1
|
Behrouzi A, Sakhaee F, Ghazanfari Jajin M, Ahmadi I, Anvari E, Sotoodehnejadnematalahi F, Fateh A. The surfactant protein B polymorphisms (rs7316 and rs1130866) and their correlation with disease progression of COVID-19. Cytokine 2024; 184:156775. [PMID: 39368228 DOI: 10.1016/j.cyto.2024.156775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/15/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND It is critical to examine the pathogenic pathways in coronavirus disease 2019 (COVID-19) that resulted in the development of severe lung injury. Surfactant protein B (SFTPB) is a vital component for sustaining life and serves pivotal functions in the host's defensive mechanisms and alveolar surface tension reduction. Our study aimed to determine the effect of SFTPB rs7316 and rs1130866 variants on the course of disease in COVID-19 patients. METHODS The study cohort comprised 3,184 individuals diagnosed with COVID-19. We employed the RFLP approach to determine the variations of the SFTPB genes. RESULTS SFTPB rs7316 did not exhibit a statistically significant correlation with COVID-19 mortality across different inheritance models. But, after making more changes for SARS-CoV-2 variants, it was found that there was a strong link between the TT and TC genotypes of SFTPB rs7316 and death rates, especially for the Delta variant. Furthermore, our study's findings indicate a significant association between the SFTPB rs1130866 G allele and an elevated risk of mortality in COVID-19 across all variants of SARS-CoV-2. CONCLUSIONS The use of the SFTPB rs1130866 marker has the potential to facilitate the prediction of COVID-19 severity. On the other hand, for SFTPB rs7316, this kind of prediction seems to depend on the particular SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Amir Behrouzi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Sakhaee
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Iraj Ahmadi
- Department of Physiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Enayat Anvari
- Department of Physiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| | | | - Abolfazl Fateh
- Department of Physiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Gandhi CK, Depicolzuane LC, Chen C, Roberts CM, Sicher N, Johnson Wegerson K, Thomas NJ, Wu R, Floros J. Association of SNP-SNP interactions of surfactant protein genes with severity of respiratory syncytial virus infection in children. Physiol Genomics 2024; 56:691-697. [PMID: 39222066 PMCID: PMC11495184 DOI: 10.1152/physiolgenomics.00045.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The severity of respiratory syncytial virus (RSV) may be linked to host genetic susceptibility. Surfactant protein (SP) genetic variants have been associated with RSV severity, but the impact of single-nucleotide polymorphism (SNP)-SNP interactions remains unexplored. Therefore, we used a novel statistical model to investigate the association of SNP-SNP interactions of SFTP genes with RSV severity in two- and three-interaction models. We analyzed available genotype and clinical data from prospectively enrolled 405 children diagnosed with RSV, categorizing them into moderate or severe RSV groups. Using Wang's statistical model, we studied significant associations of SNP-SNP interactions with RSV severity in a case-control design. We observed, first, association of three interactions with increased risk of severe RSV in a two-SNP model. One intragenic interaction was between SNPs of SFTPA2, and the other two were intergenic, involving SNPs of hydrophilic and hydrophobic SPs alone. We also observed, second, association of 22 interactions with RSV severity in a three-SNP model. Among these, 20 were unique, with 12 and 10 interactions associated with increased or decreased risk of RSV severity, respectively, and included at least one SNP of either SFTPA1 or SFTPA2. All interactions were intergenic except one, among SNPs of SFTPA1. The remaining interactions were either among SNPs of hydrophilic SPs alone (n = 8) or among SNPs of both hydrophilic or hydrophobic SPs (n = 11). Our findings indicate that SNPs of all SFTPs may contribute to genetic susceptibility to RSV severity. However, the predominant involvement of SFTPA1 and/or SFTPA2 SNPs in these interactions underscores their significance in RSV severity.NEW & NOTEWORTHY Although surfactant protein (SP) genetic variants are associated with respiratory syncytial virus (RSV) severity, the impact of single-nucleotide polymorphism (SNP)-SNP interactions of SP genes remained unexplored. Using advanced statistical models, we uncovered 22 SNP-SNP interactions associated with RSV severity, with notable involvement of SFTPA1 and SFTPA2 SNPs. This highlights the comprehensive role of all SPs in genetic susceptibility to RSV severity, shedding light on potential avenues for targeted interventions.
Collapse
Affiliation(s)
- Chintan K Gandhi
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Lynnlee C Depicolzuane
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Chixiang Chen
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Catherine M Roberts
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Natalie Sicher
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Katelyn Johnson Wegerson
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Neal J Thomas
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Rongling Wu
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Joanna Floros
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
- Department of Obstetrics and Gynecology, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
3
|
Wang J, Liang X, Zheng Y, Zhu Y, Zhou K, Wu X, Sun R, Hu Y, Zhu X, Chi H, Chen S, Lyu M, Xie Y, Yi X, Liu W, Cai X, Li S, Zhang Q, Wu C, Shi Y, Wang D, Peng M, Zhang Y, Liu H, Zhang C, Quan S, Kong Z, Kang Z, Zhu G, Zhu H, Chen S, Liang J, Yang H, Pang J, Fang Y, Chen H, Li J, Xu J, Guo T, Shen B. Pulmonary and renal long COVID at two-year revisit. iScience 2024; 27:110344. [PMID: 39055942 PMCID: PMC11269939 DOI: 10.1016/j.isci.2024.110344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 01/31/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated host responses to long COVID by following up with 89 of the original 144 cohorts for 1-year (N = 73) and 2-year visits (N = 57). Pulmonary long COVID, characterized by fibrous stripes, was observed in 8.7% and 17.8% of patients at the 1-year and 2-year revisits, respectively, while renal long COVID was present in 15.2% and 23.9% of patients, respectively. Pulmonary and renal long COVID at 1-year revisit was predicted using a machine learning model based on clinical and multi-omics data collected during the first month of the disease with an accuracy of 87.5%. Proteomics revealed that lung fibrous stripes were associated with consistent down-regulation of surfactant-associated protein B in the sera, while renal long COVID could be linked to the inhibition of urinary protein expression. This study provides a longitudinal view of the clinical and molecular landscape of COVID-19 and presents a predictive model for pulmonary and renal long COVID.
Collapse
Affiliation(s)
- Jing Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, Zhejiang, China
- Taizhou Institute of Medicine, Health and New Drug Clinical Research, Taizhou, Zhejiang, China
| | - Xiao Liang
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yufen Zheng
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, Zhejiang, China
- Taizhou Institute of Medicine, Health and New Drug Clinical Research, Taizhou, Zhejiang, China
| | - Yi Zhu
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Kai Zhou
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiaomai Wu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Rui Sun
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yifan Hu
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou 310024, China
| | - Xiaoli Zhu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Hongbo Chi
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shanjun Chen
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou 310024, China
| | - Mengge Lyu
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yuting Xie
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Xiao Yi
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou 310024, China
| | - Wei Liu
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou 310024, China
| | - Xue Cai
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Sainan Li
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Qiushi Zhang
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou 310024, China
| | - Chunlong Wu
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou 310024, China
| | - Yingqiu Shi
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Donglian Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Minfei Peng
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ying Zhang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Huafen Liu
- Calibra Lab at DIAN Diagnostics, 329 Jinpeng Street, Hangzhou 310030, Zhejiang Province, China
| | - Chao Zhang
- Calibra Lab at DIAN Diagnostics, 329 Jinpeng Street, Hangzhou 310030, Zhejiang Province, China
| | - Sheng Quan
- Calibra Lab at DIAN Diagnostics, 329 Jinpeng Street, Hangzhou 310030, Zhejiang Province, China
| | - Ziqing Kong
- Calibra Lab at DIAN Diagnostics, 329 Jinpeng Street, Hangzhou 310030, Zhejiang Province, China
| | - Zhouyang Kang
- Calibra Lab at DIAN Diagnostics, 329 Jinpeng Street, Hangzhou 310030, Zhejiang Province, China
| | - Guangjun Zhu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Hongguo Zhu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shiyong Chen
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Junbo Liang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Hai Yang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jianxin Pang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yicheng Fang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Haixiao Chen
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jun Li
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, Zhejiang, China
- Taizhou Institute of Medicine, Health and New Drug Clinical Research, Taizhou, Zhejiang, China
| | - Jiaqin Xu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, Zhejiang, China
- Taizhou Institute of Medicine, Health and New Drug Clinical Research, Taizhou, Zhejiang, China
| | - Tiannan Guo
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Bo Shen
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, Zhejiang, China
| |
Collapse
|
4
|
Mattar CN, Chew WL, Lai PS. Embryo and fetal gene editing: Technical challenges and progress toward clinical applications. Mol Ther Methods Clin Dev 2024; 32:101229. [PMID: 38533521 PMCID: PMC10963250 DOI: 10.1016/j.omtm.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Gene modification therapies (GMTs) are slowly but steadily making progress toward clinical application. As the majority of rare diseases have an identified genetic cause, and as rare diseases collectively affect 5% of the global population, it is increasingly important to devise gene correction strategies to address the root causes of the most devastating of these diseases and to provide access to these novel therapies to the most affected populations. The main barriers to providing greater access to GMTs continue to be the prohibitive cost of developing these novel drugs at clinically relevant doses, subtherapeutic effects, and toxicity related to the specific agents or high doses required. In vivo strategy and treating younger patients at an earlier course of their disease could lower these barriers. Although currently regarded as niche specialties, prenatal and preconception GMTs offer a robust solution to some of these barriers. Indeed, treating either the fetus or embryo benefits from economy of scale, targeting pre-pathological tissues in the fetus prior to full pathogenesis, or increasing the likelihood of complete tissue targeting by correcting pluripotent embryonic cells. Here, we review advances in embryo and fetal GMTs and discuss requirements for clinical application.
Collapse
Affiliation(s)
- Citra N.Z. Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| | - Wei Leong Chew
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, 60 Biopolis St, Singapore, Singapore 138672
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| |
Collapse
|
5
|
Zhu M, Yi Y, Jiang K, Liang Y, Li L, Zhang F, Zheng X, Yin H. Single-cell combined with transcriptome sequencing to explore the molecular mechanism of cell communication in idiopathic pulmonary fibrosis. J Cell Mol Med 2024; 28:e18499. [PMID: 38887981 PMCID: PMC11184282 DOI: 10.1111/jcmm.18499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/14/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a common, chronic, and progressive lung disease that severely impacts human health and survival. However, the intricate molecular underpinnings of IPF remains elusive. This study aims to delve into the nuanced molecular interplay of cellular interactions in IPF, thereby laying the groundwork for innovative therapeutic approaches in the clinical field of IPF. Sophisticated bioinformatics methods were employed to identify crucial biomarkers essential for the progression of IPF. The GSE122960 single-cell dataset was obtained from the Gene Expression Omnibus (GEO) compendium, and intercellular communication potentialities were scrutinized via CellChat. The random survival forest paradigm was established using the GSE70866 dataset. Quintessential genes were selected through Kaplan-Meier (KM) curves, while immune infiltration examinations, functional enrichment critiques and nomogram paradigms were inaugurated. Analysis of intercellular communication revealed an intimate potential connections between macrophages and various cell types, pinpointing five cardinal genes influencing the trajectory and prognosis of IPF. The nomogram paradigm, sculpted from these seminal genes, exhibits superior predictive prowess. Our research meticulously identified five critical genes, confirming their intimate association with the prognosis, immune infiltration and transcriptional governance of IPF. Interestingly, we discerned these genes' engagement with the EPITHELIAL_MESENCHYMAL_TRANSITION signalling pathway, which may enhance our understanding of the molecular complexity of IPF.
Collapse
Affiliation(s)
- Minggao Zhu
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Yuhu Yi
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Kui Jiang
- Department of NephrologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Yongzhi Liang
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Lijun Li
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Feng Zhang
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Xinglong Zheng
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Haiyan Yin
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| |
Collapse
|
6
|
Rachman MP, Bamidele O, Dessie T, Smith J, Hanotte O, Gheyas AA. Genomic analysis of Nigerian indigenous chickens reveals their genetic diversity and adaptation to heat-stress. Sci Rep 2024; 14:2209. [PMID: 38278850 PMCID: PMC10817956 DOI: 10.1038/s41598-024-52569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
Indigenous poultry breeds from Africa can survive in harsh tropical environments (such as long arid seasons, excessive rain and humidity, and extreme heat) and are resilient to disease challenges, but they are not productive compared to their commercial counterparts. Their adaptive characteristics are in response to natural selection or to artificial selection for production traits that have left selection signatures in the genome. Identifying these signatures of positive selection can provide insight into the genetic bases of tropical adaptations observed in indigenous poultry and thereby help to develop robust and high-performing breeds for extreme tropical climates. Here, we present the first large-scale whole-genome sequencing analysis of Nigerian indigenous chickens from different agro-climatic conditions, investigating their genetic diversity and adaptation to tropical hot climates (extreme arid and extreme humid conditions). The study shows a large extant genetic diversity but low level of population differentiation. Using different selection signature analyses, several candidate genes for adaptation were detected, especially in relation to thermotolerance and immune response (e.g., cytochrome P450 2B4-like, TSHR, HSF1, CDC37, SFTPB, HIF3A, SLC44A2, and ILF3 genes). These results have important implications for conserving valuable genetic resources and breeding improvement of chickens for thermotolerance.
Collapse
Affiliation(s)
- Mifta P Rachman
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK.
| | - Oladeji Bamidele
- African Chicken Genetic Gains (ACGG), Department of Animal Sciences, Obafemi Awolowo University, Ile Ife, 220282, Nigeria
| | - Tadelle Dessie
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Jacqueline Smith
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Olivier Hanotte
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia.
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Almas A Gheyas
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
7
|
Anciuc-Crauciuc M, Cucerea MC, Tripon F, Crauciuc GA, Bănescu CV. Descriptive and Functional Genomics in Neonatal Respiratory Distress Syndrome: From Lung Development to Targeted Therapies. Int J Mol Sci 2024; 25:649. [PMID: 38203821 PMCID: PMC10780183 DOI: 10.3390/ijms25010649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
In this up-to-date study, we first aimed to highlight the genetic and non-genetic factors associated with respiratory distress syndrome (RDS) while also focusing on the genomic aspect of this condition. Secondly, we discuss the treatment options and the progressing therapies based on RNAs or gene therapy. To fulfill this, our study commences with lung organogenesis, a highly orchestrated procedure guided by an intricate network of conserved signaling pathways that ultimately oversee the processes of patterning, growth, and differentiation. Then, our review focuses on the molecular mechanisms contributing to both normal and abnormal lung growth and development and underscores the connections between genetic and non-genetic factors linked to neonatal RDS, with a particular emphasis on the genomic aspects of this condition and their implications for treatment choices and the advancing therapeutic approaches centered around RNAs or gene therapy.
Collapse
Affiliation(s)
- Mădălina Anciuc-Crauciuc
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
- Neonatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania;
| | - Manuela Camelia Cucerea
- Neonatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania;
| | - Florin Tripon
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
| | - George-Andrei Crauciuc
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Târgu Mureș, Romania;
| | - Claudia Violeta Bănescu
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Târgu Mureș, Romania;
| |
Collapse
|
8
|
Abstract
Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.
Collapse
Affiliation(s)
- Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
- Department of Obstetrics/Gynaecology, Western University, London, Ontario N6A 3K7, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Department of Medicine, Western University, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
9
|
Lyu Y, Guan X, Xu X, Wang P, Li Q, Panigrahi M, Zhang J, Chen N, Huang B, Lei C. A whole genome scan reveals distinct features of selection in Zhaotong cattle of Yunnan province. Anim Genet 2023; 54:731-742. [PMID: 37796667 DOI: 10.1111/age.13363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 10/07/2023]
Abstract
Over the years, indigenous cattle have not only played an essential role in securing primary food sources but have also been utilized for labor by humans, making them invaluable genetic resources. The Zhaotong cattle, a native Chinese breed from the Yunnan province, possess excellent meat quality and resistance to heat and humidity. Here we used whole genome sequencing data of 104 animals to delve into the population structure, genomic diversity and potential positive selection signals in Zhaotong cattle. The findings of this study demonstrate that the genetic composition of Zhaotong cattle was primarily derived from Chinese indicine cattle and East Asian cattle. The nucleotide diversity of Zhaotong cattle was only lower than that of Chinese indicine cattle, which was much higher than that of other taurine cattle. Genome-wide selection scans detected a series of positive candidate regions containing multiple key genes related to bone development and metabolism (CA10, GABRG3, GLDN and NOTUM), meat quality traits (ALG8, LINGO2, MYO5B, PRKG1 and GABRB1), immune response (ADA2, BMF, LEF1 and PAK6) and heat resistance (EIF2AK4 and LEF1). In summary, this study supplies essential genetic insights into the genome diversity within Zhaotong cattle and provides a foundational framework for comprehending the genetic basis of indigenous cattle breeds.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Xiwen Guan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinglong Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Pengfei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qiaoxian Li
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
10
|
Carbone A, Vitullo P, Di Gioia S, Conese M. Lung Inflammatory Genes in Cystic Fibrosis and Their Relevance to Cystic Fibrosis Transmembrane Conductance Regulator Modulator Therapies. Genes (Basel) 2023; 14:1966. [PMID: 37895314 PMCID: PMC10606852 DOI: 10.3390/genes14101966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenic syndrome determined by over 2000 mutations in the CF Transmembrane Conductance Regulator (CFTR) gene harbored on chromosome 7. In people with CF (PWCF), lung disease is the major determinant of morbidity and mortality and is characterized by a clinical phenotype which differs in the presence of equal mutational assets, indicating that genetic and environmental modifiers play an important role in this variability. Airway inflammation determines the pathophysiology of CF lung disease (CFLD) both at its onset and progression. In this narrative review, we aim to depict the inflammatory process in CF lung, with a particular emphasis on those genetic polymorphisms that could modify the clinical outcome of the respiratory disease in PWCF. The natural history of CF has been changed since the introduction of CFTR modulator therapies in the clinical arena. However, also in this case, there is a patient-to-patient variable response. We provide an overview on inflammatory/immunity gene variants that affect CFLD severity and an appraisal of the effects of CFTR modulator therapies on the inflammatory process in lung disease and how this knowledge may advance the optimization of the management of PWCF.
Collapse
Affiliation(s)
- Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Pamela Vitullo
- Cystic Fibrosis Support Center, Ospedale “G. Tatarella”, 71042 Cerignola, Italy;
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| |
Collapse
|
11
|
Das A, Meng W, Liu Z, Hasib MM, Galloway H, Ramos da Silva S, Chen L, Sica GL, Paniz-Mondolfi A, Bryce C, Grimes Z, Mia Sordillo E, Cordon-Cardo C, Paniagua Rivera K, Flores M, Chiu YC, Huang Y, Gao SJ. Molecular and immune signatures, and pathological trajectories of fatal COVID-19 lungs defined by in situ spatial single-cell transcriptome analysis. J Med Virol 2023; 95:e29009. [PMID: 37563850 PMCID: PMC10442191 DOI: 10.1002/jmv.29009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Despite intensive studies during the last 3 years, the pathology and underlying molecular mechanism of coronavirus disease 2019 (COVID-19) remain poorly defined. In this study, we investigated the spatial single-cell molecular and cellular features of postmortem COVID-19 lung tissues using in situ sequencing (ISS). We detected 10 414 863 transcripts of 221 genes in whole-slide tissues and segmented them into 1 719 459 cells that were mapped to 18 major parenchymal and immune cell types, all of which were infected by SARS-CoV-2. Compared with the non-COVID-19 control, COVID-19 lungs exhibited reduced alveolar cells (ACs) and increased innate and adaptive immune cells. We also identified 19 differentially expressed genes in both infected and uninfected cells across the tissues, which reflected the altered cellular compositions. Spatial analysis of local infection rates revealed regions with high infection rates that were correlated with high cell densities (HIHD). The HIHD regions expressed high levels of SARS-CoV-2 entry-related factors including ACE2, FURIN, TMPRSS2 and NRP1, and co-localized with organizing pneumonia (OP) and lymphocytic and immune infiltration, which exhibited increased ACs and fibroblasts but decreased vascular endothelial cells and epithelial cells, mirroring the tissue damage and wound healing processes. Sparse nonnegative matrix factorization (SNMF) analysis of niche features identified seven signatures that captured structure and immune niches in COVID-19 tissues. Trajectory inference based on immune niche signatures defined two pathological routes. Trajectory A primarily progressed with increased NK cells and granulocytes, likely reflecting the complication of microbial infections. Trajectory B was marked by increased HIHD and OP, possibly accounting for the increased immune infiltration. The OP regions were marked by high numbers of fibroblasts expressing extremely high levels of COL1A1 and COL1A2. Examination of single-cell RNA-seq data (scRNA-seq) from COVID-19 lung tissues and idiopathic pulmonary fibrosis (IPF) identified similar cell populations consisting mainly of myofibroblasts. Immunofluorescence staining revealed the activation of IL6-STAT3 and TGF-β-SMAD2/3 pathways in these cells, likely mediating the upregulation of COL1A1 and COL1A2 and excessive fibrosis in the lung tissues. Together, this study provides a spatial single-cell atlas of cellular and molecular signatures of fatal COVID-19 lungs, which reveals the complex spatial cellular heterogeneity, organization, and interactions that characterized the COVID-19 lung pathology.
Collapse
Affiliation(s)
- Arun Das
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wen Meng
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhentao Liu
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Md Musaddaqul Hasib
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hugh Galloway
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Suzane Ramos da Silva
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Luping Chen
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gabriel L Sica
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alberto Paniz-Mondolfi
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Clare Bryce
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zachary Grimes
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Karla Paniagua Rivera
- Department of Electrical and Computer Engineering, KLESSE School of Engineering and Integrated Design, University of Texas at San Antonio, San Antonio, TX, USA
| | - Mario Flores
- Department of Electrical and Computer Engineering, KLESSE School of Engineering and Integrated Design, University of Texas at San Antonio, San Antonio, TX, USA
| | - Yu-Chiao Chiu
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yufei Huang
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Wu Y, Li K, Liang S, Lou X, Li Y, Xu D, Wu Y, Wang Y, Cui W. An ICD-Associated DAMP Gene signature predicts survival and immunotherapy response of patients with lung adenocarcinoma. Respir Res 2023; 24:142. [PMID: 37259066 PMCID: PMC10230791 DOI: 10.1186/s12931-023-02443-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/07/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND While some lung adenocarcinoma (LUAD) patients benefit long-term from treatment with immune checkpoint inhibitors, the sad reality is that a considerable proportion of patients do not. The classification of the LUAD tumor microenvironment (TME) can be used to conceptually comprehend primary resistance mechanisms. In addition, the most recent research demonstrates that the release of damage-associated molecular pattern (DAMP) in TME by immunogenic cell death (ICD) may contribute to the adaptive immune response. Currently, however, there is no such comprehensive research on this topic in LUAD patients. Therefore, we set out to investigate how to reverse the poor infiltration characteristics of immune cells and boost antitumor immunity by identifying DAMP model. METHODS In this study, ICD-related DAMP genes were selected to investigate their effects on the prognosis of LUAD. To create a risk signature using the TCGA-LUAD cohort, the univariate COX regression and the least absolute shrinkage and selection operator regression were carried out, and the results were verified in a GEO dataset. Subsequently, the multivariate COX regression was applied to establish a prognostic nomogram. And the ESTIMATE and ssGSEA algorithms were utilized to analyze immune activity and the TIDE algorithm was for responsiveness to immunotherapy. Moreover, clinical tissue samples were used to verify the differential expression of 9 DAMP genes in the signature. RESULTS We identified two distinct DAMP molecular subtypes, and there are remarkable differences in survival probability between the two subtypes, and patients with higher levels of DAMP-related genes are "hot tumors" with increased immune activity. In addition, 9 DAMP genes were selected as prognostic signature genes, and clinical outcomes and immunotherapy response were better for participants in the low-risk group. Importantly, according to the area under the curve (AUC) value in evaluating the efficacy of immunotherapy, this signature is superior to existing predictors, such as PD-L1 and TIDE. CONCLUSIONS Our study suggests ICD plays an important part in modeling the TME of LUAD patients. And this signature could be utilized as a reliable predictor to estimate clinical outcomes and predict immunotherapy efficacy among LUAD patients.
Collapse
Affiliation(s)
- Yuxin Wu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| | - Kexin Li
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| | - Shuang Liang
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| | - Xiaoying Lou
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| | - Yiling Li
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| | - Danfei Xu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| | - Yue Wu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| | - Yuan Wang
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| | - Wei Cui
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| |
Collapse
|
13
|
Wu Y, Li Y, Luo Y, Zhou Y, Liang X, Cheng L, Wu T, Wen J, Tan C, Liu Y. Proteomics: Potential techniques for discovering the pathogenesis of connective tissue diseases-interstitial lung disease. Front Immunol 2023; 14:1146904. [PMID: 37063894 PMCID: PMC10090492 DOI: 10.3389/fimmu.2023.1146904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Interstitial lung disease (ILD) is one of the most serious lung complications of connective tissue disease (CTD). The application of proteomics in the past decade has revealed that various proteins are involved in the pathogenesis of each subtype of CTD-ILD through different pathways, providing novel ideas to study pathological mechanisms and clinical biomarkers. On this basis, a multidimensional diagnosis or prediction model is established. This paper reviews the results of proteomic detection of different subtypes of CTD-ILD and discusses the role of some differentially expressed proteins in the development of pulmonary fibrosis and their potential clinical applications.
Collapse
Affiliation(s)
- Yinlan Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Yu Zhou
- Department of Respiratory and Critical Care Medicine, Chengdu First People’s Hospital, Chengdu, China
| | - Xiuping Liang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Lu Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Tong Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Ji Wen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
| | - Chunyu Tan
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
- *Correspondence: Chunyu Tan, ; Yi Liu,
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Chengdu, China
- *Correspondence: Chunyu Tan, ; Yi Liu,
| |
Collapse
|
14
|
Emery L, Kane E, Anderson-Fears K, Liu D, Floros J, Gandhi CK. Association of surfactant protein A2 with acute respiratory failure in children. Pediatr Int 2023; 65:e15672. [PMID: 37888536 PMCID: PMC10617656 DOI: 10.1111/ped.15672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Interactions among single nucleotide polymorphisms (SNPs) of surfactant protein (SP) are associated with acute respiratory failure (ARF) and its short-term outcome, pulmonary dysfunction at discharge (PDAD) in children. However, genetic association studies using individual SNPs have not been conducted before. We hypothesize that SP genetic variants are associated with pediatric ARF and its short-term complications by themselves. METHODS We used available genotype and clinical data in the Floros biobank consisting of 248 children aged ≤24 months with ARF; 86 developed PDAD. A logistic regression analysis was performed for each of the 14 selected SNPs, SP-A1 and SP-A2 genotypes. A p-value less than the Bonferroni correction threshold was considered significant. A likelihood ratio test was done to compare two models (one with demographic data and another with genetic variants). RESULTS Before Bonferroni correction, female sex is associated with a decreased risk of ARF. Black race and the rs721917 of the SFTPD are associated with increased risk of ARF. After Bonferroni correction, the 1A0 1A1 genotype of SFTPA2 was associated with decreased risk of ARF. The likelihood ratio test showed that the model of the genotype information with demographic data was a better fit to predict ARF risk. None of the SP SNPs and SP-A1, SP-A2 genotypes were associated with PDAD. CONCLUSION Our results indicate that SNPs and genotypes of SPs involved in innate immunity and host defense play an important role in ARF and, in the future, may be used as biomarkers.
Collapse
Affiliation(s)
- Lucy Emery
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Elizabeth Kane
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Keenan Anderson-Fears
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Dajiang Liu
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Joanna Floros
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Obstetrics & Gynecology, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Chintan K Gandhi
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
15
|
Kim SH, Kim J, Jang JY, Noh H, Park J, Jeong H, Jeon D, Uhm C, Oh H, Cho K, Jeon Y, On D, Yoon S, Lim SY, Kim SP, Lee YW, Jang HJ, Park IH, Oh J, Seo JS, Kim JJ, Seok SH, Lee YJ, Hong SM, An SH, Kim SY, Kim YB, Hwang JY, Lee HJ, Kim HB, Choi KS, Park JW, Seo JY, Yun JW, Shin JS, Lee HY, Kim K, Lee D, Lee H, Nam KT, Seong JK. Mouse models of lung-specific SARS-CoV-2 infection with moderate pathological traits. Front Immunol 2022; 13:1055811. [PMID: 36457995 PMCID: PMC9706212 DOI: 10.3389/fimmu.2022.1055811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/28/2022] [Indexed: 02/18/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) has been a global health concern since 2019. The viral spike protein infects the host by binding to angiotensin-converting enzyme 2 (ACE2) expressed on the cell surface, which is then processed by type II transmembrane serine protease. However, ACE2 does not react to SARS-CoV-2 in inbred wild-type mice, which poses a challenge for preclinical research with animal models, necessitating a human ACE2 (hACE2)-expressing transgenic mouse model. Cytokeratin 18 (K18) promoter-derived hACE2 transgenic mice [B6.Cg-Tg(K18-ACE2)2Prlmn/J] are widely used for research on SARS-CoV-1, MERS-CoV, and SARS-CoV-2. However, SARS-CoV-2 infection is lethal at ≥105 PFU and SARS-CoV-2 target cells are limited to type-1 alveolar pneumocytes in K18-hACE2 mice, making this model incompatible with infections in the human lung. Hence, we developed lung-specific SARS-CoV-2 infection mouse models with surfactant protein B (SFTPB) and secretoglobin family 1a member 1 (Scgb1a1) promoters. After inoculation of 105 PFU of SARS-CoV-2 to the K18-hACE2, SFTPB-hACE2, and SCGB1A1-hACE2 models, the peak viral titer was detected at 2 days post-infection and then gradually decreased. In K18-hACE2 mice, the body temperature decreased by approximately 10°C, body weight decreased by over 20%, and the survival rate was reduced. However, SFTPB-hACE2 and SCGB1A1-hACE2 mice showed minimal clinical signs after infection. The virus targeted type I pneumocytes in K18-hACE2 mice; type II pneumocytes in SFTPB-hACE2 mice; and club, goblet, and ciliated cells in SCGB1A1-hACE2 mice. A time-dependent increase in severe lung lesions was detected in K18-hACE2 mice, whereas mild lesions developed in SFTPB-hACE2 and SCGB1A1-hACE2 mice. Spleen, small intestine, and brain lesions developed in K18-hACE2 mice but not in SFTPB-hACE2 and SCGB1A1-hACE2 mice. These newly developed SFTPB-hACE2 and SCGB1A1-hACE2 mice should prove useful to expand research on hACE2-mediated respiratory viruses.
Collapse
Affiliation(s)
- Sung-Hee Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiseon Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Yun Jang
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi, South Korea
- College of Pharmacy, Dongguk University, Seoul, South Korea
| | - Hyuna Noh
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| | - Jisun Park
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Donghun Jeon
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Chanyang Uhm
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Heeju Oh
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyungrae Cho
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon Jeon
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi, South Korea
| | - Dain On
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Suhyeon Yoon
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| | - Soo-Yeon Lim
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| | - Sol Pin Kim
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| | - Youn Woo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hui Jeong Jang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - In Ho Park
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jooyeon Oh
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Seon Seo
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong Jin Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Hyuk Seok
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea
| | - Yu Jin Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea
| | - Seung-Min Hong
- Laboratory of Avian Diseases, BK21 plus Program for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Se-Hee An
- Laboratory of Avian Diseases, BK21 plus Program for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seo Yeon Kim
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Young Been Kim
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ji-Yeon Hwang
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, BK21 plus Program for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jeon-Soo Shin
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| | - Kyoungmi Kim
- Department of Physiology and Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Ho Lee
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi, South Korea
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, South Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- BIO-MAX Institute, Seoul National University, Seoul, South Korea
- Interdisciplinary Program for Bioinformatics, Seoul National University, Seoul, South Korea
| |
Collapse
|
16
|
Cao TBT, Moon JY, Yoo HJ, Ban GY, Kim SH, Park HS. Down-regulated surfactant protein B in obese asthmatics. Clin Exp Allergy 2022; 52:1321-1329. [PMID: 35294785 DOI: 10.1111/cea.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Obesity is a common comorbid condition in adult asthmatics and known as a feature of asthma severity. However, the molecular mechanism under obesity-induced inflammation has not yet been fully understood. OBJECTIVE Considering the essential role of hydrophobic surfactant protein B (SP-B) in lung function, SP-B was targeted to examine its involvement in the development of obesity-induced airway inflammation in asthmatics. METHODS The aim was to examine an alteration in circulating SP-B according to obesity in adult asthmatics, 129 asthmatics were enrolled and classified into 3 groups (obese, overweight and normal-weight groups) according to body mass index (BMI). Circulating SP-B levels were determined by enzyme-linked immunosorbent assay. Four single nucleotide polymorphisms of SFTPB gene were genotyped. Serum ceramide levels were measured by liquid chromatography-tandem mass spectrometry. RESULTS Significantly lower serum SP-B levels were noted in the obese group than in the overweight or normal-weight group (p = .002). The serum SP-B level was significantly correlated with serum levels of C18:0 ceramide and transforming growth factor beta 1 as well as BMI (r = -0.200; r = -0.215; r = -0.332, p < .050 for all). An inverse correlation was noted between serum SP-B and fractional exhaled nitric oxide levels in female asthmatics (r = -0.287, p = .009). Genetic predisposition of the SFTPB gene at 9306 A>G to the obese and overweight groups was noted. CONCLUSION Obesity altered ceramide metabolism leading to pulmonary surfactant dysfunction and impaired resolution of airway inflammation, finally contributing to the phenotypes of obese asthmatics.
Collapse
Affiliation(s)
- Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Ji-Young Moon
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hyun-Ju Yoo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ga-Young Ban
- Department of Pulmonary, Allergy, and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine Institute for Life Sciences, Seoul, Korea
| | - Seung-Hyun Kim
- Translational Research Laboratory for Inflammatory Disease, Clinical Trial Center, Ajou University Medical Center, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
17
|
Ren L, Wen X, Liu M, Xiao Y, Leng P, Luo H, Tao P, Xie L. Comprehensive Analysis of the Molecular Characteristics and Prognosis value of AT II-associated Genes in Non-small Cell Lung Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3106688. [PMID: 36203529 PMCID: PMC9530922 DOI: 10.1155/2022/3106688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/10/2022] [Indexed: 11/25/2022]
Abstract
Alveolar type II (AT II) is a key structure of the distal lung epithelium and essential to maintain normal lung homeostasis. Dedifferentiation of AT II cells is significantly correlated with lung tumor progression. However, the potential molecular mechanism and clinical significance of AT II-associated genes for lung cancer has not yet been fully elucidated. In this study, we comprehensively analyzed the gene expression, prognosis value, genetic alteration, and immune cell infiltration of eight AT II-associated genes (AQP4, SFTPB, SFTPC, SFTPD, CLDN18, FOXA2, NKX2-1, and PGC) in Nonsmall Cell Lung Cancer (NSCLC). The results have shown that the expression of eight genes were remarkably reduced in cancer tissues and observably relating to clinical cancer stages. Survival analysis of the eight genes revealed that low-expression of CLDN18, FOXA2, NKX2-1, PGC, SFTPB, SFTPC, and SFTPD were significantly related to a reduced progression-free survival (FP), and low CLDN18, FOXA2, and SFTPD mRNA expression led to a short postprogression survival (PPS). Meanwhile, the alteration of 8 AT II-associated genes covered 273 out of 1053 NSCLC samples (26%). Additionally, the expression level of eight genes were significantly correlated with the infiltration of diverse immune cells, including six types of CD4+T cells, macrophages, neutrophils, B cells, CD8+ T cells, and dendritic cells. In summary, this study provided clues of the values of eight AT II-associated genes as clinical biomarkers and therapeutic targets in NSCLC and might provide some new inspirations to assist the design of new immunotherapies.
Collapse
Affiliation(s)
- Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Xiaoxia Wen
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mujiexin Liu
- Ineye hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Xiao
- Department of clinical laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huaichao Luo
- Department of clinical laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Pei Tao
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan 611731, China
| | - Lei Xie
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
18
|
Depicolzuane LC, Roberts CM, Thomas NJ, Anderson-Fears K, Liu D, Barbosa JPP, Souza FR, Pimentel AS, Floros J, Gandhi CK. Hydrophilic But Not Hydrophobic Surfactant Protein Genetic Variants Are Associated With Severe Acute Respiratory Syncytial Virus Infection in Children. Front Immunol 2022; 13:922956. [PMID: 35903101 PMCID: PMC9317530 DOI: 10.3389/fimmu.2022.922956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection-related hospitalization in the first year of life. Surfactant dysfunction is central to pathophysiologic mechanisms of various pulmonary diseases including RSV. We hypothesized that RSV severity is associated with single nucleotide polymorphisms (SNPs) of surfactant proteins (SPs). We prospectively enrolled 405 RSV-positive children and divided them into moderate and severe RSV disease. DNA was extracted and genotyped for sixteen specific SP gene SNPs. SP-A1 and A2 haplotypes were assigned. The association of RSV severity with SP gene SNPs was investigated by multivariate logistic regression. A likelihood ratio test was used to test the goodness of fit between two models (one with clinical and demographic data alone and another that included genetic variants). p ≤ 0.05 denotes statistical significance. A molecular dynamics simulation was done to determine the impact of the SFTPA2 rs1965708 on the SP-A behavior under various conditions. Infants with severe disease were more likely to be younger, of lower weight, and exposed to household pets and smoking, as well as having co-infection on admission. A decreased risk of severe RSV was associated with the rs17886395_C of the SFTPA2 and rs2243639_A of the SFTPD, whereas an increased risk was associated with the rs1059047_C of the SFTPA1. RSV severity was not associated with SNPs of SFTPB and SFTPC. An increased risk of severe RSV was associated with the 1A0 genotype of SFTPA2 in its homozygous or heterozygous form with 1A3. A molecular dynamic simulation study of SP-A variants that differ in amino acid 223, an important amino acid change (Q223K) between 1A0 and 1A3, showed no major impact on the behavior of these two variants except for higher thermodynamic stability of the K223 variant. The likelihood ratio test showed that the model with multi-allelic variants along with clinical and demographic data was a better fit to predict RSV severity. In summary, RSV severity was associated with hydrophilic (but not with hydrophobic) SPs gene variants. Collectively, our findings show that SP gene variants may play a key role in RSV infection and have a potential role in prognostication.
Collapse
Affiliation(s)
- Lynnlee C. Depicolzuane
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Catherine M. Roberts
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Neal J. Thomas
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Keenan Anderson-Fears
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Dajiang Liu
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | | | - Felipe Rodrigues Souza
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Silva Pimentel
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joanna Floros
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
- Department of Obstetrics & Gynecology, The Pennsylvania State College of Medicine, Hershey, PA, United States
- *Correspondence: Joanna Floros, ; Chintan K. Gandhi,
| | - Chintan K. Gandhi
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
- *Correspondence: Joanna Floros, ; Chintan K. Gandhi,
| |
Collapse
|
19
|
Abbasi A, Chen C, Gandhi CK, Wu R, Pardo A, Selman M, Floros J. Single Nucleotide Polymorphisms (SNP) and SNP-SNP Interactions of the Surfactant Protein Genes Are Associated With Idiopathic Pulmonary Fibrosis in a Mexican Study Group; Comparison With Hypersensitivity Pneumonitis. Front Immunol 2022; 13:842745. [PMID: 35720392 PMCID: PMC9201215 DOI: 10.3389/fimmu.2022.842745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/09/2022] [Indexed: 01/12/2023] Open
Abstract
Surfactant proteins (SPs) are important for normal lung function and innate immunity of the lungs and their genes have been identified with significant genetic variability. Changes in quantity or quality of SPs due to genetic mutations or natural genetic variability may alter their functions and contribute to the host susceptibility for particular diseases. Alternatively, SP single nucleotide polymorphisms (SNPs) can serve as markers to identify disease risk or response to therapies, as shown for other genes in a number of other studies. In the current study, we evaluated associations of SFTP SNPs with idiopathic pulmonary fibrosis (IPF) by studying novel computational models where the epistatic effects (dominant, additive, recessive) of SNP-SNP interactions could be evaluated, and then compared the results with a previously published hypersensitivity pneumonitis (HP) study where the same novel models were used. Mexican Hispanic patients (IPF=84 & HP=75) and 194 healthy control individuals were evaluated. The goal was to identify SP SNPs and SNP-SNP interactions that associate with IPF as well as SNPs and interactions that may be unique to each of these interstitial diseases or common between them. We observed: 1) in terms of IPF, i) three single SFTPA1 SNPs to associate with decreased IPF risk, ii) three SFTPA1 haplotypes to associate with increased IPF risk, and iii) a number of three-SNP interactions to associate with IPF susceptibility. 2) Comparison of IPF and HP, i) three SFTPA1 and one SFTPB SNP associated with decreased risk in IPF but increased risk in HP, and one SFTPA1 SNP associated with decreased risk in both IPF and HP, ii) a number of three-SNP interactions with the same or different effect pattern associated with IPF and/or HP susceptibility, iii) one of the three-SNP interactions that involved SNPs of SFTPA1, SFTPA2, and SFTPD, with the same effect pattern, was associated with a disease-specific outcome, a decreased and increased risk in HP and IPF, respectively. This is the first study that compares the SP gene variants in these two phenotypically similar diseases. Our findings indicate that SNPs of all SFTPs may play an important role in the genetic susceptibility to IPF and HP. Importantly, IPF and HP share some SP genetic variants, suggesting common pathophysiological mechanisms and pathways regarding surfactant biogenesis, but also some differences, highlighting the diverse underlying pathogenic mechanisms between an inflammatory-driven fibrosis (HP) and an epithelial-driven fibrosis (IPF). Alternatively, the significant SNPs identified here, along with SNPs of other genes, could serve as markers to distinguish these two devastating diseases.
Collapse
Affiliation(s)
- Ata Abbasi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.,Department of Pathology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Chixiang Chen
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chintan K Gandhi
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rongling Wu
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Moises Selman
- Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Joanna Floros
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics & Gynecology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
20
|
Gandhi CK, Thomas NJ, Meixia Y, Spear D, Fu C, Zhou S, Wu R, Keim G, Yehya N, Floros J. SNP–SNP Interactions of Surfactant Protein Genes in Persistent Respiratory Morbidity Susceptibility in Previously Healthy Children. Front Genet 2022; 13:815727. [PMID: 35401703 PMCID: PMC8989419 DOI: 10.3389/fgene.2022.815727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
We studied associations of persistent respiratory morbidity (PRM) at 6 and 12 months after acute respiratory failure (ARF) in previously healthy children with single-nucleotide polymorphisms (SNPs) of surfactant protein (SP) genes. Of the 250 enrolled subjects, 155 and 127 were followed at 6 and 12 months after an ARF episode, respectively. Logistic regression analysis and SNP–SNP interaction models were used. We found that 1) in the multivariate analysis, an increased risk at 6 and 12 months was associated with rs1124_A and rs4715_A of SFTPC, respectively; 2) in a single SNP model, increased and decreased risks of PRM at both timepoints were associated with rs1124 of SFTPC and rs721917 of SFTPD, respectively; an increased risk at 6 months was associated with rs1130866 of SFTPB and rs4715 of SFTPC, and increased and decreased risks at 12 months were associated with rs17886395 of SFTPA2 and rs2243639 of SFTPD, respectively; 3) in a two-SNP model, PRM susceptibility at both timepoints was associated with a number of intergenic interactions between SNPs of the studied SP genes. An increased risk at 12 months was associated with one intragenic (rs1965708 and rs113645 of SFTPA2) interaction; 4) in a three-SNP model, decreased and increased risks at 6 and 12 months, respectively, were associated with an interaction among rs1130866 of SFTPB, rs721917 of SFTPD, and rs1059046 of SFTPA2. A decreased risk at 6 months was associated with an interaction among the same SNPs of SFTPB and SFTPD and the rs1136450 of SFTPA1. The findings revealed that SNPs of all SFTPs appear to play a role in long-term outcomes of ARF survivors and may serve as markers for disease susceptibility.
Collapse
Affiliation(s)
- Chintan K. Gandhi
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Neal J. Thomas
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Ye Meixia
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Debbie Spear
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chenqi Fu
- Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Shouhao Zhou
- Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rongling Wu
- Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Garrett Keim
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Nadir Yehya
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA, United States
- *Correspondence: Joanna Floros,
| |
Collapse
|
21
|
Osorio D, Zhong Y, Li G, Xu Q, Yang Y, Tian Y, Chapkin RS, Huang JZ, Cai JJ. scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation. PATTERNS (NEW YORK, N.Y.) 2022; 3:100434. [PMID: 35510185 PMCID: PMC9058914 DOI: 10.1016/j.patter.2022.100434] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/13/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022]
Abstract
Gene knockout (KO) experiments are a proven, powerful approach for studying gene function. However, systematic KO experiments targeting a large number of genes are usually prohibitive due to the limit of experimental and animal resources. Here, we present scTenifoldKnk, an efficient virtual KO tool that enables systematic KO investigation of gene function using data from single-cell RNA sequencing (scRNA-seq). In scTenifoldKnk analysis, a gene regulatory network (GRN) is first constructed from scRNA-seq data of wild-type samples, and a target gene is then virtually deleted from the constructed GRN. Manifold alignment is used to align the resulting reduced GRN to the original GRN to identify differentially regulated genes, which are used to infer target gene functions in analyzed cells. We demonstrate that the scTenifoldKnk-based virtual KO analysis recapitulates the main findings of real-animal KO experiments and recovers the expected functions of genes in relevant cell types.
Collapse
Affiliation(s)
- Daniel Osorio
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Yan Zhong
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai 200062, China
| | - Guanxun Li
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Qian Xu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Yongjian Yang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Robert S. Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Jianhua Z. Huang
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program of Genetics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
22
|
Floros J, Tsotakos N. Differential Regulation of Human Surfactant Protein A Genes, SFTPA1 and SFTPA2, and Their Corresponding Variants. Front Immunol 2021; 12:766719. [PMID: 34917085 PMCID: PMC8669794 DOI: 10.3389/fimmu.2021.766719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022] Open
Abstract
The human SFTPA1 and SFTPA2 genes encode the surfactant protein A1 (SP-A1) and SP-A2, respectively, and they have been identified with significant genetic and epigenetic variability including sequence, deletion/insertions, and splice variants. The surfactant proteins, SP-A1 and SP-A2, and their corresponding variants play important roles in several processes of innate immunity as well in surfactant-related functions as reviewed elsewhere [1]. The levels of SP-A have been shown to differ among individuals both under baseline conditions and in response to various agents or disease states. Moreover, a number of agents have been shown to differentially regulate SFTPA1 and SFTPA2 transcripts. The focus in this review is on the differential regulation of SFTPA1 and SFTPA2 with primary focus on the role of 5′ and 3′ untranslated regions (UTRs) and flanking sequences on this differential regulation as well molecules that may mediate the differential regulation.
Collapse
Affiliation(s)
- Joanna Floros
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Nikolaos Tsotakos
- School of Science, Engineering, and Technology, The Pennsylvania State University - Harrisburg, Middletown, PA, United States
| |
Collapse
|
23
|
Floros J, Thorenoor N, Tsotakos N, Phelps DS. Human Surfactant Protein SP-A1 and SP-A2 Variants Differentially Affect the Alveolar Microenvironment, Surfactant Structure, Regulation and Function of the Alveolar Macrophage, and Animal and Human Survival Under Various Conditions. Front Immunol 2021; 12:681639. [PMID: 34484180 PMCID: PMC8415824 DOI: 10.3389/fimmu.2021.681639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
The human innate host defense molecules, SP-A1 and SP-A2 variants, differentially affect survival after infection in mice and in lung transplant patients. SP-A interacts with the sentinel innate immune cell in the alveolus, the alveolar macrophage (AM), and modulates its function and regulation. SP-A also plays a role in pulmonary surfactant-related aspects, including surfactant structure and reorganization. For most (if not all) pulmonary diseases there is a dysregulation of host defense and inflammatory processes and/or surfactant dysfunction or deficiency. Because SP-A plays a role in both of these general processes where one or both may become aberrant in pulmonary disease, SP-A stands to be an important molecule in health and disease. In humans (unlike in rodents) SP-A is encoded by two genes (SFTPA1 and SFTPA2) and each has been identified with extensive genetic and epigenetic complexity. In this review, we focus on functional, structural, and regulatory differences between the two SP-A gene-specific products, SP-A1 and SP-A2, and among their corresponding variants. We discuss the differential impact of these variants on the surfactant structure, the alveolar microenvironment, the regulation of epithelial type II miRNome, the regulation and function of the AM, the overall survival of the organism after infection, and others. Although there have been a number of reviews on SP-A, this is the first review that provides such a comprehensive account of the differences between human SP-A1 and SP-A2.
Collapse
Affiliation(s)
- Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics & Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Nithyananda Thorenoor
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Biochemistry & Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Nikolaos Tsotakos
- School of Science, Engineering, and Technology, The Pennsylvania State University, Harrisburg, PA, United States
| | - David S Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
24
|
Kasuya Y, Kim JD, Hatano M, Tatsumi K, Matsuda S. Pathophysiological Roles of Stress-Activated Protein Kinases in Pulmonary Fibrosis. Int J Mol Sci 2021; 22:ijms22116041. [PMID: 34204949 PMCID: PMC8199902 DOI: 10.3390/ijms22116041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is one of the most symptomatic progressive fibrotic lung diseases, in which patients have an extremely poor prognosis. Therefore, understanding the precise molecular mechanisms underlying pulmonary fibrosis is necessary for the development of new therapeutic options. Stress-activated protein kinases (SAPKs), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38) are ubiquitously expressed in various types of cells and activated in response to cellular environmental stresses, including inflammatory and apoptotic stimuli. Type II alveolar epithelial cells, fibroblasts, and macrophages are known to participate in the progression of pulmonary fibrosis. SAPKs can control fibrogenesis by regulating the cellular processes and molecular functions in various types of lung cells (including cells of the epithelium, interstitial connective tissue, blood vessels, and hematopoietic and lymphoid tissue), all aspects of which remain to be elucidated. We recently reported that the stepwise elevation of intrinsic p38 signaling in the lungs is correlated with a worsening severity of bleomycin-induced fibrosis, indicating an importance of this pathway in the progression of pulmonary fibrosis. In addition, a transcriptome analysis of RNA-sequencing data from this unique model demonstrated that several lines of mechanisms are involved in the pathogenesis of pulmonary fibrosis, which provides a basis for further studies. Here, we review the accumulating evidence for the spatial and temporal roles of SAPKs in pulmonary fibrosis.
Collapse
Affiliation(s)
- Yoshitoshi Kasuya
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.H.); (S.M.)
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Correspondence: ; Tel.: +81-432-262-193; Fax: +81-432-262-196
| | - Jun-Dal Kim
- Department of Research and Development, Institute of Natural Medicine (INM), University of Toyama, Toyama 930-0194, Japan;
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.H.); (S.M.)
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Shuichi Matsuda
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.H.); (S.M.)
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| |
Collapse
|
25
|
Can Prophylactic High Flow of Humidified and Warmed Filtered Air Improve Survival from Bacterial Pneumonia and SARS-CoV-2 in Elderly Individuals? The Role of Surfactant Protein A. Antioxidants (Basel) 2021; 10:antiox10050640. [PMID: 33922049 PMCID: PMC8143458 DOI: 10.3390/antiox10050640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
In this opinion article, we discuss a serendipitous observation we made in a study investigating survival in aged mice after bacterial infection. This observation involved a non-invasive ventilation approach that led to variable and higher survival in male and female mice with different genetic backgrounds for the innate immune molecule, surfactant protein A (SP-A). We suggest that employing the best ventilatory modality, whether that be HFNC or another method, may augment the role of other factors such as SP-A genetics and sex in a personalized approach, and may ultimately improve the outcome.
Collapse
|
26
|
Nourkami-Tutdibi N, Freitag K, Zemlin M, Tutdibi E. Genetic Association With Pseudomonas aeruginosa Acquisition in Cystic Fibrosis: Influence of Surfactant Protein D and Mannose-Binding Lectin. Front Immunol 2021; 12:587313. [PMID: 33679736 PMCID: PMC7933032 DOI: 10.3389/fimmu.2021.587313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pseudomonas aeruginosa (PA) infection in cystic fibrosis (CF) is associated with poor prognosis. Surfactant protein-D (SFTPD) and mannose-binding lectin (MBL) play a critical role in innate immunity and response to bacterial infections. We investigated serum levels and genetic variants of SFTPD and MBL in CF patients. Method: Thirty-five Caucasian patients homozygous for ΔF508del were genotyped for functional relevant polymorphisms within MBL2 (promoter-221 Y/X, codons 52, 54, and 57) and SFTPD genes (Met11Thr, Ala160Thr, and Ser270Thr). Serum levels of collectins, clinical characteristics, and PA status were correlated with genetic data. Results: Patients age, gender, and PA status did not affect MBL and SFTPD serum concentrations. MBL concentrations were correlated with MBL haplotypes. Patients with chronic Pseudomonas aeroginosa infection (PAC) and MBL insufficiency had a shorter interval between first PA infection and onset of PAC (0.01 vs. 4.6 years, p < 0.04) as well as a lower median age at transition to PAC (9.8 vs. 16.4 years, p < 0.03) compared to MBL sufficient patients with PAC. SFTPD serum level and FEV1% (Spearman r = -0.41, p < 0.03) showed a negative correlation irrespective of PA infection status. The hazard ratio to PA acquisition was increased in carriers of the SFTPD haplotype 11Thr-160Ala-270Ser compared to carriers of the common 11Met-160Thr-270Ser haplotype [HR 3.0 (95%CI: 1.1-8.6), p < 0.04]. Conclusion: MBL insufficiency leads to a shorter interval between first PA infection and onset of chronic infection. Susceptibility to PA acquisition is associated with SFTPD genetic variants with 11Thr-160Ala-270Ser as risk haplotype for early PA infection. This may be due to presence of threonine associated with oligomeric structure of SFTPD and binding ability to bacteria.
Collapse
Affiliation(s)
- Nasenien Nourkami-Tutdibi
- Saarland University Medical Center, Hospital for General Pediatrics and Neonatology, Homburg, Germany
| | - Klemens Freitag
- Saarland University Medical Center, Hospital for General Pediatrics and Neonatology, Homburg, Germany
| | - Michael Zemlin
- Saarland University Medical Center, Hospital for General Pediatrics and Neonatology, Homburg, Germany
| | - Erol Tutdibi
- Saarland University Medical Center, Hospital for General Pediatrics and Neonatology, Homburg, Germany
| |
Collapse
|
27
|
Villamizar O, Waters SA, Scott T, Grepo N, Jaffe A, Morris KV. Mesenchymal Stem Cell exosome delivered Zinc Finger Protein activation of cystic fibrosis transmembrane conductance regulator. J Extracell Vesicles 2021; 10:e12053. [PMID: 33532041 PMCID: PMC7825549 DOI: 10.1002/jev2.12053] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis is a genetic disorder that results in a multi-organ disease with progressive respiratory decline which leads to premature death. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene disrupts the capacity of the protein to function as a channel, transporting chloride ions and bicarbonate across epithelial cell membranes. Small molecule treatments targeted at potentiating or correcting CFTR have shown clinical benefits, but are only effective for a small percentage of individuals with specific CFTR mutations. To overcome this limitation, we engineered stromal-derived mesenchymal stem cells (MSC) and HEK293 cells to produce exosomes containing a novel CFTR Zinc Finger Protein fusion with transcriptional activation domains VP64, P65 and Rta to target the CFTR promoter (CFZF-VPR) and activate transcription. Treatment with CFZF-VPR results in robust activation of CFTR transcription in patient derived Human Bronchial Epithelial cells (HuBEC). We also find that CFZF-VPR can be packaged into MSC and HEK293 cell exosomes and delivered to HuBEC cells to potently activate CFTR expression. Connexin 43 appeared to be required for functional release of CFZF-VPR from exosomes. The observations presented here demonstrate that MSC derived exosomes can be used to deliver a packaged zinc finger activator to target cells and activate CFTR. The novel approach presented here offers a next-generation genetic therapy that may one day prove effective in treating patients afflicted with Cystic fibrosis.
Collapse
Affiliation(s)
- Olga Villamizar
- Center for Gene Therapy City of Hope-Beckman Research Institute at the City of Hope Duarte California USA
| | - Shafagh A Waters
- Faculty of Medicine School of Women's & Children's Health University of New South Wales (UNSW) Sydney NSW Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC) Faculty of Medicine University of New South Wales Sydney NSW Australia.,Department of Respiratory Medicine Sydney Children's Hospital Sydney NSW Australia
| | - Tristan Scott
- Center for Gene Therapy City of Hope-Beckman Research Institute at the City of Hope Duarte California USA
| | - Nicole Grepo
- Center for Gene Therapy City of Hope-Beckman Research Institute at the City of Hope Duarte California USA
| | - Adam Jaffe
- Faculty of Medicine School of Women's & Children's Health University of New South Wales (UNSW) Sydney NSW Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC) Faculty of Medicine University of New South Wales Sydney NSW Australia.,Department of Respiratory Medicine Sydney Children's Hospital Sydney NSW Australia
| | - Kevin V Morris
- Center for Gene Therapy City of Hope-Beckman Research Institute at the City of Hope Duarte California USA.,School of Medical Science Griffith University, Gold Coast Campus 1 Parklands Dr Southport QLD Australia
| |
Collapse
|
28
|
Gandhi CK, Chen C, Amatya S, Yang L, Fu C, Zhou S, Wu R, Buendía-Roldan I, Selman M, Pardo A, Floros J. SNP and Haplotype Interaction Models Reveal Association of Surfactant Protein Gene Polymorphisms With Hypersensitivity Pneumonitis of Mexican Population. Front Med (Lausanne) 2021; 7:588404. [PMID: 33469544 PMCID: PMC7813780 DOI: 10.3389/fmed.2020.588404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/07/2020] [Indexed: 01/21/2023] Open
Abstract
Background: Hypersensitivity pneumonitis (HP) is an interstitial lung disease caused by inhalation of common environmental organic particles. Surfactant proteins (SPs) play a role in innate immunity and surfactant function. We hypothesized that single nucleotide polymorphisms (SNPs) or haplotypes of the SP genes associate with HP. Methods: Seventy-five HP patients caused by avian antigen and 258 controls, asymptomatic antigen exposed and non-exposed were enrolled. SNP association was performed using logistic regression analysis and SNP-SNP interaction models. Results: Based on odds ratio, regression analyses showed association of (a) rs7316_G, 1A3 (protective) compared to antigen exposed; (b) male sex, smoking, rs721917_T and rs1130866_T (protective) compared to non-exposed controls with HP; (c) compared to antigen exposed, 25 interactions associated with HP in a three-SNP model; (d) compared to non-exposed, (i) rs1136451 associated with increased, whereas rs1136450 and rs1130866 associated with lower HP risk, (ii) 97 interactions associated with HP in a three-SNP model. The majority of SNP-SNP interactions associated with increased HP risk involved SNPs of the hydrophilic SPs, whereas, the majority of interactions associated with lower HP risk involved SNPs of both hydrophilic and hydrophobic SPs; (e) haplotypes of SP genes associated with HP risk. Conclusions: The complexity of SNPs interactions of the SFTP genes observed indicate that the lung inflammatory response to avian antigens is modulated by a complex gene interplay rather than by single SNPs.
Collapse
Affiliation(s)
- Chintan K. Gandhi
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chixiang Chen
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Shaili Amatya
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Lili Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenqi Fu
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Shouhao Zhou
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rongling Wu
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Ivette Buendía-Roldan
- Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Moisés Selman
- Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Annie Pardo
- Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Obstetrics & Gynecology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
29
|
Amatya S, Ye M, Yang L, Gandhi CK, Wu R, Nagourney B, Floros J. Single Nucleotide Polymorphisms Interactions of the Surfactant Protein Genes Associated With Respiratory Distress Syndrome Susceptibility in Preterm Infants. Front Pediatr 2021; 9:682160. [PMID: 34671583 PMCID: PMC8521105 DOI: 10.3389/fped.2021.682160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/06/2021] [Indexed: 11/14/2022] Open
Abstract
Background: Neonatal respiratory distress syndrome (RDS), due to surfactant deficiency in preterm infants, is the most common cause of respiratory morbidity. The surfactant proteins (SFTP) genetic variants have been well-studied in association with RDS; however, the impact of SNP-SNP (single nucleotide polymorphism) interactions on RDS has not been addressed. Therefore, this study utilizes a newer statistical model to determine the association of SFTP single SNP model and SNP-SNP interactions in a two and a three SNP interaction model with RDS susceptibility. Methods: This study used available genotype and clinical data in the Floros biobank at Penn State University. The patients consisted of 848 preterm infants, born <36 weeks of gestation, with 477 infants with RDS and 458 infants without RDS. Seventeen well-studied SFTPA1, SFTPA2, SFTPB, SFTPC, and SFTPD SNPs were investigated. Wang's statistical model was employed to test and identify significant associations in a case-control study. Results: Only the rs17886395 (C allele) of the SFTPA2 was associated with protection for RDS in a single-SNP model (Odd's Ratio 0.16, 95% CI 0.06-0.43, adjusted p = 0.03). The highest number of interactions (n = 27) in the three SNP interactions were among SFTPA1 and SFTPA2. The three SNP models showed intergenic and intragenic interactions among all SFTP SNPs except SFTPC. Conclusion: The single SNP model and SNP interactions using the two and three SNP interactions models identified SFTP-SNP associations with RDS. However, the large number of significant associations containing SFTPA1 and/or SFTPA2 SNPs point to the importance of SFTPA1 and SFTPA2 in RDS susceptibility.
Collapse
Affiliation(s)
- Shaili Amatya
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Meixia Ye
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lili Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chintan K Gandhi
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rongling Wu
- Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Beth Nagourney
- Albert Einstein College of Medicine, New York, NY, United States
| | - Joanna Floros
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
30
|
Carlsen HK, Nyberg F, Torén K, Segersson D, Olin AC. Exposure to traffic-related particle matter and effects on lung function and potential interactions in a cross-sectional analysis of a cohort study in west Sweden. BMJ Open 2020; 10:e034136. [PMID: 33077557 PMCID: PMC7574932 DOI: 10.1136/bmjopen-2019-034136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES To investigate the long-term effects of source-specific particle matter (PM) on lung function, effects of Surfactant Protein A (SP-A) and glutathione S-transferase (GST) genes GSTP1 and GSTT1 gene variants and effect modification by single-nucleotide polymorphism (SNP) genotype. DESIGN Cohort study with address-based annual PM exposure assigned from annual estimates of size (PM10, PM2.5 and PMBC) and source-specific (traffic, industry, marine traffic and wood burning) dispersion modelling. SETTING Gothenburg, Sweden. PARTICIPANTS The ADult-Onset asthma and NItric oXide Study had 6685 participants recruited from the general population, of which 5216 (78%) were included in the current study with information on all variables of interest. Mean age at the time of enrolment was 51.4 years (range 24-76) and 2427 (46.5%) were men. PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome was forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). Secondary outcome measures were effects and gene-environment interactions of SP-A and GSTT1 and GSTP1 genotypes. RESULTS Exposure to traffic-related PM10 and PM2.5 was associated with decreases in percent-predicted (% predicted) FEV1 by -0.48% (95% CI -0.89% to -0.07%) and -0.47% (95% CI -0.88% to -0.07%) per IQR 3.05 and 2.47 µg/m3, respectively, and with decreases in % predicted FVC by -0.46% (95% CI -0.83% to -0.08%) and -0.47% (95% CI -0.83% to -0.10%). Total and traffic-related PMBC was strongly associated with both FEV1 and FVC by -0.53 (95% CI -0.94 to -0.13%) and -0.43% (95% CI -0.77 to -0.09%) per IQR, respectively, for FVC, and similarly for FEV1. Minor allele carrier status for two GSTP1 SNPs and the GSTT1 null genotype were associated with decreases in % predicted lung function. Three SP-A SNPs showed effect modification with exposure to PM2.5 from industry and marine traffic. CONCLUSIONS PM exposure, specifically traffic related, was associated with FVC and FEV1 reductions and not modified by genotype. Genetic effect modification was suggested for industry and marine traffic PM2.5.
Collapse
Affiliation(s)
- Hanne Krage Carlsen
- Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Nyberg
- Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Register Epidemiology, School of Public Health and Community Medicine, Sahlgrenska Academy, Gothenburg, Sweden
| | - Kjell Torén
- Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - David Segersson
- Swedish Meteorological and Hydrological Institute, Norrkoping, Sweden
| | - Anna-Carin Olin
- Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Zhao JW, Jiao L, Guo MM, Zheng L, Wang XB, Gao SH, Ying BW, Ming L. SFTPC genetic polymorphisms are associated with tuberculosis susceptibility and clinical phenotype in a Western Chinese Han population. Exp Ther Med 2020; 20:100. [PMID: 32973949 PMCID: PMC7507020 DOI: 10.3892/etm.2020.9230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/19/2020] [Indexed: 02/05/2023] Open
Abstract
Tuberculosis (TB) is one of the most common infectious diseases globally. The surfactant protein C (SFTPC), which is involved in innate immunity and surfactant function in the lung, may contribute toward the progression of TB. The aim of the present study was to preliminarily investigate the possible association of single nucleotide polymorphisms (SNPs) in the SFTPC gene with TB susceptibility and clinical phenotypes in a Western Chinese Han population. The improved multiplex ligation detection reaction method was used to genotype 6 SNPs in SFTPC, in 900 patients with TB and 1,534 healthy control subjects. It was found that the A allele for rs1124 and the C allele for rs8192313 were associated with increased susceptibility to TB, P=0.024 and P=0.045, respectively. However, these two P-values were not significant following Bonferroni correction. In all samples, the haplotype [CGA], representing three SFTPC variants, was revealed to increase the risk of TB (P=0.001 and P=0.005, following Bonferroni correction). Furthermore, patients with the AA genotype for rs1124 and with the CC genotype for rs8192313 were associated with higher levels of C-reactive protein (P=0.001 and P=0.005, respectively). The results of the present study indicated that the SFTPC SNPs may increase the susceptibility to TB and the immune response of the host to Mycobacterium tuberculosis and may potentially be novel biomarkers for the pathogenesis of TB.
Collapse
Affiliation(s)
- Jun-Wei Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Man-Man Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
| | - Lei Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
| | - Xue-Bin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
| | - Shu-Hui Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
| | - Bin-Wu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liang Ming
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
32
|
King SD, Chen SY. Recent progress on surfactant protein A: cellular function in lung and kidney disease development. Am J Physiol Cell Physiol 2020; 319:C316-C320. [PMID: 32639871 DOI: 10.1152/ajpcell.00195.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pulmonary surfactant is a heterogeneous active surface complex made up of lipids and proteins. The major glycoprotein in surfactant is surfactant protein A (SP-A), which is released into the alveolar lumen from cytoplasmic lamellar bodies in type II alveolar epithelial cells. SP-A is involved in phospholipid absorption. SP-A together with other surfactant proteins and phospholipids prevent alveolar collapse during respiration by decreasing the surface tension of the air-liquid interface. Additionally, SP-A interacts with pathogens to prevent their propagation and regulate host immune responses. Studies in human and animal models have shown that deficiencies or mutations in surfactant components result in various lung or kidney pathologies, suggesting a role for SP-A in the development of lung and kidney diseases. In this mini-review, we discuss the current understanding of SP-A functions, recent findings of its dysfunction in specific lung and kidney pathologies, and how SP-A has been used as a biomarker to detect the outcome of lung diseases.
Collapse
Affiliation(s)
- Skylar D King
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - Shi-You Chen
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri.,Department of Molecular Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
33
|
Lipid-Protein and Protein-Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis. Int J Mol Sci 2020; 21:ijms21103708. [PMID: 32466119 PMCID: PMC7279303 DOI: 10.3390/ijms21103708] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary surfactant is a lipid/protein complex synthesized by the alveolar epithelium and secreted into the airspaces, where it coats and protects the large respiratory air–liquid interface. Surfactant, assembled as a complex network of membranous structures, integrates elements in charge of reducing surface tension to a minimum along the breathing cycle, thus maintaining a large surface open to gas exchange and also protecting the lung and the body from the entrance of a myriad of potentially pathogenic entities. Different molecules in the surfactant establish a multivalent crosstalk with the epithelium, the immune system and the lung microbiota, constituting a crucial platform to sustain homeostasis, under health and disease. This review summarizes some of the most important molecules and interactions within lung surfactant and how multiple lipid–protein and protein–protein interactions contribute to the proper maintenance of an operative respiratory surface.
Collapse
|
34
|
Gandhi CK, Chen C, Wu R, Yang L, Thorenoor N, Thomas NJ, DiAngelo SL, Spear D, Keim G, Yehya N, Floros J. Association of SNP-SNP Interactions of Surfactant Protein Genes with Pediatric Acute Respiratory Failure. J Clin Med 2020; 9:jcm9041183. [PMID: 32326132 PMCID: PMC7231046 DOI: 10.3390/jcm9041183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
The hallmarks of pediatric acute respiratory failure (ARF) are dysregulated inflammation and surfactant dysfunction. The objective is to study association of surfactant protein (SP) genes’ single nucleotide polymorphisms (SNPs) with ARF and its morbidity: pulmonary dysfunction at discharge (PDAD), employing a single-, two-, and three-SNP interaction model. We enrolled 468 newborn controls and 248 children aged ≤ 24 months with ARF; 86 developed PDAD. Using quantitative genetic principles, we tested the association of SP genes SNPs with ARF and PDAD. We observed a dominant effect of rs4715 of the SFTPC on ARF risk. In a three-SNP model, we found (a) 34 significant interactions among SNPs of SFTPA1, SFTPA2, and SFTPC associated with ARF (p = 0.000000002–0.05); 15 and 19 of those interactions were associated with increased and decreased risk for ARF, respectively; (b) intergenic SNP–SNP interactions of both hydrophobic and hydrophilic SP genes associated with PDAD (p = 0.00002–0.03). The majority of intra- and intergenic interactions associated with ARF involve the SFTPA2 SNPs, whereas most of the intra- and intergenic interactions associated with PDAD are of SFTPA1 SNPs. We also observed a dominant effect of haplotypes GG of SFTPA1 associated with increased and AA of SFTPC associated with decreased ARF risk (p = 0.02). To the best of our knowledge, this is the first study showing an association of complex interactions of SP genes with ARF and PDAD. Our data indicate that SP genes polymorphisms may contribute to ARF pathogenesis and subsequent PDAD and/or may serve as markers for disease susceptibility in healthy children.
Collapse
Affiliation(s)
- Chintan K. Gandhi
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.K.G.)
| | - Chixiang Chen
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Rongling Wu
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Lili Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nithyananda Thorenoor
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.K.G.)
| | - Neal J. Thomas
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.K.G.)
- Department of Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Susan L. DiAngelo
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.K.G.)
| | - Debbie Spear
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.K.G.)
| | - Garrett Keim
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nadir Yehya
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joanna Floros
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.K.G.)
- Department of Obstetrics & Gynecology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence:
| |
Collapse
|
35
|
Zhuang Y, Di Y, Huang L, Zhu J. PRKCH polymorphism is associated with rheumatoid arthritis in a Chinese population. Biosci Trends 2020; 13:556-561. [PMID: 31875586 DOI: 10.5582/bst.2019.01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Genetic factors have been widely considered to have a substantial effect on the susceptibility to rheumatoid arthritis (RA). The purpose of this study was to determine whether the four newly discovered polymorphisms in a genome-wide association study (GWAS) meta-analysis confer susceptibility to RA in a Chinese Han population. We conducted a case-control study involving 359 RA cases and 873 age-and gender-matched controls and performed genotyping of four single nucleotide polymorphisms (SNPs), rs227163, rs726288, rs3783782 and rs2469434, using the dye terminator-based SNaPshot method. Consequently, we detected significant differences of genotype distribution of rs3783782 in PRKCH between RA and controls. The minor allele frequencies (MAFs) of rs3783782 were significantly higher in RA patients compared to control subjects. Moreover, the rs227163 in TNFRSF9 had higher MAFs in male RA compared with male controls. In addition, the polymorphism of rs3783782 in PRKCH was significantly associated with RA susceptibility (OR = 1.67, 95% CI = 1.32-2.11, p = 1.32 × 10-5). After stratification by gender, the minor (A) allele was strongly associated with increased risk for RA in males (OR = 1.87, 95% CI = 1.34-2.60; p = 1.62 × 10-4) and in females (OR = 1.51, 95% CI = 1.08-2.10; p = 0.014). For rs227163, the minor (C) allele was found to be associated with RA risk only in males (OR = 1.34, 95% CI = 1.02-1.75; p = 0.036). These findings for the first time confirmed that rs3783782 in PRKCH was associated with RA susceptibility in a Chinese population, and rs227163 in TNFRSF9 was associated with RA risk in Chinese males; these SNPs may serve as genetic markers for RA.
Collapse
Affiliation(s)
- Yue Zhuang
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yanan Di
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Zhu
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
36
|
Wu G, Li R, Tong C, He M, Qi Z, Chen H, Deng T, Liu H, Qi H. Non-invasive prenatal testing reveals copy number variations related to pregnancy complications. Mol Cytogenet 2019; 12:38. [PMID: 31485271 PMCID: PMC6716937 DOI: 10.1186/s13039-019-0451-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/21/2019] [Indexed: 12/25/2022] Open
Abstract
Background Pregnancy complications could lead to maternal and fetal morbidity and mortality. Early diagnosing and managing complications have been associated with good outcomes. The placenta was an important organ for development of pregnancy complications. Thus, non-invasive prenatal testing technologies could detect genetic variations, such as aneuploidies and sub-chromosomal copy number variations, reflecting defective placenta by maternal plasma cffDNAs. Maternal cffDNAs had been proved to derive from trophoblast cells of placenta. Results In order to find out the relationship between genetic variations and pregnancy complications, we reviewed NIPT results for subchromosomal copy number variations in a cohort of 3890 pregnancies without complications and 441 pregnancies with pregnancy complications including gestational diabetes mellitus (GDM), pregnancy-induced hypertension (PIH), preterm prelabor rupture of membranes (PPROM) and placenta implantation abnormalities (PIA). For GDMs, we identified three CNV regions containing some members of alpha- and beta-defensins, such as DEFA1, DEFA3, DEFB1. For PIHs, we found three duplication and one deletion region including Pcdhα, Pcdhβ, and Pcdhγ, known as protocadherins, which were complicated by hypertensive disorders. For PPROMs and PIAs, we identified one and two CNV regions, respectively. SFTPA2, SFTPD and SFTPA1, belonging to surfactant protein, was considered to moderated the inflammatory activation within the fetal extra-embryonic compartment, associated to duration of preterm prelabor rupture of fetal membranes, while MEF2C and TM6SF1 could be involved in trophoblast invasion and differentiation. Conclusions Our findings gave a clue to correlation between genetic variations of maternal cell-free DNAs and pregnancy complications. Electronic supplementary material The online version of this article (10.1186/s13039-019-0451-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangping Wu
- 1Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 People's Republic of China.,2State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016 People's Republic of China.,3International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016 People's Republic of China
| | - Rong Li
- 1Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 People's Republic of China.,2State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016 People's Republic of China.,3International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016 People's Republic of China
| | - Chao Tong
- 1Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 People's Republic of China.,2State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016 People's Republic of China.,3International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016 People's Republic of China
| | - Miaonan He
- Beijing CapitalBio Medical Laboratory, Beijing, 101111 China
| | - Zhiwei Qi
- Beijing CapitalBio Medical Laboratory, Beijing, 101111 China
| | - Huijuan Chen
- Beijing CapitalBio Medical Laboratory, Beijing, 101111 China
| | - Tao Deng
- Beijing CapitalBio Medical Laboratory, Beijing, 101111 China
| | - Hailiang Liu
- CapitalBio Technology Inc., Beijing, 101111 China.,6Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Hongbo Qi
- 1Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 People's Republic of China.,2State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016 People's Republic of China.,3International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016 People's Republic of China
| |
Collapse
|
37
|
Xi J, Wang L, Yan C, Song J, Song Y, Chen J, Zhu Y, Chen Z, Jin C, Ding J, Zhao C. The Cancer Genome Atlas dataset-based analysis of aberrantly expressed genes by GeneAnalytics in thymoma associated myasthenia gravis: focusing on T cells. J Thorac Dis 2019; 11:2315-2323. [PMID: 31372268 DOI: 10.21037/jtd.2019.06.01] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Myasthenia gravis (MG) is a group of autoimmune disease which could be accompanied by thymoma. Many differences have been observed between thymoma-associated MG (TAMG) and non-MG thymoma (NMG). However, the molecular difference between them remained unknown. This study aimed to explore the differentially expressed genes (DEGs) between the two categories and to elucidate the possible pathogenesis of TAMG further. Methods DEGs were calculated using the RNA-Sequencing data from 11 TAMG and 10 NMG in The Cancer Genome Atlas (TCGA) database. GeneAnalytics was performed to characterize the associations between DEGs and tissues and cells, diseases, gene ontology (GO) terms, pathways, phenotypes, and drug/compounds, respectively. Genes related to T cells were sorted out using LifeMapDiscovery Cells and Tissues Database. Genes directly related to the phenotype of autoimmune diseases that were identified by VarElect were validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results The expression level of 169 genes showed a significant difference between the two groups, with 94 up-regulated and 75 down-regulated. Overexpression of six genes (ATM, SFTPB, ANKRD55, BTLA, CCR7, TNFRSF25), which are expressed in T cells and directly related to autoimmune disease through VarElect, was identified. The overexpression of soluble BTLA (sBTLA) (P=0.027), CCR7 (P=0.0018), TNFRSF25 (P=0.0013) and ANKRD55 (P=0.0026) was validated by RT-qPCR in thymoma tissues from our center. Conclusions Overexpression of sBTLA, CCR7, TNFRSF25 and ANKRD55 was identified and validated by RT-qPCR, which could partly explain the underlying pathogenesis in TAMG.
Collapse
Affiliation(s)
- Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Liang Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chong Yan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jie Song
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yang Song
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ji Chen
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yongjun Zhu
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhiming Chen
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chun Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Jianyong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Department of Neurology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai 200040, China
| |
Collapse
|