1
|
Zhang Y, Gao J, Xu W, Huo X, Wang J, Xu Y, Ding W, Guo Z, Liu R. Advances in protein subunit vaccines against H1N1/09 influenza. Front Immunol 2024; 15:1499754. [PMID: 39650643 PMCID: PMC11621219 DOI: 10.3389/fimmu.2024.1499754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
The A/H1N1pdm09 influenza virus, which caused the 2009 pandemic, has since become a recurring strain in seasonal influenza outbreaks. Given the ongoing threat of influenza, protein subunit vaccines have garnered significant attention for their safety and effectiveness. This review seeks to highlight the latest developments in protein subunit vaccines that specifically target the A/H1N1pdm09 virus. It will also examine the structure and replication cycle of influenza A viruses and compare different types of influenza vaccines. Additionally, the review will address key aspects of H1N1 protein subunit vaccine development, such as antigen selection, protein expression systems, and the use of adjuvants. The role of animal models in evaluating these vaccines will also be discussed. Despite challenges like antigenic variability and the complexities of vaccine production and distribution, protein subunit vaccines remain a promising option for future influenza prevention efforts.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
- Department of Medical Imaging, School of Medicine, Zhoukou Vocational and Technical College, Zhoukou, China
| | - Jingyao Gao
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Wenqi Xu
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xingyu Huo
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jingyan Wang
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yirui Xu
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Wenting Ding
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zeliang Guo
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Rongzeng Liu
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
2
|
Tousian B, Khosravi AR, Ghasemi MH, Kadkhodaie M. Biomimetic functionalized metal organic frameworks as multifunctional agents: Paving the way for cancer vaccine advances. Mater Today Bio 2024; 27:101134. [PMID: 39027676 PMCID: PMC11255118 DOI: 10.1016/j.mtbio.2024.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Biomimetic functionalized metal-organic frameworks (Fn-MOFs) represent a cutting-edge approach in the realm of cancer vaccines. These multifunctional agents, inspired by biological systems, offer unprecedented opportunities for the development of next-generation cancer vaccines. The vast surface area, tunable pore size, and diverse chemistry of MOFs provide a versatile scaffold for the encapsulation and protection of antigenic components, crucial for vaccine stability and delivery. This work delves into the innovative design and application of Fn-MOFs, highlighting their role as carriers for immune enhancement and their potential to revolutionize vaccine delivery. By mimicking natural processes, Fn-MOFs, with their ability to be functionalized with a myriad of chemical and biological entities, exhibit superior biocompatibility and stimuli-responsive behavior and facilitate targeted delivery to tumor sites. This review encapsulates the latest advancements in Fn-MOF technology, from their synthesis and surface modification to their integration into stimuli-responsive and combination therapies. It underscores the significance of biomimetic approaches in overcoming current challenges in cancer vaccine development, such as antigen stability and immune evasion. By leveraging the biomimetic nature of Fn-MOFs, this work paves the way for innovative strategies in cancer vaccines, aiming to induce potent and long-lasting immune responses against malignancies.
Collapse
Affiliation(s)
- Bushra Tousian
- Department of Microbiology and Immunology, Veterinary Medicine Faculty, University of Tehran, PO Box 1419963111, Tehran, Iran
| | - Ali Reza Khosravi
- Department of Microbiology and Immunology, Veterinary Medicine Faculty, University of Tehran, PO Box 1419963111, Tehran, Iran
| | - Mohammad Hadi Ghasemi
- Applied Chemistry Research Group, ACECR-Tehran Organization, PO Box 13145-186, Tehran, Iran
| | - Majid Kadkhodaie
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
G Popova P, Chen SP, Liao S, Sadarangani M, Blakney AK. Clinical perspective on topical vaccination strategies. Adv Drug Deliv Rev 2024; 208:115292. [PMID: 38522725 DOI: 10.1016/j.addr.2024.115292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Vaccination is one of the most successful measures in modern medicine to combat diseases, especially infectious diseases, and saves millions of lives every year. Vaccine design and development remains critical and involves many aspects, including the choice of platform, antigen, adjuvant, and route of administration. Topical vaccination, defined herein as the introduction of a vaccine to any of the three layers of the human skin, has attracted interest in recent years as an alternative vaccination approach to the conventional intramuscular administration because of its potential to be needle-free and induce a superior immune response against pathogens. In this review, we describe recent progress in developing topical vaccines, highlight progress in the development of delivery technologies for topical vaccines, discuss potential factors that might impact the topical vaccine efficacy, and provide an overview of the current clinical landscape of topical vaccines.
Collapse
Affiliation(s)
- Petya G Popova
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sunny P Chen
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Suiyang Liao
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada; Life Science Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, British Columbia V5Z 4H4, Canada; Department of Pediatrics, University of British Columbia, 4480 Oak St, Vancouver, BC V6H 0B3, Canada
| | - Anna K Blakney
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
4
|
Khazaei Monfared Y, Mahmoudian M, Zakeri-Milani P, Cecone C, Hayashi T, Ishii KJ, Conde J, Matencio A, Trotta F. Intratumoural Delivery of mRNA Loaded on a Cationic Hyper-Branched Cyclodextrin-Based Polymer Induced an Anti-Tumour Immunological Response in Melanoma. Cancers (Basel) 2023; 15:3748. [PMID: 37509409 PMCID: PMC10378402 DOI: 10.3390/cancers15143748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
mRNA technology has demonstrated potential for use as an effective cancer immunotherapy. However, inefficient in vivo mRNA delivery and the requirements for immune co-stimulation present major hurdles to achieving anti-tumour therapeutic efficacy. Therefore, we used a cationic hyper-branched cyclodextrin-based polymer to increase mRNA delivery in both in vitro and in vivo melanoma cancer. We found that the transfection efficacy of the mRNA-EGFP-loaded Ppoly system was significantly higher than that of lipofectamine and free mRNA in both 2D and 3D melanoma cancer cells; also, this delivery system did not show cytotoxicity. In addition, the biodistribution results revealed time-dependent and significantly higher mEGFP expression in complexes with Ppoly compared to free mRNA. We then checked the anti-tumour effect of intratumourally injected free mRNA-OVA, a foreign antigen, and loaded Ppoly; the results showed a considerable decrease in both tumour size and weight in the group treated with OVA-mRNA in loaded Ppoly compared to other formulations with an efficient adaptive immune response by dramatically increasing most leukocyte subtypes and OVA-specific CD8+ T cells in both the spleen and tumour tissues. Collectively, our findings suggest that the local delivery of cationic cyclodextrin-based polymer complexes containing foreign mRNA antigens might be a good and reliable concept for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Mohammad Mahmoudian
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Parvin Zakeri-Milani
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Claudio Cecone
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Tomoya Hayashi
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 113-8654, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 113-8654, Japan
| | - João Conde
- ToxOmics, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Adrián Matencio
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| |
Collapse
|
5
|
Corripio-Miyar Y, MacLeod CL, Mair I, Mellanby RJ, Moore BD, McNeilly TN. Self-Adjuvanting Calcium-Phosphate-Coated Microcrystal-Based Vaccines Induce Pyroptosis in Human and Livestock Immune Cells. Vaccines (Basel) 2023; 11:1229. [PMID: 37515044 PMCID: PMC10385459 DOI: 10.3390/vaccines11071229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Successful vaccines require adjuvants able to activate the innate immune system, eliciting antigen-specific immune responses and B-cell-mediated antibody production. However, unwanted secondary effects and the lack of effectiveness of traditional adjuvants has prompted investigation into novel adjuvants in recent years. Protein-coated microcrystals modified with calcium phosphate (CaP-PCMCs) in which vaccine antigens are co-immobilised within amino acid crystals represent one of these promising self-adjuvanting vaccine delivery systems. CaP-PCMCs has been shown to enhance antigen-specific IgG responses in mouse models; however, the exact mechanism of action of these microcrystals is currently unclear. Here, we set out to investigate this mechanism by studying the interaction between CaP-PCMCs and mammalian immune cells in an in vitro system. Incubation of cells with CaP-PCMCs induced rapid pyroptosis of peripheral blood mononuclear cells and monocyte-derived dendritic cells from cattle, sheep and humans, which was accompanied by the release of interleukin-1β and the activation of Caspase-1. We show that this pyroptotic event was cell-CaP-PCMCs contact dependent, and neither soluble calcium nor microcrystals without CaP (soluble PCMCs) induced pyroptosis. Our results corroborate CaP-PCMCs as a promising delivery system for vaccine antigens, showing great potential for subunit vaccines where the enhancement or find tuning of adaptive immunity is required.
Collapse
Affiliation(s)
| | - Clair Lyle MacLeod
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Iris Mair
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian EH25 9RG, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Richard J Mellanby
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian EH25 9RG, UK
| | - Barry D Moore
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| |
Collapse
|
6
|
Rando HM, Lordan R, Kolla L, Sell E, Lee AJ, Wellhausen N, Naik A, Kamil JP, Gitter A, Greene CS. The Coming of Age of Nucleic Acid Vaccines during COVID-19. mSystems 2023; 8:e0092822. [PMID: 36861992 PMCID: PMC10134841 DOI: 10.1128/msystems.00928-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
In the 21st century, several emergent viruses have posed a global threat. Each pathogen has emphasized the value of rapid and scalable vaccine development programs. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has made the importance of such efforts especially clear. New biotechnological advances in vaccinology allow for recent advances that provide only the nucleic acid building blocks of an antigen, eliminating many safety concerns. During the COVID-19 pandemic, these DNA and RNA vaccines have facilitated the development and deployment of vaccines at an unprecedented pace. This success was attributable at least in part to broader shifts in scientific research relative to prior epidemics: the genome of SARS-CoV-2 was available as early as January 2020, facilitating global efforts in the development of DNA and RNA vaccines within 2 weeks of the international community becoming aware of the new viral threat. Additionally, these technologies that were previously only theoretical are not only safe but also highly efficacious. Although historically a slow process, the rapid development of vaccines during the COVID-19 crisis reveals a major shift in vaccine technologies. Here, we provide historical context for the emergence of these paradigm-shifting vaccines. We describe several DNA and RNA vaccines in terms of their efficacy, safety, and approval status. We also discuss patterns in worldwide distribution. The advances made since early 2020 provide an exceptional illustration of how rapidly vaccine development technology has advanced in the last 2 decades in particular and suggest a new era in vaccines against emerging pathogens. IMPORTANCE The SARS-CoV-2 pandemic has caused untold damage globally, presenting unusual demands on but also unique opportunities for vaccine development. The development, production, and distribution of vaccines are imperative to saving lives, preventing severe illness, and reducing the economic and social burdens caused by the COVID-19 pandemic. Although vaccine technologies that provide the DNA or RNA sequence of an antigen had never previously been approved for use in humans, they have played a major role in the management of SARS-CoV-2. In this review, we discuss the history of these vaccines and how they have been applied to SARS-CoV-2. Additionally, given that the evolution of new SARS-CoV-2 variants continues to present a significant challenge in 2022, these vaccines remain an important and evolving tool in the biomedical response to the pandemic.
Collapse
Affiliation(s)
- Halie M. Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Department of Biomedical Informatics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Ronan Lordan
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Likhitha Kolla
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Sell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexandra J. Lee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nils Wellhausen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amruta Naik
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jeremy P. Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - COVID-19 Review Consortium
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Department of Biomedical Informatics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Casey S. Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Department of Biomedical Informatics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Mba IE, Sharndama HC, Anyaegbunam ZKG, Anekpo CC, Amadi BC, Morumda D, Doowuese Y, Ihezuo UJ, Chukwukelu JU, Okeke OP. Vaccine development for bacterial pathogens: Advances, challenges and prospects. Trop Med Int Health 2023; 28:275-299. [PMID: 36861882 DOI: 10.1111/tmi.13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The advent and use of antimicrobials have played a key role in treating potentially life-threatening infectious diseases, improving health, and saving the lives of millions of people worldwide. However, the emergence of multidrug resistant (MDR) pathogens has been a significant health challenge that has compromised the ability to prevent and treat a wide range of infectious diseases that were once treatable. Vaccines offer potential as a promising alternative to fight against antimicrobial resistance (AMR) infectious diseases. Vaccine technologies include reverse vaccinology, structural biology methods, nucleic acid (DNA and mRNA) vaccines, generalised modules for membrane antigens, bioconjugates/glycoconjugates, nanomaterials and several other emerging technological advances that are offering a potential breakthrough in the development of efficient vaccines against pathogens. This review covers the opportunities and advancements in vaccine discovery and development targeting bacterial pathogens. We reflect on the impact of the already-developed vaccines targeting bacterial pathogens and the potential of those currently under different stages of preclinical and clinical trials. More importantly, we critically and comprehensively analyse the challenges while highlighting the key indices for future vaccine prospects. Finally, the issues and concerns of AMR for low-income countries (sub-Saharan Africa) and the challenges with vaccine integration, discovery and development in this region are critically evaluated.
Collapse
Affiliation(s)
- Ifeanyi Elibe Mba
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | | | - Zikora Kizito Glory Anyaegbunam
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka, Nigeria
| | - Chijioke Chinedu Anekpo
- Department of Ear Nose and Throat, College of Medicine, Enugu State University of Science and Technology, Enugu, Nigeria
| | - Ben Chibuzo Amadi
- Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka, Nigeria
| | - Daji Morumda
- Department of Microbiology, Federal University Wukari, Wukari, Taraba, Nigeria
| | - Yandev Doowuese
- Department of Microbiology, Federal University of Health Sciences, Otukpo, Nigeria
| | - Uchechi Justina Ihezuo
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka, Nigeria
| | | | | |
Collapse
|
8
|
Rando HM, Lordan R, Kolla L, Sell E, Lee AJ, Wellhausen N, Naik A, Kamil JP. The Coming of Age of Nucleic Acid Vaccines during COVID-19. ARXIV 2023:arXiv:2210.07247v2. [PMID: 36263086 PMCID: PMC9580386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the 21st century, several emergent viruses have posed a global threat. Each pathogen has emphasized the value of rapid and scalable vaccine development programs. The ongoing SARS-CoV-2 pandemic has made the importance of such efforts especially clear. New biotechnological advances in vaccinology allow for recent advances that provide only the nucleic acid building blocks of an antigen, eliminating many safety concerns. During the COVID-19 pandemic, these DNA and RNA vaccines have facilitated the development and deployment of vaccines at an unprecedented pace. This success was attributable at least in part to broader shifts in scientific research relative to prior epidemics; the genome of SARS-CoV-2 was available as early as January 2020, facilitating global efforts in the development of DNA and RNA vaccines within two weeks of the international community becoming aware of the new viral threat. Additionally, these technologies that were previously only theoretical are not only safe but also highly efficacious. Although historically a slow process, the rapid development of vaccines during the COVID-19 crisis reveals a major shift in vaccine technologies. Here, we provide historical context for the emergence of these paradigm-shifting vaccines. We describe several DNA and RNA vaccines and in terms of their efficacy, safety, and approval status. We also discuss patterns in worldwide distribution. The advances made since early 2020 provide an exceptional illustration of how rapidly vaccine development technology has advanced in the last two decades in particular and suggest a new era in vaccines against emerging pathogens.
Collapse
Affiliation(s)
- Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America; Center for Health AI, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America; Department of Biomedical Informatics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Likhitha Kolla
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth Sell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexandra J Lee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nils Wellhausen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amruta Naik
- Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Jeremy P Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
9
|
Sakai A, Yamashita Y, Misumi S, Kishimoto N, Onodera R, Higashi T, Arima H, Motoyama K. Nanoparticles of folic acid-methyl-β-cyclodextrin (FA-MβCD)/adamantane-albumin exhibit enhanced antitumor activity compared with FA-MβCD alone. FEBS Open Bio 2022; 13:233-245. [PMID: 36537756 PMCID: PMC9900082 DOI: 10.1002/2211-5463.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Supramolecular drug carriers are a promising approach for delivering anticancer drugs with high blood retention after administration. We previously synthesized folic acid-modified methyl-β-cyclodextrin (FA-MβCD) as an anticancer drug. FA-MβCD has a selective autophagy-mediated antitumor effect on folic acid receptor (FR)-expressing cancer cells. Here, we enhanced the antitumor effect and safety of FA-MβCD by preparing a supramolecular nanoparticle formulation of FA-MβCD via host-guest interactions using an adamantane conjugate with human serum albumin (Ad-HSA). The Ad-HSA/FA-MβCD supramolecular complex prolonged the blood retention of FA-MβCD and improved its antitumor effect and safety after intravenous administration in tumor-bearing mice xenografted with FR-expressing cancer cells. These results suggest that the supramolecular technique using Ad-HSA is a promising approach for the delivery of CD-based anticancer drugs.
Collapse
Affiliation(s)
- Aiko Sakai
- Graduate School of Pharmaceutical SciencesKumamoto UniversityJapan
| | - Yuki Yamashita
- Graduate School of Pharmaceutical SciencesKumamoto UniversityJapan
| | - Shogo Misumi
- Graduate School of Pharmaceutical SciencesKumamoto UniversityJapan
| | - Naoki Kishimoto
- Graduate School of Pharmaceutical SciencesKumamoto UniversityJapan
| | - Risako Onodera
- Graduate School of Pharmaceutical SciencesKumamoto UniversityJapan
| | - Taishi Higashi
- Graduate School of Pharmaceutical SciencesKumamoto UniversityJapan,Priority Organization for Innovation and ExcellenceKumamoto UniversityJapan
| | - Hidetoshi Arima
- Laboratory of Evidence‐Based PharmacotherapyDaiichi University of PharmacyFukuokaJapan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical SciencesKumamoto UniversityJapan
| |
Collapse
|
10
|
Hayashi T, Nakagawa F, Ohno Y, Suzuki Y, Ishiki H, Onodera R, Higashi T, Shimamura Y, Itou H, Iwase Y, Arima H, Motoyama K. Antigen stabilizing hydrogels based on cyclodextrins and polyethylene glycol act as type-2 adjuvants with suppressed local irritation. Eur J Pharm Biopharm 2022; 181:113-121. [PMID: 36372270 DOI: 10.1016/j.ejpb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/25/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
Recent viral pandemics have increased global demand for vaccines. However, the supply of effective and safe vaccine not only to developed countries but also developing countries with inadequate storage equipment is still challenging due to the lack of robust systems which improve the efficacy and the stability of vaccines with few side effects. In our previous study, polypseudorotaxane (PPRX) hydrogels based on cyclodextrin (CyD) and polyethylene glycol (PEG) significantly improved the stability of antibody preparations and showed no serious adverse effects after subcutaneous injection, suggesting the possibility as safe vaccine formulations to stabilize an antigen protein. Moreover, recent studies have reported that one of the CyD derivatives, hydroxypropyl-β-CyD (HP-β-CyD), acts as an adjuvant to enhance protective type-2 immune responses. However, it is still unknown that CyD PPRX hydrogels enhance not only the stability of an antigen protein but also its immunogenicity with tolerable side effects. Here, we demonstrate that α- and γ-CyD PPRX hydrogels containing an antigen protein significantly induce antigen-specific type-2 immune responses. Moreover, α- and γ-CyD PPRX hydrogels showed negligible local irritation at the injection site, although subcutaneous injection of α-CyD alone induced skin lesion. Finally, shaking stability of the antigen protein at room temperature was significantly improved by being included in α- and γ-CyD PPRX hydrogels. These results propose the possibility of α- and γ-CyD PPRX hydrogels as novel vaccine formulations which improve both the immunogenicity and stability of an antigen protein with suppressed local irritation.
Collapse
Affiliation(s)
- Tomoya Hayashi
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan; Mock Up Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Fumika Nakagawa
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshitaka Ohno
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Program for Leading Graduate Schools 'Health Life Science: Interdisciplinary and Glocal Oriented (Higo) Program', Kumamoto University, Kumamoto, Japan; Cross-disciplinary Doctoral Human Resource Development Program to Lead the Well-being Society, Kumamoto University, Kumamoto, Japan
| | - Yusuke Suzuki
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Honatsu Ishiki
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Risako Onodera
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taishi Higashi
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
| | - Yoshihisa Shimamura
- R&D Department, Pharmaceutical Solutions Division, Medical Care Solutions Company, Terumo Corporation, Kanagawa, Japan
| | - Hiroshi Itou
- R&D Department, Pharmaceutical Solutions Division, Medical Care Solutions Company, Terumo Corporation, Kanagawa, Japan
| | - Yoichiro Iwase
- R&D Department, Pharmaceutical Solutions Division, Medical Care Solutions Company, Terumo Corporation, Kanagawa, Japan
| | - Hidetoshi Arima
- Laboratory of Evidence-based Pharmacotherapy, School of Pharmacy, Daiichi University of Pharmacy, Fukuoka, Japan.
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
11
|
Balmert SC, Ghozloujeh ZG, Carey CD, Williams LH, Zhang J, Shahi P, Amer M, Sumpter TL, Erdos G, Korkmaz E, Falo LD. A microarray patch SARS-CoV-2 vaccine induces sustained antibody responses and polyfunctional cellular immunity. iScience 2022; 25:105045. [PMID: 36062075 PMCID: PMC9425707 DOI: 10.1016/j.isci.2022.105045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/19/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Sustainable global immunization campaigns against COVID-19 and other emerging infectious diseases require effective, broadly deployable vaccines. Here, we report a dissolvable microarray patch (MAP) SARS-CoV-2 vaccine that targets the immunoresponsive skin microenvironment, enabling efficacious needle-free immunization. Multicomponent MAPs delivering both SARS-CoV-2 S1 subunit antigen and the TLR3 agonist Poly(I:C) induce robust antibody and cellular immune responses systemically and in the respiratory mucosa. MAP vaccine-induced antibodies bind S1 and the SARS-CoV-2 receptor-binding domain, efficiently neutralize the virus, and persist at high levels for more than a year. The MAP platform reduces systemic toxicity of the delivered adjuvant and maintains vaccine stability without refrigeration. When applied to human skin, MAP vaccines activate skin-derived migratory antigen-presenting cells, supporting the feasibility of human translation. Ultimately, this shelf-stable MAP vaccine improves immunogenicity and safety compared to traditional intramuscular vaccines and offers an attractive alternative for global immunization efforts against a range of infectious pathogens.
Collapse
Affiliation(s)
- Stephen C. Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Li’an H. Williams
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jiying Zhang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Preeti Shahi
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Maher Amer
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L. Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, USA
| | - Louis D. Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
12
|
Gunay G, Hamsici S, Lang GA, Lang ML, Kovats S, Acar H. Peptide Aggregation Induced Immunogenic Rupture (PAIIR). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105868. [PMID: 35599386 PMCID: PMC9313945 DOI: 10.1002/advs.202105868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/06/2022] [Indexed: 05/11/2023]
Abstract
Immunogenic cell death (ICD) arises when cells are under stress, and their membranes are damaged. They release damage-associated molecular patterns (DAMPs) that stimulate and drive the type and magnitude of the immune response. In the presence of an antigen, DAMPs ride the longevity and efficacy of antigen-specific immunity. Yet, no tool can induce the controlled ICD with predictable results. A peptide-based tool, [II], is designed that aggregates in the cell and causes cell membrane damage, generates ICD and DAMPs release on various cell types, and hence can act as an adjuvant. An influenza vaccine is prepared by combining [II] with influenza hemagglutinin (HA) subunit antigens. The results show that [II] induced significantly higher HA-specific immunoglobulin G1 (IgG1) and IgG2a antibodies than HA-only immunized mice, while the peptide itself did not elicit antibodies. This paper demonstrates the first peptide-aggregation induced immunogenic rupture (PAIIR) approach as a vaccine adjuvant. PAIIR is a promising adjuvant with a high potential to promote universal protection upon influenza HA vaccination.
Collapse
Affiliation(s)
- Gokhan Gunay
- Stephenson School of Biomedical EngineeringUniversity of OklahomaNormanOK73069USA
| | - Seren Hamsici
- Stephenson School of Biomedical EngineeringUniversity of OklahomaNormanOK73069USA
| | - Gillian A. Lang
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOK73104USA
| | - Mark L. Lang
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOK73104USA
| | - Susan Kovats
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOK73104USA
- Arthritis & Clinical Immunology ProgramOklahoma Medical Research FoundationOklahoma CityOK73104USA
| | - Handan Acar
- Stephenson School of Biomedical EngineeringUniversity of OklahomaNormanOK73069USA
- Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOK73104USA
| |
Collapse
|
13
|
Hioki K, Hayashi T, Natsume-Kitatani Y, Kobiyama K, Temizoz B, Negishi H, Kawakami H, Fuchino H, Kuroda E, Coban C, Kawahara N, Ishii KJ. Machine Learning-Assisted Screening of Herbal Medicine Extracts as Vaccine Adjuvants. Front Immunol 2022; 13:847616. [PMID: 35663999 PMCID: PMC9160479 DOI: 10.3389/fimmu.2022.847616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/30/2022] [Indexed: 12/05/2022] Open
Abstract
Adjuvants are important vaccine components, composed of a variety of chemical and biological materials that enhance the vaccine antigen-specific immune responses by stimulating the innate immune cells in both direct and indirect manners to produce a variety cytokines, chemokines, and growth factors. It has been developed by empirical methods for decades and considered difficult to choose a single screening method for an ideal vaccine adjuvant, due to their diverse biochemical characteristics, complex mechanisms of, and species specificity for their adjuvanticity. We therefore established a robust adjuvant screening strategy by combining multiparametric analysis of adjuvanticity in vivo and immunological profiles in vitro (such as cytokines, chemokines, and growth factor secretion) of various library compounds derived from hot-water extracts of herbal medicines, together with their diverse distribution of nano-sized physical particle properties with a machine learning algorithm. By combining multiparametric analysis with a machine learning algorithm such as rCCA, sparse-PLS, and DIABLO, we identified that human G-CSF and mouse RANTES, produced upon adjuvant stimulation in vitro, are the most robust biological parameters that can predict the adjuvanticity of various library compounds. Notably, we revealed a certain nano-sized particle population that functioned as an independent negative parameter to adjuvanticity. Finally, we proved that the two-step strategy pairing the negative and positive parameters significantly improved the efficacy of screening and a screening strategy applying principal component analysis using the identified parameters. These novel parameters we identified for adjuvant screening by machine learning with multiple biological and physical parameters may provide new insights into the future development of effective and safe adjuvants for human use.
Collapse
Affiliation(s)
- Kou Hioki
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Tomoya Hayashi
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yayoi Natsume-Kitatani
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Kouji Kobiyama
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Burcu Temizoz
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Hideo Negishi
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Hitomi Kawakami
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Hiroyuki Fuchino
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Etsushi Kuroda
- Department of Immunology, Hyogo College of Medicine, Hyogo, Japan
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Ken J. Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| |
Collapse
|
14
|
Dong C, Wang BZ. Engineered Nanoparticulate Vaccines to Combat Recurring and Pandemic Influenza Threats. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100122. [PMID: 35754779 PMCID: PMC9231845 DOI: 10.1002/anbr.202100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reoccurring seasonal flu epidemics and occasional pandemics are among the most severe threats to public health. Current seasonal influenza vaccines provide limited protection against drifted circulating strains and no protection against influenza pandemics. Next-generation influenza vaccines, designated as universal influenza vaccines, should be safe, affordable, and elicit long-lasting cross-protective influenza immunity. Nanotechnology plays a critical role in the development of such novel vaccines. Engineered nanoparticles can incorporate multiple advantageous properties into the same nanoparticulate platforms to improve vaccine potency and breadth. These immunological properties include virus-like biomimicry, high antigen-load, controlled antigen release, targeted delivery, and induction of innate signaling pathways. Many nanoparticle influenza vaccines have shown promising results in generating potent and broadly protective immune responses. This review will summarize the necessity and characteristics of next-generation influenza vaccines and the immunological correlates of broad influenza immunity and focus on how cutting-edge nanoparticle technology contributes to such vaccine development. The review will give new insights into the rational design of nanoparticle universal vaccines to combat influenza epidemics and pandemics.
Collapse
Affiliation(s)
- Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| |
Collapse
|
15
|
Dong C, Wang Y, Zhu W, Ma Y, Kim J, Wei L, Gonzalez GX, Wang BZ. Polycationic HA/CpG Nanoparticles Induce Cross-Protective Influenza Immunity in Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6331-6342. [PMID: 35084819 PMCID: PMC8832387 DOI: 10.1021/acsami.1c19192] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 05/28/2023]
Abstract
The intranasal (i.n.) route is an ideal vaccination approach for infectious respiratory diseases like influenza. Polycationic polyethylenimine (PEI) could form nanoscale complexes with negatively charged viral glycoproteins. Here we fabricated PEI-hemagglutinin (HA) and PEI-HA/CpG nanoparticles and investigated their immune responses and protective efficacies with an i.n. vaccination regimen in mice. Our results revealed that the nanoparticles significantly enhanced HA immunogenicity, providing heterologous cross-protection. The conserved HA stalk region induced substantial antibodies in the nanoparticle immunization groups. In contrast to the Th2-biased, IgG1-dominant antibody response generated by PEI-HA nanoparticles, PEI-HA/CpG nanoparticles generated more robust and balanced IgG1/IgG2a antibody responses with augmented neutralization activity and Fc-mediated antibody-dependent cellular cytotoxicity (ADCC). PEI-HA/CpG nanoparticles also induced enhanced local and systemic cellular immune responses. These immune responses did not decay over six months of observation postimmunization. PEI and CpG synergized these comprehensive immune responses. Thus, the PEI-HA/CpG nanoparticle is a potential cross-protective influenza vaccine candidate. Polycationic PEI nanoplatforms merit future development into mucosal vaccine systems.
Collapse
|
16
|
Role of Damage-Associated Molecular Pattern/Cell Death Pathways in Vaccine-Induced Immunity. Viruses 2021; 13:v13122340. [PMID: 34960608 PMCID: PMC8708515 DOI: 10.3390/v13122340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Immune responses induced by natural infection and vaccination are known to be initiated by the recognition of microbial patterns by cognate receptors, since microbes and most vaccine components contain pathogen-associated molecular patterns. Recent discoveries on the roles of damage-associated molecular patterns (DAMPs) and cell death in immunogenicity have improved our understanding of the mechanism underlying vaccine-induced immunity. DAMPs are usually immunologically inert, but can transform into alarming signals to activate the resting immune system in response to pathogenic infection, cellular stress and death, or tissue damage. The activation of DAMPs and cell death pathways can trigger local inflammation, occasionally mediating adaptive immunity, including antibody- and cell-mediated immune responses. Emerging evidence indicates that the components of vaccines and adjuvants induce immunogenicity via the stimulation of DAMP/cell death pathways. Furthermore, strategies for targeting this pathway to enhance immunogenicity are being investigated actively. In this review, we describe various DAMPs and focus on the roles of DAMP/cell death pathways in the context of vaccines for infectious diseases and cancer.
Collapse
|
17
|
Shibuya M, Tamiya S, Kawai A, Hirai T, Cragg MS, Yoshioka Y. Synergistic effect of non-neutralizing antibodies and interferon-γ for cross-protection against influenza. iScience 2021; 24:103131. [PMID: 34622175 PMCID: PMC8482522 DOI: 10.1016/j.isci.2021.103131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023] Open
Abstract
Current influenza vaccines do not typically confer cross-protection against antigenically mismatched strains. To develop vaccines conferring broader cross-protection, recent evidence indicates the crucial role of both cross-reactive antibodies and viral-specific CD4+ T cells; however, the precise mechanism of cross-protection is unclear. Furthermore, adjuvants that can efficiently induce cross-protective CD4+ T cells have not been identified. Here we show that CpG oligodeoxynucleotides combined with aluminum salts work as adjuvants for influenza vaccine and confer strong cross-protection in mice. Both cross-reactive antibodies and viral-specific CD4+ T cells contributed to cross-protection synergistically, with each individually ineffective. Furthermore, we found that downregulated expression of Fcγ receptor IIb on alveolar macrophages due to IFN-γ secreted by viral-specific CD4+ T cells improves the activity of cross-reactive antibodies. Our findings inform the development of optimal adjuvants for vaccines and how influenza vaccines confer broader cross-protection.
Collapse
Affiliation(s)
- Meito Shibuya
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeyuki Tamiya
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Kawai
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiro Hirai
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mark S. Cragg
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, General Hospital, University of Southampton, Southampton SO16 6YD, UK
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Sun H, Hu W, Yan Y, Zhang Z, Chen Y, Yao X, Teng L, Wang X, Chai D, Zheng J, Wang G. Using PAMPs and DAMPs as adjuvants in cancer vaccines. Hum Vaccin Immunother 2021; 17:5546-5557. [PMID: 34520322 DOI: 10.1080/21645515.2021.1964316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy for cancer has attracted considerable attention. As one of the immunotherapeutics, tumor vaccines exert great potential for cancer immunotherapy. The most important components in tumor vaccines are antigens and adjuvants, which determine the therapeutic safety and efficacy, respectively. After decades of research, many types of adjuvants have been developed. Although these adjuvants can induce strong and long-lasting immune responses in tumor immunity, they also cause more severe toxic side effects and are therefore not suitable for use in humans. With the development of innate immunity research, pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are receiving more attention in vaccine design. However, whether they have the potential to become new adjuvants remains to be elucidated. The purpose of this review is to provide newideas for the research and development of new adjuvants by discussing the mechanisms and related functions of PAMPs and DAMPs.
Collapse
Affiliation(s)
- Huanyou Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Wenwen Hu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yinan Yan
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Zichun Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yuxin Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Xuefan Yao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Ling Teng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Xinyuan Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Center Of Clinical Oncology, Affiliated Hospital Of Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Jiangsu Center For The Collaboration And Innovation Of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Junnian Zheng
- Center Of Clinical Oncology, Affiliated Hospital Of Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Jiangsu Center For The Collaboration And Innovation Of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Center Of Clinical Oncology, Affiliated Hospital Of Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Jiangsu Center For The Collaboration And Innovation Of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| |
Collapse
|
19
|
Exosome-Based Vaccines: Pros and Cons in the World of Animal Health. Viruses 2021; 13:v13081499. [PMID: 34452364 PMCID: PMC8402771 DOI: 10.3390/v13081499] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Due to the emergence of antibiotic resistance and new and more complex diseases that affect livestock animal health and food security, the control of epidemics has become a top priority worldwide. Vaccination represents the most important and cost-effective measure to control infectious diseases in animal health, but it represents only 23% of the total global animal health market, highlighting the need to develop new vaccines. A recent strategy in animal health vaccination is the use of extracellular vesicles (EVs), lipid bilayer nanovesicles produced by almost all living cells, including both prokaryotes and eukaryotes. EVs have been evaluated as a prominent source of viral antigens to elicit specific immune responses and to develop new vaccination platforms as viruses and EVs share biogenesis pathways. Preliminary trials with lymphocytic choriomeningitis virus infection (LCMV), porcine reproductive and respiratory syndrome virus (PRRSV), and Marek's disease virus (MDV) have demonstrated that EVs have a role in the activation of cellular and antibody immune responses. Moreover, in parasitic diseases such as Eimeria (chickens) and Plasmodium yoelii (mice) protection has been achieved. Research into EVs is therefore opening an opportunity for new strategies to overcome old problems affecting food security, animal health, and emerging diseases. Here, we review different conventional approaches for vaccine design and compare them with examples of EV-based vaccines that have already been tested in relation to animal health.
Collapse
|
20
|
Yan Y, Yao D, Li X. Immunological Mechanism and Clinical Application of PAMP Adjuvants. Recent Pat Anticancer Drug Discov 2021; 16:30-43. [PMID: 33563182 DOI: 10.2174/1574892816666210201114712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The host innate immune system can recognize Pathogen-Associated Molecular Patterns (PAMPs) through Pattern Recognition Receptors (PRRs), thereby initiating innate immune responses and subsequent adaptive immune responses. PAMPs can be developed as a vaccine adjuvant for modulating and optimizing antigen-specific immune responses, especially in combating viral infections and tumor therapy. Although several PAMP adjuvants have been successfully developed they are still lacking in general, and many of them are in the preclinical exploration stage. OBJECTIVE This review summarizes the research progress and development direction of PAMP adjuvants, focusing on their immune mechanisms and clinical applications. METHODS PubMed, Scopus, and Google Scholar were screened for this information. We highlight the immune mechanisms and clinical applications of PAMP adjuvants. RESULTS Because of the differences in receptor positions, specific immune cells targets, and signaling pathways, the detailed molecular mechanism and pharmacokinetic properties of one agonist cannot be fully generalized to another agonist, and each PAMP should be studied separately. In addition, combination therapy and effective integration of different adjuvants can increase the additional efficacy of innate and adaptive immune responses. CONCLUSION The mechanisms by which PAMPs exert adjuvant functions are diverse. With continuous discovery in the future, constant adjustments should be made to build new understandings. At present, the goal of therapeutic vaccination is to induce T cells that can specifically recognize and eliminate tumor cells and establish long-term immune memory. Following immune checkpoint modulation therapy, cancer treatment vaccines may be an option worthy of clinical testing.
Collapse
Affiliation(s)
- Yu Yan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China
| | - Dan Yao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China
| | - Xiaoyu Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China
| |
Collapse
|
21
|
Lu W, Cui C, Wang Y, Sun X, Wang S, Yang M, Yu Y, Wang L. CpG ODN as an adjuvant arouses the vigor of B cells by relieving the negative regulation of surface TLR9 to enhance the antibody response to vaccine. Appl Microbiol Biotechnol 2021; 105:4213-4224. [PMID: 33950279 DOI: 10.1007/s00253-021-11316-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
The surface Toll-like receptor 9 (sTLR9) has been identified on the surface of the B cells and was presumed to be a negative regulator of B cell responses. CpG ODN, a TLR9 agonist, has been successfully used as an adjuvant of hepatitis B vaccine to enhance antibody responses. However, it is unknown whether the sTLR9 is involved in regulating the activation and maturation of B cells in the antibody responses induced by CpG ODN-adjuvanted vaccines. In this study, we immunized mice with hepatitis B vaccine adjuvanted by CpG ODN (CpG 5805) and found that CpG 5805 enhanced the antibody response to vaccine and meanwhile down-regulated the sTLR9 levels on B cells. With antibody feeding assay and flow cytometry analysis, we further found that CpG 5805 induced a movement of the sTLR9 in B cells, internalized first and then mobilized to endosomes. Accompanied with the movement, CD80, CD86, CD40, and MHC II molecules were significantly up-regulated on the B cells. Interestingly, the B cells with internalized sTLR9 enlarged morphologically, and the sTLR9 levels were obviously lower and CD40 levels were obviously higher on the enlarged B cells. Together, the data presented here uncover that CpG ODN can induce the mobilization and relocation of sTLR9 in B cells, thereby triggering the B cell vigor by relieving the negative regulatory effect of sTLR9 on B cells, which may be one of the mechanisms for CpG ODN acting as a vaccine adjuvant to enhance the antibody response.Key points• CpG ODN-enhanced antibody response positively associates with B cell sTLR9 reduction.• CpG ODN reduces the sTLR9 levels by relocating it from B cell surface to endosomes.• sTLR9 reduction arouses B cell vigor via promoting B cell maturation and activation. Graphical Abstract.
Collapse
Affiliation(s)
- Wenting Lu
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Cuiyun Cui
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Yangyang Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Xiaomeng Sun
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Shengnan Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Ming Yang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Liying Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
22
|
Zhao L, Hao Y, Song Z, Fan Y, Li S. TRIM37 negatively regulates inflammatory responses induced by virus infection via controlling TRAF6 ubiquitination. Biochem Biophys Res Commun 2021; 556:87-92. [PMID: 33839419 DOI: 10.1016/j.bbrc.2021.03.147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/20/2023]
Abstract
Virus-induced cytokine storm has been a devastating actuality in clinic. The abnormal production of type I interferon (IFN-1) and upregulation of multiple cytokines induced strong inflammation and thus lead to shock and organ failure. As an E3 ubiquitin ligase, tripartite motif-containing 37 (TRIM37) regulates the ubiquitination of multiple proteins including TRAFs. RNA sequencing was performed to investigated the alteration of transcriptional profile of H1N1-infected patients. qRT-PCR assay was performed to investigate the RNA levels of certain genes. The group of immune cells was examined by the Flow cytometry analysis. H&E staining was applied to evaluate lung inflammation of WT and TRIM37-KO mice. ELISA assay was performed to demonstrate the alteration of multiple cytokines. The protein levels in NF-kB signaling was estimated by western blotting and immunoprecipitation assays were applied to demonstrate the direct interaction between TRIM37 and TRAF-6. The RNA level of TRIM37 decreased in CD11b+ cells of Flu-infected patients. Knockout of TRIM37 inhibited the immune responses of H1N1-infected mice. TRIM37 deficiency reduced the levels of virous proinflammatory cytokines in bone marrow derived macrophages (BMDMs). Mechanically, TRIM37 promoted the K63-linked ubiquitination of TRAF6. TRIM37 negatively regulated inflammatory responses induced by virus infection via promoting TRAF6 ubiquitination at K63.
Collapse
Affiliation(s)
- Lifen Zhao
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, China
| | - Yanyan Hao
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, China
| | - Zhuohui Song
- Department of Physiology, Changzhi Medical College, No.161 Jiefang East Street, Changzhi, 046000, Shanxi, China
| | - Yimin Fan
- Functional Comprehensive Laboratory, Changzhi Medical College, No.161 Jiefang East Street, Changzhi, 046000, Shanxi, China
| | - Shufen Li
- Department of Physiology, Changzhi Medical College, No.161 Jiefang East Street, Changzhi, 046000, Shanxi, China.
| |
Collapse
|
23
|
Abstract
CpG Oligonucleotides (ODN) are immunomodulatory synthetic oligonucleotides specifically designed to stimulate Toll-like receptor 9. TLR9 is expressed on human plasmacytoid dendritic cells and B cells and triggers an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. This chapter reviews recent progress in understanding the mechanism of action of CpG ODN and provides an overview of human clinical trial results using CpG ODN to improve vaccines for the prevention/treatment of cancer, allergy, and infectious disease.
Collapse
Affiliation(s)
| | | | - Dennis M Klinman
- National Cancer Institute, NIH, Frederick, MD, USA.
- Leitman Klinman Consulting, Potomac, MD, USA.
| |
Collapse
|
24
|
Bucher K, Rodríguez-Bocanegra E, Dauletbekov D, Fischer MD. Immune responses to retinal gene therapy using adeno-associated viral vectors - Implications for treatment success and safety. Prog Retin Eye Res 2020; 83:100915. [PMID: 33069860 DOI: 10.1016/j.preteyeres.2020.100915] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
Recombinant adeno-associated virus (AAV) is the leading vector for gene therapy in the retina. As non-pathogenic, non-integrating, replication deficient vector, the recombinant virus efficiently transduces all key retinal cell populations. Successful testing of AAV vectors in clinical trials of inherited retinal diseases led to the recent approval of voretigene neparvovec (Luxturna) for the treatment of RPE65 mutation-associated retinal dystrophies. However, studies applying AAV-mediated retinal gene therapy independently reported intraocular inflammation and/or loss of efficacy after initial functional improvements. Both observations might be explained by targeted removal of transduced cells via anti-viral defence mechanisms. AAV has been shown to activate innate pattern recognition receptors (PRRs) such as toll-like receptor (TLR)-2 and TLR-9 resulting in the release of inflammatory cytokines and type I interferons. The vector can also induce capsid-specific and transgene-specific T cell responses and neutralizing anti-AAV antibodies which both limit the therapeutic effect. However, the target organ of retinal gene therapy, the eye, is known as an immune-privileged site. It is characterized by suppression of inflammation and promotion of immune tolerance which might prevent AAV-induced immune responses. This review evaluates AAV-related immune responses, toxicity and inflammation in studies of retinal gene therapy, identifies influencing variables of these responses and discusses potential strategies to modulate immune reactions to AAV vectors to increase the safety and efficacy of ocular gene therapy.
Collapse
Affiliation(s)
- Kirsten Bucher
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Eduardo Rodríguez-Bocanegra
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Daniyar Dauletbekov
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Abstract
A major function of the immune system is to detect threat from foreign invaders, tissue damage, or cancer and to mount a counter response that resolves the threat, restores homeostasis, and supplies immunological memory to prevent a second assault. Our increasing understanding of the immune system has opened up numerous avenues for modulating immune responses against infections, cancer, and autoimmunity. However, agents used for immunomodulation have been traditionally administered systemically via bolus injection, leading to unintended consequences by disrupting homeostasis at nontarget sites. Consequently, systemic hyperactivation and hypoactivation can result from bolus administration of immune-activators and immunosuppressants, respectively. Macroscale biomaterial scaffolds can instead be placed at the intended target site to provide both localized, controlled release of immunomodulatory agents and control over local immune cell trafficking and function, potentially maximizing therapeutic efficacy and limiting systemic exposure. These scaffolds have found utility in the area of cancer immunotherapy, especially in situ cancer vaccination where controlled release of factors such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and the local presentation of tumor antigen and danger signals lead to the recruitment of immature dendritic cells and facilitate their activation and antigen presentation. These cells eventually migrate into secondary lymphoid organs where they prime tumor specific T cells for downstream tumor clearance. Scaffolds can also be used in adoptive T cell therapy to generate large numbers of potent antigen specific T cells or chimeric antigen receptor (CAR) T cells in vitro for subsequent delivery to patients. Macroscale biomaterial scaffolds have also found utility beyond cancer immunotherapy and have been developed to promote immune tolerance by regulatory T cell induction and to expedite tissue regeneration. The design of these macroscale biomaterial scaffolds considers their biocompatibility, biodegradability, mode of delivery, porosity, and kinetics of therapeutic cargo release. Consequently, the numerous approaches that have been developed to fabricate biomaterial scaffolds are aimed at tuning these parameters to achieve the desired therapeutic outcome. This Account will discuss the use of biomaterial scaffolds as niches for immunomodulation and will focus on (1) approaches that have been used to fabricate various biomaterial systems being employed as niches for immunomodulation and (2) how these biomaterial systems have been used to modulate immune responses, specifically in area of cancer immunotherapy, where we will discuss the role of macroscale biomaterial scaffolds for in situ vaccination and in vitro T cell expansion. We will also briefly discuss the utility of biomaterial scaffolds beyond cancer, drawing examples from tolerance and tissue regeneration.
Collapse
Affiliation(s)
- Kwasi Adu-Berchie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
26
|
Clinical Utility of a Highly Sensitive Lateral Flow Immunoassay as determined by Titer Analysis for the Detection of anti-SARS-CoV-2 Antibodies at the Point-of-Care. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32766594 DOI: 10.1101/2020.07.30.20163824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), became a pandemic in early 2020. Lateral flow immunoassays for antibody testing have been viewed as a cheap and rapidly deployable method for determining previous infection with SARS-CoV-2; however, these assays have shown unacceptably low sensitivity. We report on nine lateral flow immunoassays currently available and compare their titer sensitivity in serum to a best-practice enzyme-linked immunosorbent assay (ELISA) and viral neutralization assay. For a small group of PCR-positive, we found two lateral flow immunoassay devices with titer sensitivity roughly equal to the ELISA; these devices were positive for all PCR-positive patients harboring SARS-CoV-2 neutralizing antibodies. One of these devices was deployed in Northern Italy to test its sensitivity and specificity in a real-world clinical setting. Using the device with fingerstick blood on a cohort of 27 hospitalized PCR-positive patients and seven hospitalized controls, ROC curve analysis gave AUC values of 0.7646 for IgG. For comparison, this assay was also tested with saliva from the same patient population and showed reduced discrimination between cases and controls with AUC values of 0.6841 for IgG. Furthermore, during viral neutralization testing, one patient was discovered to harbor autoantibodies to ACE2, with implications for how immune responses are profiled. We show here through a proof-of-concept study that these lateral flow devices can be as analytically sensitive as ELISAs and adopted into hospital protocols; however, additional improvements to these devices remain necessary before their clinical deployment.
Collapse
|
27
|
Nitric Oxide Production and Fc Receptor-Mediated Phagocytosis as Functional Readouts of Macrophage Activity upon Stimulation with Inactivated Poultry Vaccines In Vitro. Vaccines (Basel) 2020; 8:vaccines8020332. [PMID: 32580391 PMCID: PMC7350413 DOI: 10.3390/vaccines8020332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Vaccine batches must pass routine quality control to confirm that their ability to induce protection against disease is consistent with batches of proven efficacy from development studies. For poultry vaccines, these tests are often performed in laboratory chickens by vaccination-challenge trials or serological assays. The aim of this study was to investigate innate immune responses against inactivated poultry vaccines and identify candidate immune parameters for in vitro quality tests as alternatives for animal-based quality tests. For this purpose, we set up assays to measure nitric oxide production and phagocytosis by the macrophage-like cell line HD11, upon stimulation with inactivated poultry vaccines for infectious bronchitis virus (IBV), Newcastle disease virus (NDV), and egg drop syndrome virus (EDSV). In both assays, macrophages became activated after stimulation with various toll-like receptor agonists. Inactivated poultry vaccines stimulated HD11 cells to produce nitric oxide due to the presence of mineral oil adjuvant. Moreover, inactivated poultry vaccines were found to enhance Fc receptor-mediated phagocytosis due to the presence of allantoic fluid in the vaccine antigen preparations. We showed that inactivated poultry vaccines stimulated nitric oxide production and Fc receptor-mediated phagocytosis by chicken macrophages. Similar to antigen quantification methods, the cell-based assays described here can be used for future assessment of vaccine batch-to-batch consistency. The ability of the assays to determine the immunopotentiating properties of inactivated poultry vaccines provides an additional step in the replacement of current in vivo batch-release quality tests.
Collapse
|
28
|
Abstract
This opinion article discusses the increasing attention paid to the role of activating damage-associated molecular patterns (DAMPs) in initiation of inflammatory diseases and suppressing/inhibiting DAMPs (SAMPs) in resolution of inflammatory diseases and, consequently, to the future roles of these novel biomarkers as therapeutic targets and therapeutics. Since controlled production of DAMPs and SAMPs is needed to achieve full homeostatic restoration and repair from tissue injury, only their pathological, not their homeostatic, concentrations should be therapeutically tackled. Therefore, distinct caveats are proposed regarding choosing DAMPs and SAMPs for therapeutic purposes. For example, we discuss the need to a priori identify and define a context-dependent “homeostatic DAMP:SAMP ratio” in each case and a “homeostatic window” of DAMP and SAMP concentrations to guarantee a safe treatment modality to patients. Finally, a few clinical examples of how DAMPs and SAMPs might be used as therapeutic targets or therapeutics in the future are discussed, including inhibition of DAMPs in hyperinflammatory processes (e.g., systemic inflammatory response syndrome, as currently observed in Covid-19), administration of SAMPs in chronic inflammatory diseases, inhibition of SAMPs in hyperresolving processes (e.g., compensatory anti-inflammatory response syndrome), and administration/induction of DAMPs in vaccination procedures and anti-cancer therapy.
Collapse
|
29
|
Troy A, Esparza-Gonzalez SC, Bartek A, Creissen E, Izzo L, Izzo AA. Pulmonary mucosal immunity mediated through CpG provides adequate protection against pulmonary Mycobacterium tuberculosis infection in the mouse model. A role for type I interferon. Tuberculosis (Edinb) 2020; 123:101949. [PMID: 32741537 DOI: 10.1016/j.tube.2020.101949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/28/2022]
Abstract
Toll-Like Receptor (TLR) 9 stimulation is required for induction of potent immune responses against pathogen invasion. The use of unmethylated CpG as adjuvants in vaccines provides an excellent means of stimulating adaptive immunity. Our data demonstrate that CpG-C provided prolonged immune responses in the mouse model of tuberculosis when formulated with liposomes and the Mycobacterium tuberculosis antigen ESAT-6. A reduction in the mycobacterial burden was best achieved when administered as an intranasal vaccine and was dependent on type I interferon (IFN). There was a significant difference between CpG-C inoculated wild type and IFN-αR1-/- mice, indicating that type I IFN plays a role in the immune response following CpG-C inoculation. Further analysis showed that early NK cell presence was not an absolute requirement, although elevated IFN-γ levels were detected in the lungs of mice within 48 h. The reduction in mycobacterial burden was MyD88-independent as CpG-C inoculated MyD88-/- mice showed comparable mycobacterial burdens to wild type mice with no detriment due to the lack of MyD88. Together our data show that pulmonary stimulation of TLR9 bearing antigen presenting cells resulted in the induction of protective immunity against M. tuberculosis infection that was dependent on type I IFN signaling.
Collapse
Affiliation(s)
- Amber Troy
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| | - Sandra C Esparza-Gonzalez
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| | - Alicia Bartek
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| | - Elizabeth Creissen
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| | - Linda Izzo
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| | - Angelo A Izzo
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA.
| |
Collapse
|
30
|
Murine Cross-Reactive Nonneutralizing Polyclonal IgG1 Antibodies Induced by Influenza Vaccine Inhibit the Cross-Protective Effect of IgG2 against Heterologous Virus in Mice. J Virol 2020; 94:JVI.00323-20. [PMID: 32269125 DOI: 10.1128/jvi.00323-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/29/2020] [Indexed: 12/13/2022] Open
Abstract
Annual vaccination against influenza viruses is the most reliable and efficient way to prevent and control annual epidemics and protect from severe influenza disease. However, current split influenza vaccines are generally not effective against antigenically mismatched (heterologous) strains. To broaden the protective spectrum of influenza vaccines, adjuvants that can induce cross-reactive antibodies with cross-protection via Fc-mediated effector functions are urgently sought. Although IgG2 antibodies are generally more efficient than IgG1 antibodies in Fc-mediated effector functions, it is not yet clear which IgG isotypes show superior cross-protection against heterologous strains. It also remains unclear whether these IgG isotypes interfere with each other's protective effects. Here, we found that influenza split vaccine adjuvanted with aluminum salts, which predominantly induce cross-reactive IgG1, did not confer cross-protection against heterologous virus challenge in mice. In contrast, split vaccine adjuvanted with CpG oligodeoxynucleotides, which predominantly induce cross-reactive IgG2, showed cross-protection through the interaction of cross-reactive nonneutralizing IgG2 and alveolar macrophages, indicating the importance of cross-reactive nonneutralizing IgG2 for cross-protection. Furthermore, by using serum samples from immunized mice and isolated polyclonal antibodies, we show that vaccine-induced cross-reactive nonneutralizing IgG1 suppress the cross-protective effects of IgG2 by competitively inhibiting the binding of IgG2 to virus. Thus, we demonstrate the new concept that cross-reactive IgG1 may interfere with the potential for cross-protection of influenza vaccine. We propose that adjuvants that selectively induce virus-specific IgG2 in mice, such as CpG oligodeoxynucleotides, are optimal for heterologous protection.IMPORTANCE Current influenza vaccines are generally effective against highly similar virus strains by inducing neutralizing antibodies. However, these antibodies fail to neutralize antigenically mismatched (heterologous) strains and therefore provide limited protection against them. Efforts are being made to develop vaccines with cross-protective ability that would protect broadly against heterologous strains, because the mismatch between predicted and epidemic strains cannot always be avoided, resulting in low vaccine efficacy. Here, we show that nonneutralizing IgG2 antibodies induced by an optimal adjuvant play a crucial role in cross-protection against heterologous virus challenge in mice. Furthermore, nonneutralizing polyclonal IgG1 suppressed the cross-protective effects of nonneutralizing polyclonal IgG2 by competitively blocking the binding of IgG2 to its antigen. These data shed new light on the importance of IgG isotypes and the selection of appropriate adjuvants for the development of universal influenza vaccines. Furthermore, our findings are applicable to the rational design of vaccines against other pathogens.
Collapse
|
31
|
The Clinical Presentation and Immunology of Viral Pneumonia and Implications for Management of Coronavirus Disease 2019. Crit Care Explor 2020; 2:e0109. [PMID: 32426751 PMCID: PMC7188425 DOI: 10.1097/cce.0000000000000109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This review will briefly examine the clinical presentation and important immunology of viral pneumonia with a focus on severe acute respiratory syndrome coronavirus 2 (coronavirus disease 2019).
Collapse
|
32
|
Abstract
Seasonal influenza remains a major public health problem, responsible for hundreds of thousands of deaths every year, mostly of elderly people. Despite the wide availability of vaccines, there are multiple problems decreasing the effectiveness of vaccination programs. These include viral variability and hence the requirement to match strains by estimating which will become prevalent each season, problems associated with vaccine and adjuvant production, and the route of administration as well as the perceived lower vaccine efficiency in older adults. Clinical protection is still suboptimal for all of these reasons, and vaccine uptake remains too low in most countries. Efforts to improve the effectiveness of influenza vaccines include developing universal vaccines independent of the circulating strains in any particular season and stimulating cellular as well as humoral responses, especially in the elderly. This commentary assesses progress over the last 3 years towards achieving these aims. Since the beginning of 2020, an unprecedented international academic and industrial effort to develop effective vaccines against the new coronavirus SARS-CoV-2 has diverted attention away from influenza, but many of the lessons learned for the one will synergize with the other to mutual advantage. And, unlike the SARS-1 epidemic and, we hope, the SARS-CoV-2 pandemic, influenza will not be eliminated and thus efforts to improve influenza vaccines will remain of crucial importance.
Collapse
Affiliation(s)
- Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Ontario, Canada
| | | |
Collapse
|
33
|
Jensen‐Jarolim E, Bachmann MF, Bonini S, Jacobsen L, Jutel M, Klimek L, Mahler V, Mösges R, Moingeon P, O´Hehir RE, Palomares O, Pfaar O, Renz H, Rhyner C, Roth‐Walter F, Rudenko M, Savolainen J, Schmidt‐Weber CB, Traidl‐Hoffmann C, Kündig T. State-of-the-art in marketed adjuvants and formulations in Allergen Immunotherapy: A position paper of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy 2020; 75:746-760. [PMID: 31774179 DOI: 10.1111/all.14134] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023]
Abstract
Since the introduction of allergen immunotherapy (AIT) over 100 years ago, focus has been on standardization of allergen extracts, with reliable molecular composition of allergens receiving the highest attention. While adjuvants play a major role in European AIT, they have been less well studied. In this Position Paper, we summarize current unmet needs of adjuvants in AIT citing current evidence. Four adjuvants are used in products marketed in Europe: aluminium hydroxide (Al(OH)3 ) is the most frequently used adjuvant, with microcrystalline tyrosine (MCT), monophosphoryl lipid A (MPLA) and calcium phosphate (CaP) used less frequently. Recent studies on humans, and using mouse models, have characterized in part the mechanisms of action of adjuvants on pre-existing immune responses. AIT differs from prophylactic vaccines that provoke immunity to infectious agents, as in allergy the patient is presensitized to the antigen. The intended mode of action of adjuvants is to simultaneously enhance the immunogenicity of the allergen, while precipitating the allergen at the injection site to reduce the risk of anaphylaxis. Contrasting immune effects are seen with different adjuvants. Aluminium hydroxide initially boosts Th2 responses, while the other adjuvants utilized in AIT redirect the Th2 immune response towards Th1 immunity. After varying lengths of time, each of the adjuvants supports tolerance. Further studies of the mechanisms of action of adjuvants may advise shorter treatment periods than the current three-to-five-year regimens, enhancing patient adherence. Improved lead compounds from the adjuvant pipeline are under development and are explored for their capacity to fill this unmet need.
Collapse
Affiliation(s)
- Erika Jensen‐Jarolim
- Institute of Pathophysiology & Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- The Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Medical University of Vienna University of Vienna Vienna Austria
| | - Martin F. Bachmann
- Institute of Immunology Inselspital University of Berne Bern Switzerland
| | - Sergio Bonini
- Institute of Translational Pharmacology Italian National Research Council Rome Italy
| | - Lars Jacobsen
- ALC, Allergy Learning & Consulting Copenhagen Denmark
| | - Marek Jutel
- Department of Clinical Immunology Wroclaw Medical University Wrocław Poland
- ALL‐MED Medical Research Institute Wroclaw Poland
| | - Ludger Klimek
- Center of Rhinology and Allergology Wiesbaden Germany
| | - Vera Mahler
- Division of Allergology Paul‐Ehrlich‐Institut Federal Institute for Vaccines and Biomedicines Langen Germany
| | - Ralph Mösges
- CRI‐Clinical Research International Ltd Hamburg Germany
- Institute of Medical Statistics and Bioinformatics University of Cologne Cologne Germany
| | - Philippe Moingeon
- Center for Therapeutic Innovation – Immuno‐Inflammatory Disease Servier Suresnes France
| | - Robyn E. O´Hehir
- Department of Respiratory Medicine, Allergy and Clinical Immunology (Research) Central Clinical School Monash University and Alfred Hospital Melbourne Vic. Australia
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology Chemistry School Complutense University of Madrid Madrid Spain
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - Harald Renz
- Institute of Laboratory Medicine Universities of Giessen and Marburg Lung Center (UGMLC) German Center for Lung Research (DZL) Philipps Universität Marburg Marburg Germany
| | - Claudio Rhyner
- SIAF – Swiss Institute of Allergy and Asthma Research Davos Switzerland
| | - Franziska Roth‐Walter
- The Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Medical University of Vienna University of Vienna Vienna Austria
| | | | - Johannes Savolainen
- Department of Pulmonary Diseases and Clinical Allergology University of Turku and Turku University Hospital Turku Finland
| | - Carsten B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) German Center of Lung Research (DZL) and Helmholtz I&I Initiative Technical University, and Helmholtz Center Munich Munich Germany
| | - Claudia Traidl‐Hoffmann
- Institute of Environmental Medicine (IEM) Technical University Munich and Helmholtz Center Munich Munich Germany
| | - Thomas Kündig
- Department of Dermatology University Hospital Zurich Zurich Switzerland
| |
Collapse
|
34
|
Kobari S, Kusakabe T, Momota M, Shibahara T, Hayashi T, Ozasa K, Morita H, Matsumoto K, Saito H, Ito S, Kuroda E, Ishii KJ. IL-33 Is Essential for Adjuvant Effect of Hydroxypropyl-β-Cyclodexrin on the Protective Intranasal Influenza Vaccination. Front Immunol 2020; 11:360. [PMID: 32210964 PMCID: PMC7069475 DOI: 10.3389/fimmu.2020.00360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/14/2020] [Indexed: 01/07/2023] Open
Abstract
Vaccine adjuvants are traditionally used to augment and modulate the immunogenicity of vaccines, although in many cases it is unclear which specific molecules contribute to their stimulatory activity. We previously reported that both subcutaneous and intranasal administration of hydroxypropyl-β-cyclodextrin (HP-β-CD), a pharmaceutical excipient widely used to improve solubility, can act as an effective adjuvant for an influenza vaccine. However, the mechanisms by which mucosal immune pathway is critical for the intranasal adjuvant activity of HP-β-CD have not been fully delineated. Here, we show that intranasally administered HP-β-CD elicits a temporary release of IL-33 from alveolar epithelial type 2 cells in the lung; notably, IL-33 expression in these cells is not stimulated following the use of other vaccine adjuvants. The experiments using gene deficient mice suggested that IL-33/ST2 signaling is solely responsible for the adjuvant effect of HP-β-CD when it is administered intranasally. In contrast, the subcutaneous injection of HP-β-CD and the intranasal administration of alum, as a damage-associated molecular patterns (DAMPs)-inducing adjuvant, or cholera toxin, as a mucosal adjuvant, enhanced humoral immunity in an IL-33-independent manner, suggesting that the IL-33/ST2 pathway is unique to the adjuvanticity of intranasally administered HP-β-CD. Furthermore, the release of IL-33 was involved in the protective immunity against influenza virus infection which is induced by the intranasal administration of HP-β-CD-adjuvanted influenza split vaccine. In conclusion, our results suggest that an understanding of administration route- and tissue-specific immune responses is crucial for the design of unique vaccine adjuvants.
Collapse
Affiliation(s)
- Shingo Kobari
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Takato Kusakabe
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Mock-up Vaccine Project, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Masatoshi Momota
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Mock-up Vaccine Project, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Takayuki Shibahara
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Mock-up Vaccine Project, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Tomoya Hayashi
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koji Ozasa
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuichi Ito
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Etsushi Kuroda
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Mock-up Vaccine Project, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Department of Immunology, Hyogo College of Medicine, Hyogo, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Mock-up Vaccine Project, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.,Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Rezaei T, Khalili S, Baradaran B, Mosafer J, Rezaei S, Mokhtarzadeh A, de la Guardia M. Recent advances on HIV DNA vaccines development: Stepwise improvements to clinical trials. J Control Release 2019; 316:116-137. [PMID: 31669566 DOI: 10.1016/j.jconrel.2019.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/10/2023]
Abstract
According to WHO (World Health Organization) reports, more than 770,000 people died from HIV and almost 1.7 million people becoming newly infected in the worldwide in 2018. Therefore, many attempts should be done to produce a forceful vaccine to control the AIDS. DNA-based vaccines have been investigated for HIV vaccination by researches during the recent 20 years. The DNA vaccines are novel approach for induction of both type of immune responses (cellular and humoral) in the host cells and have many advantages including high stability, fast and easy of fabrication and absence of severe side effects when compared with other vaccination methods. Recent studies have been focused on vaccine design, immune responses and on the use of adjuvants as a promising strategy for increased level of responses, delivery approaches by viral and non-viral methods and vector design for different antigens of HIV virus. In this review, we outlined the aforementioned advances on HIV DNA vaccines. Then we described the future trends in clinical trials as a strong strategy even in healthy volunteers and the potential developments in control and prevention of HIV.
Collapse
Affiliation(s)
- Tayebeh Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Faculty of Sciences, Shahid Rajee Teacher Training University, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Sarah Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|