1
|
Dent AL. Regulation of the IgE response by T follicular regulatory cells. Allergol Int 2025; 74:20-24. [PMID: 39232918 DOI: 10.1016/j.alit.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 09/06/2024] Open
Abstract
Allergen-specific IgE is a major mediator of allergic responses and contributes greatly to allergic disease in the human population. Therapies that inhibit the production of IgE would be useful for lessening the burden of allergic disease. A great deal of research has focused on how IgE responses are regulated, and several factors that promote the production of allergic IgE have been characterized. T follicular helper (TFH) cells expressing IL-4 are required for the development of IgE expressing B cells in the germinal center (GC). Ig somatic hypermutation and B cell selection in the GC leads to the development of high affinity allergen-specific IgE that promotes anaphylaxis, a severe form of allergic response. T follicular regulatory (TFR) cells are also found in the GC response and act with TFH cells in the selection of high affinity IgE + B cells. This review examines the current literature on IgE responses and TFR cells. In mouse studies, TFR cells have a suppressive role on IgE responses in allergic airway disease, however TFR cells also play a helper role in the IgE response in food allergy. In human studies, TFR cells correlate with a decreased allergic response but evidence for a direct suppressive role of TFR cells on IgE in vivo is lacking. TFR cells may represent a new target for allergy therapies, but caution must be exercised to promote the suppressor activity of TFR cells and not the helper activity of TFR cells on IgE responses.
Collapse
Affiliation(s)
- Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 W. Walnut St., R2 302 Indianapolis, IN 46202, USA.
| |
Collapse
|
2
|
Li Q, Marcoux G, Hu Y, Rebetz J, Guo L, Semple E, Provan D, Xu S, Hou M, Peng J, Semple JW. Autoimmune effector mechanisms associated with a defective immunosuppressive axis in immune thrombocytopenia (ITP). Autoimmun Rev 2024; 23:103677. [PMID: 39515406 DOI: 10.1016/j.autrev.2024.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by an isolated thrombocytopenia and variable phenotype as some patients suffer no bleeding whilst others have bleeding from mild to severe, which may be fatal. This variability probably reflects the disease's complex pathophysiology; a dysregulated hyperreactive immune effector cell response involving the entire adaptive immune system (e.g. B and T cell subsets) that leads to platelet and megakaryocyte (MK) destruction. It appears that these effector responses are due to a breakdown in immune tolerance, and this is characterized by defects in several immunosuppressive cell types. These include defective T regulatory cells (Tregs), B regulatory cells (Bregs) and Myeloid-derived suppressor cells (MDSC), all of which are all intimately associated with antigen presenting cells (APC) such as dendritic cells (DC). The loss of this immunosuppressive axis allows for the activation of unchecked autoreactive T cells and B cells, leading to the development of autoantibodies and cytotoxic T cells (CTL), which can directly destroy platelets in the periphery and inhibit MK platelet production in the bone marrow (BM). This review will focus on the effector cell mechanisms in ITP and highlight the defective immunosuppressive axis that appears responsible for this platelet-specific immune hyperreactivity.
Collapse
Affiliation(s)
- Qizhao Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Geneviève Marcoux
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Yuefen Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Johan Rebetz
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Li Guo
- Bloodworks Northwest Research Institute, Seattle, USA; Division of Hematology and Oncology, University of Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | | | - Drew Provan
- Department of Haematology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Shuqian Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden; Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden; Departments of Pharmacology, Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Chen Q, Abdi AM, Luo W, Yuan X, Dent AL. T follicular regulatory cells in food allergy promote IgE via IL-4. JCI Insight 2024; 9:e171241. [PMID: 39377224 PMCID: PMC11466180 DOI: 10.1172/jci.insight.171241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/21/2024] [Indexed: 10/09/2024] Open
Abstract
T follicular regulatory (TFR) cells are found in the germinal center (GC) response and, along with T follicular helper (TFH) cells, help to control the development of high-affinity antibodies (Ab). Although TFR cells are generally thought to repress GC B cells and the Ab response, we have previously shown that in a mouse food allergy model, TFR cells produce IL-10 and play an essential helper role such that in the absence of TFR cells, IgE responses are diminished. Here we show that in this food allergy response, TFR cells produced IL-4 that promotes the generation of antigen-specific IgE. We show that food allergy-primed TFR cells specifically upregulate IL-4 gene transcription and produce functional IL-4 that promoted IgE responses both in vitro and in vivo. We determined that IgE responses are dependent on a high level of IL-4 produced by follicular T cells in the GC, explaining the need for IL-4 produced by TFR cells in the food allergy response. Overall, our findings have demonstrated that in food allergy, TFR cells can produce IL-4 and regulate IgE in a manner that augments the role of TFH cells in IgE responses.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Microbiology and Immunology and
| | | | - Wei Luo
- Department of Microbiology and Immunology and
| | - Xue Yuan
- Department of Otolaryngology – Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
4
|
Baert L, Mahmudul HM, Stegall M, Joo H, Oh S. B Cell-mediated Immune Regulation and the Quest for Transplantation Tolerance. Transplantation 2024; 108:2021-2033. [PMID: 38389135 DOI: 10.1097/tp.0000000000004948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Pathophysiologic function of B cells in graft rejection has been well recognized in transplantation. B cells promote alloantigen-specific T-cell response and secrete antibodies that can cause antibody-mediated graft failures and rejections. Therefore, strategies targeting B cells, for example, B-cell depletion, have been used for the prevention of both acute and chronic rejections. Interestingly, however, recent mounting evidence indicates that subsets of B cells yet to be further identified can display potent immune regulatory functions, and they contribute to transplantation tolerance and operational tolerance in both experimental and clinical settings, respectively. In this review, we integrate currently available information on B-cell subsets, including T-cell Ig domain and mucin domain 1-positive transitional and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive memory B cells, displaying immune regulatory functions, with a focus on transplantation tolerance, by analyzing their mechanisms of action. In addition, we will discuss potential T-cell Ig domain and mucin domain 1-positive and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive B cell-based strategies for the enhancement of operational tolerance in transplantation patients.
Collapse
Affiliation(s)
- Laurie Baert
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | | | - Mark Stegall
- Department of Surgery, William J. von Liebig Transplant Center, Mayo Clinic, Rochester, MN
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| |
Collapse
|
5
|
Seong H, Yoon JG, Nham E, Choi YJ, Noh JY, Cheong HJ, Kim WJ, Kim EH, Kim C, Han YH, Lim S, Song JY. The gut microbiota modifies antibody durability and booster responses after SARS-CoV-2 vaccination. J Transl Med 2024; 22:827. [PMID: 39242525 PMCID: PMC11380214 DOI: 10.1186/s12967-024-05637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are pivotal in combating coronavirus disease 2019 (COVID-19); however, the declining antibody titers postvaccination pose challenges for sustained protection and herd immunity. Although gut microbiome is reported to affect the early antibody response after vaccination, its impact on the longevity of vaccine-induced antibodies remains unexplored. METHODS A prospective cohort study was conducted involving 44 healthy adults who received two doses of either the BNT162b2 or ChAdOx1 vaccine, followed by a BNT162b2 booster at six months. The gut microbiome was serially analyzed using 16S rRNA and shotgun sequencing, while humoral immune response was assessed using a SARS-CoV-2 spike protein immunoassay. RESULTS Faecalibacterium prausnitzii was associated with robust and persistent antibody responses post-BNT162b2 vaccination. In comparison, Escherichia coli was associated with a slower antibody decay following ChAdOx1 vaccination. The booster immune response was correlated with metabolic pathways involving cellular functions and aromatic amino acid synthesis. CONCLUSIONS The findings of this study underscored the potential interaction between the gut microbiome and the longevity/boosting effect of antibodies following vaccination against SARS-CoV-2. The identification of specific microbial associations suggests the prospect of microbiome-based strategies for enhancing vaccine efficacy.
Collapse
Affiliation(s)
- Hye Seong
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Jin Gu Yoon
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Eliel Nham
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Yu Jung Choi
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Ji Yun Noh
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Hee Jin Cheong
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Woo Joo Kim
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Eui Ho Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Chulwoo Kim
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Young-Hee Han
- Department of Food and Nutrition, Chungbuk National University, Cheongju, Republic of Korea
| | - Sooyeon Lim
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea.
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea.
| | - Joon Young Song
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea.
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea.
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Meng Q, Ma J, Cui J, Gu Y, Shan Y. Subpopulation dynamics of T and B lymphocytes in Sjögren's syndrome: implications for disease activity and treatment. Front Immunol 2024; 15:1468469. [PMID: 39290700 PMCID: PMC11405198 DOI: 10.3389/fimmu.2024.1468469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disorder primarily affecting the body's exocrine glands, particularly the salivary and lacrimal glands, which lead to severe symptoms of dry eyes and mouth. The pathogenesis of SS involves the production of autoantibodies by activated immune cells, and secretion of multiple cytokines, which collectively lead to tissue damage and functional impairment. In SS, the Immune interaction among T and B cells is particularly significant. Lymphocytic infiltration in the salivary glands is predominantly composed of CD4+ T cells, whose activation cause the death of glandular epithelial cells and subsequent tissue destruction. The excessive activity of T cells contributes significantly to the disease mechanism, with helper T cells (CD4+) differentiating into various subgroups including Th1/Th2, Th17, as well as Treg, each contributing to the pathological process through distinct cytokine secretion. In patients with SS, B cells are excessively activated, leading to substantial production of autoantibodies. These antibodies can attack self-tissues, especially the lacrimal and salivary glands, causing inflammation and tissue damage. Changes in B cell subpopulations in SS patients, such as increases in plasmablasts and plasma cells, correlate positively with serum autoantibody levels and disease progression. Therapies targeting T cells and B cells are extensively researched with the aim of alleviating symptoms and improving the quality of life for patients. Understanding how these cells promote disease development through various mechanisms, and further identifying novel T and B cell subgroups with functional characterization, will facilitate the development of more effective strategies to treat SS.
Collapse
Affiliation(s)
- Qingliang Meng
- Department of Rheumatism, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Junfu Ma
- Department of Rheumatism, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jiakang Cui
- Department of Rheumatism, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yangyi Gu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Yue Y, Ren Y, Lu C, Li P, Zhang G. Epigenetic regulation of human FOXP3+ Tregs: from homeostasis maintenance to pathogen defense. Front Immunol 2024; 15:1444533. [PMID: 39144146 PMCID: PMC11323565 DOI: 10.3389/fimmu.2024.1444533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Regulatory T cells (Tregs), characterized by the expression of Forkhead Box P3 (FOXP3), constitute a distinct subset of T cells crucial for immune regulation. Tregs can exert direct and indirect control over immune homeostasis by releasing inhibitory factors or differentiating into Th-like Treg (Th-Treg), thereby actively contributing to the prevention and treatment of autoimmune diseases. The epigenetic regulation of FOXP3, encompassing DNA methylation, histone modifications, and post-translational modifications, governs the development and optimal suppressive function of Tregs. In addition, Tregs can also possess the ability to maintain homeostasis in diverse microenvironments through non-suppressive mechanisms. In this review, we primarily focus on elucidating the epigenetic regulation of Tregs as well as their multifaceted roles within diverse physiological contexts while looking forward to potential strategies involving augmentation or suppression of Tregs activity for disease management, particularly in light of the ongoing global COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | | | | | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Liu C, Zeng X, Xiong Z, Bahabayi A, Hasimu A, Liu T, Zheng M, Ren L, Alimu X, Lu S. Id1 expression in CD4 T cells promotes differentiation and function of follicular helper T cells and upregulation of related functional molecules. Immunology 2024; 172:408-419. [PMID: 38501859 DOI: 10.1111/imm.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Although the roles of E proteins and inhibitors of DNA-binding (Id) in T follicular helper (TFH) and T follicular regulatory (TFR) cells have been previously reported, direct models demonstrating the impact of multiple E protein members have been lacking. To suppress all E proteins including E2A, HEB and E2-2, we overexpressed Id1 in CD4 cells using a CD4-Id1 mouse model, to observe any changes in TFH and TFR cell differentiation. Our objective was to gain better understanding of the roles that E proteins and Id molecules play in the differentiation of TFH and TFR cells. The CD4-Id1 transgenic (TG) mice that we constructed overexpressed Id1 in CD4 cells, inhibiting E protein function. Our results showed an increase in the proportion and absolute numbers of Treg, TFH and TFR cells in the spleen of TG mice. Additionally, the expression of surface characterisation molecules PD-1 and ICOS was significantly upregulated in TFH and TFR cells. The study also revealed a downregulation of the marginal zone B cell precursor and an increase in the activation and secretion of IgG1 in spleen B cells. Furthermore, the peripheral TFH cells of TG mice enhanced the function of assisting B cells. RNA sequencing results indicated that a variety of TFH-related functional molecules were upregulated in TFH cells of Id1 TG mice. In conclusion, E proteins play a crucial role in regulating TFH/TFR cell differentiation and function and suppressing E protein activity promotes germinal centre humoral immunity, which has important implications for immune regulation and treating related diseases.
Collapse
Affiliation(s)
- Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ziqi Xiong
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ainizati Hasimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Tianci Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Liwei Ren
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiayidan Alimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Songsong Lu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
9
|
Gootjes C, Zwaginga JJ, Roep BO, Nikolic T. Defining Human Regulatory T Cells beyond FOXP3: The Need to Combine Phenotype with Function. Cells 2024; 13:941. [PMID: 38891073 PMCID: PMC11172350 DOI: 10.3390/cells13110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential to maintain immune homeostasis by promoting self-tolerance. Reduced Treg numbers or functionality can lead to a loss of tolerance, increasing the risk of developing autoimmune diseases. An overwhelming variety of human Tregs has been described, based on either specific phenotype, tissue compartment, or pathological condition, yet the bulk of the literature only addresses CD25-positive and CD127-negative cells, coined by naturally occurring Tregs (nTregs), most of which express the transcription factor Forkhead box protein 3 (FOXP3). While the discovery of FOXP3 was seminal to understanding the origin and biology of nTregs, there is evidence in humans that not all T cells expressing FOXP3 are regulatory, and that not all Tregs express FOXP3. Namely, the activation of human T cells induces the transient expression of FOXP3, irrespective of whether they are regulatory or inflammatory effectors, while some induced T cells that may be broadly defined as Tregs (e.g., Tr1 cells) typically lack demethylation and do not express FOXP3. Furthermore, it is unknown whether and how many nTregs exist without FOXP3 expression. Several other candidate regulatory molecules, such as GITR, Lag-3, GARP, GPA33, Helios, and Neuropilin, have been identified but subsequently discarded as Treg-specific markers. Multiparametric analyses have uncovered a plethora of Treg phenotypes, and neither single markers nor combinations thereof can define all and only Tregs. To date, only the functional capacity to inhibit immune responses defines a Treg and distinguishes Tregs from inflammatory T cells (Teffs) in humans. This review revisits current knowledge of the Treg universe with respect to their heterogeneity in phenotype and function. We propose that it is unavoidable to characterize human Tregs by their phenotype in combination with their function, since phenotype alone does not unambiguously define Tregs. There is an unmet need to align the expression of specific markers or combinations thereof with a particular suppressive function to coin functional Treg entities and categorize Treg diversity.
Collapse
Affiliation(s)
- Chelsea Gootjes
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (J.J.Z.); (T.N.)
| | | | | | | |
Collapse
|
10
|
Wang P, Yang X, Zhang L, Sha S, Huang J, Peng J, Gu J, Pearson JA, Hu Y, Zhao H, Wong FS, Wang Q, Wen L. Tlr9 deficiency in B cells leads to obesity by promoting inflammation and gut dysbiosis. Nat Commun 2024; 15:4232. [PMID: 38762479 PMCID: PMC11102548 DOI: 10.1038/s41467-024-48611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
Toll-like receptor 9 (TLR9) recognizes bacterial, viral and self DNA and play an important role in immunity and inflammation. However, the role of TLR9 in obesity is less well-studied. Here, we generate B-cell-specific Tlr9-deficient (Tlr9fl/fl/Cd19Cre+/-, KO) B6 mice and model obesity using a high-fat diet. Compared with control mice, B-cell-specific-Tlr9-deficient mice exhibited increased fat tissue inflammation, weight gain, and impaired glucose and insulin tolerance. Furthermore, the frequencies of IL-10-producing-B cells and marginal zone B cells were reduced, and those of follicular and germinal center B cells were increased. This was associated with increased frequencies of IFNγ-producing-T cells and increased follicular helper cells. In addition, gut microbiota from the KO mice induced a pro-inflammatory state leading to immunological and metabolic dysregulation when transferred to germ-free mice. Using 16 S rRNA gene sequencing, we identify altered gut microbial communities including reduced Lachnospiraceae, which may play a role in altered metabolism in KO mice. We identify an important network involving Tlr9, Irf4 and Il-10 interconnecting metabolic homeostasis, with the function of B and T cells, and gut microbiota in obesity.
Collapse
Affiliation(s)
- Pai Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Xin Yang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Luyao Zhang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Sha Sha
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Juan Huang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jian Peng
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jianlei Gu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - James Alexander Pearson
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Youjia Hu
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - F Susan Wong
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Quan Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
11
|
Lao P, Chen J, Tang L, Zhang J, Chen Y, Fang Y, Fan X. Regulatory T cells in lung disease and transplantation. Biosci Rep 2023; 43:BSR20231331. [PMID: 37795866 PMCID: PMC10611924 DOI: 10.1042/bsr20231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023] Open
Abstract
Pulmonary disease can refer to the disease of the lung itself or the pulmonary manifestations of systemic diseases, which are often connected to the malfunction of the immune system. Regulatory T (Treg) cells have been shown to be important in maintaining immune homeostasis and preventing inflammatory damage, including lung diseases. Given the increasing amount of evidence linking Treg cells to various pulmonary conditions, Treg cells might serve as a therapeutic strategy for the treatment of lung diseases and potentially promote lung transplant tolerance. The most potent and well-defined Treg cells are Foxp3-expressing CD4+ Treg cells, which contribute to the prevention of autoimmune lung diseases and the promotion of lung transplant rejection. The protective mechanisms of Treg cells in lung disease and transplantation involve multiple immune suppression mechanisms. This review summarizes the development, phenotype and function of CD4+Foxp3+ Treg cells. Then, we focus on the therapeutic potential of Treg cells in preventing lung disease and limiting lung transplant rejection. Furthermore, we discussed the possibility of Treg cell utilization in clinical applications. This will provide an overview of current research advances in Treg cells and their relevant application in clinics.
Collapse
Affiliation(s)
- Peizhen Lao
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jingyi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Longqian Tang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jiwen Zhang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuxi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuyin Fang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Xingliang Fan
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| |
Collapse
|
12
|
Abe Y. Follicular lymphoma microenvironment: insights provided by single-cell analysis. J Clin Exp Hematop 2023; 63:143-151. [PMID: 37635086 PMCID: PMC10628831 DOI: 10.3960/jslrt.23012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 08/29/2023] Open
Abstract
Follicular lymphoma (FL) is the most frequent indolent lymphoma and is characterized by the abundant infiltration of tumor microenvironment (TME) cells. The activity of TME cells reportedly plays an important role in the biology of FL. TME cells that reside within neoplastic follicles, such as T-follicular helper cells and follicular dendritic cells, have been shown to aid in FL development and progression through interactions with malignant B cells, whereas regulatory T cells have unexpectedly shown an apparently favorable prognostic impact in FL. Unfortunately, the understanding of the FL TME, particularly regarding minor cell subsets, has been hampered by unknown cell heterogeneity. As with other solid and hematologic cancers, novel single-cell analysis technologies have recently been applied to FL research and have uncovered previously unrecognized heterogeneities, not only in malignant B cells but also in TME cells. These reports have greatly increased the resolution of our understanding of the FL TME and, at the same time, raised questions about newly identified TME cells. This review provides an overview of the unique aspects of FL TME cells with a clinical viewpoint and highlights recent discoveries from single-cell analysis, while also suggesting potential future directions.
Collapse
Affiliation(s)
- Yoshiaki Abe
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
13
|
Zareinejad M, Mehdipour F, Roshan-Zamir M, Faghih Z, Ghaderi A. Dual Functions of T Lymphocytes in Breast Carcinoma: From Immune Protection to Orchestrating Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:4771. [PMID: 37835465 PMCID: PMC10571747 DOI: 10.3390/cancers15194771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) is the most common cancer type in women and the second leading cause of death. Despite recent advances, the mortality rate of BC is still high, highlighting a need to develop new treatment strategies including the modulation of the immune system and immunotherapies. In this regard, understanding the complex function of the involved immune cells and their crosstalk with tumor cells is of great importance. T-cells are recognized as the most important cells in the tumor microenvironment and are divided into several subtypes including helper, cytotoxic, and regulatory T-cells according to their transcription factors, markers, and functions. This article attempts to provide a comprehensive review of the role of T-cell subsets in the prognosis and treatment of patients with BC, and crosstalk between tumor cells and T-cells. The literature overwhelmingly contains controversial findings mainly due to the plasticity of T-cell subsets within the inflammatory conditions and the use of different panels for their phenotyping. However, investigating the role of T-cells in BC immunity depends on a variety of factors including tumor types or subtypes, the stage of the disease, the localization of the cells in the tumor tissue and the presence of different cells or cytokines.
Collapse
Affiliation(s)
| | | | | | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45505, Iran; (M.Z.); (F.M.); (M.R.-Z.)
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45505, Iran; (M.Z.); (F.M.); (M.R.-Z.)
| |
Collapse
|
14
|
Francis ME, Jansen EB, Yourkowski A, Selim A, Swan CL, MacPhee BK, Thivierge B, Buchanan R, Lavender KJ, Darbellay J, Rogers MB, Lew J, Gerdts V, Falzarano D, Skowronski DM, Sjaarda C, Kelvin AA. Previous infection with seasonal coronaviruses does not protect male Syrian hamsters from challenge with SARS-CoV-2. Nat Commun 2023; 14:5990. [PMID: 37752151 PMCID: PMC10522707 DOI: 10.1038/s41467-023-41761-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
SARS-CoV-2 variants and seasonal coronaviruses continue to cause disease and coronaviruses in the animal reservoir pose a constant spillover threat. Importantly, understanding of how previous infection may influence future exposures, especially in the context of seasonal coronaviruses and SARS-CoV-2 variants, is still limited. Here we adopted a step-wise experimental approach to examine the primary immune response and subsequent immune recall toward antigenically distinct coronaviruses using male Syrian hamsters. Hamsters were initially inoculated with seasonal coronaviruses (HCoV-NL63, HCoV-229E, or HCoV-OC43), or SARS-CoV-2 pango B lineage virus, then challenged with SARS-CoV-2 pango B lineage virus, or SARS-CoV-2 variants Beta or Omicron. Although infection with seasonal coronaviruses offered little protection against SARS-CoV-2 challenge, HCoV-NL63-infected animals had an increase of the previously elicited HCoV-NL63-specific neutralizing antibodies during challenge with SARS-CoV-2. On the other hand, primary infection with HCoV-OC43 induced distinct T cell gene signatures. Gene expression profiling indicated interferon responses and germinal center reactions to be induced during more similar primary infection-challenge combinations while signatures of increased inflammation as well as suppression of the antiviral response were observed following antigenically distant viral challenges. This work characterizes and analyzes seasonal coronaviruses effect on SARS-CoV-2 secondary infection and the findings are important for pan-coronavirus vaccine design.
Collapse
Affiliation(s)
- Magen E Francis
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ethan B Jansen
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Yourkowski
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alaa Selim
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cynthia L Swan
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brian K MacPhee
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brittany Thivierge
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rachelle Buchanan
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kerry J Lavender
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph Darbellay
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Matthew B Rogers
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jocelyne Lew
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Danuta M Skowronski
- BC Centre for Disease Control, Immunization Programs and Vaccine Preventable Diseases Service, Vancouver, BC, Canada
- University of British Columbia, School of Population and Public Health, Vancouver, BC, Canada
| | - Calvin Sjaarda
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
- Queen's Genomics Lab at Ongwanada (Q-GLO), Ongwanada Resource Centre, Kingston, ON, Canada
| | - Alyson A Kelvin
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
15
|
Zhuang Y, Li C, Jiang H, Li L, Zhang Y, Yu W, Fu W. Multi-omics investigation of the resistance mechanisms of pomalidomide in multiple myeloma. Front Oncol 2023; 13:1264422. [PMID: 37799465 PMCID: PMC10549987 DOI: 10.3389/fonc.2023.1264422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Background Despite significant therapeutic advances over the last decade, multiple myeloma remains an incurable disease. Pomalidomide is the third Immunomodulatory drug that is commonly used to treat patients with relapsed/refractory multiple myeloma. However, approximately half of the patients exhibit resistance to pomalidomide treatment. While previous studies have identified Cereblon as a primary target of Immunomodulatory drugs' anti-myeloma activity, it is crucial to explore additional mechanisms that are currently less understood. Methods To comprehensively investigate the mechanisms of drug resistance, we conducted integrated proteomic and metabonomic analyses of 12 plasma samples from multiple myeloma patients who had varying responses to pomalidomide. Differentially expressed proteins and metabolites were screened, and were further analyzed using pathway analysis and functional correlation analysis. Also, we estimated the cellular proportions based on ssGSEA algorithm. To investigate the potential role of glycine in modulating the response of MM cells to pomalidomide, cell viability and apoptosis were analyzed. Results Our findings revealed a consistent decrease in the levels of complement components in the pomalidomide-resistant group. Additionally, there were significant differences in the proportion of T follicular helper cell and B cells in the resistant group. Furthermore, glycine levels were significantly decreased in pomalidomide-resistant patients, and exogenous glycine administration increased the sensitivity of MM cell lines to pomalidomide. Conclusion These results demonstrate distinct molecular changes in the plasma of resistant patients that could be used as potential biomarkers for identifying resistance mechanisms for pomalidomide in multiple myeloma and developing immune-related therapeutic strategies.
Collapse
Affiliation(s)
- Yan Zhuang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Department of Hematology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chenyu Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hua Jiang
- Department of Hematology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lu Li
- Department of Hematology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanteng Zhang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - WeiJun Fu
- Department of Hematology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Dadelahi AS, Abushahba MFN, Ponzilacqua-Silva B, Chambers CA, Moley CR, Lacey CA, Dent AL, Skyberg JA. Interactions between B cells and T follicular regulatory cells enhance susceptibility to Brucella infection independent of the anti-Brucella humoral response. PLoS Pathog 2023; 19:e1011672. [PMID: 37721965 PMCID: PMC10538787 DOI: 10.1371/journal.ppat.1011672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
Brucellosis, caused by facultative, intracellular Brucella spp., often results in chronic and/or lifelong infection. Therefore, Brucella must employ mechanisms to subvert adaptive immunity to cause chronic infection. B lymphocytes enhance susceptibility to infection with Brucella spp. though the mechanisms remain unclear. Here we investigated the role of antibody secretion, B cell receptor (BCR) specificity, and B cell antigen presentation on susceptibility to B. melitensis. We report that mice unable to secrete antibody do not display altered resistance to Brucella. However, animals with B cells that are unable to recognize Brucella through their BCR are resistant to infection. In addition, B cell MHCII expression enhances susceptibility to infection in a CD4+ T cell-dependent manner, and we found that follicular B cells are sufficient to inhibit CD4+ T cell-mediated immunity against Brucella. B cells promote development of T follicular helper (TFH) and T follicular regulatory (TFR) cells during Brucella infection. Inhibition of B cell and CD4+ T cell interaction via CD40L blockade enhances resistance to Brucella in a B cell dependent manner concomitant with suppression of TFH and TFR differentiation. Conversely, PD-1 blockade increases Brucella burdens in a B and CD4+ T cell dependent manner while augmenting T regulatory (TReg) and TFR responses. Intriguingly, TFR deficiency enhances resistance to Brucella via a B cell dependent, but antibody independent mechanism. Collectively, these results demonstrate B cells support TFR responses that promote susceptibility to Brucella infection independent of the antibody response.
Collapse
Affiliation(s)
- Alexis S. Dadelahi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| | - Mostafa F. N. Abushahba
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
- Department of Zoonoses, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Bárbara Ponzilacqua-Silva
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| | - Catherine A. Chambers
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| | - Charles R. Moley
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| | - Carolyn A. Lacey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| | - Alexander L. Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jerod A. Skyberg
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
17
|
Long Y, Xia CS, Zeng X, Feng J, Ma Y, Liu C. Altered Phenotypes of Colonic and Peripheral Blood Follicular Helper and Follicular Cytotoxic T Cells in Mice with DSS-Induced Colitis. J Inflamm Res 2023; 16:2879-2892. [PMID: 37456782 PMCID: PMC10348340 DOI: 10.2147/jir.s411373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background Follicular helper T (Tfh), follicular regulatory T (Tfr), and follicular cytotoxic T (Tfc) cells play important roles in autoimmune diseases. Nevertheless, their changes of functional phenotypes in ulcerative colitis (UC), most importantly, their changes in colon tissue as the target-organ, have not been explored. Methods DSS-colitis was induced in Balb/c mice and lymphocytes were collected from spleen, mesenteric lymph nodes, peripheral blood and colon. Tfh, Tfr, and Tfc cells were analyzed using flow cytometry based on their CD4+CXCR5+FOXP3-Tfh, CD4+CXCR5+FOXP3+Tfr and CD8+CXCR5+Tfc expressions. Various functional characterization markers including CD44, CD62L, TIGIT, CD226, PD-1, ICOS, Helios, CTLA-4 and Bcl6 were analyzed in the T cell subsets of the organs. Results Tfh and Tfr cells in the colon were significantly increased in DSS-colitis mice. Additionally, the proportions of Tfr and Tfc cells in the peripheral blood were also increased, while Tfc cell proportions in the colon were decreased. The proportion of naïve cells in the Tfh, Tfr and Tfc cells in the colon and peripheral blood decreased, while the proportion of effector memory T cells increased. The TIGIT+CD226-Tfh and Tfc cells were upregulated in the colon of DSS-colitis mice. The PD-1+, ICOS+ and PD-1+ICOS+ Tfh cells were increased in both the colonic and peripheral blood Tfh and Tfc of DSS-colitis mice. The Bcl6+ proportions in the Tfh and Tfr were increased in the colon of DSS-colitis mice. Conclusion The colonic and peripheral blood Tfh and Tfc cells of DSS-colitis mice have a significantly activated T cell phenotype, which may play a significant role in the pathogenesis of UC.
Collapse
Affiliation(s)
- Yan Long
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Chang-Sheng Xia
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Jinghong Feng
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Yinting Ma
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Chen Q, Dent AL. Nonbinary Roles for T Follicular Helper Cells and T Follicular Regulatory Cells in the Germinal Center Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:15-22. [PMID: 37339403 DOI: 10.4049/jimmunol.2200953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 06/22/2023]
Abstract
Development of high-affinity Abs in the germinal center (GC) is dependent on a specialized subset of T cells called "T follicular helper" (TFH) cells that help select Ag-specific B cells. A second T cell subset, T follicular regulatory (TFR) cells, can act as repressors of the GC and Ab response but can also provide a helper function for GC B cells in some contexts. Recent studies showed that, apart from their traditional helper role, TFH cells can also act as repressors of the Ab response, particularly for IgE responses. We review how both TFH and TFR cells express helper and repressor factors that coordinately regulate the Ab response and how the line between these two subsets is less clear than initially thought. Thus, TFH and TFR cells are interconnected and have "nonbinary" functions. However, many questions remain about how these critical cells control the Ab response.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
19
|
Panneton V, Mindt BC, Bouklouch Y, Bouchard A, Mohammaei S, Chang J, Diamantopoulos N, Witalis M, Li J, Stancescu A, Bradley JE, Randall TD, Fritz JH, Suh WK. ICOS costimulation is indispensable for the differentiation of T follicular regulatory cells. Life Sci Alliance 2023; 6:e202201615. [PMID: 36754569 PMCID: PMC9909462 DOI: 10.26508/lsa.202201615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
ICOS is a T-cell costimulatory receptor critical for Tfh cell generation and function. However, the role of ICOS in Tfr cell differentiation remains unclear. Using Foxp3-Cre-mediated ICOS knockout (ICOS FC) mice, we show that ICOS deficiency in Treg-lineage cells drastically reduces the number of Tfr cells during GC reactions but has a minimal impact on conventional Treg cells. Single-cell transcriptome analysis of Foxp3+ cells at an early stage of the GC reaction suggests that ICOS normally inhibits Klf2 expression to promote follicular features including Bcl6 up-regulation. Furthermore, ICOS costimulation promotes nuclear localization of NFAT2, a known driver of CXCR5 expression. Notably, ICOS FC mice had an unaltered overall GC B-cell output but showed signs of expanded autoreactive B cells along with elevated autoantibody titers. Thus, our study demonstrates that ICOS costimulation is critical for Tfr cell differentiation and highlights the importance of Tfr cells in maintaining humoral immune tolerance during GC reactions.
Collapse
Affiliation(s)
- Vincent Panneton
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
| | - Barbara C Mindt
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Quebec, Canada
| | | | - Antoine Bouchard
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Quebec, Canada
| | - Saba Mohammaei
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Quebec, Canada
| | - Jinsam Chang
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Quebec, Canada
| | - Nikoletta Diamantopoulos
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
| | - Mariko Witalis
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Quebec, Canada
| | - Joanna Li
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
| | | | - John E Bradley
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Quebec, Canada
| | - Woong-Kyung Suh
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
- Molecular Biology Program, University of Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Quebec, Canada
| |
Collapse
|
20
|
Islam M, Sevak JK, Sharma MK, Jindal A, Vyas AK, Bajpai M, Ramakrishna G, Sarin SK, Trehanpati N. Immune predictors of hepatitis B surface antigen seroconversion in patients with hepatitis B reactivation. Aliment Pharmacol Ther 2023; 57:689-708. [PMID: 36411952 DOI: 10.1111/apt.17306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hepatitis B surface antigen (HBsAg) seroconversion is sometimes observed in hepatitis B reactivation (rHBV), probably due to immune resetting and differentiation. AIMS To investigate sequential immune differentiation and abrogation of tolerance in patients with rHBV who achieved HBsAg seroconversion. METHODS We included 19 patients with chronic hepatitis B (CHBV; HBV DNA log103-8 ), 67 with rHBV (raised ALT [>5XULN], HBV DNAlog104-8 ) and 10 healthy controls. Immune differentiation, tolerance and functional status of CD4, CD8, T regulatory cells (Tregs), B cells and follicular T helper (Tfh) cells were assessed at baseline and 24 weeks. RESULTS At 24 weeks, 81% rHBV (n = 67) lost HBV DNA and HBeAg (41%), and 12 (19%) lost HBsAg and made anti-HBs titers >10 IU/ml. rHBV patients had higher Th1/17, TEM , Tfh, Tfh1/17, plasma and ATM B cells, and lower Tregs, Th2, Th17 and TEMRA expression. rHBV showed lower PD1, TIM3, LAG3, SLAM and TOX compared to CHBV. There was a significant increase in CD8, CD8EM, Tfh, Tfh1/17 and plasma B cells in seroconverters than non-seroconverters. At 24 weeks, we also observed increased plasma B cell frequency in seroconverters. While non-seroconverters showed higher expression of PD1, TIM3, LAG3, SLAM and TOX on CD4/CD8 T cells, blockade of PD1, TIM3, LAG3 and CTLA4 significantly enhanced IFN-γ, TNF-α, IL-4 and IL-21 expression on CD4/CD8 and Tfh cells in non-seroconverters. CONCLUSIONS Non-seroconverters have increased inhibitory markers on CD4/CD8 T cells. There is a critical play of CD8, Tfh and B cells and subsets in seroclearance, along with checkpoint molecules as a potential therapy for non-seroconverters in HBV infection.
Collapse
Affiliation(s)
- Mojahidul Islam
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Jayesh Kumar Sevak
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Manoj Kumar Sharma
- Department of Hepatology, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Ankur Jindal
- Department of Hepatology, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Ashish Kumar Vyas
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Meenu Bajpai
- Department of Transfusion Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Gayatri Ramakrishna
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Nirupma Trehanpati
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| |
Collapse
|
21
|
Betzler AC, Ushmorov A, Brunner C. The transcriptional program during germinal center reaction - a close view at GC B cells, Tfh cells and Tfr cells. Front Immunol 2023; 14:1125503. [PMID: 36817488 PMCID: PMC9936310 DOI: 10.3389/fimmu.2023.1125503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The germinal center (GC) reaction is a key process during an adaptive immune response to T cell specific antigens. GCs are specialized structures within secondary lymphoid organs, in which B cell proliferation, somatic hypermutation and antibody affinity maturation occur. As a result, high affinity antibody secreting plasma cells and memory B cells are generated. An effective GC response needs interaction between multiple cell types. Besides reticular cells and follicular dendritic cells, particularly B cells, T follicular helper (Tfh) cells as well as T follicular regulatory (Tfr) cells are a key player during the GC reaction. Whereas Tfh cells provide help to GC B cells in selection processes, Tfr cells, a specialized subset of regulatory T cells (Tregs), are able to suppress the GC reaction maintaining the balance between immune activation and tolerance. The formation and function of GCs is regulated by a complex network of signals and molecules at multiple levels. In this review, we highlight recent developments in GC biology by focusing on the transcriptional program regulating the GC reaction. This review focuses on the transcriptional co-activator BOB.1/OBF.1, whose important role for GC B, Tfh and Tfr cell differentiation became increasingly clear in recent years. Moreover, we outline how deregulation of the GC transcriptional program can drive lymphomagenesis.
Collapse
Affiliation(s)
- Annika C. Betzler
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | - Alexey Ushmorov
- Ulm University, Institute of Physiological Chemistry, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany,*Correspondence: Cornelia Brunner,
| |
Collapse
|
22
|
Ferrero PV, Onofrio LI, Acosta CDV, Zacca ER, Ponce NE, Mussano E, Onetti LB, Cadile II, Costantino AB, Werner ML, Mas LA, Alvarellos T, Montes CL, Acosta Rodríguez EV, Gruppi A. Dynamics of circulating follicular helper T cell subsets and follicular regulatory T cells in rheumatoid arthritis patients according to HLA-DRB1 locus. Front Immunol 2022; 13:1000982. [PMID: 36582249 PMCID: PMC9793086 DOI: 10.3389/fimmu.2022.1000982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
B cells, follicular helper T (Tfh) cells and follicular regulatory T (Tfr) cells are part of a circuit that may play a role in the development or progression of rheumatoid arthritis (RA). With the aim of providing further insight into this topic, here we evaluated the frequency of different subsets of Tfh and Tfr in untreated and long-term treated RA patients from a cohort of Argentina, and their potential association with particular human leukocyte antigen (HLA) class-II variants and disease activity. We observed that the frequency of total Tfh cells as well as of particular Tfh subsets and Tfr cells were increased in seropositive untreated RA patients. Interestingly, when analyzing paired samples, the frequency of Tfh cells was reduced in synovial fluid compared to peripheral blood, while Tfr cells levels were similar in both biological fluids. After treatment, a decrease in the CCR7loPD1hi Tfh subset and an increase in the frequency of Tfr cells was observed in blood. In comparison to healthy donors, seropositive patients with moderate and high disease activity exhibited higher frequency of Tfh cells while seropositive patients with low disease activity presented higher Tfr cell frequency. Finally, we observed that HLA-DRB1*09 presence correlated with higher frequency of Tfh and Tfr cells, while HLA-DRB1*04 was associated with increased Tfr cell frequency. Together, our results increase our knowledge about the dynamics of Tfh and Tfr cell subsets in RA, showing that this is altered after treatment.
Collapse
Affiliation(s)
- Paola V. Ferrero
- Laboratorio de Inmunología, Hospital Nacional de Clínicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luisina I. Onofrio
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cristina del Valle Acosta
- Laboratorio de Inmunología, Hospital Nacional de Clínicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Estefania R. Zacca
- Laboratorio de Inmunología, Hospital Nacional de Clínicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolas E. Ponce
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Eduardo Mussano
- Servicio de Reumatología, Hospital Nacional de Clínicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura B. Onetti
- Servicio de Reumatología, Hospital Nacional de Clínicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ignacio I. Cadile
- Servicio de Reumatología, Hospital Nacional de Clínicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alicia B. Costantino
- Laboratorio de Inmunología, Hospital Nacional de Clínicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marina L. Werner
- Servicio de Reumatología, Hospital Nacional de Clínicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luciana A. Mas
- Laboratorio de Histocompatibilidad, Hospital Privado Universitario de Córdoba e Instituto Universitario de Ciencias Biomédicas, Córdoba, Argentina
| | - Teresita Alvarellos
- Laboratorio de Histocompatibilidad, Hospital Privado Universitario de Córdoba e Instituto Universitario de Ciencias Biomédicas, Córdoba, Argentina
| | - Carolina L. Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Eva V. Acosta Rodríguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina,*Correspondence: Adriana Gruppi, ; Eva V. Acosta Rodríguez,
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina,*Correspondence: Adriana Gruppi, ; Eva V. Acosta Rodríguez,
| |
Collapse
|
23
|
Cheung J, Zahorowska B, Suranyi M, Wong JKW, Diep J, Spicer ST, Verma ND, Hodgkinson SJ, Hall BM. CD4 +CD25 + T regulatory cells in renal transplantation. Front Immunol 2022; 13:1017683. [PMID: 36426347 PMCID: PMC9681496 DOI: 10.3389/fimmu.2022.1017683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 09/14/2023] Open
Abstract
The immune response to an allograft activates lymphocytes with the capacity to cause rejection. Activation of CD4+CD25+Foxp3+T regulatory cells (Treg) can down-regulate allograft rejection and can induce immune tolerance to the allograft. Treg represent <10% of peripheral CD4+T cells and do not markedly increase in tolerant hosts. CD4+CD25+Foxp3+T cells include both resting and activated Treg that can be distinguished by several markers, many of which are also expressed by effector T cells. More detailed characterization of Treg to identify increased activated antigen-specific Treg may allow reduction of non-specific immunosuppression. Natural thymus derived resting Treg (tTreg) are CD4+CD25+Foxp3+T cells and only partially inhibit alloantigen presenting cell activation of effector cells. Cytokines produced by activated effector cells activate these tTreg to more potent alloantigen-activated Treg that may promote a state of operational tolerance. Activated Treg can be distinguished by several molecules they are induced to express, or whose expression they have suppressed. These include CD45RA/RO, cytokine receptors, chemokine receptors that alter pathways of migration and transcription factors, cytokines and suppression mediating molecules. As the total Treg population does not increase in operational tolerance, it is the activated Treg which may be the most informative to monitor. Here we review the methods used to monitor peripheral Treg, the effect of immunosuppressive regimens on Treg, and correlations with clinical outcomes such as graft survival and rejection. Experimental therapies involving ex vivo Treg expansion and administration in renal transplantation are not reviewed.
Collapse
Affiliation(s)
- Jason Cheung
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
| | | | - Michael Suranyi
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | | | - Jason Diep
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Stephen T. Spicer
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Nirupama D. Verma
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Suzanne J. Hodgkinson
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Bruce M. Hall
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
24
|
Manca E. Autoantibodies in Neuropsychiatric Systemic Lupus Erythematosus (NPSLE): Can They Be Used as Biomarkers for the Differential Diagnosis of This Disease? Clin Rev Allergy Immunol 2022; 63:194-209. [PMID: 34115263 PMCID: PMC9464150 DOI: 10.1007/s12016-021-08865-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 01/13/2023]
Abstract
Systemic lupus erythematosus is a complex immunological disease where both environmental factors and genetic predisposition lead to the dysregulation of important immune mechanisms. Eventually, the combination of these factors leads to the production of self-reactive antibodies that can target any organ or tissue of the human body. Autoantibodies can form immune complexes responsible for both the organ damage and the most severe complications. Involvement of the central nervous system defines a subcategory of the disease, generally known with the denomination of neuropsychiatric systemic lupus erythematosus. Neuropsychiatric symptoms can range from relatively mild manifestations, such as headache, to more severe complications, such as psychosis. The evaluation of the presence of the autoantibodies in the serum of these patients is the most helpful diagnostic tool for the assessment of the disease. The scientific progresses achieved in the last decades helped researchers and physicians to discover some of autoepitopes targeted by the autoantibodies, although the majority of them have not been identified yet. Additionally, the central nervous system is full of epitopes that cannot be found elsewhere in the human body, for this reason, autoantibodies that selectively target these epitopes might be used for the differential diagnosis between patients with and without the neuropsychiatric symptoms. In this review, the most relevant data is reported with regard to mechanisms implicated in the production of autoantibodies and the most important autoantibodies found among patients with systemic lupus erythematosus with and without the neuropsychiatric manifestations.
Collapse
Affiliation(s)
- Elias Manca
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
25
|
Pelham SJ, Caldirola MS, Avery DT, Mackie J, Rao G, Gothe F, Peters TJ, Guerin A, Neumann D, Vokurkova D, Hwa V, Zhang W, Lyu SC, Chang I, Manohar M, Nadeau KC, Gaillard MI, Bezrodnik L, Iotova V, Zwirner NW, Gutierrez M, Al-Herz W, Goodnow CC, Vargas-Hernández A, Forbes Satter LR, Hambleton S, Deenick EK, Ma CS, Tangye SG. STAT5B restrains human B-cell differentiation to maintain humoral immune homeostasis. J Allergy Clin Immunol 2022; 150:931-946. [PMID: 35469842 DOI: 10.1016/j.jaci.2022.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Lymphocyte differentiation is regulated by coordinated actions of cytokines and signaling pathways. IL-21 activates STAT1, STAT3, and STAT5 and is fundamental for the differentiation of human B cells into memory cells and antibody-secreting cells. While STAT1 is largely nonessential and STAT3 is critical for this process, the role of STAT5 is unknown. OBJECTIVES This study sought to delineate unique roles of STAT5 in activation and differentiation of human naive and memory B cells. METHODS STAT activation was assessed by phospho-flow cytometry cell sorting. Differential gene expression was determined by RNA-sequencing and quantitative PCR. The requirement for STAT5B in B-cell and CD4+ T-cell differentiation was assessed using CRISPR-mediated STAT5B deletion from B-cell lines and investigating primary lymphocytes from individuals with germline STAT5B mutations. RESULTS IL-21 activated STAT5 and strongly induced SOCS3 in human naive, but not memory, B cells. Deletion of STAT5B in B-cell lines diminished IL-21-mediated SOCS3 induction. PBMCs from STAT5B-null individuals contained expanded populations of immunoglobulin class-switched B cells, CD21loTbet+ B cells, and follicular T helper cells. IL-21 induced greater differentiation of STAT5B-deficient B cells into plasmablasts in vitro than B cells from healthy donors, correlating with higher expression levels of transcription factors promoting plasma cell formation. CONCLUSIONS These findings reveal novel roles for STAT5B in regulating IL-21-induced human B-cell differentiation. This is achieved by inducing SOCS3 to attenuate IL-21 signaling, and BCL6 to repress class switching and plasma cell generation. Thus, STAT5B is critical for restraining IL-21-mediated B-cell differentiation. These findings provide insights into mechanisms underpinning B-cell responses during primary and subsequent antigen encounter and explain autoimmunity and dysfunctional humoral immunity in STAT5B deficiency.
Collapse
Affiliation(s)
- Simon J Pelham
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Maria Soledad Caldirola
- Grupo de Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, Hospital de Niños "Dr. Ricardo Gutierrez," Buenos Aires, Argentina
| | | | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Florian Gothe
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Timothy J Peters
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Antoine Guerin
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - David Neumann
- Faculty of Medicine, University Hospital Hradec Kralove, Charles University, Prague, Czech Republic
| | - Doris Vokurkova
- Faculty of Medicine, University Hospital Hradec Kralove, Charles University, Prague, Czech Republic
| | - Vivian Hwa
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Wenming Zhang
- Department of Surgery, Stanford University, Stanford, Calif
| | - Shu-Chen Lyu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif
| | - Iris Chang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif
| | - Monali Manohar
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif; Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, Calif
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif; Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, Calif
| | - Maria Isabel Gaillard
- Grupo de Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, Hospital de Niños "Dr. Ricardo Gutierrez," Buenos Aires, Argentina
| | - Liliana Bezrodnik
- Grupo de Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, Hospital de Niños "Dr. Ricardo Gutierrez," Buenos Aires, Argentina; Center for Clinical Immunology, Buenos Aires, Argentina
| | - Violeta Iotova
- Department of Pediatrics, Medical University-Varna, Varna, Bulgaria; Pediatric Endocrinology, University Hospital "St Marina," Varna, Bulgaria
| | - Norberto Walter Zwirner
- Instituto de Biología y Medicina Experimental, Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Mavel Gutierrez
- Rocky Mountain Hospital for Children/Presbyterian St Luke's Medical Center, Denver, Colo
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Alexander Vargas-Hernández
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Allergy, Immunology, and Retrovirology, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex
| | - Lisa R Forbes Satter
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Allergy, Immunology, and Retrovirology, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex
| | - Sophie Hambleton
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Great North Children's Hospital, Newcastle upon Tyne Hospitals, National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Elissa K Deenick
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
26
|
Jianing W, Jingyi X, Pingting Y. Neuropsychiatric lupus erythematosus: Focusing on autoantibodies. J Autoimmun 2022; 132:102892. [PMID: 36030137 DOI: 10.1016/j.jaut.2022.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) frequently suffer from nervous system complications, termed neuropsychiatric lupus erythematosus (NPLE). NPLE accounts for the poor prognosis of SLE. Correct attribution of NP events to SLE is the primary principle in managing NPLE. The vascular injuries and neuroinflammation are the fundamental neuropathologic changes in NPLE. Specific autoantibody-mediated central nerve system (CNS) damages distinguish NPLE from other CNS disorders. Though the central antibodies in NPLE are generally thought to be raised from the periphery immune system, they may be produced in the meninges and choroid plexus. On this basis, abnormal activation of microglia and disease-associated microglia (DAM) should be the common mechanisms of NPLE and other CNS disturbances. Improved understanding of both characteristic and sharing features of NPLE might yield further options for managing this disease.
Collapse
Affiliation(s)
- Wang Jianing
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xu Jingyi
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yang Pingting
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
27
|
Maharaj K, Uriepero A, Sahakian E, Pinilla-Ibarz J. Regulatory T cells (Tregs) in lymphoid malignancies and the impact of novel therapies. Front Immunol 2022; 13:943354. [PMID: 35979372 PMCID: PMC9376239 DOI: 10.3389/fimmu.2022.943354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Regulatory T cells (Tregs) are responsible for maintaining immune homeostasis by controlling immune responses. They can be characterized by concomitant expression of FoxP3, CD25 and inhibitory receptors such as PD-1 and CTLA-4. Tregs are key players in preventing autoimmunity and are dysregulated in cancer, where they facilitate tumor immune escape. B-cell lymphoid malignancies are a group of diseases with heterogenous molecular characteristics and clinical course. Treg levels are increased in patients with B-cell lymphoid malignancies and correlate with clinical outcomes. In this review, we discuss studies investigating Treg immunobiology in B-cell lymphoid malignancies, focusing on clinical correlations, mechanisms of accumulation, phenotype, and function. Overarching trends suggest that Tregs can be induced directly by tumor cells and recruited to the tumor microenvironment where they suppress antitumor immunity to facilitate disease progression. Further, we highlight studies showing that Tregs can be modulated by novel therapeutic agents such as immune checkpoint blockade and targeted therapies. Treg disruption by novel therapeutics may beneficially restore immune competence but has been associated with occurrence of adverse events. Strategies to achieve balance between these two outcomes will be paramount in the future to improve therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Kamira Maharaj
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Angimar Uriepero
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- *Correspondence: Javier Pinilla-Ibarz,
| |
Collapse
|
28
|
Chakraborty S, Khamaru P, Bhattacharyya A. Regulation of immune cell metabolism in health and disease: Special focus on T and B cell subsets. Cell Biol Int 2022; 46:1729-1746. [PMID: 35900141 DOI: 10.1002/cbin.11867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/03/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Metabolism is a dynamic process and keeps changing from time to time according to the demand of a particular cell to meet its bio-energetic requirement. Different immune cells rely on distinct metabolic programs which allow the cell to balance its requirements for energy, molecular biosynthesis, and effector activity. In the aspect of infection and cancer immunology, effector T and B cells get exhausted and help tumor cells to evade immunosurveillance. On the other hand, T cells become hyperresponsive in the scenario of autoimmune diseases. In this article, we have explored the uniqueness and distinct metabolic features of key CD4+ T and B helper cell subsets, CD4+ T, B regulatory cell subsets and CD8+ T cells regarding health and disease. Th1 cells rely on glycolysis and glutaminolysis; inhibition of these metabolic pathways promotes Th1 cells in Treg population. However, Th2 cells are also dependent on glycolysis but an abundance of lactate within TME shifts their metabolic dependency to fatty acid metabolism. Th17 cells depend on HIF-1α mediated glycolysis, ablation of HIF-1α reduces Th17 cells but enhance Treg population. In contrast to effector T cells which are largely dependent on glycolysis for their differentiation and function, Treg cells mainly rely on FAO for their function. Therefore, it is of utmost importance to understand the metabolic fates of immune cells and how it facilitates their differentiation and function for different disease models. Targeting metabolic pathways to restore the functionality of immune cells in diseased conditions can lead to potent therapeutic measures.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Poulomi Khamaru
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
29
|
Zeng X, Lu S, Li M, Zheng M, Liu T, Kang R, Xu L, Xu Q, Song Y, Liu C. Inflammatory Cytokine-Neutralizing Antibody Treatment Prevented Increases in Follicular Helper T Cells and Follicular Regulatory T Cells in a Mouse Model of Arthritis. J Inflamm Res 2022; 15:3997-4011. [PMID: 35860232 PMCID: PMC9292064 DOI: 10.2147/jir.s355720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background Follicular T helper (TFH) and follicular regulatory T (TFR) cells play important roles in humoral immunity. Nevertheless, their significance in rheumatoid arthritis (RA) pathogenesis has not been fully elucidated. As an important treatment strategy, the effect of inflammatory factor-neutralizing antibodies on TFH and TFR in RA remains unclear. Methods We used the collagen-induced arthritis (CIA) mouse model to illustrate the quantity and functional changes in TFH and TFR cells. The changes of plasmablast, TFH and TFR cells in the spleen and peripheral blood of CIA mice were analyzed by flow cytometry. The levels of TFH and TFR and their functional subsets in the spleen after anti-inflammatory antibody treatment were analyzed and compared. The functional changes of TFH and TFR in CIA mice before and after treatment were detected by in vitro culture experiments. Results Plasmablast levels were increased in CIA spleen and peripheral blood and both TFH and TFR cell levels were upregulated. TFH and TFR cells were decreased significantly after the anti-inflammatory antibody treatment. TIGIT+ and TIGIT+CD226− TFH cells in CIA mouse spleen were elevated and PD-1 and ICOS expression on spleen TFH and TFR cells was increased. Both the ability of TFH cells to secrete IL-21 and aid B cells and the ability of TFR cells to secrete IL-10 and inhibit TFH cells were enhanced in the CIA mice. After antibody treatment, the cell subsets and functions were recovered. Conclusion Germinal center TFH and TFR cells were increased and their functions were enhanced. With inflammatory factor-neutralizing antibody treatment, TFH and TFR subsets and their functions returned to normal. These findings provide important information on the dynamics of humoral immune-related cell subsets in RA and the effects of treatment on them.
Collapse
Affiliation(s)
- Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Songsong Lu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Meng Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Centre, Beijing, People's Republic of China
| | - Tianci Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Rui Kang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Lijuan Xu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Centre, Beijing, People's Republic of China
| | - Qinzhu Xu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Ying Song
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| |
Collapse
|
30
|
de Picciotto S, DeVita N, Hsiao CJ, Honan C, Tse SW, Nguyen M, Ferrari JD, Zheng W, Wipke BT, Huang E. Selective activation and expansion of regulatory T cells using lipid encapsulated mRNA encoding a long-acting IL-2 mutein. Nat Commun 2022; 13:3866. [PMID: 35790728 PMCID: PMC9256694 DOI: 10.1038/s41467-022-31130-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Interleukin-2 (IL-2) is critical for regulatory T cell (Treg) function and homeostasis. At low doses, IL-2 can suppress immune pathologies by expanding Tregs that constitutively express the high affinity IL-2Rα subunit. However, even low dose IL-2, signaling through the IL2-Rβ/γ complex, may lead to the activation of proinflammatory, non-Treg T cells, so improving specificity toward Tregs may be desirable. Here we use messenger RNAs (mRNA) to encode a half-life-extended human IL-2 mutein (HSA-IL2m) with mutations promoting reliance on IL-2Rα. Our data show that IL-2 mutein subcutaneous delivery as lipid-encapsulated mRNA nanoparticles selectively activates and expands Tregs in mice and non-human primates, and also reduces disease severity in mouse models of acute graft versus host disease and experimental autoimmune encephalomyelitis. Single cell RNA-sequencing of mouse splenic CD4+ T cells identifies multiple Treg states with distinct response dynamics following IL-2 mutein treatment. Our results thus demonstrate the potential of mRNA-encoded HSA-IL2m immunotherapy to treat autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Zheng
- Moderna, Inc, Cambridge, MA, 02139, USA
| | | | - Eric Huang
- Moderna, Inc, Cambridge, MA, 02139, USA.
| |
Collapse
|
31
|
Mahlobo B, Laher F, Smidt W, Ogunshola F, Khaba T, Nkosi T, Mbatha A, Ngubane T, Dong K, Jajbhay I, Pansegrouw J, Ndhlovu ZM. The impact of HIV infection on the frequencies, function, spatial localization and heterogeneity of T follicular regulatory cells (TFRs) within human lymph nodes. BMC Immunol 2022; 23:34. [PMID: 35778692 PMCID: PMC9250173 DOI: 10.1186/s12865-022-00508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND HIV eradication efforts have been unsuccessful partly due to virus persistence in immune sanctuary sites such as germinal centres within lymph node (LN) tissues. Recent evidence suggests that LNs harbour a novel subset of regulatory T cells, termed follicular regulatory T cells (TFRs), but their role in HIV pathogenesis is not fully elucidated. RESULTS Paired excisional LN and peripheral blood samples obtained from 20 HIV-uninfected and 31 HIV-infected treated and 7 chronic untreated, were used to determine if and how HIV infection modulate frequencies, function and spatial localization of TFRs within LN tissues. Imaging studies showed that most TFRs are localized in extra-follicular regions. Co-culture assays showed TFRs suppression of TFH help to B cells. Importantly, epigenetic and transcriptional studies identified DPP4 and FCRL3 as novel phenotypic markers that define four functionally distinct TFR subpopulations in human LNs regardless of HIV status. Imaging studies confirmed the regulatory phenotype of DPP4+TFRs. CONCLUSION Together these studies describe TFRs dynamic changes during HIV infection and reveal previously underappreciated TFR heterogeneity within human LNs.
Collapse
Affiliation(s)
- Bongiwe Mahlobo
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Faatima Laher
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Werner Smidt
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Funsho Ogunshola
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, USA
| | - Trevor Khaba
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Thandeka Nkosi
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Anele Mbatha
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Thandekile Ngubane
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Krista Dong
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, USA
| | - Ismail Jajbhay
- KwaZulu-Natal Department of Health, Prince Mshiyeni Memorial Hospital, Durban, South Africa
| | - Johan Pansegrouw
- KwaZulu-Natal Department of Health, Prince Mshiyeni Memorial Hospital, Durban, South Africa
| | - Zaza M Ndhlovu
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
32
|
Radzieta M, Peters TJ, Dickson HG, Cowin AJ, Lavery LA, Schwarzer S, Roberts T, Jensen SO, Malone M. A metatranscriptomic approach to explore longitudinal tissue specimens from non-healing diabetes related foot ulcers. APMIS 2022; 130:383-396. [PMID: 35394091 PMCID: PMC9320801 DOI: 10.1111/apm.13226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022]
Abstract
Cellular mechanisms and/or microbiological interactions which contribute to chronic diabetes related foot ulcers (DRFUs) were explored using serially collected tissue specimens from chronic DRFUs and control healthy foot skin. Total RNA was isolated for next-generation sequencing. We found differentially expressed genes (DEGs) and enriched hallmark gene ontology biological processes upregulated in chronic DRFUs which primarily functioned in the host immune response including: (i) Inflammatory response; (ii) TNF signalling via NFKB; (iii) IL6 JAK-STAT3 signalling; (iv) IL2 STAT5 signalling and (v) Reactive oxygen species. A temporal analysis identified RN7SL1 signal recognition protein and IGHG4 immunoglobulin protein coding genes as being the most upregulated genes after the onset of treatment. Testing relative temporal changes between healing and non-healing DRFUs identified progressive upregulation in healed wounds of CXCR5 and MS4A1 (CD20), both canonical markers of lymphocytes (follicular B cells/follicular T helper cells and B cells, respectively). Collectively, our RNA-seq data provides insights into chronic DRFU pathogenesis.
Collapse
Affiliation(s)
- Michael Radzieta
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia.,Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Timothy J Peters
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,University of New South Wales, Sydney, NSW, Australia
| | - Hugh G Dickson
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia.,South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Lawrence A Lavery
- Department of Plastic Surgery, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Saskia Schwarzer
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia
| | - Tara Roberts
- Oncology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Slade O Jensen
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia.,Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Matthew Malone
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia.,Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
33
|
Kumar P, Balakrishnan S, Surendra Lele S, Setty S, Dhingra S, Epstein AL, Prabhakar BS. Restoration of Follicular T Regulatory/Helper Cell Balance by OX40L-JAG1 Cotreatment Suppresses Lupus Nephritis in NZBWF1/j Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2467-2481. [PMID: 35470257 DOI: 10.4049/jimmunol.2200057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Class-switched antinuclear autoantibodies produced by T follicular helper (TFH) cell-dependent germinal center (GC) B cell response play an essential pathogenic role in lupus nephritis (LN). The role of T follicular regulatory (TFR) cells, an effector subset of CD4+Foxp3+ T regulatory cells (Tregs), which are specialized in suppressing TFH-GC response and Ab production, remains elusive in LN. Contrasting reports have shown increased/reduced circulating TFR cells in human lupus that might not accurately reflect their presence in the GCs of relevant lymphoid organs. In this study, we report a progressive reduction in TFR cells and decreased TFR/TFH ratio despite increased Tregs in the renal lymph nodes of NZBWF1/j mice, which correlated with increased GC-B cells and proteinuria onset. Cotreatment with soluble OX40L and Jagged-1 (JAG1) proteins increased Tregs, TFR cells, and TFR/TFH ratio, with a concomitant reduction in TFH cells, GC B cells, and anti-dsDNA IgG Ab levels, and suppressed LN onset. Mechanistic studies showed attenuated TFH functions and diminished GC events such as somatic hypermutation and isotype class-switching in OX40L-JAG1-treated mice. RNA sequencing studies revealed inhibition of hypoxia-inducible factor 1-α (HIF-1a) and STAT3 signaling in T conventional cells from OX40L-JAG1-treated mice, which are critical for the glycolytic flux and differentiation into TFH cell lineage. Therefore, the increased TFR/TFH ratio seen in OX40L-JAG1-treated mice could involve both impaired differentiation of TFH cells from T conventional cells and expansion of TFR cells. We show a key role for GC-TFR/TFH imbalance in LN pathogenesis and how restoring homeostatic balance can suppress LN.
Collapse
Affiliation(s)
- Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Sivasangari Balakrishnan
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Swarali Surendra Lele
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Suman Setty
- Department of Pathology, University of Illinois College of Medicine, Chicago, IL; and
| | - Shaurya Dhingra
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Alan L Epstein
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL;
| |
Collapse
|
34
|
Mayberry CL, Logan NA, Wilson JJ, Chang CH. Providing a Helping Hand: Metabolic Regulation of T Follicular Helper Cells and Their Association With Disease. Front Immunol 2022; 13:864949. [PMID: 35493515 PMCID: PMC9047778 DOI: 10.3389/fimmu.2022.864949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/25/2022] [Indexed: 01/02/2023] Open
Abstract
T follicular helper (Tfh) cells provide support to B cells upon arrival in the germinal center, and thus are critical for the generation of a robust adaptive immune response. Tfh express specific transcription factors and cellular receptors including Bcl6, CXCR5, PD-1, and ICOS, which are critical for homing and overall function. Generally, the induction of an immune response is tightly regulated. However, deviation during this process can result in harmful autoimmunity or the inability to successfully clear pathogens. Recently, it has been shown that Tfh differentiation, activation, and proliferation may be linked with the cellular metabolic state. In this review we will highlight recent discoveries in Tfh differentiation and explore how these cells contribute to functional immunity in disease, including autoimmune-related disorders, cancer, and of particular emphasis, during infection.
Collapse
Affiliation(s)
| | | | | | - Chih-Hao Chang
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- *Correspondence: Chih-Hao Chang,
| |
Collapse
|
35
|
Pardy RD, Gentile ME, Carter AM, Condotta SA, King IL, Richer MJ. An Epidemic Zika Virus Isolate Drives Enhanced T Follicular Helper Cell and B Cell-Mediated Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1719-1728. [PMID: 35346966 PMCID: PMC8976755 DOI: 10.4049/jimmunol.2100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne pathogen that recently caused a series of increasingly severe outbreaks. We previously demonstrated that, compared with a pre-epidemic isolate (ZIKVCDN), a Brazilian ZIKV isolate (ZIKVBR) possesses a novel capacity to suppress host immunity, resulting in delayed viral clearance. However, whether ZIKVBR modulates CD4 T cell responses remains unknown. In this study, we show that, in comparison with ZIKVCDN infection, CD4 T cells are less polarized to the Th1 subtype following ZIKVBR challenge in mice. In contrast, we observed an enhanced accumulation of T follicular helper cells 10, 14, and 21 d postinfection with ZIKVBR This response correlated with an enhanced germinal center B cell response and robust production of higher avidity-neutralizing Abs following ZIKVBR infection. Taken together, our data suggest that contemporary ZIKV strains have evolved to differentially induce CD4 T cell, B cell, and Ab responses and this could provide a model to further define the signals required for T follicular helper cell development.
Collapse
Affiliation(s)
- Ryan D Pardy
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Maria E Gentile
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, McGill University Health Centre, McGill University, Montreal, Quebec, Canada; and
| | - Alexandria M Carter
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Stephanie A Condotta
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Irah L King
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, McGill University Health Centre, McGill University, Montreal, Quebec, Canada; and
| | - Martin J Richer
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada;
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
36
|
Xie MM, Dent AL. Assessing In Vivo T Cell-Dependent Antigen-Specific Antibody Responses. Methods Mol Biol 2022; 2380:165-174. [PMID: 34802130 DOI: 10.1007/978-1-0716-1736-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antibodies produced by plasma cells are a major arm of adaptive immunity. Germinal center reactions that include germinal center B cells and follicular T cells are fundamental players for antibody production, particularly antigen specific antibodies. Here we describe multiple methods that we and others have developed to analyze the production of antigen-specific antibodies in mice, with protocols for assessing antibody affinity and antibody isotype. The detection of antigen-specific IgE in serum using a traditional enzyme-linked immunosorbent assay (ELISA) method is often problematic due to much higher amounts of IgG. Thus we provide a specialized protocol for the detection of antigen-specific IgE in serum using ELISA.
Collapse
Affiliation(s)
- Markus M Xie
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Immunology Discovery, Genentech, Inc., South San Francisco, CA, USA
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
37
|
Brichová M, Svozílková P, Klímová A, Dušek O, Kverka M, Heissigerová J. MICROBIOME AND UVEITIDES. A REVIEW. CESKA A SLOVENSKA OFTALMOLOGIE : CASOPIS CESKE OFTALMOLOGICKE SPOLECNOSTI A SLOVENSKE OFTALMOLOGICKE SPOLECNOSTI 2022; 78:47-52. [PMID: 35105146 DOI: 10.31348/2021/30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microorganisms inhabiting all surfaces of mucous membranes and skin and forming a complex ecosystem with the host is called microbiota. The term microbiome is used for the aggregate genome of microbiota. The microbiota plays important role in the mechanisms of number of physiological and pathological processes, especially of the hosts immune system. The origin and course of autoimmune diseases not only of the digestive tract, but also of the distant organs, including the eye, are significantly influenced by intestinal microbiota. The role of microbiota and its changes (dysbiosis) in the etiopathogenesis of uveitis has so far been studied mainly in experimental models. Reduction of severity of non-infectious intraocular inflammation in germ-free mice or in conventional mice treated with broad-spectrum antibiotics was observed in both the induced experimental autoimmune uveitis model (EAU) and the spontaneous R161H model. Studies have confirmed that autoreactive T cell activation occurs in the intestinal wall in the absence of retinal antigen. Recent experiments focused on the effect of probiotic administration on the composition of intestinal microbiota and on the course of autoimmune uveitis. Our study group demonstrated significant prophylactic effect of the administration of the probiotic Escherichia coli Nissle 1917 on the intensity of inflammation in EAU. To date, only a few studies have been published investigating intestinal dysbiosis in patients with uveitis (e.g., in Behcets disease or Vogt-Koyanagi-Harada syndrome). The results of preclinical studies will be presumably used in clinical practice, mainly in the sense of prophylaxis and therapy, such as change in the lifestyle, diet and especially the therapeutic use of probiotics or the transfer of faecal microbiota.
Collapse
|
38
|
Cui D, Tang Y, Jiang Q, Jiang D, Zhang Y, Lv Y, Xu D, Wu J, Xie J, Wen C, Lu L. Follicular Helper T Cells in the Immunopathogenesis of SARS-CoV-2 Infection. Front Immunol 2021; 12:731100. [PMID: 34603308 PMCID: PMC8481693 DOI: 10.3389/fimmu.2021.731100] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a serious infectious disease that has led to a global pandemic with high morbidity and mortality. High-affinity neutralizing antibody is important for controlling infection, which is closely regulated by follicular helper T (Tfh) cells. Tfh cells play a central role in promoting germinal center reactions and driving cognate B cell differentiation for antibody secretion. Available studies indicate a close relationship between virus-specific Tfh cell-mediated immunity and SARS-CoV-2 infection progression. Although several lines of evidence have suggested that Tfh cells contribute to the control of SARS-CoV-2 infection by eliciting neutralizing antibody productions, further studies are needed to elucidate Tfh-mediated effector mechanisms in anti-SARS-CoV-2 immunity. Here, we summarize the functional features and roles of virus-specific Tfh cells in the immunopathogenesis of SARS-CoV-2 infection and in COVID-19 vaccines, and highlight the potential of targeting Tfh cells as therapeutic strategy against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Qi Jiang
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Daixi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Zhang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dandan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengping Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Chongqing International Institute for Immunology, Chongqing, China
| |
Collapse
|
39
|
Immunosuppression in Malaria: Do Plasmodium falciparum Parasites Hijack the Host? Pathogens 2021; 10:pathogens10101277. [PMID: 34684226 PMCID: PMC8536967 DOI: 10.3390/pathogens10101277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Malaria reflects not only a state of immune activation, but also a state of general immune defect or immunosuppression, of complex etiology that can last longer than the actual episode. Inhabitants of malaria-endemic regions with lifelong exposure to the parasite show an exhausted or immune regulatory profile compared to non- or minimally exposed subjects. Several studies and experiments to identify and characterize the cause of this malaria-related immunosuppression have shown that malaria suppresses humoral and cellular responses to both homologous (Plasmodium) and heterologous antigens (e.g., vaccines). However, neither the underlying mechanisms nor the relative involvement of different types of immune cells in immunosuppression during malaria is well understood. Moreover, the implication of the parasite during the different stages of the modulation of immunity has not been addressed in detail. There is growing evidence of a role of immune regulators and cellular components in malaria that may lead to immunosuppression that needs further research. In this review, we summarize the current evidence on how malaria parasites may directly and indirectly induce immunosuppression and investigate the potential role of specific cell types, effector molecules and other immunoregulatory factors.
Collapse
|
40
|
Anang DC, Balzaretti G, van Kampen A, de Vries N, Klarenbeek PL. The Germinal Center Milieu in Rheumatoid Arthritis: The Immunological Drummer or Dancer? Int J Mol Sci 2021; 22:10514. [PMID: 34638855 PMCID: PMC8508581 DOI: 10.3390/ijms221910514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune disease characterized by joint inflammation, affecting approximately 1% of the general population. To alleviate symptoms and ameliorate joint damage, chronic use of immunosuppressives is needed. However, these treatments are only partially effective and may lead to unwanted side effects. Therefore, a more profound understanding of the pathophysiology might lead to more effective therapies, or better still, a cure. The presence of autoantibodies in RA indicates that B cells might have a pivotal role in the disease. This concept is further supported by the fact that a diverse antibody response to various arthritis-related epitopes is associated with arthritis development. In this context, attention has focused in recent years on the role of Germinal Centers (GCs) in RA. Since GCs act as the main anatomic location of somatic hypermutations, and, thus, contributing to the diversity and specificity of (auto) antibodies, it has been speculated that defects in germinal center reactions might be crucial in the initiation and maintenance of auto-immune events. In this paper, we discuss current evidence that various processes within GCs can result in the aberrant production of B cells that possess autoreactive properties and might result in the production of RA related autoantibodies. Secondly, we discuss various (pre-)clinical studies that have targeted various GC processes as novel therapies for RA treatment.
Collapse
Affiliation(s)
- Dornatien C. Anang
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (G.B.); (P.L.K.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Giulia Balzaretti
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (G.B.); (P.L.K.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Antoine van Kampen
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Niek de Vries
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (G.B.); (P.L.K.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Paul L. Klarenbeek
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (G.B.); (P.L.K.)
- Department of Rheumatology, Spaarne Gasthuis, Hoofdorp, 2000 AK Haarlem, The Netherlands
| |
Collapse
|
41
|
Abstract
Sjögren's syndrome (SjS) is a systemic autoimmune disease marked by xerostomia (dry mouth), keratoconjunctivitis sicca (eye dryness), and other systematic disorders. Its pathogenesis involves an inflammatory process that is characterized by lymphocytic infiltration into exocrine glands and other tissues. Although the development of ectopic lymphoid tissue and overproduction of autoantibodies by hyperactive B cells suggest that they may promote SjS development, treatment directed towards them fails to induce significant laboratory or clinical improvement. T cells are overwhelming infiltrators in most phases of the disease, and the involvement of multiple T cell subsets of suggests the extraordinary complexity of SjS pathogenesis. The factors, including various cellular subtypes and molecules, regulate the activation and suppression of T cells. T cell activation induces inflammatory cell infiltration, B cell activation, tissue damage, and metabolic changes in SjS. Knowledge of the pathways that link these T cell subtypes and regulation of their activities are not completely understood. This review comprehensively summarizes the research progress and our understanding of T cells in SjS, including CD4+ T cells, CD8+ TRM cells, and innate T cells, to provide insights into for clinical treatment.
Collapse
|
42
|
Bergantini L, d'Alessandro M, Cameli P, Pianigiani T, Fanetti M, Sestini P, Bargagli E. Follicular T Helper and Breg Cell Balance in Severe Allergic Asthma Before and After Omalizumab Therapy. Mol Diagn Ther 2021; 25:593-605. [PMID: 34342843 PMCID: PMC8410727 DOI: 10.1007/s40291-021-00545-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Severe allergic asthma (SAA) is based on type 2 (T2-high) immune responses to allergens promoting type 2 T helper (Th2) cell cytokine responses and production of IgE antibodies. Omalizumab was the first biological drug licensed for clinical use in the management of IgE-mediated SAA. Despite emerging evidence supporting the prominent role of follicular T cells (Tfh), Breg and Treg subsets, in the development and progression of SAA, no data are available on the impact of omalizumab therapy. METHODS Ten SAA patients monitored at the Respiratory Diseases Unit of Siena University Hospital and ten healthy sex- and age-matched controls were enrolled in the study. Clinical and functional parameters were collected at baseline (T0) and after 6 months of therapy (T6). Cellular population analysis was determined through multicolour flow cytometry. RESULTS SAA patients showed higher percentages of Th17.1, Tfh and Tfh2 while CD24hiCD27hi Breg cell, Treg and Tfr percentages were significantly lower than in controls. Higher percentages of Tfh2 in patients with nasal polyps than in those without and in controls were observed. At T6, significant decreases in Tfh and Tfh2 compared with T0 were observed. A slightly significant increase in Teffs was reported at T6 compared to T0. ΔIgE levels in serum were correlated with ΔCD19+CD24+CD27+ Breg cell percentages (r = - 0.86, p = 0.0022). CONCLUSIONS Our data explored the changes in Tfh cells, Tregs and Bregs in severe asthma. The restoration of immunological imbalance in SAA patients after omalizumab is certainly intriguing and represents a glimpse into the comprehension of immunological effects of treatment.
Collapse
Affiliation(s)
- Laura Bergantini
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy.
| | - Miriana d'Alessandro
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy
| | - Paolo Cameli
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy
| | - Tommaso Pianigiani
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy
| | - Matteo Fanetti
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy
| | - Piersante Sestini
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy
| | - Elena Bargagli
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy
| |
Collapse
|
43
|
Preusse C, Eede P, Heinzeling L, Freitag K, Koll R, Froehlich W, Schneider U, Allenbach Y, Benveniste O, Schänzer A, Goebel HH, Stenzel W, Radke J. NanoString technology distinguishes anti-TIF-1γ + from anti-Mi-2 + dermatomyositis patients. Brain Pathol 2021; 31:e12957. [PMID: 34043263 PMCID: PMC8412076 DOI: 10.1111/bpa.12957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Dermatomyositis (DM) is a systemic idiopathic inflammatory disease affecting skeletal muscle and skin, clinically characterized by symmetrical proximal muscle weakness and typical skin lesions. Recently, myositis-specific autoantibodies (MSA) became of utmost importance because they strongly correlate with distinct clinical manifestations and prognosis. Antibodies against transcription intermediary factor 1γ (TIF-1γ) are frequently associated with increased risk of malignancy, a specific cutaneous phenotype and limited response to therapy in adult DM patients. Anti-Mi-2 autoantibodies, in contrast, are typically associated with classic DM rashes, prominent skeletal muscle weakness, better therapeutic response and prognosis, and less frequently with cancer. Nevertheless, the sensitivity of autoantibody testing is only moderate, and alternative reliable methods for DM patient stratification and prediction of cancer risk are needed. To further investigate these clinically distinct DM subgroups, we herein analyzed 30 DM patients (n = 15 Mi-2+ and n = 15 TIF-1 γ+ ) and n = 8 non-disease controls (NDC). We demonstrate that the NanoString technology can be used as a very sensitive method to clearly differentiate these two clinically distinct DM subgroups. Using the nCounter PanCancer Immune Profiling Panel™, we identified a set of significantly dysregulated genes in anti-TIF-1γ+ patient muscle biopsies including VEGFA, DDX58, IFNB1, CCL5, IL12RB2, and CD84. Investigation of type I IFN-regulated transcripts revealed a striking type I interferon signature in anti-Mi-2+ patient biopsies. Our results help to stratify both subgroups and predict, which DM patients require an intensified diagnostic procedure and might have a poorer outcome. Potentially, this could also have implications for the therapeutic approach.
Collapse
Affiliation(s)
- Corinna Preusse
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Neurology with Institute for Translational Neurology, Münster University Hospital (UKM), Münster, Germany
| | - Pascale Eede
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Lucie Heinzeling
- Department of Dermatology, University Hospital of Erlangen, Erlangen, Germany.,Department of Dermatology, LMU, Munich, Germany
| | - Kiara Freitag
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany
| | - Randi Koll
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany
| | - Waltraud Froehlich
- Department of Dermatology, University Hospital of Erlangen, Erlangen, Germany
| | - Udo Schneider
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Yves Allenbach
- Department of Internal Medicine and Clinical Immunology, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical Immunology, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Anne Schänzer
- Department of Neuropathology, Justus Liebig Universität Giessen, Giessen, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Josefine Radke
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
44
|
Martinez F, Novarino J, Mejía JE, Fazilleau N, Aloulou M. Ageing of T-dependent B cell responses. Immunol Lett 2021; 233:97-103. [PMID: 33811941 DOI: 10.1016/j.imlet.2021.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022]
Abstract
The human immune system is in continuous interaction with environmental factors (pathogens, exercise, stress, pollutants, diet, vaccines, and therapeutics) that condition its efficiency by promoting or moderating multiple immune mechanisms. While the deleterious impact of external factors can be avoided or limited, the immune system itself grows weaker with age. Immune cells persist in the elderly, and the observed decline of cellular immunity is related to cellular senescence. Immunosenescence, which affects both T and B cells, erodes lymphocyte-dependent responses to vaccines and pathogens. Germinal centers (GCs), the organized lymphoid structures where B cells engage in affinity maturation, are regulated by follicular helper (Tfh) and follicular regulatory (Tfr) T cells, the major T cell components of GCs. This review discusses how age-related changes affect Tfh and Tfr cells as key components of B cell immunity, and how they ultimately shape the response of the ageing immune system to vaccines and infectious challenges.
Collapse
Affiliation(s)
- Fanny Martinez
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France
| | - Julien Novarino
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France
| | - José Enrique Mejía
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France
| | - Nicolas Fazilleau
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France.
| | - Meryem Aloulou
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France.
| |
Collapse
|
45
|
Jones DM, Read KA, Oestreich KJ. Dynamic Roles for IL-2-STAT5 Signaling in Effector and Regulatory CD4 + T Cell Populations. THE JOURNAL OF IMMUNOLOGY 2021; 205:1721-1730. [PMID: 32958706 DOI: 10.4049/jimmunol.2000612] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
CD4+ Th cells are responsible for orchestrating diverse, pathogen-specific immune responses through their differentiation into a number of subsets, including TH1, TH2, TH9, T follicular helper, T follicular regulatory, and regulatory T cells. The differentiation of each subset is guided by distinct regulatory requirements, including those derived from extracellular cytokine signals. IL-2 has emerged as a critical immunomodulatory cytokine that both positively and negatively affects the differentiation of individual Th cell subsets. IL-2 signals are propagated, in part, via activation of STAT5, which functions as a key regulator of CD4+ T cell gene programs. In this review, we discuss current understanding of the mechanisms that allow IL-2-STAT5 signaling to exert divergent effects across CD4+ T cell subsets and highlight specific roles for this pathway in the regulation of individual Th cell differentiation programs.
Collapse
Affiliation(s)
- Devin M Jones
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210; and.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Kaitlin A Read
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210; and.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Kenneth J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210; and
| |
Collapse
|
46
|
Protein/AS01 B vaccination elicits stronger, more Th2-skewed antigen-specific human T follicular helper cell responses than heterologous viral vectors. CELL REPORTS MEDICINE 2021; 2:100207. [PMID: 33763653 PMCID: PMC7974546 DOI: 10.1016/j.xcrm.2021.100207] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/12/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
Interactions between B cells and CD4+ T follicular helper (Tfh) cells are key determinants of humoral responses. Using samples from clinical trials performed with the malaria vaccine candidate antigen Plasmodium falciparum merozoite protein (PfRH5), we compare the frequency, phenotype, and gene expression profiles of PfRH5-specific circulating Tfh (cTfh) cells elicited by two leading human vaccine delivery platforms: heterologous viral vector prime boost and protein with AS01B adjuvant. We demonstrate that the protein/AS01B platform induces a higher-magnitude antigen-specific cTfh cell response and that this correlates with peak anti-PfRH5 IgG concentrations, frequency of PfRH5-specific memory B cells, and antibody functionality. Furthermore, our data indicate a greater Th2/Tfh2 skew within the polyfunctional response elicited following vaccination with protein/AS01B as compared to a Th1/Tfh1 skew with viral vectors. These data highlight the impact of vaccine platform on the cTfh cell response driving humoral immunity, associating a high-magnitude, Th2-biased cTfh response with potent antibody production. CD4 Tfh comparison in malaria vaccine trials using leading human vaccine platforms Protein/AS01B drives stronger antigen-specific Tfh responses than viral vectors Greater T(f)h2 skewing of antigen-specific CD4 T cells in protein/AS01B vaccinees Antigen-specific CD4 T(fh) cell parameters correlate with functional antibody
Collapse
|
47
|
Trovato M, Ibrahim HM, Isnard S, Le Grand R, Bosquet N, Borhis G, Richard Y. Distinct Features of Germinal Center Reactions in Macaques Infected by SIV or Vaccinated with a T-Dependent Model Antigen. Viruses 2021; 13:263. [PMID: 33572146 PMCID: PMC7916050 DOI: 10.3390/v13020263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
B-cell follicles constitute large reservoirs of infectious HIV/SIV associated to follicular dendritic cells and infecting follicular helper (TFH) and regulatory (TFR) T-cells in germinal centers (GCs). Thus, follicular and GC B-cells are persistently exposed to viral antigens. Despite recent development of potent HIV immunogens, numerous questions are still open regarding GC reaction during early HIV/SIV infection. Here, we dissect the dynamics of B- and T-cells in GCs of macaques acutely infected by SIV (Group SIV+) or vaccinated with Tetanus Toxoid (Group TT), a T-dependent model antigen. Systemic inflammation and mobilization of antigen-presenting cells in inguinal lymph nodes and spleen are lower in Group TT than in Group SIV+. Despite spleen GC reaction of higher magnitude in Group SIV+, the development of protective immunity could be limited by abnormal helper functions of TFH massively polarized into TFH1-like cells, by inflammation-induced recruitment of fCD8 (either regulatory or cytotoxic) and by low numbers of TFR limiting TFH/TFR competition for high affinity B-cells. Increased GC B-cells apoptosis and accumulation of CD21lo memory B-cells, unable to further participate to GC reaction, likely contribute to eliminate SIV-specific B-cells and decrease antibody affinity maturation. Surprisingly, functional GCs and potent TT-specific antibodies develop despite low levels of CXCL13.
Collapse
Affiliation(s)
- Maria Trovato
- Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France; (M.T.); (H.M.I.); (S.I.)
| | - Hany M. Ibrahim
- Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France; (M.T.); (H.M.I.); (S.I.)
| | - Stephane Isnard
- Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France; (M.T.); (H.M.I.); (S.I.)
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), 92260 Fontenay-aux-Roses, France; (R.L.G.); (N.B.)
| | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), 92260 Fontenay-aux-Roses, France; (R.L.G.); (N.B.)
| | - Nathalie Bosquet
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), 92260 Fontenay-aux-Roses, France; (R.L.G.); (N.B.)
| | - Gwenoline Borhis
- Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France; (M.T.); (H.M.I.); (S.I.)
| | - Yolande Richard
- Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France; (M.T.); (H.M.I.); (S.I.)
| |
Collapse
|
48
|
Dudreuilh C, Basu S, Scottà C, Dorling A, Lombardi G. Potential Application of T-Follicular Regulatory Cell Therapy in Transplantation. Front Immunol 2021; 11:612848. [PMID: 33603742 PMCID: PMC7884443 DOI: 10.3389/fimmu.2020.612848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Regulatory T cells (Tregs) constitute a small proportion of circulating CD4+ T cells that function to maintain homeostasis and prevent autoimmunity. In light of their powerful immunosuppressive and tolerance-promoting properties, Tregs have become an interesting potential candidate for therapeutic use in conditions such as solid organ transplant or to treat autoimmune and inflammatory conditions. Clinical studies have demonstrated the safety of polyclonally expanded Tregs in graft-versus-host disease, type 1 diabetes, and more recently in renal and liver transplantation. However, Tregs are heterogenous. Recent insights indicate that only a small proportion of Tregs, called T follicular regulatory cells (Tfr) regulate interactions between B cells and T follicular helper (Tfh) cells within the germinal center. Tfr have been mainly described in mouse models due to the challenges of sampling secondary lymphoid organs in humans. However, emerging human studies, characterize Tfr as being CD4+CD25+FOXP3+CXCR5+ cells with different levels of PD-1 and ICOS expression depending on their localization, in the blood or the germinal center. The exact role they play in transplantation remains to be elucidated. However, given the potential ability of these cells to modulate antibody responses to allo-antigens, there is great interest in exploring translational applications in situations where B cell responses need to be regulated. Here, we review the current knowledge of Tfr and the role they play focusing on human diseases and transplantation. We also discuss the potential future applications of Tfr therapy in transplantation and examine the evidence for a role of Tfr in antibody production, acute and chronic rejection and tertiary lymphoid organs. Furthermore, the potential impact of immunosuppression on Tfr will be explored. Based on preclinical research, we will analyse the rationale of Tfr therapy in solid organ transplantation and summarize the different challenges to be overcome before Tfr therapy can be implemented into clinical practice.
Collapse
Affiliation(s)
- Caroline Dudreuilh
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Sumoyee Basu
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Cristiano Scottà
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Anthony Dorling
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Giovanna Lombardi
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| |
Collapse
|
49
|
Haase P, Voehringer D. Regulation of the humoral type 2 immune response against allergens and helminths. Eur J Immunol 2020; 51:273-279. [PMID: 33305358 DOI: 10.1002/eji.202048864] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 12/08/2020] [Indexed: 11/10/2022]
Abstract
The type 2 immune response is associated with helminth infections and allergic inflammation where antibody production of the IgG1 and IgE isotypes can elicit protective or proinflammatory functions. Studies over the past few years revealed important new insights regarding the regulatory mechanisms orchestrating the humoral type 2 immune response. This includes investigations on B-cell extrinsic signals, such IL-4 and IL-21, derived from different T-helper cell subsets or discovery of new follicular helper T cells with regulatory or IgE-promoting activities. In addition, studies on B-cell intrinsic factors required for germinal center formation and class switch recombination, including the transcription factors STAT3, STAT6, and BCL-6, led to a better understanding of these processes in type 2 immune responses. Here, we review the current understanding of mechanisms controlling humoral type 2 immunity in vivo including the generation of IgE-producing plasma cells and the memory IgE response.
Collapse
Affiliation(s)
- Paul Haase
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
50
|
Wu Y, Luo J, Garden OA. Immunoregulatory Cells in Myasthenia Gravis. Front Neurol 2020; 11:593431. [PMID: 33384654 PMCID: PMC7769807 DOI: 10.3389/fneur.2020.593431] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Myasthenia gravis (MG) is a T cell-dependent, B-cell mediated autoimmune disease caused by antibodies against the nicotinic acetylcholine receptor or other components of the post-synaptic muscle endplate at the neuromuscular junction. These specific antibodies serve as excellent biomarkers for diagnosis, but do not adequately substitute for clinical evaluations to predict disease severity or treatment response. Several immunoregulatory cell populations are implicated in the pathogenesis of MG. The immunophenotype of these populations has been well-characterized in human peripheral blood. CD4+FoxP3+ regulatory T cells (Tregs) are functionally defective in MG, but there is a lack of consensus on whether they show numerical perturbations. Myeloid-derived suppressor cells (MDSCs) have also been explored in the context of MG. Adoptive transfer of CD4+FoxP3+ Tregs or MDSCs suppresses ongoing experimental autoimmune MG (EAMG), a rodent model of MG, suggesting a protective role of both populations in this disease. An imbalance between follicular Tregs and follicular T helper cells is found in untreated MG patients, correlating with disease manifestations. There is an inverse correlation between the frequency of circulating IL-10–producing B cells and clinical status in MG patients. Taken together, both functional and numerical defects in various populations of immunoregulatory cells in EAMG and human MG have been demonstrated, but how they relate to pathogenesis and whether these cells can serve as biomarkers of disease activity in humans deserve further exploration.
Collapse
Affiliation(s)
- Ying Wu
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jie Luo
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Oliver A Garden
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|