive metabolic disorder characterized by defective wound healing. In addition, alterations in prolidase enzyme activity have been documented in numerous pathological conditions, making prolidase a useful biochemical marker to measure disease severity. Furthermore, recent studies underscore the importance of a non-enzymatic role of prolidase in cell regulation and infectious disease. This review aims to provide comprehensive information on prolidase, from its discovery to its role in health and disease, while addressing the current knowledge gaps.
Collapse
Affiliation(s)
- Ireti Eni-Aganga
- Center for AIDS Health Disparities Research, Nashville, TN, United States
- School of Graduate Studies and Research, Nashville, TN, United States
- Department of Microbiology, Immunology and Physiology, Nashville, TN, United States
| | - Zeljka Miletic Lanaghan
- Center for AIDS Health Disparities Research, Nashville, TN, United States
- Pharmacology Graduate Program, Vanderbilt University, Nashville, TN, United States
| | - Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Nashville, TN, United States
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, United States
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Nashville, TN, United States
- School of Graduate Studies and Research, Nashville, TN, United States
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, United States
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Nashville, TN, United States
- School of Graduate Studies and Research, Nashville, TN, United States
- Department of Microbiology, Immunology and Physiology, Nashville, TN, United States
| |
Collapse
|
47
|
Senent Y, Ajona D, González-Martín A, Pio R, Tavira B. The Complement System in Ovarian Cancer: An Underexplored Old Path. Cancers (Basel) 2021; 13:3806. [PMID: 34359708 PMCID: PMC8345190 DOI: 10.3390/cancers13153806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecological cancers. Current therapeutic strategies allow temporary control of the disease, but most patients develop resistance to treatment. Moreover, although successful in a range of solid tumors, immunotherapy has yielded only modest results in ovarian cancer. Emerging evidence underscores the relevance of the components of innate and adaptive immunity in ovarian cancer progression and response to treatment. Particularly, over the last decade, the complement system, a pillar of innate immunity, has emerged as a major regulator of the tumor microenvironment in cancer immunity. Tumor-associated complement activation may support chronic inflammation, promote an immunosuppressive microenvironment, induce angiogenesis, and activate cancer-related signaling pathways. Recent insights suggest an important role of complement effectors, such as C1q or anaphylatoxins C3a and C5a, and their receptors C3aR and C5aR1 in ovarian cancer progression. Nevertheless, the implication of these factors in different clinical contexts is still poorly understood. Detailed knowledge of the interplay between ovarian cancer cells and complement is required to develop new immunotherapy combinations and biomarkers. In this context, we discuss the possibility of targeting complement to overcome some of the hurdles encountered in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yaiza Senent
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
| | - Daniel Ajona
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Antonio González-Martín
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Oncology, Clinica Universidad de Navarra, 28027 Madrid, Spain
| | - Ruben Pio
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Beatriz Tavira
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
48
|
Trendelenburg M. Autoantibodies against complement component C1q in systemic lupus erythematosus. Clin Transl Immunology 2021; 10:e1279. [PMID: 33968409 PMCID: PMC8082710 DOI: 10.1002/cti2.1279] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is the archetype of a systemic autoimmune disease, but the multifaceted pathogenic mechanisms leading to inflammation and organ damage are not fully understood. Homozygous deficiency of complement C1q, the first component of the classical pathway of complement, is strongly associated with the development of SLE, thus pointing at a primarily protective role of C1q. However, while most SLE patients do not have hereditary C1q deficiency, there is indirect evidence for the importance of C1q in the inflammatory processes of the disease, including hypocomplementemia as a result of activation via the classical pathway, deposition of C1q in affected tissues and the occurrence of autoantibodies against C1q (anti‐C1q). The growing body of knowledge on anti‐C1q led to the establishment of a biomarker that is used in the routine clinical care of SLE patients. Exploring the binding characteristics of anti‐C1q allows to understand the mechanisms, that lead to the expression of relevant autoantigenic structures and the role of genetic as well as environmental factors. Lastly, the analysis of the pathophysiological consequences of anti‐C1q is of importance because C1q, the target of anti‐C1q, is a highly functional molecule whose downstream effects are altered by the binding of the autoantibody. This review summarises current study data on anti‐C1q and their implications for the understanding of SLE.
Collapse
Affiliation(s)
- Marten Trendelenburg
- Division of Internal Medicine University Hospital Basel Basel Switzerland.,Clinical Immunology Department of Biomedicine University of Basel Basel Switzerland
| |
Collapse
|
49
|
Bally I, Ancelet S, Reiser JB, Rossi V, Gaboriaud C, Thielens NM. Functional recombinant human complement C1q with different affinity tags. J Immunol Methods 2021; 492:113001. [PMID: 33621564 DOI: 10.1016/j.jim.2021.113001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/24/2022]
Abstract
Complement C1q is a multifunctional protein able to sense pathogens and immune molecules such as immunoglobulins and pentraxins, and to trigger the classical complement pathway through activation of its two associated proteases, C1r and C1s. C1q is a multimeric protein composed of three homologous yet distinct polypeptide chains A, B, and C, each composed of an N-terminal collagen-like sequence and a C-terminal globular gC1q module, that assemble into six heterotrimeric (A-B-C) subunits. This hexameric structure exhibits the characteristic shape of a bouquet of flowers, comprising six collagen-like triple helices, each terminating in a trimeric C-terminal globular head. We have produced previously functional recombinant full-length C1q in stably transfected HEK 293-F cells, with a FLAG tag inserted at the C-terminal end of C1qC chain. We report here the generation of additional recombinant C1q proteins, with a FLAG tag fused to the C-terminus of C1qA or C1qB chains, or to the N-terminus of the C1qC chain. Two other variants harboring a Myc or a 6-His tag at the C-terminal end of C1qC were also produced. We show that all C1q variants, except for the His-tagged protein, can be produced at comparable yields and are able to bind with similar affinities to either IgM, a ligand of the globular regions, or to the C1r2-C1s2 tetramer, and to trigger IgM-mediated serum complement activation. These new recombinant C1q variants provide additional tools to investigate the multiple functions of C1q.
Collapse
Affiliation(s)
- Isabelle Bally
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Sarah Ancelet
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | - Véronique Rossi
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | | |
Collapse
|
50
|
The influence of shape and charge on protein corona composition in common gold nanostructures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111270. [DOI: 10.1016/j.msec.2020.111270] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/17/2020] [Accepted: 07/04/2020] [Indexed: 11/22/2022]
|