1
|
Ge X, Zhang K, Zhu J, Chen Y, Wang Z, Wang P, Xu P, Yao J. Targeting protein modification: a new direction for immunotherapy of pancreatic cancer. Int J Biol Sci 2025; 21:63-74. [PMID: 39744438 PMCID: PMC11667816 DOI: 10.7150/ijbs.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Post-translational modifications (PTMs) alter protein conformation by covalently attaching functional groups to substrates, influencing their biological activity, mechanisms of action, and functional performance. PTMs and their interactions are essential to many critical signal transduction processes, including tumor transformation, cancer progression, and metastasis in pancreatic cancer. Additionally, advancements in tumor immunotherapy indicate that PTMs are essential in immune cell activation, transport, and energy metabolism. This study aimed to investigate the effects of different PTMs on immunotherapy for pancreatic cancer, providing new perspectives and suggesting directions for future research.
Collapse
Affiliation(s)
- Xinyu Ge
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Ke Zhang
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Jiangsu 225000, China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Yuan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Zhengwang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Peng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Peng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| |
Collapse
|
2
|
Salminen A. The role of inhibitory immune checkpoint receptors in the pathogenesis of Alzheimer's disease. J Mol Med (Berl) 2025; 103:1-19. [PMID: 39601807 DOI: 10.1007/s00109-024-02504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
There is mounting evidence that microglial cells have a key role in the pathogenesis of Alzheimer's disease (AD). In AD pathology, microglial cells not only are unable to remove β-amyloid (Aβ) plaques and invading pathogens but also are involved in synaptic pruning, chronic neuroinflammation, and neuronal degeneration. Microglial cells possess many different inhibitory immune checkpoint receptors, such as PD-1, LILRB2-4, Siglecs, and SIRPα receptors, which can be targeted by diverse cell membrane-bound and soluble ligand proteins to suppress the functions of microglia. Interestingly, in the brains of AD patients there are elevated levels of many of the inhibitory ligands acting via these inhibitory checkpoint receptors. For instance, Aβ oligomers, ApoE4, and fibronectin are able to stimulate the LILRB2-4 receptors. Increased deposition of sialoglycans, e.g., gangliosides, inhibits microglial function via Siglec receptors. AD pathology augments the accumulation of senescent cells, which are known to possess a high level of PD-L1 proteins, and thus, they can evade immune surveillance. A decrease in the expression of SIRPα receptor in microglia and its ligand CD47 in neurons enhances the phagocytic pruning of synapses in AD brains. Moreover, cerebral neurons contain inhibitory checkpoint receptors which can inhibit axonal growth, reduce synaptic plasticity, and impair learning and memory. It seems that inappropriate inhibitory immune checkpoint signaling impairs the functions of microglia and neurons thus promoting AD pathogenesis. KEY MESSAGES: Microglial cells have a major role in the pathogenesis of AD. A decline in immune activity of microglia promotes AD pathology. Microglial cells and neurons contain diverse inhibitory immune checkpoint receptors. The level of ligands for inhibitory checkpoint receptors is increased in AD pathology. Impaired signaling of inhibitory immune checkpoint receptors promotes AD pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
3
|
Zaroon, Aslam S, Hafsa, Mustafa U, Fatima S, Bashir H. Interleukin in Immune-Mediated Diseases: An Updated Review. Mol Biotechnol 2024:10.1007/s12033-024-01347-8. [PMID: 39715931 DOI: 10.1007/s12033-024-01347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/29/2024] [Indexed: 12/25/2024]
Abstract
The immune system comprises various regulators and effectors that elicit immune responses against various attacks on the body. The pathogenesis of autoimmune diseases is derived from the deregulated expression of cytokines, the major regulators of the immune system. Among cytokines, interleukins have a major influence on immune-mediated diseases. These interleukins initiate the immune response against healthy and normal cells of the body, resulting in immune-mediated disease. The major interleukins in this respect are IL-1, IL-3, IL-4, IL-6, IL-10 and IL-12 which cause immune responses such as excessive inflammation, loss of immune tolerance, altered T-cell differentiation, immune suppression dysfunction, and inflammatory cell recruitment. Systemic Lupus Erythematosus (SLE) is an autoimmune illness characterized by dysregulation of interleukins. These immune responses are the signs of diseases such as rheumatoid arthritis, inflammatory bowel disease, psoriasis, type I diabetes, and multiple sclerosis.
Collapse
Affiliation(s)
- Zaroon
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shakira Aslam
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hafsa
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Usama Mustafa
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sana Fatima
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hamid Bashir
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
4
|
Lu J, Zhang Y, Wen H, Li J, Chen C, Xiao L. Siglec-15 as a potential molecule involved in osteoclast differentiation and bone metabolism. Heliyon 2024; 10:e38537. [PMID: 39524871 PMCID: PMC11550040 DOI: 10.1016/j.heliyon.2024.e38537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) is a well-conserved type I transmembrane protein of the Siglecs family, distributed in macrophages and dendritic cells in the human spleen and lymph nodes. As an immune receptor, Siglec-15 is expressed in almost all branches of the spinal cord. Siglec-15 participates in the metabolism of the skeleton by regulating osteoclast activity and differentiation and has an influential role in dynamic bone remodelling. The binding of DNAX activation protein of 12 kDa (DAP12), which contains the immunoreceptor tyrosine-based activation motif (ITAM) activation domain, to the Siglec-15 receptor provides a positive stimulatory signal for osteoclast growth, with the involvement of the receptor activator of nuclear factor-κB (RANK)/RANK ligand (RANKL) signalling. Recently, Siglec-15 antibodies have been shown to effectively prevent bone resorption in mouse models of osteoporosis and accelerate fracture healing to some extent. Therefore, exploring the molecular characteristics and functions of Siglec-15 may lead to new therapeutic strategies for common clinical skeletal diseases.
Collapse
Affiliation(s)
- Jiaqi Lu
- Department of Orthodontics, Medical Center of Stomatology, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan, 410011, China
| | - Yinyin Zhang
- Department of Orthodontics, Medical Center of Stomatology, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan, 410011, China
| | - Huiyu Wen
- Department of Orthodontics, Medical Center of Stomatology, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan, 410011, China
| | - Junlin Li
- Department of Orthodontics, Medical Center of Stomatology, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan, 410011, China
| | - Chen Chen
- Department of Orthodontics, Medical Center of Stomatology, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan, 410011, China
| | - Liwei Xiao
- Department of Orthodontics, Medical Center of Stomatology, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan, 410011, China
| |
Collapse
|
5
|
Silva Z, Rabaça JA, Luz V, Lourenço RA, Salio M, Oliveira AC, Bule P, Springer S, Videira PA. New insights into the immunomodulatory potential of sialic acid on monocyte-derived dendritic cells. Cancer Immunol Immunother 2024; 74:9. [PMID: 39487861 PMCID: PMC11531459 DOI: 10.1007/s00262-024-03863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024]
Abstract
Sialic acids at the cell surface of dendritic cells (DCs) play an important immunomodulatory role, and their manipulation enhances DC maturation, leading to heightened T cell activation. Particularly, at the molecular level, the increased stability of surface MHC-I molecules in monocyte-derived DCs (MoDCs) underpins an improved DC: T cell interaction. In this study, we focused on the impact of sialic acid remodelling by treatment with Clostridium perfringens sialidase on MoDCs' phenotypic and functional characteristics. Our investigation juxtaposes this novel approach with the conventional cytokine-based maturation regimen commonly employed in clinical settings.Notably, C. perfringens sialidase remarkably increased MHC-I levels compared to other sialidases having different specificities, supporting the idea that higher MHC-I is due to the cleavage of specific sialoglycans on cell surface proteins. Sialidase treatment induced rapid elevated surface expression of MHC-I, MHC-II and CD40 within an hour, a response not fully replicated by 48 h cytokine cocktail treatment. These increases were also observable 48 h post sialidase treatment. While CD86 and PD-L1 showed significant increases after 48 h of cytokine maturation, 48 h post sialidase treatment showed a higher increase in CD86 and shorter increase in PD-L1. CCR-7 expression was significantly increased 48 h after sialidase treatment but not significantly affected by cytokine maturation. Both treatments promoted higher secretion of the IL-12 cytokine. However, the cytokine cocktail induced a more pronounced IL-12 production. SNA lectin staining analysis demonstrated that the sialic acid profile is significantly altered by sialidase treatment, but not by the cytokine cocktail, which causes only slight sialic acid upregulation. Notably, the lipid-presenting molecules CD1a, CD1b and CD1c remained unaffected by sialidase treatment in MoDCs, a finding also further supported by experiments performed on C1R cells. Inhibition of endogenous sialidases Neu1 and Neu3 during MoDC differentiation did not affect surface MHC-I expression and cytokine secretion. Yet, sialidase activity in MoDCs was minimal, suggesting that sialidase inhibition does not significantly alter MHC-I-related functions. Our study highlights the unique maturation profile induced by sialic acid manipulation in MoDCs. These findings provide insights into the potential of sialic acid manipulation as a rapid immunomodulatory strategy, offering promising avenues for targeted interventions in inflammatory contexts.
Collapse
Affiliation(s)
- Zélia Silva
- Associate Laboratory i4HB, NOVA School of Science and Technology, Institute for Health and Bioeconomy, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Department of Life Sciences, Applied Molecular Biosciences Unit, UCIBIO, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - João Amorim Rabaça
- Associate Laboratory i4HB, NOVA School of Science and Technology, Institute for Health and Bioeconomy, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Department of Life Sciences, Applied Molecular Biosciences Unit, UCIBIO, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Vanessa Luz
- Associate Laboratory i4HB, NOVA School of Science and Technology, Institute for Health and Bioeconomy, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Department of Life Sciences, Applied Molecular Biosciences Unit, UCIBIO, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Rita Adubeiro Lourenço
- Associate Laboratory i4HB, NOVA School of Science and Technology, Institute for Health and Bioeconomy, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Department of Life Sciences, Applied Molecular Biosciences Unit, UCIBIO, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Mariolina Salio
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX39DS, UK
| | - Alexandra Couto Oliveira
- CIISA‑Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300‑477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300‑477, Lisbon, Portugal
| | - Pedro Bule
- CIISA‑Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300‑477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300‑477, Lisbon, Portugal
| | | | - Paula Alexandra Videira
- Associate Laboratory i4HB, NOVA School of Science and Technology, Institute for Health and Bioeconomy, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- Department of Life Sciences, Applied Molecular Biosciences Unit, UCIBIO, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- Department of Life Sciences, CDG & Allies Professionals and Patient Associations International Network (CDG & Allies-PPAIN), NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|
6
|
Ma X, Li M, Wang X, Qi G, Wei L, Zhang D. Sialylation in the gut: From mucosal protection to disease pathogenesis. Carbohydr Polym 2024; 343:122471. [PMID: 39174097 DOI: 10.1016/j.carbpol.2024.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 08/24/2024]
Abstract
Sialylation, a crucial post-translational modification of glycoconjugates, entails the attachment of sialic acid (SA) to the terminal glycans of glycoproteins and glycolipids through a tightly regulated enzymatic process involving various enzymes. This review offers a comprehensive exploration of sialylation within the gut, encompassing its involvement in mucosal protection and its impact on disease progression. The sialylation of mucins and epithelial glycoproteins contributes to the integrity of the intestinal mucosal barrier. Furthermore, sialylation regulates immune responses in the gut, shaping interactions among immune cells, as well as their activation and tolerance. Additionally, the gut microbiota and gut-brain axis communication are involved in the role of sialylation in intestinal health. Altered sialylation patterns have been implicated in various intestinal diseases, including inflammatory bowel disease (IBD), colorectal cancer (CRC), and other intestinal disorders. Emerging research underscores sialylation as a promising avenue for diagnostic, prognostic, and therapeutic interventions in intestinal diseases. Potential strategies such as sialic acid supplementation, inhibition of sialidases, immunotherapy targeting sialylated antigens, and modulation of sialyltransferases have been utilized in the treatment of intestinal diseases. Future research directions will focus on elucidating the molecular mechanisms underlying sialylation alterations, identifying sialylation-based biomarkers, and developing targeted interventions for precision medicine approaches.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaochun Wang
- Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
7
|
Jansen DTSL, Nikolic T, den Hollander NHM, Zwaginga JJ, Roep BO. Bridging the Gap Between Tolerogenic Dendritic Cells In Vitro and In Vivo: Analysis of Siglec Genes and Pathways Associated with Immune Modulation and Evasion. Genes (Basel) 2024; 15:1427. [PMID: 39596627 PMCID: PMC11593460 DOI: 10.3390/genes15111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/17/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Dendritic cells (DCs) are master regulators of the adaptive immune response. Inflammatory DCs (inflamDCs) can prime inflammatory T cells in, for instance, cancer and infection. In contrast, tolerogenic DCs (tolDCs) can suppress the immune system through a plethora of regulatory mechanisms in the context of autoimmunity. We successfully generated tolDCs in vitro to durably restore immune tolerance to an islet autoantigen in type 1 diabetes patients in a clinical trial. However, cancers can induce inhibitory DCs in vivo that impair anti-tumor immunity through Siglec signaling. METHODS To connect in vivo and in vitro tolDC properties, we tested whether tolDCs generated in vitro may also employ the Siglec pathway to regulate autoimmunity by comparing the transcriptomes and protein expression of immature and mature inflamDCs and tolDCs, generated from monocytes. RESULTS Both immature DC types expressed most Siglec genes. The expression of these genes declined significantly in mature inflamDCs compared to mature tolDCs. Surface expression of Siglec proteins by DCs followed the same pattern. The majority of genes involved in the different Siglec pathways were differentially expressed by mature tolDCs, as opposed to inflamDCs, and in inhibitory pathways in particular. CONCLUSIONS Our results show that tolDCs generated in vitro mimic tumor-resident inhibitory DCs in vivo regarding Siglec expression.
Collapse
Affiliation(s)
| | | | | | | | - Bart O. Roep
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.T.S.L.J.); (T.N.); (J.J.Z.)
| |
Collapse
|
8
|
Mohamed KA, Kruf S, Büll C. Putting a cap on the glycome: Dissecting human sialyltransferase functions. Carbohydr Res 2024; 544:109242. [PMID: 39167930 DOI: 10.1016/j.carres.2024.109242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Human glycans are capped with sialic acids and these nine-carbon sugars mediate many of the biological functions and interactions of glycans. Structurally diverse sialic acid caps mark human cells as self and they form the ligands for the Siglec immune receptors and other glycan-binding proteins. Sialic acids enable host interactions with the human microbiome and many human pathogens utilize sialic acids to infect host cells. Alterations in sialic acid-carrying glycans, sialoglycans, can be found in every major human disease including inflammatory conditions and cancer. Twenty sialyltransferase family members in the Golgi apparatus of human cells transfer sialic acids to distinct glycans and glycoconjugates. Sialyltransferases catalyze specific reactions to form unique sialoglycans or they have shared functions where multiple family members generate the same sialoglycan product. Moreover, some sialyltransferases compete for the same glycan substrate, but create different sialic acid caps. The redundant and competing functions make it difficult to understand the individual roles of the human sialyltransferases in biology and to reveal the specific contributions to pathobiological processes. Recent insights hint towards the existence of biosynthetic rules formed by the individual functions of sialyltransferases, their interactions, and cues from the local Golgi environment that coordinate sialoglycan biosynthesis. In this review, we discuss the current structural and functional understanding of the human sialyltransferase family and we review recent technological advances that enable the dissection of individual sialyltransferase activities.
Collapse
Affiliation(s)
- Khadra A Mohamed
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Stijn Kruf
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Christian Büll
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands.
| |
Collapse
|
9
|
Zhu W, Zhou Y, Guo L, Feng S. Biological function of sialic acid and sialylation in human health and disease. Cell Death Discov 2024; 10:415. [PMID: 39349440 PMCID: PMC11442784 DOI: 10.1038/s41420-024-02180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
Sialic acids are predominantly found at the terminal ends of glycoproteins and glycolipids and play key roles in cellular communication and function. The process of sialylation, a form of post-translational modification, involves the covalent attachment of sialic acid to the terminal residues of oligosaccharides and glycoproteins. This modification not only provides a layer of electrostatic repulsion to cells but also serves as a receptor for various biological signaling pathways. Sialylation is involved in several pathophysiological processes. Given its multifaceted involvement in cellular functions, sialylation presents a promising avenue for therapeutic intervention. Current studies are exploring agents that target sialic acid residues on sialoglycans or the sialylation process. These efforts are particularly focused on the fields of cancer therapy, stroke treatment, antiviral strategies, and therapies for central nervous system disorders. In this review, we aimed to summarize the biological functions of sialic acid and the process of sialylation, explore their roles in various pathophysiological contexts, and discuss their potential applications in the development of novel therapeutics.
Collapse
Affiliation(s)
- Wengen Zhu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yue Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linjuan Guo
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
| | - Shenghui Feng
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Jia Y, Lu W, Xie H, Sheng Y, Wang L, Lv W, Ling L, Dong J, Jia X, Wu S, Liu W, Ying H. Upregulation of Siglec-6 induces mitochondrial dysfunction by promoting GPR20 expression in early-onset preeclampsia. J Transl Med 2024; 22:674. [PMID: 39039496 PMCID: PMC11265165 DOI: 10.1186/s12967-024-05505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Preeclampsia, especially early-onset preeclampsia (EO-PE), is a pregnancy complication that has serious consequences for the health of both the mother and the fetus. Although abnormal placentation due to mitochondrial dysfunction is speculated to contribute to the development of EO-PE, the underlying mechanisms have yet to be fully elucidated. METHODS The expression and localization of Siglec-6 in the placenta from normal pregnancies, preterm birth and EO-PE patients were examined by RT-qPCR, Western blot and IHC. Transwell assays were performed to evaluate the effect of Siglec-6 on trophoblast cell migration and invasion. Seahorse experiments were conducted to assess the impact of disrupting Siglec-6 expression on mitochondrial function. Co-IP assay was used to examine the interaction of Siglec-6 with SHP1/SHP2. RNA-seq was employed to investigate the mechanism by which Siglec-6 inhibits mitochondrial function in trophoblast cells. RESULTS The expression of Siglec-6 in extravillous trophoblasts is increased in placental tissues from EO-PE patients. Siglec-6 inhibits trophoblast cell migration and invasion and impairs mitochondrial function. Mechanismly, Siglec-6 inhibits the activation of NF-κB by recruiting SHP1/SHP2, leading to increased expression of GPR20. Notably, the importance of GPR20 function downstream of Siglec-6 in trophoblasts is supported by the observation that GPR20 downregulation rescues defects caused by Siglec-6 overexpression. Finally, overexpression of Siglec-6 in the placenta induces a preeclampsia-like phenotype in a pregnant mouse model. CONCLUSIONS This study indicates that the regulatory pathway Siglec-6/GPR20 has a crucial role in regulating trophoblast mitochondrial function, and we suggest that Siglec-6 and GPR20 could serve as potential markers and targets for the clinical diagnosis and therapy of EO-PE.
Collapse
Affiliation(s)
- Yuanhui Jia
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjing Lu
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han Xie
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yifan Sheng
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Luyao Wang
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenqi Lv
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lijun Ling
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqi Dong
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinrui Jia
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengyu Wu
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenqiang Liu
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Ying
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
11
|
Fox A, Leonard GD, Adzibolosu N, Wong T, Tedja R, Sharma S, Gogoi R, Morris R, Mor G, Fehl C, Alvero AB. Adipose microenvironment promotes hypersialylation of ovarian cancer cells. Front Oncol 2024; 14:1432333. [PMID: 39104719 PMCID: PMC11299042 DOI: 10.3389/fonc.2024.1432333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Ovarian and other peritoneal cancers have a strong tendency to metastasize into the surrounding adipose tissue. This study describes an effect of the adipose microenvironment on upregulation of sialic acid-containing glycans in ovarian cancer (OC). Heterogeneous populations of glycosylated OC tumors converged to a highly sialylated cell state that regulates tumorigenesis in an immune-dependent manner. Methods We modeled the adipose microenvironment by conditioning growth media with human patient-derived adipose tissue. OC cell lines grown in the presence vs. absence of adipose conditioned media (ACM) were characterized by transcriptomics, western blotting, and chemical biology glycan labeling methods. Fluorescence-activated cell sorting was used to separate adipose-driven upregulation of hypersialylated ("SNA-high") vs. hyposialylated ("SNA-low") OC subpopulations. The two subpopulations were characterized by further transcriptomic and quantitative polymerase chain reaction analyses, then injected into a syngeneic mouse model. Immune system involvement was implicated using wild type and athymic nude mice with a primary endpoint of overall survival. Results Adipose conditioning resulted in upregulation of sialyltransferases ST3GAL1, ST6GAL1, ST6GALNAC3, and ST8Sia1. In culture, OC cells displayed two distinct sialylated subpopulations that were stable for up to 9 passages, suggesting inherent heterogeneity in sialylation that is maintained throughout cell division and media changes. OC tumors that implanted in the omental adipose tissue exclusively reprogrammed to the highly sialylated subpopulation. In wild type C57BL/6 mice, only the hypersialylated SNA-high subpopulation implanted in the adipose, whereas the hyposialylated SNA-low subpopulation failed to be tumorigenic (p=0.023, n=5). In the single case where SNA-low established a tumor, post-mortem analysis revealed reprogramming of the tumor to the SNA-high state in vivo. In athymic nude mice, both subpopulations rapidly formed tumors, implicating a role of the adaptive immune system. Conclusions These findings suggest a model of glycan-dependent tumor evolution wherein the adipose microenvironment reprograms OC to a tumorigenic state that resists the adaptive immune system. Mechanistically, adipose factors upregulate sialyltransferases. To our knowledge, this is the first demonstration of the effect of adipose microenvironment on OC tumor sialylation. Our results set the stage for translational applications targeting sialic acid pathways in OC and other peritoneal cancer tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Alexandra Fox
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Garry D. Leonard
- Department of Chemistry, Wayne State University, Detroit, MI, United States
| | - Nicholas Adzibolosu
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Terrence Wong
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Roslyn Tedja
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Sapna Sharma
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Radhika Gogoi
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Robert Morris
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Gil Mor
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Ayesha B. Alvero
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| |
Collapse
|
12
|
Wei L, Lin L, Wang J, Guan X, Li W, Gui Y, Liao S, Wang M, Li J, Deng Y, Song Y. The selection of animal models influences the assessment of anti-tumor efficacy: promising sialic acid-conjugate modified liposomes demonstrate remarkable therapeutic effects in diverse mouse strains. Drug Deliv Transl Res 2024; 14:1794-1809. [PMID: 38165530 DOI: 10.1007/s13346-023-01502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Mice as a crucial tool for preclinical assessment of antineoplastic agents. The impact of physiological differences among mouse strains on the in vivo efficacy of antitumor drugs, however, has been significantly overlooked. Mononuclear phagocyte system (MPS) is the major player in clearance in vivo, and differences in MPS among different strains may potentially impact the effectiveness of antitumor preparations. Therefore, in this study, we employed conventional liposomes (CL-EPI) and SA-ODA modified liposomes (SAL-EPI) as model preparations to investigate the comprehensive tumor therapeutic effects of CL-EPI and SAL-EPI in KM, BALB/c, and C57BL/6 tumor-bearing mice. The results demonstrated significant variability in the efficacy of CL-EPI for tumor treatment across different mouse strains. Therefore, we should pay attention to the selection of animal models in the study of antitumor agents. SAL-EPI effectively targeted tumor sites by binding to Siglec-1 on the surface of peripheral blood monocytes (PBMs), and achieved good therapeutic effect in different mouse strains with little difference in treatment. The SA modified preparation is therefore expected to achieve a favorable therapeutic effect in tumor patients with different immune states through PBMs delivery (Siglec-1 was expressed in both mice and humans), thereby possessing clinical translational value and promising development prospects.
Collapse
Affiliation(s)
- Lu Wei
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Lin Lin
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Jia Wang
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Xinying Guan
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Wen Li
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Yangxu Gui
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Shupei Liao
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Mingyang Wang
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Jiaqi Li
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, China.
| |
Collapse
|
13
|
Silva Z, Soares CO, Barbosa M, Palma AS, Marcelo F, Videira PA. The role of sialoglycans in modulating dendritic cell function and tumour immunity. Semin Immunol 2024; 74-75:101900. [PMID: 39461124 DOI: 10.1016/j.smim.2024.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Dendritic cells (DCs) are crucial for initiating immune responses against tumours by presenting antigens to T cells. Glycosylation, particularly sialylation, plays a significant role in regulating cell functions, by modulating protein folding and signalling. This review aimed to provide a comprehensive overview of how sialic acids influence key aspects of DC biology, including maturation, migration, antigen presentation, and T cell interactions. Sialic acids influence DC endocytosis, affecting their ability to uptake and present antigens, while guiding their migration to lymph nodes and inflamed tissues. Removing sialic acids enhances DC-mediated antigen presentation to T cells, potentially boosting immune responses. Additionally, sialylated glycans on DCs modulate immune checkpoints, which can impact tumour immunity. Hypersialylation of tumour mucins further promotes immune evasion by interacting with DCs. Understanding the interplay between sialylation and DC functions offers promising avenues for enhancing cancer immunotherapy.
Collapse
Affiliation(s)
- Zélia Silva
- Institute for Health and Bioeconomy (i4HB), NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal; CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Cátia O Soares
- Institute for Health and Bioeconomy (i4HB), NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Mariana Barbosa
- Institute for Health and Bioeconomy (i4HB), NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal; CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Angelina S Palma
- Institute for Health and Bioeconomy (i4HB), NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Filipa Marcelo
- Institute for Health and Bioeconomy (i4HB), NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Paula A Videira
- Institute for Health and Bioeconomy (i4HB), NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal; CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal.
| |
Collapse
|
14
|
Kasahara T, Chang TC, Yoshioka H, Urano S, Egawa Y, Inoue M, Tahara T, Morimoto K, Pradipta AR, Tanaka K. Anticancer approach by targeted activation of a global inhibitor of sialyltransferases with acrolein. Chem Sci 2024; 15:9566-9573. [PMID: 38939146 PMCID: PMC11206204 DOI: 10.1039/d4sc00969j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/28/2024] [Indexed: 06/29/2024] Open
Abstract
Cells are covered with a thick layer of sugar molecules known as glycans. Abnormal glycosylation is a hallmark of cancer, and hypersialylation increases tumor metastasis by promoting immune evasion and inducing tumor cell invasion and migration. Inhibiting sialylation is thus a potential anticancer treatment strategy. However, targeting sialic acids is difficult because of the lack of selective delivery tools. Here, we present a prodrug strategy for selectively releasing the global inhibitor of sialylation peracetylated 3Fax-Neu5Ac (PFN) in cancer cells using the reaction between phenyl azide and endogenous acrolein, which is overproduced in most cancer cells. The prodrug significantly suppressed tumor growth in mice as effectively as PFN without causing kidney dysfunction, which is associated with PFN. The use of sialylated glycans as immune checkpoints is gaining increasing attention, and the proposed method for precisely targeting aberrant sialylation provides a novel avenue for expanding current cancer treatments.
Collapse
Affiliation(s)
- Takatsugu Kasahara
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - Tsung-Che Chang
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Hiromasa Yoshioka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Sayaka Urano
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Yasuko Egawa
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Michiko Inoue
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research 6-7-3 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| | - Tsuyoshi Tahara
- Department of In vivo Imaging, Advanced Research Promoting Center, Tokushima University 3-18-15 Kuramto-cho Tokushima Tokushima 770-8503 Japan
| | - Koji Morimoto
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Ambara R Pradipta
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| |
Collapse
|
15
|
van der Haar Àvila I, Zhang T, Lorrain V, de Bruin F, Spreij T, Nakayama H, Iwabuchi K, García-Vallejo JJ, Wuhrer M, van Kooyk Y, van Vliet SJ. Limited impact of cancer-derived gangliosides on anti-tumor immunity in colorectal cancer. Glycobiology 2024; 34:cwae036. [PMID: 38785323 PMCID: PMC11137322 DOI: 10.1093/glycob/cwae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Aberrant glycosylation is a key mechanism employed by cancer cells to evade immune surveillance, induce angiogenesis and metastasis, among other hallmarks of cancer. Sialic acids, distinctive terminal glycan structures located on glycoproteins or glycolipids, are prominently upregulated across various tumor types, including colorectal cancer (CRC). Sialylated glycans modulate anti-tumor immune responses through their interactions with Siglecs, a family of glycan-binding receptors with specificity for sialic acid-containing glycoconjugates, often resulting in immunosuppression. In this paper, we investigated the immunomodulatory function of ST3Gal5, a sialyltransferase that catalyzes the addition of α2-3 sialic acids to glycosphingolipids, since lower expression of ST3Gal5 is associated with better survival of CRC patients. We employed CRISPR/Cas9 to knock out the ST3Gal5 gene in two murine CRC cell lines MC38 and CT26. Glycomics analysis confirmed the removal of sialic acids on glycolipids, with no discernible impact on glycoprotein sialylation. Although knocking out ST3Gal5 in both cell lines did not affect in vivo tumor growth, we observed enhanced levels of regulatory T cells in CT26 tumors lacking ST3Gal5. Moreover, we demonstrate that the absence of ST3Gal5 affected size and blood vessel density only in MC38 tumors. In summary, we ascertain that sialylation of glycosphingolipids has a limited influence on the anti-tumor immune response in CRC, despite detecting alterations in the tumor microenvironment, possibly due to a shift in ganglioside abundance.
Collapse
Affiliation(s)
- Irene van der Haar Àvila
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Victor Lorrain
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
| | - Florance de Bruin
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
| | - Tianne Spreij
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
| | - Hitoshi Nakayama
- Graduate School of Health Care and Nursing, Laboratory of Biochemistry, Juntendo University, 2-5-1 Takasu Urayasu-shi, Chiba, 279-0023, Japan
| | - Kazuhisa Iwabuchi
- Graduate School of Health Care and Nursing, Laboratory of Biochemistry, Juntendo University, 2-5-1 Takasu Urayasu-shi, Chiba, 279-0023, Japan
| | - Juan J García-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Fox A, Leonard GD, Adzibolosu N, Wong T, Tedja R, Sharma S, Gogoi R, Morris R, Mor G, Fehl C, Alvero AB. Adipose microenvironment promotes hypersialylation of ovarian cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593990. [PMID: 38798490 PMCID: PMC11118282 DOI: 10.1101/2024.05.13.593990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Sialylation, the addition of negatively charged sialic acid sugars to terminal ends of glycans, is upregulated in most cancers. Hypersialylation supports multiple pro-tumor mechanisms such as enhanced migration and invasion, resistance to apoptosis and immune evasion. A current gap in knowledge is the lack of understanding on how the tumor microenvironment regulates cancer cell sialylation. The adipose niche is a main component of most peritoneal cancers' microenvironment. This includes ovarian cancer (OC), which causes most deaths from all gynecologic cancers. In this report, we demonstrate that the adipose microenvironment is a critical regulator of OC cell sialylation. In vitro adipose conditioning led to an increase in both ⍺2,3- and ⍺2,6-linked cell surface sialic acids in both human and mouse models of OC. Adipose-induced sialylation reprogramming was also observed in vivo from intra-peritoneal OC tumors seeded in the adipose-rich omentum. Mechanistically, we observed upregulation of at least three sialyltransferases, ST3GAL1, ST6GAL1 and ST3GALNAC3. Hypersialylated OC cells consistently formed intra-peritoneal tumors in both immune-competent mice and immune-compromised athymic nude mice. In contrast, hyposiaylated OC cells persistently formed tumors only in athymic nude mice demonstrating that sialylation impacts OC tumor formation in an immune dependent manner. To our knowledge, this is the first demonstration of the effect of adipose microenvironment on OC tumor sialylation. Our results set the stage for translational applications targeting sialic acid pathways in OC and other peritoneal cancers.
Collapse
|
17
|
Schwartz J, Capistrano KJ, Gluck J, Hezarkhani A, Naqvi AR. SARS-CoV-2, periodontal pathogens, and host factors: The trinity of oral post-acute sequelae of COVID-19. Rev Med Virol 2024; 34:e2543. [PMID: 38782605 PMCID: PMC11260190 DOI: 10.1002/rmv.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
COVID-19 as a pan-epidemic is waning but there it is imperative to understand virus interaction with oral tissues and oral inflammatory diseases. We review periodontal disease (PD), a common inflammatory oral disease, as a driver of COVID-19 and oral post-acute-sequelae conditions (PASC). Oral PASC identifies with PD, loss of teeth, dysgeusia, xerostomia, sialolitis-sialolith, and mucositis. We contend that PD-associated oral microbial dysbiosis involving higher burden of periodontopathic bacteria provide an optimal microenvironment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These pathogens interact with oral epithelial cells activate molecular or biochemical pathways that promote viral adherence, entry, and persistence in the oral cavity. A repertoire of diverse molecules identifies this relationship including lipids, carbohydrates and enzymes. The S protein of SARS-CoV-2 binds to the ACE2 receptor and is activated by protease activity of host furin or TRMPSS2 that cleave S protein subunits to promote viral entry. However, PD pathogens provide additional enzymatic assistance mimicking furin and augment SARS-CoV-2 adherence by inducing viral entry receptors ACE2/TRMPSS, which are poorly expressed on oral epithelial cells. We discuss the mechanisms involving periodontopathogens and host factors that facilitate SARS-CoV-2 infection and immune resistance resulting in incomplete clearance and risk for 'long-haul' oral health issues characterising PASC. Finally, we suggest potential diagnostic markers and treatment avenues to mitigate oral PASC.
Collapse
Affiliation(s)
- Joel Schwartz
- Department of Oral Medicine and Diagnostic Sciences, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | | | - Joseph Gluck
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Armita Hezarkhani
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Afsar R. Naqvi
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| |
Collapse
|
18
|
Lund SJ, Del Rosario PGB, Honda A, Caoili KJ, Hoeksema MA, Nizet V, Patras KA, Prince LS. Sialic Acid-Siglec-E Interactions Regulate the Response of Neonatal Macrophages to Group B Streptococcus. Immunohorizons 2024; 8:384-396. [PMID: 38809232 PMCID: PMC11150127 DOI: 10.4049/immunohorizons.2300076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/24/2024] [Indexed: 05/30/2024] Open
Abstract
The mammalian Siglec receptor sialoadhesin (Siglec1, CD169) confers innate immunity against the encapsulated pathogen group B Streptococcus (GBS). Newborn lung macrophages have lower expression levels of sialoadhesin at birth compared with the postnatal period, increasing their susceptibility to GBS infection. In this study, we investigate the mechanisms regulating sialoadhesin expression in the newborn mouse lung. In both neonatal and adult mice, GBS lung infection reduced Siglec1 expression, potentially delaying acquisition of immunity in neonates. Suppression of Siglec1 expression required interactions between sialic acid on the GBS capsule and the inhibitory host receptor Siglec-E. The Siglec1 gene contains multiple STAT binding motifs, which could regulate expression of sialoadhesin downstream of innate immune signals. Although GBS infection reduced STAT1 expression in the lungs of wild-type newborn mice, we observed increased numbers of STAT1+ cells in Siglece-/- lungs. To test if innate immune activation could increase sialoadhesin at birth, we first demonstrated that treatment of neonatal lung macrophages ex vivo with inflammatory activators increased sialoadhesin expression. However, overcoming the low sialoadhesin expression at birth using in vivo prenatal exposures or treatments with inflammatory stimuli were not successful. The suppression of sialoadhesin expression by GBS-Siglec-E engagement may therefore contribute to disease pathogenesis in newborns and represent a challenging but potentially appealing therapeutic opportunity to augment immunity at birth.
Collapse
MESH Headings
- Animals
- Mice
- Streptococcus agalactiae/immunology
- Animals, Newborn
- N-Acetylneuraminic Acid/metabolism
- Sialic Acid Binding Ig-like Lectin 1/metabolism
- Streptococcal Infections/immunology
- Streptococcal Infections/microbiology
- STAT1 Transcription Factor/metabolism
- STAT1 Transcription Factor/genetics
- Mice, Knockout
- Immunity, Innate
- Mice, Inbred C57BL
- Lung/immunology
- Lung/microbiology
- Lung/metabolism
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Female
- Macrophages/immunology
- Macrophages/metabolism
- Lectins/metabolism
- Lectins/genetics
- Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
- Sialic Acid Binding Immunoglobulin-like Lectins/genetics
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Antigens, Differentiation, B-Lymphocyte
Collapse
Affiliation(s)
- Sean J. Lund
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Pamela G. B. Del Rosario
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Rady Children’s Hospital, San Diego, CA
| | - Asami Honda
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | | | - Marten A. Hoeksema
- Department of Medical Biochemistry, Amsterdam University Medical Center, Amsterdam Zuidoost, the Netherlands
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX
| | | |
Collapse
|
19
|
Muchowicz A, Bartoszewicz A, Zaslona Z. The Exploitation of the Glycosylation Pattern in Asthma: How We Alter Ancestral Pathways to Develop New Treatments. Biomolecules 2024; 14:513. [PMID: 38785919 PMCID: PMC11117584 DOI: 10.3390/biom14050513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Asthma has reached epidemic levels, yet progress in developing specific therapies is slow. One of the main reasons for this is the fact that asthma is an umbrella term for various distinct subsets. Due to its high heterogeneity, it is difficult to establish biomarkers for each subset of asthma and to propose endotype-specific treatments. This review focuses on protein glycosylation as a process activated in asthma and ways to utilize it to develop novel biomarkers and treatments. We discuss known and relevant glycoproteins whose functions control disease development. The key role of glycoproteins in processes integral to asthma, such as inflammation, tissue remodeling, and repair, justifies our interest and research in the field of glycobiology. Altering the glycosylation states of proteins contributing to asthma can change the pathological processes that we previously failed to inhibit. Special emphasis is placed on chitotriosidase 1 (CHIT1), an enzyme capable of modifying LacNAc- and LacdiNAc-containing glycans. The expression and activity of CHIT1 are induced in human diseased lungs, and its pathological role has been demonstrated by both genetic and pharmacological approaches. We propose that studying the glycosylation pattern and enzymes involved in glycosylation in asthma can help in patient stratification and in developing personalized treatment.
Collapse
Affiliation(s)
| | | | - Zbigniew Zaslona
- Molecure S.A., Zwirki i Wigury 101, 02-089 Warszawa, Poland; (A.M.); (A.B.)
| |
Collapse
|
20
|
Coccimiglio M, Chiodo F, van Kooyk Y. The sialic acid-Siglec immune checkpoint: an opportunity to enhance immune responses and therapy effectiveness in melanoma. Br J Dermatol 2024; 190:627-635. [PMID: 38197441 DOI: 10.1093/bjd/ljad517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/11/2024]
Abstract
Modulation of immune responses through immune checkpoint blockade has revolutionized cutaneous melanoma treatment. However, it is still the case that not all patients respond successfully to these therapies, indicating the presence of as yet unknown resistance mechanisms. Hence, it is crucial to find novel targets to improve therapy efficacy. One of the described resistance mechanisms is regulated by immune inhibitory Siglec receptors, which are engaged by the carbohydrates sialic acids expressed on tumour cells, contributing to programmed cell death protein-1 (PD1)-like immune suppression mechanisms. In this review, we provide an overview on the regulation of sialic acid synthesis, its expression in melanoma, and the contribution of the sialic acid-Siglec axis to tumour development and immune suppressive mechanisms in the tumour microenvironment. Finally, we highlight potential sialic acid-Siglec axis-related therapeutics to improve the treatment of melanoma.
Collapse
Affiliation(s)
- Magali Coccimiglio
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Fabrizio Chiodo
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Italian National Research Council, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy
| | - Yvette van Kooyk
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Boelaars K, Rodriguez E, Huinen ZR, Liu C, Wang D, Springer BO, Olesek K, Goossens-Kruijssen L, van Ee T, Lindijer D, Tak W, de Haas A, Wehry L, Nugteren-Boogaard JP, Mikula A, de Winde CM, Mebius RE, Tuveson DA, Giovannetti E, Bijlsma MF, Wuhrer M, van Vliet SJ, van Kooyk Y. Pancreatic cancer-associated fibroblasts modulate macrophage differentiation via sialic acid-Siglec interactions. Commun Biol 2024; 7:430. [PMID: 38594506 PMCID: PMC11003967 DOI: 10.1038/s42003-024-06087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Despite recent advances in cancer immunotherapy, pancreatic ductal adenocarcinoma (PDAC) remains unresponsive due to an immunosuppressive tumor microenvironment, which is characterized by the abundance of cancer-associated fibroblasts (CAFs). Once identified, CAF-mediated immune inhibitory mechanisms could be exploited for cancer immunotherapy. Siglec receptors are increasingly recognized as immune checkpoints, and their ligands, sialic acids, are known to be overexpressed by cancer cells. Here, we unveil a previously unrecognized role of sialic acid-containing glycans on PDAC CAFs as crucial modulators of myeloid cells. Using multiplex immunohistochemistry and transcriptomics, we show that PDAC stroma is enriched in sialic acid-containing glycans compared to tumor cells and normal fibroblasts, and characterized by ST3GAL4 expression. We demonstrate that sialic acids on CAF cell lines serve as ligands for Siglec-7, -9, -10 and -15, distinct from the ligands on tumor cells, and that these receptors are found on myeloid cells in the stroma of PDAC biopsies. Furthermore, we show that CAFs drive the differentiation of monocytes to immunosuppressive tumor-associated macrophages in vitro, and that CAF sialylation plays a dominant role in this process compared to tumor cell sialylation. Collectively, our findings unravel sialic acids as a mechanism of CAF-mediated immunomodulation, which may provide targets for immunotherapy in PDAC.
Collapse
Affiliation(s)
- Kelly Boelaars
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Ernesto Rodriguez
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Zowi R Huinen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Chang Liu
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Pulmonary Medicine, De Boelelaan, 1117, Amsterdam, the Netherlands
| | - Di Wang
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Babet O Springer
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Katarzyna Olesek
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Laura Goossens-Kruijssen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Thomas van Ee
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Dimitri Lindijer
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Willemijn Tak
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Aram de Haas
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Laetitia Wehry
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Joline P Nugteren-Boogaard
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Aleksandra Mikula
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Charlotte M de Winde
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Reina E Mebius
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | | | - Elisa Giovannetti
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Medical Oncology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Maarten F Bijlsma
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Sandra J van Vliet
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, 1117, Amsterdam, Netherlands.
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Li T, Yao J. Unveiling the hub genes in the SIGLECs family in colon adenocarcinoma with machine learning. Front Genet 2024; 15:1375100. [PMID: 38650859 PMCID: PMC11033367 DOI: 10.3389/fgene.2024.1375100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Background Despite the recognized roles of Sialic acid-binding Ig-like lectins (SIGLECs) in endocytosis and immune regulation across cancers, their molecular intricacies in colon adenocarcinoma (COAD) are underexplored. Meanwhile, the complicated interactions between different SIGLECs are also crucial but open questions. Methods We investigate the correlation between SIGLECs and various properties, including cancer status, prognosis, clinical features, functional enrichment, immune cell abundances, immune checkpoints, pathways, etc. To fully understand the behavior of multiple SIGLECs' co-evolution and subtract its leading effect, we additionally apply three unsupervised machine learning algorithms, namely, Principal Component Analysis (PCA), Self-Organizing Maps (SOM), K-means, and two supervised learning algorithms, Least Absolute Shrinkage and Selection Operator (LASSO) and neural network (NN). Results We find significantly lower expression levels in COAD samples, together with a systematic enhancement in the correlations between distinct SIGLECs. We demonstrate SIGLEC14 significantly affects the Overall Survival (OS) according to the Hazzard ratio, while using PCA further enhances the sensitivity to both OS and Disease Free Interval (DFI). We find any single SIGLEC is uncorrelated to the cancer stages, which can be significantly improved by using PCA. We further identify SIGLEC-1,15 and CD22 as hub genes in COAD through Differentially Expressed Genes (DEGs), which is consistent with our PCA-identified key components PC-1,2,5 considering both the correlation with cancer status and immune cell abundance. As an extension, we use SOM for the visualization of the SIGLECs and show the similarities and differences between COAD patients. SOM can also help us define subsamples according to the SIGLECs status, with corresponding changes in both immune cells and cancer T-stage, for instance. Conclusion We conclude SIGLEC-1,15 and CD22 as the most promising hub genes in the SIGLECs family in treating COAD. PCA offers significant enhancement in the prognosis and clinical analyses, while using SOM further unveils the transition phases or potential subtypes of COAD.
Collapse
Affiliation(s)
- Tiantian Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Yao
- Department of Astronomy, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Astronomical Observatory, Shanghai, China
| |
Collapse
|
23
|
Liu H, Li J, Wu N, She Y, Luo Y, Huang Y, Quan H, Fu W, Li X, Zeng D, Jia Y. Supplementing Glucose Intake Reverses the Inflammation Induced by a High-Fat Diet by Increasing the Expression of Siglec-E Ligands on Erythrocytes. Inflammation 2024; 47:609-625. [PMID: 38448631 DOI: 10.1007/s10753-023-01932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 03/08/2024]
Abstract
Siglec-9/E is a cell surface receptor expressed on immune cells and can be activated by sialoglycan ligands to play an immunosuppressive role. Our previous study showed that increasing the expression of Siglec-9 (the human paralog of mouse Siglec-E) ligands maintains functionally quiescent immune cells in the bloodstream, but the biological effects of Siglec-9 ligand alteration on atherogenesis were not further explored. In the present study, we demonstrated that the atherosclerosis risk factor ox-LDL or a high-fat diet could decrease the expression of Siglec-9/E ligands on erythrocytes. Increased expression of Siglec-E ligands on erythrocytes caused by dietary supplementation with glucose (20% glucose) had anti-inflammatory effects, and the mechanism was associated with glucose intake. In high-fat diet-fed apoE-/- mice, glucose supplementation decreased the area of atherosclerotic lesions and peripheral inflammation. These data suggested that increased systemic inflammation is attenuated by increasing the expression of Siglec-9/E ligands on erythrocytes. Therefore, Siglec-9/E ligands might be valuable targets for atherosclerosis therapy.
Collapse
Affiliation(s)
- Hongmei Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Jin Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Niting Wu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yuanting She
- Department of Haematology, Daping Hospital of Army Medical University, Chongqing, 400042, China
| | - Yadan Luo
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yan Huang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Hongyu Quan
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Wenying Fu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Dongfeng Zeng
- Department of Haematology, Daping Hospital of Army Medical University, Chongqing, 400042, China.
| | - Yi Jia
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
24
|
Rodriguez E, Lindijer DV, van Vliet SJ, Garcia Vallejo JJ, van Kooyk Y. The transcriptional landscape of glycosylation-related genes in cancer. iScience 2024; 27:109037. [PMID: 38384845 PMCID: PMC10879703 DOI: 10.1016/j.isci.2024.109037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/12/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Changes in glycosylation patterns have been associated with malignant transformation and clinical outcomes in several cancer types, prompting ongoing research into the mechanisms involved and potential clinical applications. In this study, we performed an extensive transcriptomic analysis of glycosylation-related genes and pathways, using publicly available bulk and single cell transcriptomic datasets from tumor samples and cancer cell lines. We identified genes and pathways strongly associated with different tumor types, which may represent novel diagnostic biomarkers. By using single cell RNA-seq data, we characterized the contribution of different cell types to the overall tumor glycosylation. Transcriptomic analysis of cancer cell lines revealed that they present a simplified landscape of genes compared to tissue. Lastly, we describe the association of different genes and pathways with the clinical outcome of patients. These results can serve as a resource for future research aimed to unravel the role of the glyco-code in cancer.
Collapse
Affiliation(s)
- Ernesto Rodriguez
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| | - Dimitri V. Lindijer
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| | - Sandra J. van Vliet
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| | - Juan J. Garcia Vallejo
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Boelaars K, van Kooyk Y. Targeting myeloid cells for cancer immunotherapy: Siglec-7/9/10/15 and their ligands. Trends Cancer 2024; 10:230-241. [PMID: 38160071 DOI: 10.1016/j.trecan.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Advances in immunotherapy have revolutionized cancer treatment, yet many patients do not show clinical responses. While most immunotherapies target T cells, myeloid cells are the most abundant cell type in solid tumors and are key orchestrators of the immunosuppressive tumor microenvironment (TME), hampering effective T cell responses. Therefore, unraveling the immune suppressive pathways within myeloid cells could unveil new avenues for cancer immunotherapy. Over the past decade, Siglec receptors and their ligand, sialic acids, have emerged as a novel immune checkpoint on myeloid cells. In this review, we highlight key findings on how sialic acids modify immunity in the TME through engagement of Siglec-7/9/10/15 expressed on myeloid cells, and how the sialic acid-Siglec axis can be targeted for future cancer immunotherapies.
Collapse
Affiliation(s)
- Kelly Boelaars
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, De Boelelaan, 1117, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Kaneko T, Ezra S, Abdo R, Voss C, Zhong S, Liu X, Hovey O, Slessarev M, Van Nynatten LR, Ye M, Fraser DD, Li SSC. Kinome and phosphoproteome reprogramming underlies the aberrant immune responses in critically ill COVID-19 patients. Clin Proteomics 2024; 21:13. [PMID: 38389037 PMCID: PMC10882830 DOI: 10.1186/s12014-024-09457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
SARS-CoV-2 infection triggers extensive host immune reactions, leading to severe diseases in certain individuals. However, the molecular basis underlying the excessive yet non-productive immune responses in severe COVID-19 remains incompletely understood. In this study, we conducted a comprehensive analysis of the peripheral blood mononuclear cell (PBMC) proteome and phosphoproteome in sepsis patients positive or negative for SARS-CoV-2 infection, as well as healthy subjects, using quantitative mass spectrometry. Our findings demonstrate dynamic changes in the COVID-19 PBMC proteome and phosphoproteome during disease progression, with distinctive protein or phosphoprotein signatures capable of distinguishing longitudinal disease states. Furthermore, SARS-CoV-2 infection induces a global reprogramming of the kinome and phosphoproteome, resulting in defective adaptive immune response mediated by the B and T lymphocytes, compromised innate immune responses involving the SIGLEC and SLAM family of immunoreceptors, and excessive cytokine-JAK-STAT signaling. In addition to uncovering host proteome and phosphoproteome aberrations caused by SARS-CoV-2, our work recapitulates several reported therapeutic targets for COVID-19 and identified numerous new candidates, including the kinases PKG1, CK2, ROCK1/2, GRK2, SYK, JAK2/3, TYK2, DNA-PK, PKCδ, and the cytokine IL-12.
Collapse
Affiliation(s)
- Tomonori Kaneko
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Sally Ezra
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Rober Abdo
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| | - Courtney Voss
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Shanshan Zhong
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Xuguang Liu
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Owen Hovey
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Marat Slessarev
- Departments of Medicine and Pediatrics, Western University, London, Canada
| | | | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Douglas D Fraser
- Departments of Medicine and Pediatrics, Western University, London, Canada
- Lawson Health Research Institute, 750 Base Line Rd E, London, ON, N6C 2R5, Canada
| | - Shawn Shun-Cheng Li
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada.
| |
Collapse
|
27
|
Stewart N, Daly J, Drummond-Guy O, Krishnamoorthy V, Stark JC, Riley NM, Williams KC, Bertozzi CR, Wisnovsky S. The glycoimmune checkpoint receptor Siglec-7 interacts with T-cell ligands and regulates T-cell activation. J Biol Chem 2024; 300:105579. [PMID: 38141764 PMCID: PMC10831161 DOI: 10.1016/j.jbc.2023.105579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 12/25/2023] Open
Abstract
Siglec-7 (sialic acid-binding immunoglobulin-like lectin 7) is a glycan-binding immune receptor that is emerging as a significant target of interest for cancer immunotherapy. The physiological ligands that bind Siglec-7, however, remain incompletely defined. In this study, we characterized the expression of Siglec-7 ligands on peripheral immune cell subsets and assessed whether Siglec-7 functionally regulates interactions between immune cells. We found that disialyl core 1 O-glycans are the major immune ligands for Siglec-7 and that these ligands are particularly highly expressed on naïve T-cells. Densely glycosylated sialomucins are the primary carriers of these glycans, in particular a glycoform of the cell-surface marker CD43. Biosynthesis of Siglec-7-binding glycans is dynamically controlled on different immune cell subsets through a genetic circuit involving the glycosyltransferase GCNT1. Siglec-7 blockade was found to increase activation of both primary T-cells and antigen-presenting dendritic cells in vitro, indicating that Siglec-7 binds T-cell glycans to regulate intraimmune signaling. Finally, we present evidence that Siglec-7 directly activates signaling pathways in T-cells, suggesting a new biological function for this receptor. These studies conclusively demonstrate the existence of a novel Siglec-7-mediated signaling axis that physiologically regulates T-cell activity. Going forward, our findings have significant implications for the design and implementation of therapies targeting immunoregulatory Siglec receptors.
Collapse
Affiliation(s)
- Natalie Stewart
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Daly
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Olivia Drummond-Guy
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vignesh Krishnamoorthy
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica C Stark
- Department of Chemistry & Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Boston, Massachusetts, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Boston, Massachusetts, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Boston, Massachusetts, USA
| | - Nicholas M Riley
- Department of Chemistry & Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Karla C Williams
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolyn R Bertozzi
- Department of Chemistry & Sarafan ChEM-H, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Simon Wisnovsky
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
28
|
Li X, Wu D, Li Q, Gu J, Gao W, Zhu X, Yin W, Zhu R, Zhu L, Jiao N. Host-microbiota interactions contributing to the heterogeneous tumor microenvironment in colorectal cancer. Physiol Genomics 2024; 56:221-234. [PMID: 38073489 DOI: 10.1152/physiolgenomics.00103.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
Colorectal cancer (CRC) exhibits pronounced heterogeneity and is categorized into four widely accepted consensus molecular subtypes (CMSs) with unique tumor microenvironments (TMEs). However, the intricate landscape of the microbiota and host-microbiota interactions within these TMEs remains elusive. Using RNA-sequencing data from The Cancer Genome Atlas, we analyzed the host transcriptomes and intratumoral microbiome profiles of CRC samples. Distinct host genes and microbial genera were identified among the CMSs. Immune microenvironments were evaluated using CIBERSORTx and ESTIMATE, and microbial coabundance patterns were assessed with FastSpar. Through LASSO penalized regression, we explored host-microbiota associations for each CMS. Our analysis revealed distinct host gene signatures within the CMSs, which encompassed ferroptosis-related genes and specific immune microenvironments. Moreover, we identified 293, 153, 66, and 109 intratumoral microbial genera with differential abundance, and host-microbiota associations contributed to distinct TMEs, characterized by 829, 1,270, 634, and 1,882 robust gene-microbe associations for each CMS in CMS1-CMS4, respectively. CMS1 featured inflammation-related HSF1 activation and gene interactions within the endothelin pathway and Flammeovirga. Integrin-related genes displayed positive correlations with Sutterella in CMS2, whereas CMS3 spotlighted microbial associations with biosynthetic and metabolic pathways. In CMS4, genes involved in collagen biosynthesis showed positive associations with Sutterella, contributing to disruptions in homeostasis. Notably, immune-rich subtypes exhibited pronounced ferroptosis dysregulation, potentially linked to tissue microbial colonization. This comprehensive investigation delineates the diverse landscapes of the TME within each CMS, incorporating host genes, intratumoral microbiota, and their complex interactions. These findings shed light on previously uncharted mechanisms underpinning CRC heterogeneity and suggest potential therapeutic targets.NEW & NOTEWORTHY This study determined the following: 1) providing a comprehensive landscape of consensus molecular subtype (CMS)-specific tumor microenvironments (TMEs); 2) constructing CMS-specific networks, including host genes, intratumoral microbiota, and enriched pathways, analyzing their associations to uncover unique patterns that demonstrate the intricate interplay within the TME; and 3) revealing a connection between immune-rich subtypes and ferroptosis activation, suggesting a potential regulatory role of the microbiota in ferroptosis dysregulation of the colorectal cancer TME.
Collapse
Affiliation(s)
- Xiaoyi Li
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Dingfeng Wu
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qiuyu Li
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jinglan Gu
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wenxing Gao
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xinyue Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Wenjing Yin
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Ruixin Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Lixin Zhu
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Na Jiao
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
29
|
Zou Y, Guo S, Liao Y, Chen W, Chen Z, Chen J, Wen L, Xie X. Ceramide metabolism-related prognostic signature and immunosuppressive function of ST3GAL1 in osteosarcoma. Transl Oncol 2024; 40:101840. [PMID: 38029509 PMCID: PMC10698579 DOI: 10.1016/j.tranon.2023.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor with elevated disability and mortality rates in children and adolescents and the therapeutic effect for osteosarcoma has remained stagnant in the past 30 years. Emerging evidence has shown ceramide metabolism plays a vital role in tumor progression, but its mechanisms in osteosarcoma progression remain unknown. Through consensus clustering and LASSO regression analysis based on the osteosarcoma cohorts from TARGET database, we constructed a ceramide metabolism-related prognostic signature including ten genes for osteosarcoma, with ST3GAL1 exhibiting the highest hazard ratio. Biological signatures analysis demonstrated that ceramide metabolism was associated with immune-related pathways, immune cell infiltration and the expression of immune checkpoint genes. Single-cell profiling revealed that ceramide metabolism was enriched in myeloid, osteoblast and mesenchymal cells. The interaction between TAMs and CD8+ T cells played an essential role in osteosarcoma. ST3GAL1 regulated the SPP1-CD44 interaction between TAMs and CD8+ T cells and IL-10 secretion in TAMs through α2,3 sialic acid receptors, which inhibited CD8+ T cell function. IHC analysis showed that ST3GAL1 expression correlated with the prognosis of osteosarcoma patients. Co-culture assay revealed that upregulation of ST3GAL1 in tumor cells regulated the differentiation of TAMs and cytokine secretion. Collectively, our findings demonstrated that ceramide metabolism was associated with clinical outcome in osteosarcoma. ST3GAL1 facilitated tumor progression through regulating tumor immune microenvironment, providing a feasible therapeutic approach for patients with osteosarcoma.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Siyao Guo
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Liao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Weidong Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Ziyun Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Junkai Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Lili Wen
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Wang Y, Xu Z, Wu KL, Yu L, Wang C, Ding H, Gao Y, Sun H, Wu YH, Xia M, Chen Y, Xiao H. Siglec-15/sialic acid axis as a central glyco-immune checkpoint in breast cancer bone metastasis. Proc Natl Acad Sci U S A 2024; 121:e2312929121. [PMID: 38252825 PMCID: PMC10835054 DOI: 10.1073/pnas.2312929121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Immunotherapy is a promising approach for treating metastatic breast cancer (MBC), offering new possibilities for therapy. While checkpoint inhibitors have shown great progress in the treatment of metastatic breast cancer, their effectiveness in patients with bone metastases has been disappointing. This lack of efficacy seems to be specific to the bone environment, which exhibits immunosuppressive features. In this study, we elucidate the multiple roles of the sialic acid-binding Ig-like lectin (Siglec)-15/sialic acid glyco-immune checkpoint axis in the bone metastatic niche and explore potential therapeutic strategies targeting this glyco-immune checkpoint. Our research reveals that elevated levels of Siglec-15 in the bone metastatic niche can promote tumor-induced osteoclastogenesis as well as suppress antigen-specific T cell responses. Next, we demonstrate that antibody blockade of the Siglec-15/sialic acid glyco-immune checkpoint axis can act as a potential treatment for breast cancer bone metastasis. By targeting this pathway, we not only aim to treat bone metastasis but also inhibit the spread of metastatic cancer cells from bone lesions to other organs.
Collapse
Affiliation(s)
- Yixian Wang
- Department of Chemistry, Rice University, Houston, TX77005
| | - Zhan Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Kuan-Lin Wu
- Department of Chemistry, Rice University, Houston, TX77005
| | - Liqun Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Chenhang Wang
- Department of Chemistry, Rice University, Houston, TX77005
| | - Haoxue Ding
- Department of Chemistry, Rice University, Houston, TX77005
| | - Yang Gao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Han Sun
- Department of Chemistry, Rice University, Houston, TX77005
| | - Yi-Hsuan Wu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Meng Xia
- Department of Chemistry, Rice University, Houston, TX77005
| | - Yuda Chen
- Department of Chemistry, Rice University, Houston, TX77005
| | - Han Xiao
- Department of Chemistry, Rice University, Houston, TX77005
- Department of Biosciences, Rice University, Houston, TX77005
- Department of Bioengineering, Rice University, Houston, TX77005
| |
Collapse
|
31
|
El Zawawy NA, El-Safty S, Kenawy ER, Ibrahim Salem S, Ali SS, Mahmoud YAG. Exploring the biomedical potential of a novel modified glass ionomer cement against the pandrug-resistant oral pathogen Candida albicans SYN-01. J Oral Microbiol 2023; 15:2195741. [PMID: 37008537 PMCID: PMC10064826 DOI: 10.1080/20002297.2023.2195741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Dental caries is an infectious disease that is a major concern for dentists. Streptococci and Lactobacilli were long thought to be the primary etiology responsible for caries. Candida albicans with acidogenic and aciduric characteristics has recently been implicated in the onset and progression of cariogenic lesions. Moreover, due to the increased resistance to common antimicrobials, the discovery of innovative candidates is in high demand. Therefore, our study might be the first report that explores the efficacy of glass ionomer cement (GIC) incorporated with a newly modified carboxylated chitosan derivative (CS-MC) against multidrug-resistant (MDR) and/or pandrug resistant (PDR) C. albicans isolated from the oral cavity. In this work, four CS-MC-GIC groups with different concentrations were formulated. Group four (CS-MC-GIC-4) gave a significant performance as an anticandidal agent against selected PDR Candida strain, with an obvious decrease in its cell viability and high antibiofilm activity. It also, enhanced all the mechanical properties and supports cell viability of Vero cells as a nontoxic compound. Moreover, CS-MC-GIC-4 inhibited neuraminidases completely, which might provide a novel mechanism to prevent dental/oral infections. Thus, findings in this study open up new prospect of the utilization of CS-MC-GIC as a novel dental filling material against oral drug-resistant Candida.
![]() ![]()
Collapse
Affiliation(s)
- Nessma A. El Zawawy
- Botany Department, Faculty of Science Tanta University, Tanta, Egypt
- CONTACT Nessma A. El Zawawy Botany Department, Faculty of Science, Tanta University, Tanta31527, Egypt
| | - Samy El-Safty
- Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - El-Refaie Kenawy
- Polymer Research Group, Department of Chemistry, Faculty of Science Tanta University, Tanta, Egypt
| | - Sara Ibrahim Salem
- Polymer Research Group, Department of Chemistry, Faculty of Science Tanta University, Tanta, Egypt
| | - Sameh S. Ali
- Botany Department, Faculty of Science Tanta University, Tanta, Egypt
| | | |
Collapse
|
32
|
Abou Assale T, Kuenzel T, Schink T, Shahraz A, Neumann H, Klaus C. 6'-sialyllactose ameliorates the ototoxic effects of the aminoglycoside antibiotic neomycin in susceptible mice. Front Immunol 2023; 14:1264060. [PMID: 38130726 PMCID: PMC10733791 DOI: 10.3389/fimmu.2023.1264060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Sialic acids are terminal sugars of the cellular glycocalyx and are highly abundant in the nervous tissue. Sialylation is sensed by the innate immune system and acts as an inhibitory immune checkpoint. Aminoglycoside antibiotics such as neomycin have been shown to activate tissue macrophages and induce ototoxicity. In this study, we investigated the systemic subcutaneous application of the human milk oligosaccharide 6'-sialyllactose (6SL) as a potential therapy for neomycin-induced ototoxicity in postnatal mice. Repeated systemic treatment of mice with 6SL ameliorated neomycin-induced hearing loss and attenuated neomycin-triggered macrophage activation in the cochlear spiral ganglion. In addition, 6SL reversed the neomycin-mediated increase in gene transcription of the pro-inflammatory cytokine interleukin-1β (Il-1b) and the apoptotic/inflammatory kinase Pik3cd in the inner ear. Interestingly, neomycin application also increased the transcription of desialylating enzyme neuraminidase 3 (Neu3) in the inner ear. In vitro, we confirmed that treatment with 6SL had anti-inflammatory, anti-phagocytic, and neuroprotective effects on cultured lipopolysaccharide-challenged human THP1-macrophages. Thus, our data demonstrated that treatment with 6SL has anti-inflammatory and protective effects against neomycin-mediated macrophage activation and ototoxicity.
Collapse
Affiliation(s)
- Tawfik Abou Assale
- Neural Regeneration, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Thomas Kuenzel
- Auditory Neurophysiology, Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Tamara Schink
- Neural Regeneration, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Anahita Shahraz
- Neural Regeneration, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Harald Neumann
- Neural Regeneration, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Christine Klaus
- Neural Regeneration, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
33
|
Wu Y, Vos GM, Huang C, Chapla D, Kimpel ALM, Moremen KW, de Vries RP, Boons GJ. Exploiting Substrate Specificities of 6- O-Sulfotransferases to Enzymatically Synthesize Keratan Sulfate Oligosaccharides. JACS AU 2023; 3:3155-3164. [PMID: 38034954 PMCID: PMC10685434 DOI: 10.1021/jacsau.3c00488] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 12/02/2023]
Abstract
Keratan sulfate (KS) is a glycosaminoglycan that is widely expressed in the extracellular matrix of various tissue types, where it is involved in many biological processes. Herein, we describe a chemo-enzymatic approach to preparing well-defined KS oligosaccharides by exploiting the known and newly discovered substrate specificities of relevant sulfotransferases. The premise of the approach is that recombinant GlcNAc-6-O-sulfotransferases (CHST2) only sulfate terminal GlcNAc moieties to give GlcNAc6S that can be galactosylated by B4GalT4. Furthermore, CHST1 can modify the internal galactosides of a poly-LacNAc chain; however, it was found that a GlcNAc6S residue greatly increases the reactivity of CHST1 of a neighboring and internal galactoside. The presence of a 2,3-linked sialoside further modulates the site of modification by CHST1, and a galactoside flanked by 2,3-Neu5Ac and GlcNAc6S is preferentially sulfated over the other Gal residues. The substrate specificities of CHST1 and 2 were exploited to prepare a panel of KS oligosaccharides, including selectively sulfated N-glycans. The compounds and several other reference derivatives were used to construct a microarray that was probed for binding by several plant lectins, Siglec proteins, and hemagglutinins of influenza viruses. It was found that not only the sulfation pattern but also the presentation of epitopes as part of an O- or N-glycan determines binding properties.
Collapse
Affiliation(s)
- Yunfei Wu
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Gaël M. Vos
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Chin Huang
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Digantkumar Chapla
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Anne L. M. Kimpel
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Kelley W. Moremen
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Robert P. de Vries
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Geert-Jan Boons
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Bijvoet
Center for Biomolecular Research, Utrecht
University, Padualaan
8, Utrecht 3584 CH, The Netherlands
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
34
|
Krishnan A, Sendra VG, Patel D, Lad A, Greene MK, Smyth P, Gallaher SA, Herron ÚM, Scott CJ, Genead M, Tolentino M. PolySialic acid-nanoparticles inhibit macrophage mediated inflammation through Siglec agonism: a potential treatment for age related macular degeneration. Front Immunol 2023; 14:1237016. [PMID: 38045700 PMCID: PMC10690618 DOI: 10.3389/fimmu.2023.1237016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Age-related macular degeneration (AMD) is a chronic, progressive retinal disease characterized by an inflammatory response mediated by activated macrophages and microglia infiltrating the inner layer of the retina. In this study, we demonstrate that inhibition of macrophages through Siglec binding in the AMD eye can generate therapeutically useful effects. We show that Siglecs-7, -9 and -11 are upregulated in AMD associated M0 and M1 macrophages, and that these can be selectively targeted using polysialic acid (PolySia)-nanoparticles (NPs) to control dampen AMD-associated inflammation. In vitro studies showed that PolySia-NPs bind to macrophages through human Siglecs-7, -9, -11 as well as murine ortholog Siglec-E. Following treatment with PolySia-NPs, we observed that the PolySia-NPs bound and agonized the macrophage Siglecs resulting in a significant decrease in the secretion of IL-6, IL-1β, TNF-α and VEGF, and an increased secretion of IL-10. In vivo intravitreal (IVT) injection of PolySia-NPs was found to be well-tolerated and safe making it effective in preventing thinning of the retinal outer nuclear layer (ONL), inhibiting macrophage infiltration, and restoring electrophysiological retinal function in a model of bright light-induced retinal degeneration. In a clinically validated, laser-induced choroidal neovascularization (CNV) model of exudative AMD, PolySia-NPs reduced the size of neovascular lesions with associated reduction in macrophages. The PolySia-NPs described herein are therefore a promising therapeutic strategy for repolarizing pro-inflammatory macrophages to a more anti-inflammatory, non-angiogenic phenotype, which play a key role in the pathophysiology of non-exudative AMD.
Collapse
Affiliation(s)
| | | | - Diyan Patel
- Aviceda Therapeutics Inc., Cambridge, MA, United States
| | - Amit Lad
- Aviceda Therapeutics Inc., Cambridge, MA, United States
| | - Michelle K. Greene
- Aviceda Therapeutics Inc., Cambridge, MA, United States
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Peter Smyth
- Aviceda Therapeutics Inc., Cambridge, MA, United States
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Samantha A. Gallaher
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Úna M. Herron
- Aviceda Therapeutics Inc., Cambridge, MA, United States
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Christopher J. Scott
- Aviceda Therapeutics Inc., Cambridge, MA, United States
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | | | - Michael Tolentino
- Aviceda Therapeutics Inc., Cambridge, MA, United States
- Department of Ophthalmology, University of Central Florida School of Medicine, Orlando, FL, United States
| |
Collapse
|
35
|
Boelaars K, Goossens-Kruijssen L, Wang D, de Winde CM, Rodriguez E, Lindijer D, Springer B, van der Haar Àvila I, de Haas A, Wehry L, Boon L, Mebius RE, van Montfoort N, Wuhrer M, den Haan JMM, van Vliet SJ, van Kooyk Y. Unraveling the impact of sialic acids on the immune landscape and immunotherapy efficacy in pancreatic cancer. J Immunother Cancer 2023; 11:e007805. [PMID: 37940346 PMCID: PMC10632901 DOI: 10.1136/jitc-2023-007805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Despite the successful application of immune checkpoint blockade in a range of human cancers, immunotherapy in PDAC remains unsuccessful. PDAC is characterized by a desmoplastic, hypoxic and highly immunosuppressive tumor microenvironment (TME), where T-cell infiltration is often lacking (immune desert), or where T cells are located distant from the tumor islands (immune excluded). Converting the TME to an immune-inflamed state, allowing T-cell infiltration, could increase the success of immunotherapy in PDAC. METHOD In this study, we use the KPC3 subcutaneous PDAC mouse model to investigate the role of tumor-derived sialic acids in shaping the tumor immune landscape. A sialic acid deficient KPC3 line was generated by genetic knock-out of the CMAS (cytidine monophosphate N-acetylneuraminic acid synthetase) enzyme, a critical enzyme in the synthesis of sialic acid-containing glycans. The effect of sialic acid-deficiency on immunotherapy efficacy was assessed by treatment with anti-programmed cell death protein 1 (PD-1) and agonistic CD40. RESULT The absence of sialic acids in KPC3 tumors resulted in increased numbers of CD4+ and CD8+ T cells in the TME, and reduced frequencies of CD4+ regulatory T cells (Tregs) within the T-cell population. Importantly, CD8+ T cells were able to infiltrate the tumor islands in sialic acid-deficient tumors. These favorable alterations in the immune landscape sensitized sialic acid-deficient tumors to immunotherapy, which was ineffective in sialic acid-expressing KPC3 tumors. In addition, high expression of sialylation-related genes in human pancreatic cancer correlated with decreased CD8+ T-cell infiltration, increased presence of Tregs, and poorer survival probability. CONCLUSION Our results demonstrate that tumor-derived sialic acids mediate T-cell exclusion within the PDAC TME, thereby impairing immunotherapy efficacy. Targeting sialic acids represents a potential strategy to enhance T-cell infiltration and improve immunotherapy outcomes in PDAC.
Collapse
Affiliation(s)
- Kelly Boelaars
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Laura Goossens-Kruijssen
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Di Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Charlotte M de Winde
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Ernesto Rodriguez
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Dimitri Lindijer
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Babet Springer
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Irene van der Haar Àvila
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Aram de Haas
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Laetitia Wehry
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | | | - Reina E Mebius
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Joke M M den Haan
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Sandra J van Vliet
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Wu Z, Wang Z, Wu H, Zheng N, Huang D, Huang Z, Han H, Bao J, Xu H, Zhang R, Du Z, Wu D. The pan-cancer multi-omics landscape of key genes of sialylation combined with RNA-sequencing validation. Comput Biol Med 2023; 166:107556. [PMID: 37801920 DOI: 10.1016/j.compbiomed.2023.107556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Sialylation, the process of salivary acid glycan synthesis, plays a pivotal function in tumor growth, immune escape, tumor metastasis, and resistance to drugs. However, the association between sialylation and prognosis, tumor microenvironment (TME), and treatment response in a variety of cancers remains unclear. METHODS A comprehensive survey of the expression profile, prognostic value, and genetic and epigenetic alterations of sialylation-related genes was performed in pan-cancer. Subsequently, the single-sample gene set enrichment analysis (ssGSEA) algorithm was used to compute sialylation pathway scores in pan-cancer. Correlations of sialylation pathway scores with clinical features, prognosis, and TME were evaluated using multiple algorithms. Finally, the efficacy of the sialylation pathway score in determining the effect of immunotherapy was evaluated. The expression of sialylation-related genes were verified by RNA-sequencing. RESULTS Significant differences were observed in sialylation-related genes expression between tumors and adjacent normal tissues for most cancer types. Sialylation pathway scores differed according to the type of tumor, where the poor prognosis was correlated with high sialylation pathway scores in uveal melanoma (UVM) and pancreatic adenocarcinoma (PAAD). In addition, sialylation pathway scores were positively associated with the ImmuneScore, StromalScore and immune-related pathways. Moreover, the level of immune cells infiltration was higher in tumors with higher sialylation pathway scores. Finally, patients with high sialylation pathway scores were more sensitive to immunotherapy. CONCLUSION Sialylation-related genes are essential in pan-cancer. The sialylation pathway score may be used as a biomarker in oncology patients.
Collapse
Affiliation(s)
- Zhixuan Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Ziqiong Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Haodong Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Na Zheng
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Dongdong Huang
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Zhipeng Huang
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Hui Han
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Jingxia Bao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Hongjie Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Rongrong Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China.
| | - Zhou Du
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China.
| | - Dazhou Wu
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China.
| |
Collapse
|
37
|
Lozano-Rodríguez R, Avendaño-Ortíz J, Montalbán-Hernández K, Ruiz-Rodríguez JC, Ferrer R, Martín-Quirós A, Maroun-Eid C, González-López JJ, Fàbrega A, Terrón-Arcos V, Gutiérrez-Fernández M, Alonso-López E, Cubillos-Zapata C, Fernández-Velasco M, Pérez de Diego R, Pelegrin P, García-Palenciano C, Cueto FJ, Del Fresno C, López-Collazo E. The prognostic impact of SIGLEC5-induced impairment of CD8 + T cell activation in sepsis. EBioMedicine 2023; 97:104841. [PMID: 37890368 PMCID: PMC10630607 DOI: 10.1016/j.ebiom.2023.104841] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Sepsis is associated with T-cell exhaustion, which significantly reduces patient outcomes. Therefore, targeting of immune checkpoints (ICs) is deemed necessary for effective sepsis management. Here, we evaluated the role of SIGLEC5 as an IC ligand and explored its potential as a biomarker for sepsis. METHODS In vitro and in vivo assays were conducted to both analyse SIGLEC5's role as an IC ligand, as well as assess its impact on survival in sepsis. A multicentre prospective cohort study was conducted to evaluate the plasmatic soluble SIGLEC5 (sSIGLEC5) as a mortality predictor in the first 60 days after admission in sepsis patients. Recruitment included sepsis patients (n = 346), controls with systemic inflammatory response syndrome (n = 80), aneurism (n = 11), stroke (n = 16), and healthy volunteers (HVs, n = 100). FINDINGS SIGLEC5 expression on monocytes was increased by HIF1α and was higher in septic patients than in healthy volunteers after ex vivo LPS challenge. Furthermore, SIGLEC5-PSGL1 interaction inhibited CD8+ T-cell proliferation. Administration of sSIGLEC5r (0.8 mg/kg) had adverse effects in mouse endotoxemia models. Additionally, plasma sSIGLEC5 levels of septic patients were higher than HVs and ROC analysis revealed it as a mortality marker with an AUC of 0.713 (95% CI, 0.656-0.769; p < 0.0001). Kaplan-Meier survival curve showed a significant decrease in survival above the calculated cut-off (HR of 3.418, 95% CI, 2.380-4.907, p < 0.0001 by log-rank test) estimated by Youden Index (523.6 ng/mL). INTERPRETATION SIGLEC5 displays the hallmarks of an IC ligand, and plasma levels of sSIGLEC5 have been linked with increased mortality in septic patients. FUNDING Instituto de Salud Carlos III (ISCIII) and "Fondos FEDER" to ELC (PIE15/00065, PI18/00148, PI14/01234, PI21/00869), CDF (PI21/01178), RLR (FI19/00334) and JAO (CD21/00059).
Collapse
Affiliation(s)
- Roberto Lozano-Rodríguez
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain; Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain
| | - José Avendaño-Ortíz
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain; Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain; CIBER of Respiratory Diseases (CIBERES), Avenida de Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Karla Montalbán-Hernández
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain; Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain
| | - Juan Carlos Ruiz-Rodríguez
- Intensive Care Department, Vall d'Hebron University Hospital, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Institute of Research and Medicine Department, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119, Barcelona 08035, Spain
| | - Ricardo Ferrer
- Intensive Care Department, Vall d'Hebron University Hospital, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Institute of Research and Medicine Department, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119, Barcelona 08035, Spain
| | - Alejandro Martín-Quirós
- Emergency Department, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain
| | - Charbel Maroun-Eid
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain; Emergency Department, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain
| | - Juan José González-López
- Microbiology Department, Vall d'Hebron University Hospital and Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119, Barcelona 08035, Spain
| | - Anna Fàbrega
- Microbiology Department, Vall d'Hebron University Hospital and Faculty of Health Sciences, University of Vic - Central University of Catalonia (UVic-UCC), Manresa, Spain
| | - Verónica Terrón-Arcos
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain; Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain
| | - María Gutiérrez-Fernández
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain
| | - Elisa Alonso-López
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain
| | | | - María Fernández-Velasco
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain
| | - Rebeca Pérez de Diego
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain
| | - Pablo Pelegrin
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), CIBERehd, Clinical University Hospital Virgen de la Arrixaca, Ctra. Madrid-Cartagena, s/n, El Palmar, Murcia 30120, Spain
| | - Carlos García-Palenciano
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), CIBERehd, Clinical University Hospital Virgen de la Arrixaca, Ctra. Madrid-Cartagena, s/n, El Palmar, Murcia 30120, Spain
| | - Francisco J Cueto
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain; Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain
| | - Carlos Del Fresno
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain; Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain
| | - Eduardo López-Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain; Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, Madrid 28046, Spain; CIBER of Respiratory Diseases (CIBERES), Avenida de Monforte de Lemos, 3-5, Madrid 28029, Spain.
| |
Collapse
|
38
|
Vos GM, Hooijschuur KC, Li Z, Fjeldsted J, Klein C, de Vries RP, Toraño JS, Boons GJ. Sialic acid O-acetylation patterns and glycosidic linkage type determination by ion mobility-mass spectrometry. Nat Commun 2023; 14:6795. [PMID: 37880209 PMCID: PMC10600165 DOI: 10.1038/s41467-023-42575-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
O-acetylation is a common modification of sialic acids that has been implicated in a multitude of biological and disease processes. A lack of analytical methods that can determine exact structures of sialic acid variants is a hurdle to determine roles of distinct O-acetylated sialosides. Here, we describe a drift tube ion mobility-mass spectrometry approach that can elucidate exact O-acetylation patterns as well as glycosidic linkage types of sialosides isolated from complex biological samples. It is based on the use of a library of synthetic O-acetylated sialosides to establish intrinsic collision cross section (CCS) values of diagnostic fragment ions. The CCS values were used to characterize O-acetylated sialosides from mucins and N-linked glycans from biologicals as well as equine tracheal and nasal tissues. It uncovered contrasting sialic acid linkage types of acetylated and non-acetylated sialic acids and provided a rationale for sialic acid binding preferences of equine H7 influenza A viruses.
Collapse
Affiliation(s)
- Gaёl M Vos
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Kevin C Hooijschuur
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Zeshi Li
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | | | | | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Javier Sastre Toraño
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG, Utrecht, The Netherlands.
- Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
39
|
Yang ST, Liu CH, Chao WT, Liu HH, Lee WL, Wang PH. The role of sialylation in gynecologic cancers. Taiwan J Obstet Gynecol 2023; 62:651-654. [PMID: 37678990 DOI: 10.1016/j.tjog.2023.07.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Sialic acids (SA) are a kind of nine-carbon backbone sugars, serving as important molecules in cell-to-cell or cell-to-extra-cellular matrix interaction mediated by either O-linked glycosylation or N-linked glycosylation to attach the terminal end of glycans, glycoproteins, and glycolipids. All processes need a balance between sialylation by sialyltransferase (STs) and desialylation by sialidases (also known as neuraminidases, NEU). Although there is much in uncertainty whether the sialyation plays in cancer development and progression, at least four mechanisms are proposed, including surveillance of immune system, modification of cellular apoptosis and cell death, alteration of cellular surface of cancer cells and tumor associated microenvironment responsible carcinogenesis, growth and metastases. The current review focuses on the role of glycosylation in gynecologic organ-related cancers, such as ovarian cancer, cervical and endometrial cancer. Evidence shows that sialylation involving in the alternation of surface components of cells (tumor and cells in the microenvironment of host) plays an important role for carcinogenesis (escape from immunosurveillance) and dissemination (metastasis) (sloughing from the original site of cancer, migration into the circulation system, extravasation from the circulatory system to the distant site and finally deposition and establishment on the new growth lesion to complete the metastatic process). Additionally, modification of glycosylation can enhance or alleviate the aggressive characteristics of the cancer behaviors. All suggest that more understandings of glycosylation on cancers may provide a new therapeutic field to assist the cancer treatment in the near future.
Collapse
Affiliation(s)
- Szu-Ting Yang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Female Cancer Foundation, Taipei, Taiwan
| | - Chia-Hao Liu
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Female Cancer Foundation, Taipei, Taiwan
| | - Wei-Ting Chao
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Female Cancer Foundation, Taipei, Taiwan
| | - Hung-Hsien Liu
- Department of Medical Imaging and Intervention, Tucheng Hospital, New Taipei City, Taiwan
| | - Wen-Ling Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Female Cancer Foundation, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
40
|
Ye Z, Wang Y, Xiang B, Wang H, Tao H, Zhang C, Zhang S, Sun D, Luo F, Song L. Roles of the Siglec family in bone and bone homeostasis. Biomed Pharmacother 2023; 165:115064. [PMID: 37413904 DOI: 10.1016/j.biopha.2023.115064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Tremendous progress has been seen in the study of the role of sialic acid binding im-munoglobulin type lectins (Siglecs) in osteoimmunology in the past two decades. Interest in Siglecs as immune checkpoints has grown from the recognition that Siglecs have relevance to human disease. Siglecs play important roles in inflammation and cancer, and play key roles in immune cell signaling. By recognizing common sialic acid containing glycans on glycoproteins and glycolipids as regulatory receptors for immune cell signals, Siglecs are expressed on most immune cells and play important roles in normal homeostasis and self-tolerance. In this review, we describe the role that the siglec family plays in bone and bone homeostasis, including the regulation of osteoclast differentiation as well as recent advances in inflammation, cancer and osteoporosis. Particular emphasis is placed on the relevant functions of Siglecs in self-tolerance and as pattern recognition receptors in immune responses, thereby potentially providing emerging strategies for the treatment of bone related diseases.
Collapse
Affiliation(s)
- Zi Ye
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Yetong Wang
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Binqing Xiang
- Department of Surgical Anesthesia, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Heng Wang
- Army Border Defense 331st Brigade, Dandong 118000, China
| | - Haiyan Tao
- Health Management Center, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Chengmin Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Shuai Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Dong Sun
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Lei Song
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
41
|
Guerrero-Flores GN, Pacheco FJ, Boskovic DS, Pacheco SOS, Zhang G, Fraser GE, Miles FL. Sialic acids Neu5Ac and KDN in adipose tissue samples from individuals following habitual vegetarian or non-vegetarian dietary patterns. Sci Rep 2023; 13:12593. [PMID: 37537165 PMCID: PMC10400564 DOI: 10.1038/s41598-023-38102-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Sialic acids (Sias) are a class of sugar molecules with a parent nine-carbon neuraminic acid, generally present at the ends of carbohydrate chains, either attached to cellular surfaces or as secreted glycoconjugates. Given their position and structural diversity, Sias modulate a wide variety of biological processes. However, little is known about the role of Sias in human adipose tissue, or their implications for health and disease, particularly among individuals following different dietary patterns. The goal of this study was to measure N-Acetylneuraminic acid (Neu5Ac), N-Glycolylneuraminic acid (Neu5Gc), and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN) concentrations in adipose tissue samples from participants in the Adventist Health Study-2 (AHS-2) and to compare the abundance of these Sias in individuals following habitual, long-term vegetarian or non-vegetarian dietary patterns. A method was successfully developed for the extraction and detection of Sias in adipose tissue. Sias levels were quantified in 52 vegans, 56 lacto-vegetarians, and 48 non-vegetarians using LC-MS/MS with Neu5Ac-D-1,2,3-13C3 as an internal standard. Dietary groups were compared using linear regression. Vegans and lacto-ovo-vegetarians had significantly higher concentrations of Neu5Ac relative to non-vegetarians. While KDN levels tended to be higher in vegans and lacto-ovo-vegetarians, these differences were not statistically significant. However, KDN levels were significantly inversely associated with body mass index. In contrast, Neu5Gc was not detected in human adipose samples. It is plausible that different Neu5Ac concentrations in adipose tissues of vegetarians, compared to those of non-vegetarians, reflect a difference in the baseline inflammatory status between the two groups. Epidemiologic studies examining levels of Sias in human adipose tissue and other biospecimens will help to further explore their roles in development and progression of inflammatory conditions and chronic diseases.
Collapse
Affiliation(s)
- Gerardo N Guerrero-Flores
- Interdisciplinary Center for Research in Health and Behavioral Sciences, School of Medicine, Universidad Adventista del Plata, 3103, Libertador San Martín, Entre Ríos, Argentina
- Faculty of Medical Sciences, Universidad Nacional de Rosario (UNR), 3100, Rosario, Argentina
| | - Fabio J Pacheco
- Interdisciplinary Center for Research in Health and Behavioral Sciences, School of Medicine, Universidad Adventista del Plata, 3103, Libertador San Martín, Entre Ríos, Argentina
- Institute for Food Science and Nutrition, Universidad Adventista del Plata, 3103, Libertador San Martín, Entre Ríos, Argentina
| | - Danilo S Boskovic
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Sandaly O S Pacheco
- Interdisciplinary Center for Research in Health and Behavioral Sciences, School of Medicine, Universidad Adventista del Plata, 3103, Libertador San Martín, Entre Ríos, Argentina
- Institute for Food Science and Nutrition, Universidad Adventista del Plata, 3103, Libertador San Martín, Entre Ríos, Argentina
| | - Guangyu Zhang
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Gary E Fraser
- Center for Nutrition, Healthy Lifestyles and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, 92350, USA
- Adventist Health Study, Loma Linda University, Loma Linda, CA, 92350, USA
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Fayth L Miles
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.
- Center for Nutrition, Healthy Lifestyles and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, 92350, USA.
- Adventist Health Study, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|
42
|
Zhu D, Lu Y, Hu B, Pang Y, Liu B, Zhang M, Wang W, Wang Y. Highly-tumor-targeted PAD4 inhibitors with PBA modification inhibit tumors in vivo by specifically inhibiting the PAD4-H3cit-NETs pathway in neutrophils. Eur J Med Chem 2023; 258:115619. [PMID: 37421890 DOI: 10.1016/j.ejmech.2023.115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
As a new target for tumor therapy, PAD4 protein, shows excellent antitumor activity, and phenylboronic acid (PBA) could combine with sialic acid on the tumor surface to achieve dual targeting in situ and for metastatic tumors. The purpose of this study was therefore to modify PAD4 protein inhibitors with different phenylboronic acid groups in order to obtain highly-targeted PAD4 inhibitors. The activity and mechanism of these PBA-PAD4 inhibitors were studied in vitro by MTT assay, laser confocal analysis, and flow cytometry. The effects of the compounds on primary tumor and lung metastasis in mice were evaluated in vivo using a S180 sarcoma model and a 4T1 breast cancer model. In addition, cytometry mass (CyTOF) was used to analyze the immune microenvironment, and the results show that the PAD4 inhibitor 5i modified by m-PBA at the carboxyl terminal of ornithine skeleton had the best antitumor activity. In vitro evaluation of this activity revealed that 5i could not directly kill tumor cells but had a significant inhibitory effect on tumor cell metastasis. Further mechanism studies showed that 5i could be taken up by 4T1 cells in a time-dependent manner and distributed around the cell membrane but could not be taken up by normal cells. In addition, although 5i was distributed in the cytoplasm of tumor cells while in the nucleus of neutrophils, it could both decrease the histone 3 citrullination (H3cit) in the nucleus. In vivo 4T1 tumor-bearing mouse models, 5i inhibited breast cancer growth and metastasis in a concentration-dependent manner, and NET formation in tumor tissues was significantly reduced. In conclusion, PBA-PAD4 inhibitors show high targeting of tumor cells and good safety in vivo. By specifically inhibiting PAD4 protein in the neutrophil nucleus, PBA-PAD4 inhibitors also show excellent antitumor activity toward growth and metastasis in vivo, which provides a new idea for the design of highly-targeted PAD4 inhibitors.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, PR China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, PR China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, PR China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, PR China
| | - Bo Hu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, PR China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, PR China
| | - Yuheng Pang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, PR China
| | - Bingru Liu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, PR China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, PR China
| | - Miao Zhang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, PR China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, PR China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, PR China.
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, PR China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, PR China; Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
43
|
Lenza MP, Egia-Mendikute L, Antoñana-Vildosola A, Soares CO, Coelho H, Corzana F, Bosch A, Manisha P, Quintana JI, Oyenarte I, Unione L, Moure MJ, Azkargorta M, Atxabal U, Sobczak K, Elortza F, Sutherland JD, Barrio R, Marcelo F, Jiménez-Barbero J, Palazon A, Ereño-Orbea J. Structural insights into Siglec-15 reveal glycosylation dependency for its interaction with T cells through integrin CD11b. Nat Commun 2023; 14:3496. [PMID: 37311743 DOI: 10.1038/s41467-023-39119-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
Sialic acid-binding Ig-like lectin 15 (Siglec-15) is an immune modulator and emerging cancer immunotherapy target. However, limited understanding of its structure and mechanism of action restrains the development of drug candidates that unleash its full therapeutic potential. In this study, we elucidate the crystal structure of Siglec-15 and its binding epitope via co-crystallization with an anti-Siglec-15 blocking antibody. Using saturation transfer-difference nuclear magnetic resonance (STD-NMR) spectroscopy and molecular dynamics simulations, we reveal Siglec-15 binding mode to α(2,3)- and α(2,6)-linked sialic acids and the cancer-associated sialyl-Tn (STn) glycoform. We demonstrate that binding of Siglec-15 to T cells, which lack STn expression, depends on the presence of α(2,3)- and α(2,6)-linked sialoglycans. Furthermore, we identify the leukocyte integrin CD11b as a Siglec-15 binding partner on human T cells. Collectively, our findings provide an integrated understanding of the structural features of Siglec-15 and emphasize glycosylation as a crucial factor in controlling T cell responses.
Collapse
Affiliation(s)
- Maria Pia Lenza
- Chemical Glycobiology lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Asier Antoñana-Vildosola
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Cátia O Soares
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Caparica campus, 2829-516, Caparica, Portugal
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Caparica campus, 2829-516, Caparica, Portugal
| | - Helena Coelho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Caparica campus, 2829-516, Caparica, Portugal
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Caparica campus, 2829-516, Caparica, Portugal
| | - Francisco Corzana
- Department of Chemistry, University of La Rioja, The Center for Research in Chemical Synthesis, Madre de Dios 53, E-26006, Logroño, Spain
| | - Alexandre Bosch
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Prodhi Manisha
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Jon Imanol Quintana
- Chemical Glycobiology lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Iker Oyenarte
- Chemical Glycobiology lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Luca Unione
- Chemical Glycobiology lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - María Jesús Moure
- Chemical Glycobiology lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Spain
| | - Unai Atxabal
- Chemical Glycobiology lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Klaudia Sobczak
- Chemical Glycobiology lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Spain
| | - James D Sutherland
- Ubiquitin-likes and Development Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Rosa Barrio
- Ubiquitin-likes and Development Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Filipa Marcelo
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Caparica campus, 2829-516, Caparica, Portugal
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Caparica campus, 2829-516, Caparica, Portugal
| | - Jesús Jiménez-Barbero
- Chemical Glycobiology lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940, Leioa, Bizkaia, Spain.
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029, Madrid, Spain.
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - June Ereño-Orbea
- Chemical Glycobiology lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
44
|
Fosse JH, Andresen AMS, Ploss FB, Weli SC, Heffernan IA, Sapkota S, Lundgård K, Kuiper RV, Solhaug A, Falk K. The infectious salmon anemia virus esterase prunes erythrocyte surfaces in infected Atlantic salmon and exposes terminal sialic acids to lectin recognition. Front Immunol 2023; 14:1158077. [PMID: 37180109 PMCID: PMC10167051 DOI: 10.3389/fimmu.2023.1158077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
Many sialic acid-binding viruses express a receptor-destroying enzyme (RDE) that removes the virus-targeted receptor and limits viral interactions with the host cell surface. Despite a growing appreciation of how the viral RDE promotes viral fitness, little is known about its direct effects on the host. Infectious salmon anemia virus (ISAV) attaches to 4-O-acetylated sialic acids on Atlantic salmon epithelial, endothelial, and red blood cell surfaces. ISAV receptor binding and destruction are effectuated by the same molecule, the haemagglutinin esterase (HE). We recently discovered a global loss of vascular 4-O-acetylated sialic acids in ISAV-infected fish. The loss correlated with the expression of viral proteins, giving rise to the hypothesis that it was mediated by the HE. Here, we report that the ISAV receptor is also progressively lost from circulating erythrocytes in infected fish. Furthermore, salmon erythrocytes exposed to ISAV ex vivo lost their capacity to bind new ISAV particles. The loss of ISAV binding was not associated with receptor saturation. Moreover, upon loss of the ISAV receptor, erythrocyte surfaces became more available to the lectin wheat germ agglutinin, suggesting a potential to alter interactions with endogenous lectins of similar specificity. The pruning of erythrocyte surfaces was inhibited by an antibody that prevented ISAV attachment. Furthermore, recombinant HE, but not an esterase-silenced mutant, was sufficient to induce the observed surface modulation. This links the ISAV-induced erythrocyte modulation to the hydrolytic activity of the HE and shows that the observed effects are not mediated by endogenous esterases. Our findings are the first to directly link a viral RDE to extensive cell surface modulation in infected individuals. This raises the questions of whether other sialic acid-binding viruses that express RDEs affect host cells to a similar extent, and if such RDE-mediated cell surface modulation influences host biological functions with relevance to viral disease.
Collapse
|
45
|
Siddiqui SS. Non-canonical roles of Siglecs: Beyond sialic acid-binding and immune cell modulation. Mol Aspects Med 2023; 90:101145. [PMID: 36153172 DOI: 10.1016/j.mam.2022.101145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/11/2022] [Accepted: 09/13/2022] [Indexed: 02/08/2023]
Abstract
Siglecs (Sialic acid-binding immunoglobulin-type lectins) are I-type lectins that bind with sialic acid ligands (Sia). Most are expressed on the surface of leukocytes and are involved in immune regulation and possess immune tyrosine-based inhibitory motif (ITIM) in the intracellular domain, thus leading to inhibition of the immune response. This signaling is instrumental in maintaining quiescence under physiological conditions and acts as a brake for inflammatory cascades. By contrast, activating Siglecs carry positively charged residues in the transmembrane domain and interact with immune tyrosine-based activating motif (ITAM)-containing proteins, a DNAX-activating protein of 10-12 kDa (DAP10/12), to activate immune cells. There are various characteristics of Siglecs that do not fit within the classification of Siglec receptors as being either inhibitory or activating in nature. This review focuses on elucidating the non-canonical functions and interactions of Siglec receptors, which include Sia-independent interactions such as protein-protein interactions and interactions with lipids or other sugars. This review also summarizes Siglec expression and function on non-immune cells, and non-classical signaling of the receptor. Thus, this review will be beneficial to researchers interested in the field of Siglecs and sialic acid biology.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, United Kingdom.
| |
Collapse
|
46
|
Brzezicka KA, Paulson JC. Impact of Siglecs on autoimmune diseases. Mol Aspects Med 2023; 90:101140. [PMID: 36055802 PMCID: PMC9905255 DOI: 10.1016/j.mam.2022.101140] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 02/08/2023]
Abstract
Autoimmune diseases affect tens of millions of people just in the United States alone. Most of the available treatment options are aimed at reducing symptoms but do not lead to cures. Individuals affected with autoimmune diseases suffer from the imbalance between tolerogenic and immunogenic functions of their immune system. Often pathogenesis is mediated by autoreactive B and T cells that escape central tolerance and react against self-antigens attacking healthy tissues in the body. In recent years Siglecs, sialic-acid-binding immunoglobulin (Ig)-like lectins, have gained attention as immune checkpoints for therapeutic interventions to dampen excessive immune responses and to restore immune tolerance in autoimmune diseases. Many Siglecs function as inhibitory receptors suppressing activation signals in various immune cells through binding to sialic acid ligands as signatures of self. In this review, we highlight potential of Siglecs in suppressing immune responses causing autoimmune diseases. In particular, we cover the roles of CD22 and Siglec-G/Siglec-10 in regulating autoreactive B cell responses. We discuss several functions of Siglec-10 in the immune modulation of other immune cells, and the potential of therapeutic strategies for restoring immune tolerance by targeting Siglecs and expanding regulatory T cells. Finally, we briefly review efforts evaluating Siglec-based biomarkers to monitor autoimmune diseases.
Collapse
Affiliation(s)
- Katarzyna Alicja Brzezicka
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
47
|
Tamoxifen Modulates the Immune Landscape of the Tumour Microenvironment: The Paired Siglec-5/14 Checkpoint in Anti-Tumour Immunity in an In Vitro Model of Breast Cancer. Int J Mol Sci 2023; 24:ijms24065512. [PMID: 36982588 PMCID: PMC10057974 DOI: 10.3390/ijms24065512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Since the role of sialome–Siglec axis has been described as a regulatory checkpoint of immune homeostasis, the promotion of stimulatory or inhibitory Siglec-related mechanisms is crucial in cancer progression and therapy. Here, we investigated the effect of tamoxifen on the sialic acid–Siglec interplay and its significance in immune conversion in breast cancer. To mimic the tumour microenvironment, we used oestrogen-dependent or oestrogen-independent breast cancer cells/THP-1 monocytes transwell co-cultures exposed to tamoxifen and/or β-estradiol. We found changes in the cytokine profiles accompanied by immune phenotype switching, as measured by the expression of arginase-1. The immunomodulatory effects of tamoxifen in THP-1 cells occurred with the altered SIGLEC5 and SIGLEC14 genes and the expression of their products, as confirmed by RT-PCR and flow cytometry. Additionally, exposure to tamoxifen increased the binding of Siglec-5 and Siglec-14 fusion proteins to breast cancer cells; however, these effects appeared to be unassociated with oestrogen dependency. Our results suggest that tamoxifen-induced alterations in the immune activity of breast cancer reflect a crosstalk between the Siglec-expressing cells and the tumour’s sialome. Given the distribution of Siglec-5/14, the expression profile of inhibitory and activatory Siglecs in breast cancer patients may be useful in the verification of therapeutic strategies and predicting the tumour’s behaviour and the patient’s overall survival.
Collapse
|
48
|
Xu Y, Wang Y, Höti N, Clark DJ, Chen SY, Zhang H. The next "sweet" spot for pancreatic ductal adenocarcinoma: Glycoprotein for early detection. MASS SPECTROMETRY REVIEWS 2023; 42:822-843. [PMID: 34766650 PMCID: PMC9095761 DOI: 10.1002/mas.21748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/07/2021] [Accepted: 10/24/2021] [Indexed: 05/02/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common neoplastic disease of the pancreas, accounting for more than 90% of all pancreatic malignancies. As a highly lethal malignancy, PDAC is the fourth leading cause of cancer-related deaths worldwide with a 5-year overall survival of less than 8%. The efficacy and outcome of PDAC treatment largely depend on the stage of disease at the time of diagnosis. Surgical resection followed by adjuvant chemotherapy remains the only possibly curative therapy, yet 80%-90% of PDAC patients present with nonresectable PDAC stages at the time of clinical presentation. Despite our advancing knowledge of PDAC, the prognosis remains strikingly poor, which is primarily due to the difficulty of diagnosing PDAC at the early stages. Recent advances in glycoproteomics and glycomics based on mass spectrometry have shown that aberrations in protein glycosylation plays a critical role in carcinogenesis, tumor progression, metastasis, chemoresistance, and immuno-response of PDAC and other types of cancers. A growing interest has thus been placed upon protein glycosylation as a potential early detection biomarker for PDAC. We herein take stock of the advancements in the early detection of PDAC that were carried out with mass spectrometry, with special focus on protein glycosylation.
Collapse
Affiliation(s)
- Yuanwei Xu
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuefan Wang
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Naseruddin Höti
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David J Clark
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shao-Yung Chen
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hui Zhang
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
49
|
Wei L, Zhao D, Sun W, Lin L, Sui D, Li W, Gui Y, Wang J, Deng Y, Song Y. Targeting of TAMs with freeze-dried monosialotetrahexosylganglioside and sialic acid-octadecylamine co-modified liposomes remodels the tumor microenvironment and enhances anti-tumor activity. Eur J Pharm Biopharm 2023; 184:50-61. [PMID: 36682511 DOI: 10.1016/j.ejpb.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/25/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Although anti-tumor strategies targeting tumor-associated immune cells were being rapidly developed, the preparations were usually limited in targeting efficiency. To overcome this barrier, this study reported a novel sialic acid-octadecylamine (SA-ODA) and monosialotetrahexosylganglioside (GM1) co-modified epirubicin liposomes (5-5-SAGL-EPI), which improved tumor-targeting ability through the active targeting of tumor-associated macrophages (TAMs) by SA-ODA and the long circulation of GM1. Thus, we evaluated 5-5-SAGL-EPI in vitro and in vivo. Analysis of cellular uptake by RAW264.7 cells using flow cytometry and confocal microscopy showed a higher rate of cellular uptake for 5-5-SAGL-EPI than for the common liposomes (CL-EPI). In pharmacokinetic studies using Wistar rats, compared to CL-EPI, 5-5-SAGL-EPI showed a higher circulation time in vivo. Tissue distribution studies in Kunming mice bearing S180 tumors revealed increased distribution of 5-5-SAGL-EPI in tumor tissues compared with liposomes modified with single ligands (SA-ODA [5-SAL-EPI] or GM1 [5-GL-EPI]). In vivo anti-tumor experiments using the S180 tumor-bearing mice revealed a high tumor inhibition rate and low toxicity for 5-5-SAGL-EPI. Moreover, freeze-dried 5-5-SAGL-EPI had good storage stability, and the anti-tumor effect was comparable to that before freeze-drying. Overall, 5-5-SAGL-EPI exhibited excellent anti-tumor effects before and after lyophilization.
Collapse
Affiliation(s)
- Lu Wei
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Dan Zhao
- Sinovac Life Sciences Co., Ltd., Beijing 100085, China.
| | - Wenliang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lin Lin
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Wen Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yangxu Gui
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jia Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
50
|
Rische CH, Thames AN, Krier-Burris RA, O’Sullivan JA, Bochner BS, Scott EA. Drug delivery targets and strategies to address mast cell diseases. Expert Opin Drug Deliv 2023; 20:205-222. [PMID: 36629456 PMCID: PMC9928520 DOI: 10.1080/17425247.2023.2166926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Current and developing mast cell therapeutics are reliant on small molecule drugs and biologics, but few are truly selective for mast cells. Most have cellular and disease-specific limitations that require innovation to overcome longstanding challenges to selectively targeting and modulating mast cell behavior. This review is designed to serve as a frame of reference for new approaches that utilize nanotechnology or combine different drugs to increase mast cell selectivity and therapeutic efficacy. AREAS COVERED Mast cell diseases include allergy and related conditions as well as malignancies. Here, we discuss the targets of existing and developing therapies used to treat these disease pathologies, classifying them into cell surface, intracellular, and extracellular categories. For each target discussed, we discuss drugs that are either the current standard of care, under development, or have indications for potential use. Finally, we discuss how novel technologies and tools can be used to take existing therapeutics to a new level of selectivity and potency against mast cells. EXPERT OPINION There are many broadly and very few selectively targeted therapeutics for mast cells in allergy and malignant disease. Combining existing targeting strategies with technology like nanoparticles will provide novel platforms to treat mast cell disease more selectively.
Collapse
Affiliation(s)
- Clayton H. Rische
- Northwestern University McCormick School of Engineering, Department of Biomedical Engineering, Evanston, IL, USA
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Ariel N. Thames
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
- Northwestern University McCormick School of Engineering, Department of Chemical and Biological Engineering, Evanston, IL, USA
| | - Rebecca A. Krier-Burris
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Jeremy A. O’Sullivan
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Bruce S. Bochner
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Evan A. Scott
- Northwestern University McCormick School of Engineering, Department of Biomedical Engineering, Evanston, IL, USA
- Northwestern University Feinberg School of Medicine, Department of Microbiolgy-Immunology, Chicago, IL, USA
| |
Collapse
|