1
|
Choi HK, Travaglino S, Münchhalfen M, Görg R, Zhong Z, Lyu J, Reyes-Aguilar DM, Wienands J, Singh A, Zhu C. Mechanotransduction governs CD40 function and underlies X-linked hyper-IgM syndrome. SCIENCE ADVANCES 2024; 10:eadl5815. [PMID: 39546606 PMCID: PMC11566996 DOI: 10.1126/sciadv.adl5815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
B cell maturation depends on cognate interactions between the T and B cells. Upon interaction with CD40 ligand (CD40L) on T cells, CD40 delivers costimulatory signals alongside B cell antigen receptor (BCR) signaling to regulate affinity maturation and antibody class switch. Mutations affecting CD40-CD40L interactions cause abnormal antibody responses in immunodeficiencies known as X-linked hyper-IgM syndrome (X-HIgM). Here, we study the CD40-mediated mechanotransduction in B cells, which likely occurs during their physical contacts with T cells. We found that CD40 forms catch bond with CD40L that lasts longer at larger forces, both B and T cells exert tension on CD40-CD40L bonds, and force enhances CD40 signaling and antibody class switch. X-HIgM CD40L mutations impair catch bond formation, suppress endogenous tension, and reduce force-enhanced CD40 signaling, leading to deficiencies in antibody class switch. Our findings highlight the role of mechanotransduction in CD40 function and provide insights into the mechanisms underlying X-HIgM syndrome.
Collapse
Affiliation(s)
- Hyun-Kyu Choi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Stefano Travaglino
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Matthias Münchhalfen
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, 13 Göttingen, Germany
| | - Richard Görg
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, 13 Göttingen, Germany
| | - Zhe Zhong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jintian Lyu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - David M. Reyes-Aguilar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jürgen Wienands
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, 13 Göttingen, Germany
| | - Ankur Singh
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Sainz TP, Sahu V, Gomez JA, Dcunha NJ, Basi AV, Kettlun C, Sarami I, Burks JK, Sampath D, Vega F. Role of the Crosstalk B:Neoplastic T Follicular Helper Cells in the Pathobiology of Nodal T Follicular Helper Cell Lymphomas. J Transl Med 2024; 104:102147. [PMID: 39389311 DOI: 10.1016/j.labinv.2024.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL), the most common form of peripheral T-cell lymphoma, originates from follicular helper T (Tfh) cells and is notably resistant to current treatments. The disease progression and maintenance, at least in early stages, are driven by a complex interplay between neoplastic Tfh and clusters of B-cells within the tumor microenvironment, mirroring the functional crosstalk observed inside germinal centers. This interaction is further complicated by recurrent mutations, such as TET2 and DNMT3A, which are present in both Tfh cells and B-cells. These findings suggest that the symbiotic relationship between these 2 cell types could represent a therapeutic vulnerability. This review examines the key components and signaling mechanisms involved in the synapses between B-cells and Tfh cells, emphasizing their significant role in the pathobiology of AITL and potential as therapeutic targets.
Collapse
Affiliation(s)
- Tania P Sainz
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Vishal Sahu
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Javier A Gomez
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Nicholas J Dcunha
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Akshay V Basi
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Claudia Kettlun
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Iman Sarami
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Jared K Burks
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Deepa Sampath
- Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Francisco Vega
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas.
| |
Collapse
|
3
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
4
|
Münchhalfen M, Görg R, Haberl M, Löber J, Willenbrink J, Schwarzt L, Höltermann C, Ickes C, Hammermann L, Kus J, Chapuy B, Ballabio A, Reichardt SD, Flügel A, Engels N, Wienands J. TFEB activation hallmarks antigenic experience of B lymphocytes and directs germinal center fate decisions. Nat Commun 2024; 15:6971. [PMID: 39138218 PMCID: PMC11322606 DOI: 10.1038/s41467-024-51166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Ligation of the B cell antigen receptor (BCR) initiates humoral immunity. However, BCR signaling without appropriate co-stimulation commits B cells to death rather than to differentiation into immune effector cells. How BCR activation depletes potentially autoreactive B cells while simultaneously primes for receiving rescue and differentiation signals from cognate T lymphocytes remains unknown. Here, we use a mass spectrometry-based proteomic approach to identify cytosolic/nuclear shuttling elements and uncover transcription factor EB (TFEB) as a central BCR-controlled rheostat that drives activation-induced apoptosis, and concurrently promotes the reception of co-stimulatory rescue signals by supporting B cell migration and antigen presentation. CD40 co-stimulation prevents TFEB-driven cell death, while enhancing and prolonging TFEB's nuclear residency, which hallmarks antigenic experience also of memory B cells. In mice, TFEB shapes the transcriptional landscape of germinal center B cells. Within the germinal center, TFEB facilitates the dark zone entry of light-zone-residing centrocytes through regulation of chemokine receptors and, by balancing the expression of Bcl-2/BH3-only family members, integrates antigen-induced apoptosis with T cell-provided CD40 survival signals. Thus, TFEB reprograms antigen-primed germinal center B cells for cell fate decisions.
Collapse
Affiliation(s)
- Matthias Münchhalfen
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Richard Görg
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Haberl
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Löber
- Department of Medical Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Hematology, Oncology, and Tumor Immunology, Charité, Campus Benjamin Franklin, University Medical Center Berlin, Berlin, Germany
| | - Jakob Willenbrink
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Laura Schwarzt
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Charlotte Höltermann
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Ickes
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Leonard Hammermann
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Kus
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Chapuy
- Department of Medical Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Hematology, Oncology, and Tumor Immunology, Charité, Campus Benjamin Franklin, University Medical Center Berlin, Berlin, Germany
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, USA
| | - Sybille D Reichardt
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Niklas Engels
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Wienands
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Kim YJ, Choi J, Choi YS. Transcriptional regulation of Tfh dynamics and the formation of immunological synapses. Exp Mol Med 2024; 56:1365-1372. [PMID: 38825646 PMCID: PMC11263543 DOI: 10.1038/s12276-024-01254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Inside germinal centers (GCs), antigen-specific B cells rely on precise interactions with immune cells and strategic localization between the dark and light zones to clonally expand, undergo affinity maturation, and differentiate into long-lived plasma cells or memory B cells. Follicular helper T (Tfh) cells, the key gatekeepers of GC-dependent humoral immunity, exhibit remarkable dynamic positioning within secondary lymphoid tissues and rely on intercellular interactions with antigen-presenting cells (APCs) during their differentiation and execution of B-cell-facilitating functions within GCs. In this review, we briefly cover the transcriptional regulation of Tfh cell differentiation and function and explore the molecular mechanisms governing Tfh cell motility, their interactions with B cells within GCs, and the impact of their dynamic behavior on humoral responses.
Collapse
Affiliation(s)
- Ye-Ji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jinyong Choi
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea.
- Transplantation Research Institute, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
6
|
Bodega-Mayor I, Delgado-Wicke P, Arrabal A, Alegría-Carrasco E, Nicolao-Gómez A, Jaén-Castaño M, Espadas C, Dopazo A, de Luis EV, Martín-Gayo E, Gaspar ML, de Andrés B, Fernández-Ruiz E. Tyrosine kinase 2 modulates splenic B cells through type I IFN and TLR7 signaling. Cell Mol Life Sci 2024; 81:199. [PMID: 38683377 PMCID: PMC11058799 DOI: 10.1007/s00018-024-05234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/29/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
Tyrosine kinase 2 (TYK2) is involved in type I interferon (IFN-I) signaling through IFN receptor 1 (IFNAR1). This signaling pathway is crucial in the early antiviral response and remains incompletely understood on B cells. Therefore, to understand the role of TYK2 in B cells, we studied these cells under homeostatic conditions and following in vitro activation using Tyk2-deficient (Tyk2-/-) mice. Splenic B cell subpopulations were altered in Tyk2-/- compared to wild type (WT) mice. Marginal zone (MZ) cells were decreased and aged B cells (ABC) were increased, whereas follicular (FO) cells remained unchanged. Likewise, there was an imbalance in transitional B cells in juvenile Tyk2-/- mice. RNA sequencing analysis of adult MZ and FO cells isolated from Tyk2-/- and WT mice in homeostasis revealed altered expression of IFN-I and Toll-like receptor 7 (TLR7) signaling pathway genes. Flow cytometry assays corroborated a lower expression of TLR7 in MZ B cells from Tyk2-/- mice. Splenic B cell cultures showed reduced proliferation and differentiation responses after activation with TLR7 ligands in Tyk2-/- compared to WT mice, with a similar response to lipopolysaccharide (LPS) or anti-CD40 + IL-4. IgM, IgG, IL-10 and IL-6 secretion was also decreased in Tyk2-/- B cell cultures. This reduced response of the TLR7 pathway in Tyk2-/- mice was partially restored by IFNα addition. In conclusion, there is a crosstalk between TYK2 and TLR7 mediated by an IFN-I feedback loop, which contributes to the establishment of MZ B cells and to B cell proliferation and differentiation.
Collapse
Affiliation(s)
- Irene Bodega-Mayor
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain
- Immunobiology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Pablo Delgado-Wicke
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain
| | - Alejandro Arrabal
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain
- Immunobiology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Estíbaliz Alegría-Carrasco
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain
| | - Ana Nicolao-Gómez
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain
| | - Marta Jaén-Castaño
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain
| | - Cristina Espadas
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Enrique Vázquez de Luis
- Immunology Department, Hospital Universitario de La Princesa and IIS-Princesa, Madrid, Spain
| | - Enrique Martín-Gayo
- Immunology Department, Hospital Universitario de La Princesa and IIS-Princesa, Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Luisa Gaspar
- Immunobiology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Belén de Andrés
- Immunobiology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Elena Fernández-Ruiz
- Molecular Biology Unit, Hospital Universitario de La Princesa and Research Institute (IIS-Princesa), Madrid, Spain.
- Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
7
|
Liu J, Li C. Data-driven energy landscape reveals critical genes in cancer progression. NPJ Syst Biol Appl 2024; 10:27. [PMID: 38459043 PMCID: PMC10923824 DOI: 10.1038/s41540-024-00354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
The evolution of cancer is a complex process characterized by stable states and transitions among them. Studying the dynamic evolution of cancer and revealing the mechanisms of cancer progression based on experimental data is an important topic. In this study, we aim to employ a data-driven energy landscape approach to analyze the dynamic evolution of cancer. We take Kidney renal clear cell carcinoma (KIRC) as an example. From the energy landscape, we introduce two quantitative indicators (transition probability and barrier height) to study critical shifts in KIRC cancer evolution, including cancer onset and progression, and identify critical genes involved in these transitions. Our results successfully identify crucial genes that either promote or inhibit these transition processes in KIRC. We also conduct a comprehensive biological function analysis on these genes, validating the accuracy and reliability of our predictions. This work has implications for discovering new biomarkers, drug targets, and cancer treatment strategies in KIRC.
Collapse
Affiliation(s)
- Juntan Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, 200433, China
| | - Chunhe Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, 200433, China.
- School of Mathematical Sciences and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Russell AJC, Weir JA, Nadaf NM, Shabet M, Kumar V, Kambhampati S, Raichur R, Marrero GJ, Liu S, Balderrama KS, Vanderburg CR, Shanmugam V, Tian L, Iorgulescu JB, Yoon CH, Wu CJ, Macosko EZ, Chen F. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics. Nature 2024; 625:101-109. [PMID: 38093010 PMCID: PMC10764288 DOI: 10.1038/s41586-023-06837-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023]
Abstract
Recent technological innovations have enabled the high-throughput quantification of gene expression and epigenetic regulation within individual cells, transforming our understanding of how complex tissues are constructed1-6. However, missing from these measurements is the ability to routinely and easily spatially localize these profiled cells. We developed a strategy, Slide-tags, in which single nuclei within an intact tissue section are tagged with spatial barcode oligonucleotides derived from DNA-barcoded beads with known positions. These tagged nuclei can then be used as an input into a wide variety of single-nucleus profiling assays. Application of Slide-tags to the mouse hippocampus positioned nuclei at less than 10 μm spatial resolution and delivered whole-transcriptome data that are indistinguishable in quality from ordinary single-nucleus RNA-sequencing data. To demonstrate that Slide-tags can be applied to a wide variety of human tissues, we performed the assay on brain, tonsil and melanoma. We revealed cell-type-specific spatially varying gene expression across cortical layers and spatially contextualized receptor-ligand interactions driving B cell maturation in lymphoid tissue. A major benefit of Slide-tags is that it is easily adaptable to almost any single-cell measurement technology. As a proof of principle, we performed multiomic measurements of open chromatin, RNA and T cell receptor (TCR) sequences in the same cells from metastatic melanoma, identifying transcription factor motifs driving cancer cell state transitions in spatially distinct microenvironments. Slide-tags offers a universal platform for importing the compendium of established single-cell measurements into the spatial genomics repertoire.
Collapse
Affiliation(s)
- Andrew J C Russell
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jackson A Weir
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA, USA
| | - Naeem M Nadaf
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Vipin Kumar
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Sandeep Kambhampati
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard University, Boston, MA, USA
| | - Ruth Raichur
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Sophia Liu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Biophysics Program, Harvard University, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Vignesh Shanmugam
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luyi Tian
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Guangzhou Laboratory, Guangdong, China
| | - J Bryan Iorgulescu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Stem Cell Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Boston, MA, USA
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles H Yoon
- Department of Surgical Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Catherine J Wu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Stem Cell Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
9
|
Perdiguero B, Hauser A, Gómez CE, Peterhoff D, Sideris E, Sorzano CÓS, Wilmschen S, Schaber M, Stengel L, Asbach B, Ding S, Von Laer D, Levy Y, Pantaleo G, Kimpel J, Esteban M, Wagner R. Potency and durability of T and B cell immune responses after homologous and heterologous vector delivery of a trimer-stabilized, membrane-displayed HIV-1 clade ConC Env protein. Front Immunol 2023; 14:1270908. [PMID: 38045703 PMCID: PMC10690772 DOI: 10.3389/fimmu.2023.1270908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction The generation of an HIV-1 vaccine able to induce long-lasting protective immunity remains a main challenge. Here, we aimed to modify next-generation soluble, prefusion-stabilized, close-to-native, glycan-engineered clade C gp140 envelope (Env) trimers (sC23v4 KIKO and ConCv5 KIKO) for optimal display on the cell surface following homologous or heterologous vector delivery. Methods A combination of the following modifications scored best regarding the preservation of closed, native-like Env trimer conformation and antigenicity when using a panel of selected broadly neutralizing (bnAb) and non-neutralizing (nnAb) monoclonal antibodies for flow cytometry: i) replacing the natural cleavage site with a native flexible linker and introducing a single amino acid substitution to prevent CD4 binding (*), ii) fusing a heterologous VSV-G-derived transmembrane moiety to the gp140 C-terminus, and iii) deleting six residues proximal to the membrane. Results When delivering membrane-tethered sC23v4 KIKO* and ConCv5 KIKO* via DNA, VSV-GP, and NYVAC vectors, the two native-like Env trimers provide differential antigenicity profiles. Whereas such patterns were largely consistent among the different vectors for either Env trimer, the membrane-tethered ConCv5 KIKO* trimer adopted a more closed and native-like structure than sC23v4 KIKO*. In immunized mice, VSV-GP and NYVAC vectors expressing the membrane-tethered ConCv5 KIKO* administered in prime/boost combination were the most effective regimens for the priming of Env-specific CD4 T cells among all tested combinations. The subsequent booster administration of trimeric ConCv5 KIKO* Env protein preserved the T cell activation levels between groups. The evaluation of the HIV-1-specific humoral responses induced in the different immunization groups after protein boosts showed that the various prime/boost protocols elicited broad and potent antibody responses, preferentially of a Th1-associated IgG2a subclass, and that the obtained antibody levels remained high at the memory phase. Discussion In summary, we provide a feasible strategy to display multiple copies of native-like Env trimers on the cell surface, which translates into efficient priming of sustained CD4+ T cell responses after vector delivery as well as broad, potent, and sustained antibody responses following booster immunizations with the homologous, prefusion-stabilized, close-to-native ConCv5 KIKO* gp140 Env trimer.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Alexandra Hauser
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Elefthéria Sideris
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Óscar S. Sorzano
- Biocomputing Unit and Computational Genomics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sarah Wilmschen
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marion Schaber
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Laura Stengel
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Song Ding
- EuroVacc Foundation, Lausanne, Switzerland
| | - Dorothee Von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yves Levy
- Vaccine Research Institute (VRI), Université Paris-Est Créteil, Faculté de Médicine, Institut national de la santé et de la recherche médicale (INSERM) U955, Créteil, France
- Institut national de la santé et de la recherche médicale (INSERM) U955, Equipe 16, Créteil, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Henri-Mondor Albert-Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses, Créteil, France
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Janine Kimpel
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Nakamura S, Ohuchida K, Hayashi M, Katayama N, Tsutsumi C, Yamada Y, Hisano K, Okuda S, Ohtsubo Y, Iwamoto C, Torata N, Mizuuchi Y, Shindo K, Nakata K, Moriyama T, Morisaki T, Oda Y, Nakamura M. Tertiary lymphoid structures correlate with enhancement of antitumor immunity in esophageal squamous cell carcinoma. Br J Cancer 2023; 129:1314-1326. [PMID: 37604932 PMCID: PMC10575855 DOI: 10.1038/s41416-023-02396-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) are associated with a favorable prognosis in several cancers. However, the correlation between TLSs and outcomes of esophageal squamous cell carcinoma (ESCC) and the impact of TLSs on the tumor immune microenvironment (TIME) remain unknown. METHODS We pathologically evaluated the significance of TLSs in ESCC focusing on TLS maturation using 180 ESCC specimens and performed single-cell RNA sequencing (scRNA-seq) using 14 ESCC tissues to investigate functional differences of immune cells according to TLS presence. RESULTS TLS+ cases had better recurrence-free-survival (RFS) (p < 0.0001) and overall survival (OS) (p = 0.0016) compared with TLS- cases. Additionally, mature TLS+ cases had better RFS and OS compared with immature TLS+ cases (p = 0.019 and p = 0.015) and TLS- cases (p < 0.0001 and p = 0.0002). The scRNA-seq showed that CD8+ T cells in TLS+ tumors expressed high levels of cytotoxic signatures and antigen-presentation of dendritic cells (DCs) was enhanced in TLS+ tumors. Immunohistochemistry showed that the densities of tumor-infiltrating CD8+ T cells and DCs were significantly higher in TLS+ tumors than those in TLS- tumors. CONCLUSIONS These data suggest the prognostic and functional significance of TLSs in ESCC and provides new insights into TLSs on the TIME.
Collapse
Affiliation(s)
- Shoichi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Masataka Hayashi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Katayama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoko Hisano
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sho Okuda
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiki Ohtsubo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Hematology, Clinical Immunology and Infectious Diseases, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Nobuhiro Torata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Mizuuchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taiki Moriyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Morisaki
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Garcia-Carmona Y, Fribourg M, Sowa A, Cerutti A, Cunningham-Rundles C. TACI and endogenous APRIL in B cell maturation. Clin Immunol 2023; 253:109689. [PMID: 37422057 PMCID: PMC10528899 DOI: 10.1016/j.clim.2023.109689] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
While many of the genes and molecular pathways in the germinal center B cell response which initiate protective antibody production are known, the contributions of individual molecular players in terminal B cell differentiation remain unclear. We have previously investigated how mutations in TACI gene, noted in about 10% of patients with common variable immunodeficiency, impair B cell differentiation and often, lead to lymphoid hyperplasia and autoimmunity. Unlike mouse B cells, human B cells express TACI-L (Long) and TACI-S (Short) isoforms, but only TACI-S promotes terminal B cell differentiation into plasma cells. Here we show that the expression of intracellular TACI-S increases with B cell activation, and colocalizes with BCMA and their ligand, APRIL. We show that the loss of APRIL impairs isotype class switch and leads to distinct metabolic and transcriptional changes. Our studies suggest that intracellular TACI-S and APRIL along with BCMA direct long-term PC differentiation and survival.
Collapse
Affiliation(s)
- Yolanda Garcia-Carmona
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA.
| | - Miguel Fribourg
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Allison Sowa
- Microscopy CoRE and Advanced Bioimaging Center, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Andrea Cerutti
- Translational Clinical Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| |
Collapse
|
12
|
Choi HK, Travaglino S, Münchhalfen M, Görg R, Zhong Z, Lyu J, Reyes-Aguilar DM, Wienands J, Singh A, Zhu C. Mechanotransduction governs CD40 function and underlies X-linked Hyper IgM syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.23.550231. [PMID: 37546834 PMCID: PMC10401940 DOI: 10.1101/2023.07.23.550231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
B cell maturation in germinal centers (GCs) depends on cognate interactions between the T and B cells. Upon interaction with CD40 ligand (CD40L) on T cells, CD40 delivers co-stimulatory signals alongside B cell antigen receptor (BCR) signaling to regulate affinity maturation and antibody class-switch during GC reaction. Mutations in CD40L disrupt interactions with CD40, which lead to abnormal antibody responses in immune deficiencies known as X-linked Hyper IgM syndrome (X-HIgM). Assuming that physical interactions between highly mobile T and B cells generate mechanical forces on CD40-CD40L bonds, we set out to study the B cell mechanobiology mediated by CD40-CD40L interaction. Using a suite of biophysical assays we find that CD40 forms catch bond with CD40L where the bond lasts longer at larger forces, B cells exert tension on CD40-CD40L bonds, and force enhances CD40 signaling and antibody class-switch. Significantly, X-HIgM CD40L mutations impair catch bond formation, suppress endogenous tension, and reduce force-enhanced CD40 signaling, leading to deficiencies in antibody class switch. Our findings highlight the critical role of mechanotransduction in CD40 function and provide insights into the molecular mechanisms underlying X-HIgM syndrome.
Collapse
|
13
|
Knoedler L, Knoedler S, Panayi AC, Lee CAA, Sadigh S, Huelsboemer L, Stoegner VA, Schroeter A, Kern B, Mookerjee V, Lian CG, Tullius SG, Murphy GF, Pomahac B, Kauke-Navarro M. Cellular activation pathways and interaction networks in vascularized composite allotransplantation. Front Immunol 2023; 14:1179355. [PMID: 37266446 PMCID: PMC10230044 DOI: 10.3389/fimmu.2023.1179355] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Vascularized composite allotransplantation (VCA) is an evolving field of reconstructive surgery that has revolutionized the treatment of patients with devastating injuries, including those with limb losses or facial disfigurement. The transplanted units are typically comprised of different tissue types, including skin, mucosa, blood and lymphatic vasculature, muscle, and bone. It is widely accepted that the antigenicity of some VCA components, such as skin, is particularly potent in eliciting a strong recipient rejection response following transplantation. The fine line between tolerance and rejection of the graft is orchestrated by different cell types, including both donor and recipient-derived lymphocytes, macrophages, and other immune and donor-derived tissue cells (e.g., endothelium). Here, we delineate the role of different cell and tissue types during VCA rejection. Rejection of VCA grafts and the necessity of life-long multidrug immunosuppression remains one of the major challenges in this field. This review sheds light on recent developments in decoding the cellular signature of graft rejection in VCA and how these may, ultimately, influence the clinical management of VCA patients by way of novel therapies that target specific cellular processes.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Adriana C. Panayi
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Catherine A. A. Lee
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sam Sadigh
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Lioba Huelsboemer
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Viola A. Stoegner
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Andreas Schroeter
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barbara Kern
- Department of Plastic Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vikram Mookerjee
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Christine G. Lian
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
14
|
Rastogi I, McNeel DG. B cells require licensing by dendritic cells to serve as primary antigen-presenting cells for plasmid DNA. Oncoimmunology 2023; 12:2212550. [PMID: 37205983 PMCID: PMC10190194 DOI: 10.1080/2162402x.2023.2212550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
DNA vaccines have been an attractive approach for treating cancer patients, however have demonstrated modest immunogenicity in human clinical trials. Dendritic cells (DCs) are known to cross-present DNA-encoded antigens expressed in bystander cells. However, we have previously reported that B cells, and not DCs, serve as primary antigen-presenting cells (APCs) following passive uptake of plasmid DNA. Here we sought to understand the requirements for B cells to present DNA-encoded antigens, to ultimately increase the immunogenicity of plasmid DNA vaccines. Using ovalbumin-specific OT-1 CD8+ T cells and isolated APC populations, we demonstrated that following passive uptake of plasmid DNA, B cells but not DC, can translate the encoded antigen. However, CD8 T cells were only activated by B cells when they were co-cultured with DCs. We found that a cell-cell contact is required between B cells and DCs. Using MHCI KO and re-purification studies, we demonstrated that B cells were the primary APCs and DCs serve to license this function. We further identified that the gene expression profiles of B cells that have been licensed by DCs, compared to the B cells that have not, are vastly different and have signatures similar to B cells activated with a TLR7/8 agonist. Our data demonstrate that B cells transcribe and translate antigens encoded by plasmid DNA following passive uptake, however require licensing by live DC to present antigen to CD8 T cells. Further study of the role of B cells as APCs will be important to improve the immunological efficacy of DNA vaccines.
Collapse
Affiliation(s)
- Ichwaku Rastogi
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Douglas G. McNeel
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
15
|
Russell AJC, Weir JA, Nadaf NM, Shabet M, Kumar V, Kambhampati S, Raichur R, Marrero GJ, Liu S, Balderrama KS, Vanderburg CR, Shanmugam V, Tian L, Wu CJ, Yoon CH, Macosko EZ, Chen F. Slide-tags: scalable, single-nucleus barcoding for multi-modal spatial genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.535228. [PMID: 37066158 PMCID: PMC10103946 DOI: 10.1101/2023.04.01.535228] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recent technological innovations have enabled the high-throughput quantification of gene expression and epigenetic regulation within individual cells, transforming our understanding of how complex tissues are constructed. Missing from these measurements, however, is the ability to routinely and easily spatially localise these profiled cells. We developed a strategy, Slide-tags, in which single nuclei within an intact tissue section are 'tagged' with spatial barcode oligonucleotides derived from DNA-barcoded beads with known positions. These tagged nuclei can then be used as input into a wide variety of single-nucleus profiling assays. Application of Slide-tags to the mouse hippocampus positioned nuclei at less than 10 micron spatial resolution, and delivered whole-transcriptome data that was indistinguishable in quality from ordinary snRNA-seq. To demonstrate that Slide-tags can be applied to a wide variety of human tissues, we performed the assay on brain, tonsil, and melanoma. We revealed cell-type-specific spatially varying gene expression across cortical layers and spatially contextualised receptor-ligand interactions driving B-cell maturation in lymphoid tissue. A major benefit of Slide-tags is that it is easily adaptable to virtually any single-cell measurement technology. As proof of principle, we performed multiomic measurements of open chromatin, RNA, and T-cell receptor sequences in the same cells from metastatic melanoma. We identified spatially distinct tumour subpopulations to be differentially infiltrated by an expanded T-cell clone and undergoing cell state transition driven by spatially clustered accessible transcription factor motifs. Slide-tags offers a universal platform for importing the compendium of established single-cell measurements into the spatial genomics repertoire.
Collapse
|
16
|
Kim YJ, Oh J, Jung S, Kim CJ, Choi J, Jeon YK, Kim HJ, Kim JW, Suh CH, Lee Y, Im SH, Crotty S, Choi YS. The transcription factor Mef2d regulates B:T synapse-dependent GC-T FH differentiation and IL-21-mediated humoral immunity. Sci Immunol 2023; 8:eadf2248. [PMID: 36961907 PMCID: PMC10311795 DOI: 10.1126/sciimmunol.adf2248] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/15/2023] [Indexed: 03/26/2023]
Abstract
Communication between CD4 T cells and cognate B cells is key for the former to fully mature into germinal center-T follicular helper (GC-TFH) cells and for the latter to mount a CD4 T cell-dependent humoral immune response. Although this interaction occurs in a B:T synapse-dependent manner, how CD4 T cells transcriptionally regulate B:T synapse formation remains largely unknown. Here, we report that Mef2d, an isoform of the myocyte enhancer factor 2 (Mef2) transcription factor family, is a critical regulator of this process. In CD4 T cells, Mef2d negatively regulates expression of Sh2d1a, which encodes SLAM-associated protein (SAP), a critical regulator of B:T synapses. We found that Mef2d regulates Sh2d1a expression via DNA binding-dependent transcriptional repression, inhibiting SAP-dependent B:T synapse formation and preventing antigen-specific CD4 T cells from differentiating into GC-TFH cells. Mef2d also impeded IL-21 production by CD4 T cells, an important B cell help signaling molecule, via direct repression of the Il21 gene. In contrast, CD4 T cell-specific disruption of Mef2d led to a substantial increase in GC-TFH differentiation in response to protein immunization, concurrent with enhanced SAP expression. MEF2D mRNA expression inversely correlates with human systemic lupus erythematosus (SLE) patient autoimmune parameters, including circulating TFH-like cell frequencies, autoantibodies, and SLEDAI scores. These findings highlight Mef2d as a pivotal rheostat in CD4 T cells for controlling GC formation and antibody production by B cells.
Collapse
Affiliation(s)
- Ye-Ji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jeein Oh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Soohan Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Chan Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Jinyong Choi
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jik Kim
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul, Korea
| | - Ji-Won Kim
- Department of Rheumatology, Ajou University School of Medicine, Gyeonggi-do, Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Gyeonggi-do, Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
- ImmunoBiome Inc., Pohang, Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Korea
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- University of California San Diego, Department of Medicine, Division of Infectious Diseases and Global Public Health, La Jolla, CA, USA
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
- Transplantation Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
17
|
Chen Z, Cui Y, Yao Y, Liu B, Yunis J, Gao X, Wang N, Cañete PF, Tuong ZK, Sun H, Wang H, Yang S, Wang R, Leong YA, Simon Davis D, Qin J, Liang K, Deng J, Wang CK, Huang YH, Roco JA, Nettelfield S, Zhu H, Xu H, Yu Z, Craik D, Liu Z, Qi H, Parish C, Yu D. Heparan sulfate regulates IL-21 bioavailability and signal strength that control germinal center B cell selection and differentiation. Sci Immunol 2023; 8:eadd1728. [PMID: 36800411 DOI: 10.1126/sciimmunol.add1728] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In antibody responses, mutated germinal center B (BGC) cells are positively selected for reentry or differentiation. As the products from GCs, memory B cells and antibody-secreting cells (ASCs) support high-affinity and long-lasting immunity. Positive selection of BGC cells is controlled by signals received through the B cell receptor (BCR) and follicular helper T (TFH) cell-derived signals, in particular costimulation through CD40. Here, we demonstrate that the TFH cell effector cytokine interleukin-21 (IL-21) joins BCR and CD40 in supporting BGC selection and reveal that strong IL-21 signaling prioritizes ASC differentiation in vivo. BGC cells, compared with non-BGC cells, show significantly reduced IL-21 binding and attenuated signaling, which is mediated by low cellular heparan sulfate (HS) sulfation. Mechanistically, N-deacetylase and N-sulfotransferase 1 (Ndst1)-mediated N-sulfation of HS in B cells promotes IL-21 binding and signal strength. Ndst1 is down-regulated in BGC cells and up-regulated in ASC precursors, suggesting selective desensitization to IL-21 in BGC cells. Thus, specialized biochemical regulation of IL-21 bioavailability and signal strength sets a balance between the stringency and efficiency of GC selection.
Collapse
Affiliation(s)
- Zhian Chen
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Yanfang Cui
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Central China Normal University, Wuhan, China
| | - Yin Yao
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Department of Otolaryngology-Head and Neck Surgery, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing, China
| | - Joseph Yunis
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Xin Gao
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Naiqi Wang
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Pablo F Cañete
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK.,Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Hongjian Sun
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Hao Wang
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Siling Yang
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Runli Wang
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Yew Ann Leong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - David Simon Davis
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jiahuan Qin
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaili Liang
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Deng
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Conan K Wang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Jonathan A Roco
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Sam Nettelfield
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Huaming Zhu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Huajun Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhijia Yu
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - David Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD, Australia
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing, China
| | - Christopher Parish
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Meta-Analysis of MS-Based Proteomics Studies Indicates Interferon Regulatory Factor 4 and Nucleobindin1 as Potential Prognostic and Drug Resistance Biomarkers in Diffuse Large B Cell Lymphoma. Cells 2023; 12:cells12010196. [PMID: 36611989 PMCID: PMC9818977 DOI: 10.3390/cells12010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
The prognosis of diffuse large B cell lymphoma (DLBCL) is inaccurately predicted using clinical features and immunohistochemistry (IHC) algorithms. Nomination of a panel of molecules as the target for therapy and predicting prognosis in DLBCL is challenging because of the divergences in the results of molecular studies. Mass spectrometry (MS)-based proteomics in the clinic represents an analytical tool with the potential to improve DLBCL diagnosis and prognosis. Previous proteomics studies using MS-based proteomics identified a wide range of proteins. To achieve a consensus, we reviewed MS-based proteomics studies and extracted the most consistently significantly dysregulated proteins. These proteins were then further explored by analyzing data from other omics fields. Among all significantly regulated proteins, interferon regulatory factor 4 (IRF4) was identified as a potential target by proteomics, genomics, and IHC. Moreover, annexinA5 (ANXA5) and nucleobindin1 (NUCB1) were two of the most up-regulated proteins identified in MS studies. Functional enrichment analysis identified the light zone reactions of the germinal center (LZ-GC) together with cytoskeleton locomotion functions as enriched based on consistent, significantly dysregulated proteins. In this study, we suggest IRF4 and NUCB1 proteins as potential biomarkers that deserve further investigation in the field of DLBCL sub-classification and prognosis.
Collapse
|
19
|
Cousin VN, Perez GF, Payne KJ, Voll RE, Rizzi M, Mueller CG, Warnatz K. Lymphoid stromal cells - potential implications for the pathogenesis of CVID. Front Immunol 2023; 14:1122905. [PMID: 36875120 PMCID: PMC9982092 DOI: 10.3389/fimmu.2023.1122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Non-hematopoietic lymphoid stromal cells (LSC) maintain lymph node architecture and form niches allowing the migration, activation, and survival of immune cells. Depending on their localization in the lymph node, these cells display heterogeneous properties and secrete various factors supporting the different activities of the adaptive immune response. LSCs participate in the transport of antigen from the afferent lymph as well as in its delivery into the T and B cell zones and organize cell migration via niche-specific chemokines. While marginal reticular cells (MRC) are equipped for initial B-cell priming and T zone reticular cells (TRC) provide the matrix for T cell-dendritic cell interactions within the paracortex, germinal centers (GC) only form when both T- and B cells successfully interact at the T-B border and migrate within the B-cell follicle containing the follicular dendritic cell (FDC) network. Unlike most other LSCs, FDCs are capable of presenting antigen via complement receptors to B cells, which then differentiate within this niche and in proximity to T follicular helper (TFH) cells into memory and plasma cells. LSCs are also implicated in maintenance of peripheral immune tolerance. In mice, TRCs induce the alternative induction of regulatory T cells instead of TFH cells by presenting tissue-restricted self-antigens to naïve CD4 T cells via MHC-II expression. This review explores potential implications of our current knowledge of LSC populations regarding the pathogenesis of humoral immunodeficiency and autoimmunity in patients with autoimmune disorders or common variable immunodeficiency (CVID), the most common form of primary immunodeficiency in humans.
Collapse
Affiliation(s)
- Victoria N Cousin
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University of Freiburg, Faculty of Biology, Freiburg, Germany.,Freiburg Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Faculty of Biology, Freiburg, Germany
| | - Guillermo F Perez
- Immunologie, Immunopathologie et Chimie Thérapeutique, CNRS UPR3572, Strasbourg, France.,Faculty of Life Science, University of Strasbourg, Strasbourg, France
| | - Kathryn J Payne
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Division of Clinical and Experimental Immunology, Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christopher G Mueller
- Immunologie, Immunopathologie et Chimie Thérapeutique, CNRS UPR3572, Strasbourg, France.,Faculty of Life Science, University of Strasbourg, Strasbourg, France
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Onnis A, Andreano E, Cassioli C, Finetti F, Della Bella C, Staufer O, Pantano E, Abbiento V, Marotta G, D’Elios MM, Rappuoli R, Baldari CT. SARS-CoV-2 Spike protein suppresses CTL-mediated killing by inhibiting immune synapse assembly. J Exp Med 2022; 220:213689. [PMID: 36378226 PMCID: PMC9671159 DOI: 10.1084/jem.20220906] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
CTL-mediated killing of virally infected or malignant cells is orchestrated at the immune synapse (IS). We hypothesized that SARS-CoV-2 may target lytic IS assembly to escape elimination. We show that human CD8+ T cells upregulate the expression of ACE2, the Spike receptor, during differentiation to CTLs. CTL preincubation with the Wuhan or Omicron Spike variants inhibits IS assembly and function, as shown by defective synaptic accumulation of TCRs and tyrosine phosphoproteins as well as defective centrosome and lytic granule polarization to the IS, resulting in impaired target cell killing and cytokine production. These defects were reversed by anti-Spike antibodies interfering with ACE2 binding and reproduced by ACE2 engagement by angiotensin II or anti-ACE2 antibodies, but not by the ACE2 product Ang (1-7). IS defects were also observed ex vivo in CTLs from COVID-19 patients. These results highlight a new strategy of immune evasion by SARS-CoV-2 based on the Spike-dependent, ACE2-mediated targeting of the lytic IS to prevent elimination of infected cells.
Collapse
Affiliation(s)
- Anna Onnis
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Emanuele Andreano
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Chiara Cassioli
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Oskar Staufer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Elisa Pantano
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Valentina Abbiento
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | - Mario Milco D’Elios
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena, Italy,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Cosima T. Baldari
- Department of Life Sciences, University of Siena, Siena, Italy,Correspondence to Cosima T. Baldari:
| |
Collapse
|
21
|
Cho A, Muecksch F, Wang Z, Ben Tanfous T, DaSilva J, Raspe R, Johnson B, Bednarski E, Ramos V, Schaefer-Babajew D, Shimeliovich I, Dizon JP, Yao KH, Schmidt F, Millard KG, Turroja M, Jankovic M, Oliveira TY, Gazumyan A, Gaebler C, Caskey M, Hatziioannou T, Bieniasz PD, Nussenzweig MC. Antibody evolution to SARS-CoV-2 after single-dose Ad26.COV2.S vaccine in humans. J Exp Med 2022; 219:e20220732. [PMID: 35776090 PMCID: PMC9253517 DOI: 10.1084/jem.20220732] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 06/17/2022] [Indexed: 01/25/2023] Open
Abstract
The single-dose Ad.26.COV.2 (Janssen) vaccine elicits lower levels of neutralizing antibodies and shows more limited efficacy in protection against infection than either of the two available mRNA vaccines. In addition, Ad.26.COV.2 has been less effective in protection against severe disease during the Omicron surge. Here, we examined the memory B cell response to single-dose Ad.26.COV.2 vaccination. Compared with mRNA vaccines, Ad.26.COV.2 recipients had significantly lower numbers of RBD-specific memory B cells 1.5 or 6 mo after vaccination. Despite the lower numbers, the overall quality of the memory B cell responses appears to be similar, such that memory antibodies elicited by both vaccine types show comparable neutralizing potency against SARS-CoV-2 Wuhan-Hu-1, Delta, and Omicron BA.1 variants. The data help explain why boosting Ad.26.COV.2 vaccine recipients with mRNA vaccines is effective and why the Ad26.COV2.S vaccine can maintain some protective efficacy against severe disease during the Omicron surge.
Collapse
Affiliation(s)
- Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Tarek Ben Tanfous
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | - Raphael Raspe
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Brianna Johnson
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Eva Bednarski
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | | | - Irina Shimeliovich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Juan P. Dizon
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
| | - Katrina G. Millard
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Martina Turroja
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | | | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
22
|
Yeh CH, Finney J, Okada T, Kurosaki T, Kelsoe G. Primary germinal center-resident T follicular helper cells are a physiologically distinct subset of CXCR5 hiPD-1 hi T follicular helper cells. Immunity 2022; 55:272-289.e7. [PMID: 35081372 PMCID: PMC8842852 DOI: 10.1016/j.immuni.2021.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/10/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
Abstract
T follicular helper (Tfh) cells are defined by a Bcl6+CXCR5hiPD-1hi phenotype, but only a minor fraction of these reside in germinal centers (GCs). Here, we examined whether GC-resident and -nonresident Tfh cells share a common physiology and function. Fluorescently labeled, GC-resident Tfh cells in different mouse models were distinguished by low expression of CD90. CD90neg/lo GCTfh cells required antigen-specific, MHCII+ B cells to develop and stopped proliferating soon after differentiation. In contrast, nonresident, CD90hi Tfh (GCTfh-like) cells developed normally in the absence of MHCII+ B cells and proliferated continuously during primary responses. The TCR repertoires of both Tfh subsets overlapped initially but later diverged in association with dendritic cell-dependent proliferation of CD90hi GCTfh-like cells, suggestive of TCR-dependency seen also in TCR-transgenic adoptive transfer experiments. Furthermore, the transcriptomes of CD90neg/lo and CD90hi GCTfh-like cells were enriched in different functional pathways. Thus, GC-resident and nonresident Tfh cells have distinct developmental requirements and activities, implying distinct functions.
Collapse
Affiliation(s)
- Chen-Hao Yeh
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joel Finney
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Takaharu Okada
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Garnett Kelsoe
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery and Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
23
|
Brenna E, McMichael AJ. The Importance of Cellular Immune Response to HIV: Implications for Antibody Production and Vaccine Design. DNA Cell Biol 2022; 41:38-42. [PMID: 34664991 PMCID: PMC8787704 DOI: 10.1089/dna.2021.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/04/2022] Open
Abstract
Despite many years from the discovery of human immunodeficiency virus (HIV), a prophylactic vaccine against HIV is still needed. The failure of most of the vaccine clinical trials in the field has different causes, mainly due by the difficulties to identify the correct antigen able to prime the optimal B cell lineage and then make the series of somatic mutations necessary to generate broadly neutralizing antibodies (bNAbs). B cells are responsible for the bNAbs production; however, their function is strongly influenced by the presence of a population of CD4+ T lymphocytes, mainly present in the lymphoid organs, the T follicular helper cells (Tfh). In this review, the importance of the contribution of Tfh cells in HIV response is highlighted and future therapy perspectives based on these observations are described. The advanced technology available nowadays and the wide knowledge built over the past years for HIV may eventually create the best scenario for the generation of an effective vaccine.
Collapse
Affiliation(s)
- Elena Brenna
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew J. McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Abd El-Aleem SA, Saber EA, Aziz NM, El-Sherif H, Abdelraof AM, Djouhri L. Follicular dendritic cells. J Cell Physiol 2021; 237:2019-2033. [PMID: 34918359 DOI: 10.1002/jcp.30662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/08/2022]
Abstract
Follicular dendritic cells (FDCs) are unique accessory immune cells that contribute to the regulation of humoral immunity. They are multitasker cells essential for the organization and maintenance of the lymphoid architecture, induction of germinal center reaction, production of B memory cells, and protection from autoimmune disorders. They perform their activities through both antigen-driven and chemical signaling to B cells. FDCs play a crucial role in the physiological regulation of the immune response. Dis-regulation of this immune response results when FDCs retain antigens for years. This provides a constant antigenic stimulation for B cells resulting in the development of immune disorders. Antigen trapped on FDCs is resistant to therapeutic intervention causing chronicity and recurrences. Beyond their physiological immunoregulatory functions, FDCs are involved in the pathogenesis of several immune-related disorders including HIV/AIDS, prion diseases, chronic inflammatory, and autoimmune disorders. FDCs have also been recently implicated in rare neoplasms of lymphoid and hematopoietic tissues. Understanding FDC biology is essential for better control of humoral immunity and opens the gate for therapeutic management of FDC-mediated immune disorders. Thus, the biology of FDCs has become a hot research area in the last couple of decades. In this review, we aim to provide a comprehensive overview of FDCs and their role in physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Minia University, Minya, Egypt.,Department of Pharmacy, Deraya University, New Minia City, Egypt
| | - Neven M Aziz
- Department of Pharmacy, Deraya University, New Minia City, Egypt.,Department of Physiology, Minia Faculty of Medicine, Minia, Egypt
| | - Hani El-Sherif
- Department of Pharmacy, Deraya University, New Minia City, Egypt
| | - Asmaa M Abdelraof
- Public Health, Community, Environmental and Occupational Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Laiche Djouhri
- Department of Physiology, College of Medicine (QU Health), Qatar University, Doha, Qatar
| |
Collapse
|
25
|
B Cells in Primary Membranous Nephropathy: Escape from Immune Tolerance and Implications for Patient Management. Int J Mol Sci 2021; 22:ijms222413560. [PMID: 34948358 PMCID: PMC8708506 DOI: 10.3390/ijms222413560] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Membranous nephropathy (MN) is an important cause of nephrotic syndrome and chronic kidney disease (CKD) in adults. The pathogenic significance of B cells in MN is increasingly recognized, especially following the discovery of various autoantibodies that target specific podocytic antigens and the promising treatment responses seen with B cell depleting therapies. The presence of autoreactive B cells and autoantibodies that bind to antigens on podocyte surfaces are characteristic features of MN, and are the result of breaches in central and peripheral tolerance of B lymphocytes. These perturbations in B cell tolerance include altered B lymphocyte subsets, dysregulation of genes that govern immunoglobulin production, aberrant somatic hypermutation and co-stimulatory signalling, abnormal expression of B cell-related cytokines, and increased B cell infiltrates and organized tertiary lymphoid structures within the kidneys. An understanding of the role of B cell tolerance and homeostasis may have important implications for patient management in MN, as conventional immunosuppressive treatments and novel B cell-targeted therapies show distinct effects on proliferation, differentiation and reconstitution in different B cell subsets. Circulating B lymphocytes and related cytokines may serve as potential biomarkers for treatment selection, monitoring of therapeutic response and prediction of disease relapse. These recent advances in the understanding of B cell tolerance in MN have provided greater insight into its immunopathogenesis and potential novel strategies for disease monitoring and treatment.
Collapse
|
26
|
Morales-Núñez JJ, Muñoz-Valle JF, Torres-Hernández PC, Hernández-Bello J. Overview of Neutralizing Antibodies and Their Potential in COVID-19. Vaccines (Basel) 2021; 9:vaccines9121376. [PMID: 34960121 PMCID: PMC8706198 DOI: 10.3390/vaccines9121376] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
The antibody response to respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a major focus of COVID-19 research due to its clinical relevance and importance in vaccine and therapeutic development. Neutralizing antibody (NAb) evaluations are useful for the determination of individual or herd immunity against SARS-CoV-2, vaccine efficacy, and humoral protective response longevity, as well as supporting donor selection criteria for convalescent plasma therapy. In the current manuscript, we review the essential concepts of NAbs, examining their concept, mechanisms of action, production, and the techniques used for their detection; as well as presenting an overview of the clinical use of antibodies in COVID-19.
Collapse
Affiliation(s)
- José Javier Morales-Núñez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Mexico; (J.J.M.-N.); (J.F.M.-V.)
| | - José Francisco Muñoz-Valle
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Mexico; (J.J.M.-N.); (J.F.M.-V.)
| | | | - Jorge Hernández-Bello
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Mexico; (J.J.M.-N.); (J.F.M.-V.)
- Correspondence: ; Tel.: +52-333-450-9355
| |
Collapse
|
27
|
The Role of T Follicular Helper Cells and Interleukin-21 in the Pathogenesis of Inflammatory Bowel Disease. Gastroenterol Res Pract 2021; 2021:9621738. [PMID: 34471409 PMCID: PMC8405314 DOI: 10.1155/2021/9621738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
T follicular helper (Tfh) cells represent a novel subset of CD4+ T cells which can provide critical help for germinal center (GC) formation and antibody production. The Tfh cells are characterized by the expression of CXC chemokine receptor 5 (CXCR5), programmed death 1 (PD-1), inducible costimulatory molecule (ICOS), B cell lymphoma 6 (BCL-6), and the secretion of interleukin-21 (IL-21). Given the important role of Tfh cells in B cell activation and high-affinity antibody production, Tfh cells are involved in the pathogenesis of many human diseases. Inflammatory bowel disease (IBD) is a group of chronic inflammatory diseases characterized by symptoms such as diarrhea, abdominal pain, and weight loss. Ulcerative colitis (UC) and Crohn's disease (CD) are the most studied types of IBD. Dysregulated mucosal immune response plays an important role in the pathogenesis of IBD. In recent years, many studies have identified the critical role of Tfh cells and IL-21 in the pathogenic process IBD. In this paper, we will discuss the role of Tfh cells and IL-21 in IBD pathogenesis.
Collapse
|
28
|
Natalizumab differentially affects plasmablasts and B cells in multiple sclerosis. Mult Scler Relat Disord 2021; 52:102987. [PMID: 33984651 DOI: 10.1016/j.msard.2021.102987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/28/2021] [Accepted: 04/26/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Natalizumab treatment increases the frequencies of B cells in blood but reduces IgG in blood and CSF. Plasmablasts are important in the production of IgG, and the development of plasmablasts is CD49d dependent. OBJECTIVE We hypothesized that natalizumab treatment affects the development of plasmablasts. METHODS We retrospectively analyzed frequencies and absolute counts of B cell subsets by flow cytometry from a longitudinal cohort of 9 progressive multiple sclerosis (MS) patients treated with natalizumab for 60 weeks, and a cross-sectional relapsing-remitting MS (RRMS) cohort with 17 untreated and 37 treated with natalizumab (17 stable and 20 unstable patients with relapse activity). Additionally, CD49d expression on B cell subsets was examined in 10 healthy controls, and blood and cerebrospinal fluid (CSF) frequencies of B cell subsets were quantified in untreated and natalizumab treated RRMS patients. RESULTS In progressive MS, levels of IgG decreased in plasma (p<0.001) from baseline to 60 weeks follow-up. In the progressive MS and RRMS cohorts we observed that natalizumab treatment significantly increased the frequency of B cells (p=0.004; p<0.0001) and several B cell subsets, most pronounced for memory B cell subsets (p=0.0001; p<0.0001), while there was a decrease in plasmablast frequency (p=0.008; p=0.008). In both progressive MS and RRMS the absolute cell counts of B cells increased (p=0.004; p<0.001), which was explained by a significant increase in all subsets, except for plasmablasts. Furthermore, we found decreased memory B cell counts in unstable compared to stable natalizumab-treated patients (p=0.02). The expression of CD49d was higher on plasmablasts compared to other B cell subsets (p<0.0001). In CSF, plasmablasts could not be detected in patients treated with natalizumab, in contrast to an increased frequency in untreated RRMS patients. CONCLUSION We confirm previous studies showing that natalizumab increases circulating number of B cells, particularly memory cells, concomitant with a decrease in plasma IgG concentrations. Moreover, we demonstrate in two separate cohorts that natalizumab treatment markedly decreases frequencies of plasmablasts while the absolute number is stable. Additionally, plasmablasts have high expression of CD49d, and plasmablasts could not be detected in the CSF of natalizumab-treated patients. Finally, memory B cells were found to be reduced in unstable natalizumab-treated patients, which could possibly indicate increased recruitment to the CNS.
Collapse
|
29
|
The dangers of déjà vu: memory B cells as the cells of origin of ABC-DLBCLs. Blood 2021; 136:2263-2274. [PMID: 32932517 DOI: 10.1182/blood.2020005857] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Activated B-cell (ABC)-diffuse large B-cell lymphomas (DLBCLs) are clinically aggressive and phenotypically complex malignancies, whose transformation mechanisms remain unclear. Partially differentiated antigen-secreting cells (plasmablasts) have long been regarded as cells-of-origin for these tumors, despite lack of definitive experimental evidence. Recent DLBCL reclassification based on mutational landscapes identified MCD/C5 tumors as specific ABC-DLBCLs with unfavorable clinical outcome, activating mutations in the signaling adaptors MYD88 and CD79B, and immune evasion through mutation of antigen-presenting genes. MCD/C5s manifest prominent extranodal dissemination and similarities with primary extranodal lymphomas (PENLs). In this regard, recent studies on TBL1XR1, a gene recurrently mutated in MCD/C5s and PENLs, suggest that aberrant memory B cells (MBs), and not plasmablasts, are the true cells-of-origin for these tumors. Moreover, transcriptional and phenotypic profiling suggests that MCD/C5s, as a class, represent bona fide MB tumors. Based on emerging findings we propose herein a generalized stepwise model for MCD/C5 and PENLs pathogenesis, whereby acquisition of founder mutations in activated B cells favors the development of aberrant MBs prone to avoid plasmacytic differentiation on recall and undergo systemic dissemination. Cyclic reactivation of these MBs through persistent antigen exposure favors their clonal expansion and accumulation of mutations, which further facilitate their activation. As a result, MB-like clonal precursors become trapped in an oscillatory state of semipermanent activation and phenotypic sway that facilitates ulterior transformation and accounts for the extranodal clinical presentation and biology of these tumors. In addition, we discuss diagnostic and therapeutic implications of a MB cell-of-origin for these lymphomas.
Collapse
|
30
|
Patten PEM, Ferrer G, Chen SS, Kolitz JE, Rai KR, Allen SL, Barrientos JC, Ioannou N, Ramsay AG, Chiorazzi N. A Detailed Analysis of Parameters Supporting the Engraftment and Growth of Chronic Lymphocytic Leukemia Cells in Immune-Deficient Mice. Front Immunol 2021; 12:627020. [PMID: 33767698 PMCID: PMC7985329 DOI: 10.3389/fimmu.2021.627020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
Patient-derived xenograft models of chronic lymphocytic leukemia (CLL) can be created using highly immunodeficient animals, allowing analysis of primary tumor cells in an in vivo setting. However, unlike many other tumors, CLL B lymphocytes do not reproducibly grow in xenografts without manipulation, proliferating only when there is concomitant expansion of T cells. Here we show that in vitro pre-activation of CLL-derived T lymphocytes allows for a reliable and robust system for primary CLL cell growth within a fully autologous system that uses small numbers of cells and does not require pre-conditioning. In this system, growth of normal T and leukemic B cells follows four distinct temporal phases, each with characteristic blood and tissue findings. Phase 1 constitutes a period during which resting CLL B cells predominate, with cells aggregating at perivascular areas most often in the spleen. In Phase 2, T cells expand and provide T-cell help to promote B-cell division and expansion. Growth of CLL B and T cells persists in Phase 3, although some leukemic B cells undergo differentiation to more mature B-lineage cells (plasmablasts and plasma cells). By Phase 4, CLL B cells are for the most part lost with only T cells remaining. The required B-T cell interactions are not dependent on other human hematopoietic cells nor on murine macrophages or follicular dendritic cells, which appear to be relatively excluded from the perivascular lymphoid aggregates. Notably, the growth kinetics and degree of anatomic localization of CLL B and T cells is significantly influenced by intravenous versus intraperitoneal administration. Importantly, B cells delivered intraperitoneally either remain within the peritoneal cavity in a quiescent state, despite the presence of dividing T cells, or migrate to lymphoid tissues where they actively divide; this dichotomy mimics the human condition in that cells in primary lymphoid tissues and the blood are predominately resting, whereas those in secondary lymphoid tissues proliferate. Finally, the utility of this approach is illustrated by documenting the effects of a bispecific antibody reactive with B and T cells. Collectively, this model represents a powerful tool to evaluate CLL biology and novel therapeutics in vivo.
Collapse
Affiliation(s)
- Piers E M Patten
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Institute of Haematology, King's College London, London, United Kingdom
| | - Gerardo Ferrer
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Shih-Shih Chen
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Jonathan E Kolitz
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Kanti R Rai
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Steven L Allen
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jacqueline C Barrientos
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Nikolaos Ioannou
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Institute of Haematology, King's College London, London, United Kingdom
| | - Alan G Ramsay
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Institute of Haematology, King's College London, London, United Kingdom
| | - Nicholas Chiorazzi
- Institute of Molecular Medicine, Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
31
|
Abstract
Although we are just beginning to understand the mechanisms that regulate the epigenome, aberrant epigenetic programming has already emerged as a hallmark of hematologic malignancies including acute myeloid leukemia (AML) and B-cell lymphomas. Although these diseases arise from the hematopoietic system, the epigenetic mechanisms that drive these malignancies are quite different. Yet, in all of these tumors, somatic mutations in transcription factors and epigenetic modifiers are the most commonly mutated set of genes and result in multilayered disruption of the epigenome. Myeloid and lymphoid neoplasms generally manifest epigenetic allele diversity, which contributes to tumor cell population fitness regardless of the underlying genetics. Epigenetic therapies are emerging as one of the most promising new approaches for these patients. However, effective targeting of the epigenome must consider the need to restore the various layers of epigenetic marks, appropriate biological end points, and specificity of therapeutic agents to truly realize the potential of this modality.
Collapse
Affiliation(s)
- Cihangir Duy
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Wendy Béguelin
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
32
|
Dong L, He Y, Cao Y, Wang Y, Jia A, Wang Y, Yang Q, Li W, Bi Y, Liu G. Functional differentiation and regulation of follicular T helper cells in inflammation and autoimmunity. Immunology 2020; 163:19-32. [PMID: 33128768 DOI: 10.1111/imm.13282] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Follicular T helper (TFH ) cells are specialized T cells that support B cells, which are essential for humoral immunity. TFH cells express the transcription factor B-cell lymphoma 6 (Bcl-6), chemokine (C-X-C motif) receptor (CXCR) 5, the surface receptors programmed cell death protein 1 (PD-1) and inducible T-cell costimulator (ICOS), the cytokine IL-21 and other molecules. The activation, proliferation and differentiation of TFH cells are closely related to dynamic changes in cellular metabolism. In this review, we summarize the progress made in understanding the development and functional differentiation of TFH cells. Specifically, we focus on the regulatory mechanisms of TFH cell functional differentiation, including regulatory signalling pathways and the metabolic regulatory mechanisms of TFH cells. In addition, TFH cells are closely related to immune-associated diseases, including infections, autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yuexin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wanjie Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
33
|
Mastio J, Saeed MB, Wurzer H, Krecke M, Westerberg LS, Thomas C. Higher Incidence of B Cell Malignancies in Primary Immunodeficiencies: A Combination of Intrinsic Genomic Instability and Exocytosis Defects at the Immunological Synapse. Front Immunol 2020; 11:581119. [PMID: 33240268 PMCID: PMC7680899 DOI: 10.3389/fimmu.2020.581119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital defects of the immune system called primary immunodeficiency disorders (PID) describe a group of diseases characterized by a decrease, an absence, or a malfunction of at least one part of the immune system. As a result, PID patients are more prone to develop life-threatening complications, including cancer. PID currently include over 400 different disorders, however, the variety of PID-related cancers is narrow. We discuss here reasons for this clinical phenotype. Namely, PID can lead to cell intrinsic failure to control cell transformation, failure to activate tumor surveillance by cytotoxic cells or both. As the most frequent tumors seen among PID patients stem from faulty lymphocyte development leading to leukemia and lymphoma, we focus on the extensive genomic alterations needed to create the vast diversity of B and T lymphocytes with potential to recognize any pathogen and why defects in these processes lead to malignancies in the immunodeficient environment of PID patients. In the second part of the review, we discuss PID affecting tumor surveillance and especially membrane trafficking defects caused by altered exocytosis and regulation of the actin cytoskeleton. As an impairment of these membrane trafficking pathways often results in dysfunctional effector immune cells, tumor cell immune evasion is elevated in PID. By considering new anti-cancer treatment concepts, such as transfer of genetically engineered immune cells, restoration of anti-tumor immunity in PID patients could be an approach to complement standard therapies.
Collapse
Affiliation(s)
- Jérôme Mastio
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Mezida B Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Wurzer
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Max Krecke
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Clément Thomas
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|
34
|
Moore A. A Synapse by any Other Name: Could Neuronal Compartmentalization be an Evolutionary and Developmental Parallel of Immune Cell Organization? Bioessays 2020; 42:e2000177. [PMID: 32725716 DOI: 10.1002/bies.202000177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Béguelin W, Teater M, Meydan C, Hoehn KB, Phillip JM, Soshnev AA, Venturutti L, Rivas MA, Calvo-Fernández MT, Gutierrez J, Camarillo JM, Takata K, Tarte K, Kelleher NL, Steidl C, Mason CE, Elemento O, Allis CD, Kleinstein SH, Melnick AM. Mutant EZH2 Induces a Pre-malignant Lymphoma Niche by Reprogramming the Immune Response. Cancer Cell 2020; 37:655-673.e11. [PMID: 32396861 PMCID: PMC7298875 DOI: 10.1016/j.ccell.2020.04.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/04/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
Abstract
Follicular lymphomas (FLs) are slow-growing, indolent tumors containing extensive follicular dendritic cell (FDC) networks and recurrent EZH2 gain-of-function mutations. Paradoxically, FLs originate from highly proliferative germinal center (GC) B cells with proliferation strictly dependent on interactions with T follicular helper cells. Herein, we show that EZH2 mutations initiate FL by attenuating GC B cell requirement for T cell help and driving slow expansion of GC centrocytes that become enmeshed with and dependent on FDCs. By impairing T cell help, mutant EZH2 prevents induction of proliferative MYC programs. Thus, EZH2 mutation fosters malignant transformation by epigenetically reprograming B cells to form an aberrant immunological niche that reflects characteristic features of human FLs, explaining how indolent tumors arise from GC B cells.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/pathology
- Cellular Reprogramming
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/pathology
- Enhancer of Zeste Homolog 2 Protein/genetics
- Female
- Germinal Center/immunology
- Germinal Center/metabolism
- Germinal Center/pathology
- Humans
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/immunology
- Lymphoma, Follicular/pathology
- Mice
- Mice, Inbred C57BL
- Mutation
Collapse
Affiliation(s)
- Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.
| | - Matt Teater
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Cem Meydan
- Institute for Computational Biomedicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jude M Phillip
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Alexey A Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Leandro Venturutti
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Martín A Rivas
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - María T Calvo-Fernández
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Johana Gutierrez
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Jeannie M Camarillo
- Department of Chemistry, Molecular Biosciences and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL 60208, USA
| | - Katsuyoshi Takata
- Center for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Karin Tarte
- UMR 1236, Université Rennes 1, INSERM, Etablissement Français du Sang, 35043 Rennes, France
| | - Neil L Kelleher
- Department of Chemistry, Molecular Biosciences and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL 60208, USA
| | - Christian Steidl
- Center for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Christopher E Mason
- Institute for Computational Biomedicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA; The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
36
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
|
38
|
Biram A, Davidzohn N, Shulman Z. T cell interactions with B cells during germinal center formation, a three-step model. Immunol Rev 2019; 288:37-48. [PMID: 30874355 DOI: 10.1111/imr.12737] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/04/2019] [Indexed: 12/25/2022]
Abstract
Establishment of effective immunity against invading microbes depends on continuous generation of antibodies that facilitate pathogen clearance. Long-lived plasma cells with the capacity to produce high affinity antibodies evolve in germinal centers (GCs), where B cells undergo somatic hypermutation and are subjected to affinity-based selection. Here, we focus on the cellular interactions that take place early in the antibody immune response during GC colonization. Clones bearing B-cell receptors with different affinities and specificities compete for entry to the GC, at the boundary between the B-cell and T-cell zones in lymphoid organs. During this process, B cells compete for interactions with T follicular helper cells, which provide selection signals required for differentiation into GC cells and antibody secreting cells. These cellular engagements are long-lasting and depend on activation of adhesion molecules that support persistent interactions and promote transmission of signals between the cells. Here, we discuss how interactions between cognate T and B cells are primarily maintained by three types of molecular interactions: homophilic signaling lymphocytic activation molecule (SLAM) interactions, T-cell receptor: peptide-loaded major histocompatibility class II (pMHCII), and LFA-1:ICAMs. These essential components support a three-step process that controls clonal selection for entry into the antibody affinity maturation response in the GC, and establishment of long-lasting antibody-mediated immunity.
Collapse
Affiliation(s)
- Adi Biram
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Natalia Davidzohn
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
39
|
Haberman AM, Gonzalez DG, Wong P, Zhang TT, Kerfoot SM. Germinal center B cell initiation, GC maturation, and the coevolution of its stromal cell niches. Immunol Rev 2019; 288:10-27. [PMID: 30874342 DOI: 10.1111/imr.12731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
Throughout the developing GC response, B cell survival and fate choices made at the single cell level are dependent on signals received largely through interactions with other cells, often with cognate T cells. The type of signals that a given B cell can encounter is dictated by its location within tissue microarchitecture. The focus of this review is on the initiation and evolution of the GC response at the earliest time points. Here, we review the key factors influencing the progression of GC B cell differentiation that are both stage and context dependent. Finally, we describe the coevolution of niches within and surrounding the GC that influence the outcome of the GC response.
Collapse
Affiliation(s)
- Ann M Haberman
- Department of Immunobiology, Yale University, New Haven, Connecticut.,Department of Laboratory Medicine, Yale University, New Haven, Connecticut
| | - David G Gonzalez
- Department of Immunobiology, Yale University, New Haven, Connecticut.,Department of Genetics, Yale University, New Haven, Connecticut
| | - Patrick Wong
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - Ting-Ting Zhang
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - Steven M Kerfoot
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| |
Collapse
|
40
|
Raman SC, Mejías-Pérez E, Gomez CE, García-Arriaza J, Perdiguero B, Vijayan A, Pérez-Ruiz M, Cuervo A, Santiago C, Sorzano COS, Sánchez-Corzo C, Moog C, Burger JA, Schorcht A, Sanders RW, Carrascosa JL, Esteban M. The Envelope-Based Fusion Antigen GP120C14K Forming Hexamer-Like Structures Triggers T Cell and Neutralizing Antibody Responses Against HIV-1. Front Immunol 2019; 10:2793. [PMID: 31867001 PMCID: PMC6904342 DOI: 10.3389/fimmu.2019.02793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/14/2019] [Indexed: 11/20/2022] Open
Abstract
There is an urgent need for the development of potent vaccination regimens that are able to induce specific T and B cell responses against human immunodeficiency virus type 1 (HIV-1). Here, we describe the generation and characterization of a fusion antigen comprised of the HIV-1 envelope GP120 glycoprotein from clade C (GP120C) fused at its C-terminus, with the modified vaccinia virus (VACV) 14K protein (A27L gene) (termed GP120C14K). The design is directed toward improving the immunogenicity of the GP120C protein through its oligomerization facilitated by the fused VACV 14K protein that results in hexamer-like structures. Two different immunogens were generated: a recombinant GP120C14K fusion protein (purified from a stable CHO-K1 cell line) and a recombinant modified vaccinia virus Ankara (MVA) poxvirus vector expressing the GP120C14K fusion protein (termed MVA-GP120C14K). The GP120C14K fusion protein is recognized by broadly neutralizing antibodies (bNAbs) against HIV-1. In a murine model, a heterologous prime/boost immunization regimen with MVA-GP120C14K prime followed by adjuvanted GP120C14K protein boost generated stronger and polyfunctional HIV-1 Env-specific CD8 T cell responses when compared with the delivery of the monomeric GP120C form. Furthermore, the immunization protocol MVA-GP120C14K/GP120C14K elicited higher HIV-1 Env-specific T follicular helper cells, germinal center B cells and antibody responses than monomeric GP120. In addition, a similar MVA-GP120C14K prime/GP120C14K protein boost regimen performed in rabbits triggered high HIV-1-Env-specific IgG binding antibody titers that were capable of neutralizing HIV-1 pseudoviruses. The extent of HIV-1 neutralization was comparable to that elicited by the current standard GP140 SOSIP trimers from clades B and C when immunized as MVA-SOSIP prime/SOSIP protein boost regimen. Overall, the novel fusion antigen and the corresponding immunization scheme provided in this report can therefore be considered as potential vaccine strategies against HIV-1.
Collapse
Affiliation(s)
- Suresh C Raman
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Carmen E Gomez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Aneesh Vijayan
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Mar Pérez-Ruiz
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Ana Cuervo
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - César Santiago
- X-ray Crystallization Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Carlos Oscar S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Cristina Sánchez-Corzo
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Christiane Moog
- INSERM U1109, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Judith A Burger
- Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Anna Schorcht
- Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, United States
| | - José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
41
|
Perdiguero B, Gómez CE, García-Arriaza J, Sánchez-Corzo C, Sorzano CÓS, Wilmschen S, von Laer D, Asbach B, Schmalzl C, Peterhoff D, Ding S, Wagner R, Kimpel J, Levy Y, Pantaleo G, Esteban M. Heterologous Combination of VSV-GP and NYVAC Vectors Expressing HIV-1 Trimeric gp145 Env as Vaccination Strategy to Induce Balanced B and T Cell Immune Responses. Front Immunol 2019; 10:2941. [PMID: 31921191 PMCID: PMC6930178 DOI: 10.3389/fimmu.2019.02941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/29/2019] [Indexed: 01/03/2023] Open
Abstract
The generation of a vaccine against HIV-1 able to induce durable protective immunity continues a major challenge. The modest efficacy (31.2%) of the phase III RV144 clinical trial provided the first demonstration that a prophylactic HIV/AIDS vaccine is achievable but emphasized the need for further refinements of vaccine candidates, formulations, and immunization regimens. Here, we analyzed in mice the immunogenicity profile elicited by different homologous and heterologous prime/boost combinations using the modified rhabdovirus VSV-GP combined with DNA or poxviral NYVAC vectors, all expressing trimeric membrane-bound Env (gp145) of HIV-1 96ZM651 clade C, with or without purified gp140 protein component. In cultured cells infected with recombinant VSV-GP or NYVAC viruses, gp145 epitopes at the plasma membrane were recognized by human HIV-1 broadly neutralizing antibodies (bNAbs). In immunized mice, the heterologous combination of VSV-GP and NYVAC recombinant vectors improved the induction of HIV-1 Env-specific humoral and cellular immune responses compared to homologous prime/boost protocols. Specifically, the combination of VSV-GP in the prime and NYVAC in the boost induced higher HIV-1 Env-specific T cell (CD4/CD8 T cells and T follicular helper -Tfh- cells) immune responses compared to the use of DNA or NYVAC vectors in the prime and VSV-GP in the boost. Such enhanced T cell responses correlated with an enhancement of the Env-specific germinal center (GC) B cell population and with a heavily biased Env-specific response toward the Th1-associated IgG2a and IgG3 subclasses, while the other groups showed a Th2-associated IgG1 bias. In summary, our T and B cell population data demonstrated that VSV-GP-based vectors could be taken into consideration as an optimized immunogenic HIV-1 vaccine candidate component against HIV-1 when used for priming in heterologous combinations with the poxvirus vector NYVAC as a boost.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Cristina Sánchez-Corzo
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Óscar S Sorzano
- Biocomputing Unit and Computational Genomics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sarah Wilmschen
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Christina Schmalzl
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Song Ding
- EuroVacc Foundation, Amsterdam, Netherlands
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.,Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Janine Kimpel
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yves Levy
- Vaccine Research Institute, Créteil, France.,INSERM U955, Paris Est Créteil University, Créteil, France.,AP-HP, Hôpital Henri-Mondor Albert-Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses, Créteil, France
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
42
|
B cell memory: building two walls of protection against pathogens. Nat Rev Immunol 2019; 20:229-238. [PMID: 31836872 PMCID: PMC7223087 DOI: 10.1038/s41577-019-0244-2] [Citation(s) in RCA: 310] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Surviving a single infection often results in lifelong immunity to the infecting pathogen. Such protection is mediated, in large part, by two main B cell memory ‘walls’ — namely, long-lived plasma cells and memory B cells. The cellular and molecular processes that drive the production of long-lived plasma cells and memory B cells are subjects of intensive research and have important implications for global health. Indeed, although nearly all vaccines in use today depend on their ability to induce B cell memory, we have not yet succeeded in developing vaccines for some of the world’s most deadly diseases, including AIDS and malaria. Here, we describe the two-phase process by which antigen drives the generation of long-lived plasma cells and memory B cells and highlight the challenges for successful vaccine development in each phase. The authors discuss the formation of two main ‘walls’ of B cell memory to protect against pathogen reinfection. The first wall comprises high-affinity antibodies produced by long-lived plasma cells, while the second wall is formed by memory B cells.
Collapse
|
43
|
Zimmerer JM, Ringwald BA, Elzein SM, Avila CL, Warren RT, Abdel-Rasoul M, Bumgardner GL. Antibody-suppressor CD8+ T Cells Require CXCR5. Transplantation 2019; 103:1809-1820. [PMID: 30830040 PMCID: PMC6713619 DOI: 10.1097/tp.0000000000002683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND We previously reported the novel activity of alloprimed CD8 T cells that suppress posttransplant alloantibody production. The purpose of the study is to investigate the expression and role of CXCR5 on antibody-suppressor CD8 T-cell function. METHODS C57BL/6 mice were transplanted with FVB/N hepatocytes. Alloprimed CD8 T cells were retrieved on day 7 from hepatocyte transplant recipients. Unsorted or flow-sorted (CXCR5CXCR3 and CXCR3CXCR5) alloprimed CD8 T-cell subsets were analyzed for in vitro cytotoxicity and capacity to inhibit in vivo alloantibody production following adoptive transfer into C57BL/6 or high alloantibody-producing CD8 knock out (KO) hepatocyte transplant recipients. Alloantibody titer was assessed in CD8 KO mice reconstituted with naive CD8 T cells retrieved from C57BL/6, CXCR5 KO, or CXCR3 KO mice. Antibody suppression by ovalbumin (OVA)-primed monoclonal OVA-specific t-cell receptor transgenic CD8+ T cells (OT-I) CXCR5 or CXCR3 CD8 T-cell subsets was also investigated. RESULTS Alloprimed CXCR5CXCR3CD8 T cells mediated in vitro cytotoxicity of alloprimed "self" B cells, while CXCR3CXCR5CD8 T cells did not. Only flow-sorted alloprimed CXCR5CXCR3CD8 T cells (not flow-sorted alloprimed CXCR3CXCR5CD8 T cells) suppressed alloantibody production and enhanced graft survival when transferred into transplant recipients. Unlike CD8 T cells from wild-type or CXCR3 KO mice, CD8 T cells from CXCR5 KO mice do not develop alloantibody-suppressor function. Similarly, only flow-sorted CXCR5CXCR3 (and not CXCR3CXCR5) OVA-primed OT-I CD8 T cells mediated in vivo suppression of anti-OVA antibody production. CONCLUSIONS These data support the conclusion that expression of CXCR5 by antigen-primed CD8 T cells is critical for the function of antibody-suppressor CD8 T cells.
Collapse
Affiliation(s)
- Jason M. Zimmerer
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Bryce A. Ringwald
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Steven M. Elzein
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Christina L. Avila
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Robert T. Warren
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | | | - Ginny L. Bumgardner
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| |
Collapse
|
44
|
Ortega-Molina A, Deleyto-Seldas N, Carreras J, Sanz A, Lebrero-Fernández C, Menéndez C, Vandenberg A, Fernández-Ruiz B, Marín-Arraiza L, de la Calle Arregui C, Belén Plata-Gómez A, Caleiras E, de Martino A, Martínez-Martín N, Troulé K, Piñeiro-Yáñez E, Nakamura N, Araf S, Victora GD, Okosun J, Fitzgibbon J, Efeyan A. Oncogenic Rag GTPase signaling enhances B cell activation and drives follicular lymphoma sensitive to pharmacological inhibition of mTOR. Nat Metab 2019; 1:775-789. [PMID: 31579886 PMCID: PMC6774795 DOI: 10.1038/s42255-019-0098-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
The humoral immune response demands that B cells undergo a sudden anabolic shift and high cellular nutrient levels which are required to sustain the subsequent proliferative burst. Follicular lymphoma (FL) originates from B cells that have participated in the humoral response, and 15% of FL samples harbor point, activating mutations in RRAGC, an essential activator of mTORC1 downstream of the sensing of cellular nutrients. The impact of recurrent RRAGC mutations in B cell function and lymphoma is unexplored. RRAGC mutations, targeted to the endogenous locus in mice, confer a partial insensitivity to nutrient deprivation, but strongly exacerbate B cell responses and accelerate lymphomagenesis, while creating a selective vulnerability to pharmacological inhibition of mTORC1. This moderate increase in nutrient signaling synergizes with paracrine cues from the supportive T cell microenvironment that activates B cells via the PI3K-Akt-mTORC1 axis. Hence, Rragc mutations sustain induced germinal centers and murine and human FL in the presence of decreased T cell help. Our results support a model in which activating mutations in the nutrient signaling pathway foster lymphomagenesis by corrupting a nutrient-dependent control over paracrine signals from the T cell microenvironment.
Collapse
Affiliation(s)
- Ana Ortega-Molina
- Metabolism and Cell Signaling Laboratory. Spanish National Cancer Research Center (CNIO). Madrid, Spain
| | - Nerea Deleyto-Seldas
- Metabolism and Cell Signaling Laboratory. Spanish National Cancer Research Center (CNIO). Madrid, Spain
| | - Joaquim Carreras
- Tokai University, School of Medicine, Department of Pathology. Isehara, Kanagawa, Japan
| | - Alba Sanz
- Metabolism and Cell Signaling Laboratory. Spanish National Cancer Research Center (CNIO). Madrid, Spain
| | | | - Camino Menéndez
- Metabolism and Cell Signaling Laboratory. Spanish National Cancer Research Center (CNIO). Madrid, Spain
| | - Andrew Vandenberg
- Metabolism and Cell Signaling Laboratory. Spanish National Cancer Research Center (CNIO). Madrid, Spain
| | - Beatriz Fernández-Ruiz
- Metabolism and Cell Signaling Laboratory. Spanish National Cancer Research Center (CNIO). Madrid, Spain
| | - Leyre Marín-Arraiza
- Metabolism and Cell Signaling Laboratory. Spanish National Cancer Research Center (CNIO). Madrid, Spain
| | - Celia de la Calle Arregui
- Metabolism and Cell Signaling Laboratory. Spanish National Cancer Research Center (CNIO). Madrid, Spain
| | - Ana Belén Plata-Gómez
- Metabolism and Cell Signaling Laboratory. Spanish National Cancer Research Center (CNIO). Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Unit. Spanish National Cancer Research Center (CNIO). Madrid, Spain
| | - Alba de Martino
- Histopathology Unit. Spanish National Cancer Research Center (CNIO). Madrid, Spain
| | | | - Kevin Troulé
- Bioinformatics Unit. Spanish National Cancer Research Center (CNIO). Madrid, Spain
| | - Elena Piñeiro-Yáñez
- Bioinformatics Unit. Spanish National Cancer Research Center (CNIO). Madrid, Spain
| | - Naoya Nakamura
- Tokai University, School of Medicine, Department of Pathology. Isehara, Kanagawa, Japan
| | - Shamzah Araf
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jude Fitzgibbon
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory. Spanish National Cancer Research Center (CNIO). Madrid, Spain
| |
Collapse
|
45
|
A Novel MVA-Based HIV Vaccine Candidate (MVA-gp145-GPN) Co-Expressing Clade C Membrane-Bound Trimeric gp145 Env and Gag-Induced Virus-Like Particles (VLPs) Triggered Broad and Multifunctional HIV-1-Specific T Cell and Antibody Responses. Viruses 2019; 11:v11020160. [PMID: 30781504 PMCID: PMC6410222 DOI: 10.3390/v11020160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/17/2022] Open
Abstract
The development of an effective Human Immunodeficiency Virus (HIV) vaccine that is able to stimulate both the humoral and cellular HIV-1-specific immune responses remains a major priority challenge. In this study, we described the generation and preclinical evaluation of single and double modified vaccinia virus Ankara (MVA)-based candidates expressing the HIV-1 clade C membrane-bound gp145(ZM96) trimeric protein and/or the Gag(ZM96)-Pol-Nef(CN54) (GPN) polyprotein that was processed to form Gag-induced virus-like particles (VLPs). In vitro characterization of MVA recombinants revealed the stable integration of HIV-1 genes without affecting its replication capacity. In cells that were infected with Env-expressing viruses, the gp145 protein was inserted into the plasma membrane exposing critical epitopes that were recognized by broadly neutralizing antibodies (bNAbs), whereas Gag-induced VLPs were released from cells that were infected with GPN-expressing viruses. VLP particles as well as purified MVA virions contain Env and Gag visualized by immunoelectron microscopy and western-blot of fractions that were obtained after detergent treatments of purified virus particles. In BALB/c mice, homologous MVA-gp145-GPN prime/boost regimen induced broad and polyfunctional Env- and Gag-specific CD4 T cells and antigen-specific T follicular helper (Tfh) and Germinal Center (GC) B cells, which correlated with robust HIV-1-specific humoral responses. Overall, these results support the consideration of MVA-gp145-GPN vector as a potential vaccine candidate against HIV-1.
Collapse
|