1
|
Gunasena M, Alles M, Demberg T, Mulhern W, Liyanage NPM. BCG immunization induced KLRG1+ NK cells show memory-like responses to mycobacterial and HIV antigens. Cell Immunol 2024; 403-404:104865. [PMID: 39226746 DOI: 10.1016/j.cellimm.2024.104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Bacille-Calmette-Guérin (BCG) is the only approved vaccine against Mycobacterium tuberculosis (MTB), offering protection not only against tuberculosis (TB) but also non-related infections. 'Trained immunity' of innate immune cells is considered one of the mechanisms of this broad protection derived through BCG. Here, we investigated the effect of BCG on Natural Killer (NK) cells, a key innate immune cell type, and their subsequent responses to mycobacterial and HIV antigens. We found that BCG-induced KLRG1+ NK cells exhibit significantly higher production of IFNγ, compared to KLRG1- cells, indicating their memory-like responses upon exposure to these antigens (p < 0.05). These findings may be important in regions of high burden of HIV and TB where BCG is routinely administered.
Collapse
Affiliation(s)
- Manuja Gunasena
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA; Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Mario Alles
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Thorsten Demberg
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Will Mulhern
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Namal P M Liyanage
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA; Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Ciszek-Lenda M, Nowak B, Majka G, Suski M, Walczewska M, Fedor A, Golińska E, Górska S, Gamian A, Olszanecki R, Strus M, Marcinkiewicz J. Saccharomyces cerevisiae β-glucan improves the response of trained macrophages to severe P. aeruginosa infections. Inflamm Res 2024; 73:1283-1297. [PMID: 38850343 PMCID: PMC11282130 DOI: 10.1007/s00011-024-01898-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024] Open
Abstract
OBJECTIVE P. AERUGINOSA: (PA), the major pathogen of lung cystic fibrosis (CF), polarizes macrophages into hyperinflammatory tissue damaging phenotype. The main aim of this study was to verify whether training of macrophages with β-glucan might improve their response to P. aeruginosa infections. METHODS To perform this task C57BL/6 mice sensitive to infections with P. aeruginosa were used. Peritoneal macrophages were trained with Saccharomyces cerevisiae β-glucan and exposed to PA57, the strong biofilm-forming bacterial strain isolated from the patient with severe lung CF. The release of cytokines and the expression of macrophage phenotypic markers were measured. A quantitative proteomic approach was used for the characterization of proteome-wide changes in macrophages. The effect of in vivo β-glucan-trained macrophages in the air pouch model of PA57 infection was investigated. In all experiments the effect of trained and naïve macrophages was compared. RESULTS Trained macrophages acquired a specific phenotype with mixed pro-inflammatory and pro-resolution characteristics, however they retained anti-bacterial properties. Most importantly, transfer of trained macrophages into infected air pouches markedly ameliorated the course of infection. PA57 bacterial growth and formation of biofilm were significantly suppressed. The level of serum amyloid A (SAA), a systemic inflammation biomarker, was reduced. CONCLUSIONS Training of murine macrophages with S. cerevisiae β-glucan improved macrophage defense properties along with inhibition of secretion of some detrimental inflammatory agents. We suggest that training of macrophages with such β-glucans might be a new therapeutic strategy in P. aeruginosa biofilm infections, including CF, to promote eradication of pathogens and resolution of inflammation.
Collapse
Affiliation(s)
- Marta Ciszek-Lenda
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Bernadeta Nowak
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Grzegorz Majka
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland.
| | - Maciej Suski
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Grzegorzecka 16, Krakow, 31-53, Poland
| | - Maria Walczewska
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Angelika Fedor
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Edyta Golińska
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Sabina Górska
- Hirszfeld Institute of Immunology and Experimental Therapy, Department of Microbiology, Laboratory of Microbiome Immunobiology, Polish Academy of Sciences, Weigla 12, Wroclaw, 53-114, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Department of Immunology of Infectious Diseases, Laboratory of Medical Microbiology, Polish Academy of Sciences, Weigla 12, Wroclaw, 53-114, Poland
| | - Rafał Olszanecki
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Grzegorzecka 16, Krakow, 31-53, Poland
| | - Magdalena Strus
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Janusz Marcinkiewicz
- University of Agriculture, University Centre of Veterinary Medicine, Mickiewicza 24/28, Krakow, 30- 059, Poland
| |
Collapse
|
3
|
Jiang C, Wu J. Hypothesis: hematogenous metastatic cancer cells of solid tumors may disguise themselves as memory macrophages for metastasis. Front Oncol 2024; 14:1412296. [PMID: 39035733 PMCID: PMC11257992 DOI: 10.3389/fonc.2024.1412296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
German pathologist Otto Aichel suggested, a century ago, that the cancer cell acquired its metastatic property from a leukocyte via cell-cell fusion. Since then, several revised versions of this theory have been proposed. Most of the proposals attribute the generation of the metastatic cancer cell to the fusion between a primary cancer cell and a macrophage. However, these theories have not addressed several issues, such as dormancy and stem cell-like self-renewal, of the metastatic cancer cell. On the other hand, recent studies have found that, like T- and B-/plasma cells, macrophages can also be categorized into naïve, effector, and memory/trained macrophages. As a memory/trained macrophage can enter dormancy/quiescence, be awakened from the dormancy/quiescence by acquainted primers, and re-populate via stem cell-like self-renewal, we, therefore, further specify that the macrophage fusing with the cancer cell and contributing to metastasis, belongs with the memory/trained macrophage, not other subtypes of macrophages. The current theory can explain many puzzling clinical features of cancer, including the paradoxal effects (recurrence vs. regression) of microbes on tumors, "spontaneous" and Coley's toxin-induced tumor regression, anticancer activities of β-blockers and anti-inflammatory/anti-immune/antibiotic drugs, oncotaxis, surgery- and trauma-promoted metastasis, and impact of microbiota on tumors. Potential therapeutic strategies, such as Coley's toxin-like preparations, are proposed. This is the last article of our trilogy on carcinogenesis theories.
Collapse
Affiliation(s)
- Chuo Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
- Central Laboratories, Shanghai Clinical Research Center Xuhui Central Hospital, Chinese Academy of Sciences, Shanghai, China
| | - Jiaxi Wu
- Central Laboratories, Shanghai Clinical Research Center Xuhui Central Hospital, Chinese Academy of Sciences, Shanghai, China
- Office of Industrial Cooperation, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
4
|
de Homdedeu M, Sanchez-Moral L, Violán C, Ràfols N, Ouchi D, Martín B, Peinado MA, Rodríguez-Cortés A, Arch-Sisquella M, Perez-Zsolt D, Muñoz-Basagoiti J, Izquierdo-Useros N, Salvador B, Matllo J, López-Serrano S, Segalés J, Vilaplana C, Torán-Monserrat P, Morros R, Monfà R, Sarrias MR, Cardona PJ. Mycobacterium manresensis induces trained immunity in vitro. iScience 2023; 26:106873. [PMID: 37250788 PMCID: PMC10182650 DOI: 10.1016/j.isci.2023.106873] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
The COVID-19 pandemic posed a global health crisis, with new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants weakening vaccine-driven protection. Trained immunity could help tackle COVID-19 disease. Our objective was to analyze whether heat-killed Mycobacterium manresensis (hkMm), an environmental mycobacterium, induces trained immunity and confers protection against SARS-CoV-2 infection. To this end, THP-1 cells and primary monocytes were trained with hkMm. The increased secretion of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1β, and IL-10, metabolic activity, and changes in epigenetic marks suggested hkMm-induced trained immunity in vitro. Healthcare workers at risk of SARS-CoV-2 infection were enrolled into the MANRECOVID19 clinical trial (NCT04452773) and were administered Nyaditum resae (NR, containing hkMm) or placebo. No significant differences in monocyte inflammatory responses or the incidence of SARS-CoV-2 infection were found between the groups, although NR modified the profile of circulating immune cell populations. Our results show that M. manresensis induces trained immunity in vitro but not in vivo when orally administered as NR daily for 14 days.
Collapse
Affiliation(s)
- Miquel de Homdedeu
- Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Experimental Tuberculosis Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Department of Genetics and Microbiology, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
| | - Lidia Sanchez-Moral
- Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Concepció Violán
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
- North Metropolitan Research Support Unit, Jordi Gol University Research Institute in Primary Care (IDIAP Jordi Gol), Mataró, Spain
- Northern Metropolitan Primary Care Management, Catalan Institute of Health, 08916 Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
| | - Neus Ràfols
- Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Dan Ouchi
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
| | - Berta Martín
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), 08916 Badalona, Spain
| | - Miguel A Peinado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), 08916 Badalona, Spain
| | - Alhelí Rodríguez-Cortés
- Department of Pharmacology, Toxicology, and Therapeutics, Veterinary Faculty, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Marta Arch-Sisquella
- Experimental Tuberculosis Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | | | | | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain
- Centre for Biomedical Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Betlem Salvador
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
| | - Joan Matllo
- Department of Prevention and Risks, Germans Trias i Pujol University Hospital, Northern Metropolitan Territorial Management, Catalan Health Institute, 08916 Badalona, Spain
| | - Sergi López-Serrano
- Joint IRTA-UAB Research Unit in Animal Health, Animal Health Research Center (CReSA), Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- Institute of Agrifood Research and Technology, Animal Health Program, Animal Health Research Center (CReSA), Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Joaquim Segalés
- Joint IRTA-UAB Research Unit in Animal Health, Animal Health Research Center (CReSA), Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
| | - Cristina Vilaplana
- Experimental Tuberculosis Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Department of Genetics and Microbiology, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- Centre for Biomedical Research on Respiratory Diseases (CIBERES), Madrid, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- Direcció Clínica Territorial de Malalties Infeccioses i Salut Internacional de Gerència Territorial Metropolitana Nord, Barcelona, Spain
| | - Pere Torán-Monserrat
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
- North Metropolitan Research Support Unit, Jordi Gol University Research Institute in Primary Care (IDIAP Jordi Gol), Mataró, Spain
- Northern Metropolitan Primary Care Management, Catalan Institute of Health, 08916 Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Rosa Morros
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
| | - Ramon Monfà
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
| | - Maria-Rosa Sarrias
- Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centre for Biomedical Research on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Pere-Joan Cardona
- Experimental Tuberculosis Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Department of Genetics and Microbiology, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- Centre for Biomedical Research on Respiratory Diseases (CIBERES), Madrid, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| |
Collapse
|
5
|
Gaziano R, Sabbatini S, Monari C. The Interplay between Candida albicans, Vaginal Mucosa, Host Immunity and Resident Microbiota in Health and Disease: An Overview and Future Perspectives. Microorganisms 2023; 11:1211. [PMID: 37317186 DOI: 10.3390/microorganisms11051211] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Vulvovaginal candidiasis (VVC), which is primarily caused by Candida albicans, is an infection that affects up to 75% of all reproductive-age women worldwide. Recurrent VVC (RVVC) is defined as >3 episodes per year and affects nearly 8% of women globally. At mucosal sites of the vagina, a delicate and complex balance exists between Candida spp., host immunity and local microbial communities. In fact, both immune response and microbiota composition play a central role in counteracting overgrowth of the fungus and maintaining homeostasis in the host. If this balance is perturbed, the conditions may favor C. albicans overgrowth and the yeast-to-hyphal transition, predisposing the host to VVC. To date, the factors that affect the equilibrium between Candida spp. and the host and drive the transition from C. albicans commensalism to pathogenicity are not yet fully understood. Understanding the host- and fungus-related factors that drive VVC pathogenesis is of paramount importance for the development of adequate therapeutic interventions to combat this common genital infection. This review focuses on the latest advances in the pathogenic mechanisms implicated in the onset of VVC and also discusses novel potential strategies, with a special focus on the use of probiotics and vaginal microbiota transplantation in the treatment and/or prevention of recurrent VVC.
Collapse
Affiliation(s)
- Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, 06132 Perugia, Italy
| | - Claudia Monari
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
6
|
Mishra V, Tripathi V, Yadav P, Singh MP. Beta glucan as an immune stimulant in tumor microenvironment - Insight into lessons and promises from past decade. Int J Biol Macromol 2023; 234:123617. [PMID: 36758755 DOI: 10.1016/j.ijbiomac.2023.123617] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Cancer is characterized by a perturbed immune landscape. Inside tumor microenvironment, immune system is reprogrammed to facilitate tumor growth and survival rather than eliminating it. This immune evasive mechanism needs to be reversed to normal for effective anticancer therapeutic strategy. Immunotherapy has emerged as a novel strategy for redeployment of immune cells against cancer. However, they suffer in their efficacy, response rate and side effects. This necessitated us to turn toward natural repertoires which can act as a substitute to conventional immunotherapeutics. Beta glucan, a polysaccharide derived from mushroom, serves the role of immunomodulator inside tumor microenvironment. It acts as pathogen associated molecular pattern and bind to various pattern recognition receptors expressed on surface of immune cells thereby facilitating their activation and crosstalk. This result in resurgence of suppressed immune surveillance in the tumor milieu. In this review, we highlight in brief the advances and limitation of cancer immunotherapy. Alongside, we have discussed the detailed mechanistic principle and recent advances underlying restoration of immune functionality by beta glucan.
Collapse
Affiliation(s)
- Vartika Mishra
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| | | | - Priyanka Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| | - M P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, India.
| |
Collapse
|
7
|
Polcz VE, Rincon JC, Hawkins RB, Barrios EL, Efron PA, Moldawer LL, Larson SD. TRAINED IMMUNITY: A POTENTIAL APPROACH FOR IMPROVING HOST IMMUNITY IN NEONATAL SEPSIS. Shock 2023; 59:125-134. [PMID: 36383390 PMCID: PMC9957873 DOI: 10.1097/shk.0000000000002054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ABSTRACT Sepsis, a dysregulated host immune response to infection, is one of the leading causes of neonatal mortality worldwide. Improved understanding of the perinatal immune system is critical to improve therapies to both term and preterm neonates at increased risk of sepsis. Our narrative outlines the known and unknown aspects of the human immune system through both the immune tolerant in utero period and the rapidly changing antigen-rich period after birth. We will highlight the key differences in innate and adaptive immunity noted through these developmental stages and how the unique immune phenotype in early life contributes to the elevated risk of overwhelming infection and dysregulated immune responses to infection upon exposure to external antigens shortly after birth. Given an initial dependence on neonatal innate immune host responses, we will discuss the concept of innate immune memory, or "trained immunity," and describe several potential immune modulators, which show promise in altering the dysregulated immune response in newborns and improving resilience to sepsis.
Collapse
Affiliation(s)
- Valerie E Polcz
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | | | | | | | | | | | | |
Collapse
|
8
|
Maheshwari A. Innate Immune Memory in Macrophages. NEWBORN (CLARKSVILLE, MD.) 2023; 2:60-79. [PMID: 37206580 PMCID: PMC10193650 DOI: 10.5005/jp-journals-11002-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Macrophages have been recognized as the primary mediators of innate immunity starting from embryonic/fetal development. Macrophage-mediated defenses may not be as antigen-specific as adaptive immunity, but increasing information suggests that these responses do strengthen with repeated immunological triggers. The concept of innate memory in macrophages has been described as "trained immunity" or "innate immune memory (IIM)." As currently understood, this cellular memory is rooted in epigenetic and metabolic reprogramming. The recognition of IIM may be particularly important in the fetus and the young neonate who are yet to develop protective levels of adaptive immunity, and could even be of preventive/therapeutic importance in many disorders. There may also be a possibility of therapeutic enhancement with targeted vaccination. This article presents a review of the properties, mechanisms, and possible clinical significance of macrophage-mediated IIM.
Collapse
Affiliation(s)
- Akhil Maheshwari
- Founding Chairman, Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
9
|
Marx C, Marx-Blümel L, Sonnemann J, Wang ZQ. Assessment of Mitochondrial Dysfunctions After Sirtuin Inhibition. Methods Mol Biol 2023; 2589:269-291. [PMID: 36255631 DOI: 10.1007/978-1-0716-2788-4_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Posttranslational modifications are important for protein functions and cellular signaling pathways. The acetylation of lysine residues is catalyzed by histone acetyltransferases (HATs) and removed by histone deacetylases (HDACs), with the latter being grouped into four phylogenetic classes. The class III of the HDAC family, the sirtuins (SIRTs), contributes to gene expression, genomic stability, cell metabolism, and tumorigenesis. Thus, several specific SIRT inhibitors (SIRTi) have been developed to target cancer cell proliferation. Here we provide an overview of methods to study SIRT-dependent cell metabolism and mitochondrial functionality. The chapter describes metabolic flux analysis using Seahorse analyzers, methods for normalization of Seahorse data, flow cytometry and fluorescence microscopy to determine the mitochondrial membrane potential, mitochondrial content per cell and mitochondrial network structures, and Western blot analysis to measure mitochondrial proteins.
Collapse
Affiliation(s)
- Christian Marx
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Lisa Marx-Blümel
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Jürgen Sonnemann
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Jena, Germany
| |
Collapse
|
10
|
Stähli A, Scherler C, Zappalà G, Sculean A, Eick S. In vitro activity of anti-rheumatic drugs on release of pro-inflammatory cytokines from oral cells in interaction with microorganisms. FRONTIERS IN ORAL HEALTH 2022; 3:960732. [PMID: 36118051 PMCID: PMC9478466 DOI: 10.3389/froh.2022.960732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Periodontitis patients suffering concomitantly from rheumatoid arthritis (RA) often present with less inflamed periodontal tissues due to the ongoing anti-rheumatic therapy. This in vitro study was aimed to analyze whether anti-inflammatory drugs used in the therapy of RA can modulate the release of IL-8 and IL-1β by professional and non-professional immune cells stimulated with microorganisms. Periodontal ligament (PDL) fibroblasts, monocytic MONO-MAC-6-cells, and gingival keratinocytes were exposed to ibuprofen, prednisolone, and methotrexate with and without lysates of Fusobacterium nucleatum or Candida albicans. Supernatants were obtained and the levels of interleukin(IL)-8 and IL-1β (only MONO-MAC-6) were quantified. The addition of F. nucleatum lysate resulted in the strongest release of proinflammatory cytokines by PDL fibroblast and MONO-MAC-6 cells, while the modification by the tested anti-rheumatic drugs was only minor. After stimulation of the MONO-MAC-cells with F. nucleatum, prednisolone increased the release of IL-8, whereas methotrexate decreased the level. Anti-inflammatory drugs increased the adherence of C. albicans to epithelial cells. In patients with RA, the reduction of the microbial load in subgingival biofilm (biofilm removal) is of major importance; however, the intake of inflammatory drugs may interfere with the inflammatory response.
Collapse
|
11
|
Effect of Humic Acid on the Growth and Metabolism of Candida albicans Isolated from Surface Waters in North-Eastern Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159408. [PMID: 35954766 PMCID: PMC9368076 DOI: 10.3390/ijerph19159408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022]
Abstract
The aim of this study was to determine the effect of humic acid on the growth and metabolism of Candida albicans, a common waterborne pathogenic yeast. At 10–20 mg/L, humic acid caused the greatest increase in biomass and compactness of proteins and monosaccharides, both in cells and in extracellular secretion of the yeast. At higher humic acid concentrations (40–80 mg/L), C. albicans cells still had higher protein levels compared to control, but showed reduced levels of metabolites and inhibited growth, and a significant increase in the activity of antioxidant enzymes, indicating a toxic effect of the humic acid. The increase in protein content in the cells of C. albicans combined with an increase in the activity of antioxidant enzymes may indicate that the studied yeast excels in conditions of high water enrichment with low availability of organic matter. This indicates that Candida albicans is capable of breaking down organic matter that other microorganisms cannot cope with, and for this reason, this yeast uses carbon sources that are not available to other microorganisms. This indicates that this fungus plays an important role in the organic carbon sphere to higher trophic levels, and is common in water polluted with organic matter.
Collapse
|
12
|
Schünemann LM, Schuberth HJ. Non-classical monocytes contribute to innate immune training in cattle. Innate Immun 2022; 28:199-210. [PMID: 35876352 PMCID: PMC9389050 DOI: 10.1177/17534259221114219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Innate immune training is defined as a property of innate immune cells to react
stronger to a secondary contact with pathogens. Induction of innate immune
training has been reported for a variety of pathogens and selected pattern
recognition receptor-ligands, such as β-glucans (βG). We examined whether
Saccharomyces cerevisiae cell wall component βG induces
training in bovine monocytes in vitro based on a heightened TNF
secretion after stimulation by trained monocyte-derived macrophages with
Escherichia coli LPS. Sorted CD14-expressing monocytes
(classical and intermediate monocytes), as well as single populations of sorted
classical, intermediate and non-classical monocytes could not be trained by βG,
whereas macrophages derived from plastic-adherent mononuclear cell preparations
displayed features of a trained function. The hypothesis, that non-classical
monocytes need to be present in a mixed monocyte population in order to be
trained by βG could be verified by a successful training of positively sorted
whole monocyte populations (CD14CD16/M) containing all three monocyte
subpopulations. The trainability depended on conditions favoring M1 polarization
of macrophages. Altogether, innate immune training of bovine monocytes seems to
depend on the presence of non-classical monocytes. This adds new information to
the role of this monocyte subpopulation in the bovine immune system.
Collapse
Affiliation(s)
- Lisa-Marie Schünemann
- Institute of Immunology, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Hans-Joachim Schuberth
- Institute of Immunology, University of Veterinary Medicine Foundation, Hannover, Germany
| |
Collapse
|
13
|
Gill PS, Ozment TR, Lewis NH, Sherwood ER, Williams DL. Trained Immunity Enhances Human Monocyte Function in Aging and Sepsis. Front Immunol 2022; 13:872652. [PMID: 35693816 PMCID: PMC9174537 DOI: 10.3389/fimmu.2022.872652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Aging plays a critical role in the incidence and severity of infection, with age emerging as an independent predictor of mortality in sepsis. Trained immunity reprograms immunocytes to respond more rapidly and effectively to pathogens and serves as a potential approach to improve immune function in aging and/or sepsis. However, there is very little data on trained immunity in the aging immune system or in the presence of sepsis. We examined the impact of β-glucan induced innate immune training on monocytes from aging healthy humans (>60 years old) as well as sepsis patients. We observed increased metabolic capacity, upregulated cytokine secretion, increased H3K27 acetylation, and upregulation of crucial intracellular signaling pathways in trained monocytes from healthy aging subjects. The response to trained immunity in healthy aging monocytes was equivalent to the response of monocytes from younger, i.e., 18 – 59 years, individuals. Additionally, we found that trained immunity induced a unique expression pattern of cell surface markers in monocytes that was consistent across age groups. Trained monocytes from sepsis patients also displayed enhanced metabolic capacity and increased cytokine production. These results indicate that immune training can be induced in aging monocytes as well as monocytes from critically ill sepsis patients.
Collapse
Affiliation(s)
- P Spencer Gill
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Inflammation, Infectious Disease, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tammy R Ozment
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Inflammation, Infectious Disease, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Nicole H Lewis
- Department of Medical Education, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Edward R Sherwood
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David L Williams
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Inflammation, Infectious Disease, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
14
|
Dectin-1b activation by arabinoxylans induces trained immunity in human monocyte-derived macrophages. Int J Biol Macromol 2022; 209:942-950. [PMID: 35447262 DOI: 10.1016/j.ijbiomac.2022.04.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 01/21/2023]
Abstract
Arabinoxylans of various structures and sources have shown to possess the ability to induce a range of immune responses in different cell types in vitro and in vivo. Although the underlying mechanisms remain to be fully established, several studies point towards the involvement of activation of pattern recognition receptors (PRRs). Activation of specific PRRs (i.e., Dectin-1 and CR3) has also been shown to play a key role in the induction of a non-specific memory response in innate immune cells, termed 'trained innate immunity'. In the current study, we assessed whether arabinoxylans are also able to induce trained innate immunity. To this end, a range of arabinoxylan preparations from different sources were tested for their physicochemical properties and their capacity to induce innate immune training and resilience. In human macrophages, rice and wheat-derived arabinoxylan preparations induced training and/or resilience effects, the extent depending on fiber particle size and solubility. Using a Dectin-1 antagonist or a CR3 antibody, it was demonstrated that arabinoxylan-induced trained immunity in macrophages is mainly dependent on Dectin-1b. These findings build on previous observations showing the immunomodulatory potential of arabinoxylans as biological response modifiers and open up promising avenues for their use as health promoting ingredients.
Collapse
|
15
|
Xie Y, Li J, Qin H, Wang Q, Chen Z, Liu C, Zheng L, Wang J. Paramylon from Euglena gracilis Prevents Lipopolysaccharide-Induced Acute Liver Injury. Front Immunol 2022; 12:797096. [PMID: 35126359 PMCID: PMC8812190 DOI: 10.3389/fimmu.2021.797096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Acute liver injury (ALI) is a life-threatening syndrome with high mortality and lacks effective therapies. Rodents under LPS (lipopolysaccharide)/D-Gal (D-galactosamine) stress mimic ALI by presenting dramatically increased inflammation and cell death in the liver. Euglena gracilis, functioning like dietary fiber, is commonly used as a paramylon (Pa)-rich nutritional supplement that has various biological effects such as regulating immune system, anti-obesity, and anti-tumor. Here, we found that Pa or sonicated and alkalized paramylon (SA-Pa) alleviated the LPS/D-Gal-induced hepatic histopathological abnormalities in mice. Compared with Pa, SA-Pa had lower molecular weights/sizes and showed better efficacy in alleviating injury-induced hepatic functions, as well as the transcriptional levels of inflammatory cytokines. Moreover, SA-Pa treatment promoted M2 macrophage activation that enhanced the anti-inflammatory function in the liver, and downregulated STAT3 target genes, such as Fos, Jun, and Socs3 upon the injury. Meanwhile, SA-Pa treatment also alleviated apoptosis and necroptosis caused by the injury. Our results demonstrated that SA-Pa efficiently protected the liver from LPS/D-Gal-induced ALI by alleviating inflammation and cell death.
Collapse
Affiliation(s)
- Yunhao Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jin Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Huan Qin
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qing Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
16
|
Role of Cellular Metabolism during Candida-Host Interactions. Pathogens 2022; 11:pathogens11020184. [PMID: 35215128 PMCID: PMC8875223 DOI: 10.3390/pathogens11020184] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Microscopic fungi are widely present in the environment and, more importantly, are also an essential part of the human healthy mycobiota. However, many species can become pathogenic under certain circumstances, with Candida spp. being the most clinically relevant fungi. In recent years, the importance of metabolism and nutrient availability for fungi-host interactions have been highlighted. Upon activation, immune and other host cells reshape their metabolism to fulfil the energy-demanding process of generating an immune response. This includes macrophage upregulation of glucose uptake and processing via aerobic glycolysis. On the other side, Candida modulates its metabolic pathways to adapt to the usually hostile environment in the host, such as the lumen of phagolysosomes. Further understanding on metabolic interactions between host and fungal cells would potentially lead to novel/enhanced antifungal therapies to fight these infections. Therefore, this review paper focuses on how cellular metabolism, of both host cells and Candida, and the nutritional environment impact on the interplay between host and fungal cells.
Collapse
|
17
|
Soto JA, Gálvez NMS, Andrade CA, Ramírez MA, Riedel CA, Kalergis AM, Bueno SM. BCG vaccination induces cross-protective immunity against pathogenic microorganisms. Trends Immunol 2022; 43:322-335. [PMID: 35074254 DOI: 10.1016/j.it.2021.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023]
Abstract
Bacillus Calmette-Guérin (BCG) is an attenuated Mycobacterium bovis strain used as a vaccine to prevent Mycobacterium tuberculosis (M. tb) infection. Its ability to potentiate the immune response induced by other vaccines and to promote nonspecific immunomodulatory effects has been described. These effects can be triggered by epigenetic reprogramming and metabolic shifts on innate immune cells, a phenomenon known as trained immunity. The induction of trained immunity may contribute to explain why BCG vaccination effectively decreases disease symptoms caused by pathogens different from M. tb. This article explains the importance of BCG immunization and the possible mechanisms associated with the induction of trained immunity, which might be used as a strategy for rapid activation of the immune system against unrelated pathogens.
Collapse
Affiliation(s)
- Jorge A Soto
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Nicolás M S Gálvez
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Catalina A Andrade
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Mario A Ramírez
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Claudia A Riedel
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile.
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile.
| |
Collapse
|
18
|
Mirończuk-Chodakowska I, Kujawowicz K, Witkowska AM. Beta-Glucans from Fungi: Biological and Health-Promoting Potential in the COVID-19 Pandemic Era. Nutrients 2021; 13:3960. [PMID: 34836215 PMCID: PMC8623785 DOI: 10.3390/nu13113960] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Beta-glucans comprise a group of polysaccharides of natural origin found in bacteria, algae, and plants, e.g., cereal seeds, as well as microfungi and macrofungi (mushrooms), which are characterized by diverse structures and functions. They are known for their metabolic and immunomodulatory properties, including anticancer, antibacterial, and antiviral. Recent reports suggest a potential of beta-glucans in the prevention and treatment of COVID-19. In contrast to β-glucans from other sources, β-glucans from mushrooms are characterized by β-1,3-glucans with short β-1,6-side chains. This structure is recognized by receptors located on the surface of immune cells; thus, mushroom β-glucans have specific immunomodulatory properties and gained BRM (biological response modifier) status. Moreover, mushroom beta-glucans also owe their properties to the formation of triple helix conformation, which is one of the key factors influencing the bioactivity of mushroom beta-glucans. This review summarizes the latest findings on biological and health-promoting potential of mushroom beta-glucans for the treatment of civilization and viral diseases, with particular emphasis on COVID-19.
Collapse
Affiliation(s)
- Iwona Mirończuk-Chodakowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.K.); (A.M.W.)
| | | | | |
Collapse
|
19
|
Acevedo OA, Berrios RV, Rodríguez-Guilarte L, Lillo-Dapremont B, Kalergis AM. Molecular and Cellular Mechanisms Modulating Trained Immunity by Various Cell Types in Response to Pathogen Encounter. Front Immunol 2021; 12:745332. [PMID: 34671359 PMCID: PMC8521023 DOI: 10.3389/fimmu.2021.745332] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
The induction of trained immunity represents an emerging concept defined as the ability of innate immune cells to acquire a memory phenotype, which is a typical hallmark of the adaptive response. Key points modulated during the establishment of trained immunity include epigenetic, metabolic and functional changes in different innate-immune and non-immune cells. Regarding to epigenetic changes, it has been described that long non-coding RNAs (LncRNAs) act as molecular scaffolds to allow the assembly of chromatin-remodeling complexes that catalyze epigenetic changes on chromatin. On the other hand, relevant metabolic changes that occur during this process include increased glycolytic rate and the accumulation of metabolites from the tricarboxylic acid (TCA) cycle, which subsequently regulate the activity of histone-modifying enzymes that ultimately drive epigenetic changes. Functional consequences of established trained immunity include enhanced cytokine production, increased antigen presentation and augmented antimicrobial responses. In this article, we will discuss the current knowledge regarding the ability of different cell subsets to acquire a trained immune phenotype and the molecular mechanisms involved in triggering such a response. This knowledge will be helpful for the development of broad-spectrum therapies against infectious diseases based on the modulation of epigenetic and metabolic cues regulating the development of trained immunity.
Collapse
Affiliation(s)
- Orlando A. Acevedo
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roslye V. Berrios
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodríguez-Guilarte
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bastián Lillo-Dapremont
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
20
|
Trained Immunity as an Adaptive Branch of Innate Immunity. Int J Mol Sci 2021; 22:ijms221910684. [PMID: 34639025 PMCID: PMC8508929 DOI: 10.3390/ijms221910684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
The concept of trained immunity has become one of the most interesting and potentially commercially and clinically relevant ideas of current immunology. Trained immunity is realized by the epigenetic reprogramming of non-immunocompetent cells, primarily monocytes/macrophages and natural killer (NK) cells, and is less specific than adaptive immunity; therefore, it may cross-protect against other infectious agents. It remains possible, however, that some of the observed changes are simply caused by increased levels of immune reactions resulting from supplementation with immunomodulators, such as glucan. In addition, the question of whether we can talk about trained immunity in cells with a life span of only few days is still unresolved.
Collapse
|
21
|
Last A, Maurer M, S. Mosig A, S. Gresnigt M, Hube B. In vitro infection models to study fungal-host interactions. FEMS Microbiol Rev 2021; 45:fuab005. [PMID: 33524102 PMCID: PMC8498566 DOI: 10.1093/femsre/fuab005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Fungal infections (mycoses) affect over a billion people per year. Approximately, two million of these infections are life-threatening, especially for patients with a compromised immune system. Fungi of the genera Aspergillus, Candida, Histoplasma and Cryptococcus are opportunistic pathogens that contribute to a substantial number of mycoses. To optimize the diagnosis and treatment of mycoses, we need to understand the complex fungal-host interplay during pathogenesis, the fungal attributes causing virulence and how the host resists infection via immunological defenses. In vitro models can be used to mimic fungal infections of various tissues and organs and the corresponding immune responses at near-physiological conditions. Furthermore, models can include fungal interactions with the host-microbiota to mimic the in vivo situation on skin and mucosal surfaces. This article reviews currently used in vitro models of fungal infections ranging from cell monolayers to microfluidic 3D organ-on-chip (OOC) platforms. We also discuss how OOC models can expand the toolbox for investigating interactions of fungi and their human hosts in the future.
Collapse
Affiliation(s)
- Antonia Last
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Michelle Maurer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Nonnenplan 2,07743, Jena, Germany
| | - Alexander S. Mosig
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Nonnenplan 2,07743, Jena, Germany
| | - Mark S. Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 24, 07743, Jena, Germany
| |
Collapse
|
22
|
Moerings BGJ, de Graaff P, Furber M, Witkamp RF, Debets R, Mes JJ, van Bergenhenegouwen J, Govers C. Continuous Exposure to Non-Soluble β-Glucans Induces Trained Immunity in M-CSF-Differentiated Macrophages. Front Immunol 2021; 12:672796. [PMID: 34149707 PMCID: PMC8208035 DOI: 10.3389/fimmu.2021.672796] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
Beta-glucans enable functional reprogramming of innate immune cells, a process defined as "trained immunity", which results in enhanced host responsiveness against primary (training) and/or secondary infections (resilience). Trained immunity holds great promise for promoting immune responses in groups that are at risk (e.g. elderly and patients). In this study, we modified an existing in vitro model for trained immunity by actively inducing monocyte-to-macrophage differentiation using M-CSF and applying continuous exposure. This model reflects mucosal exposure to β-glucans and was used to study the training effects of a variety of soluble or non-soluble β-glucans derived from different sources including oat, mushrooms and yeast. In addition, trained immunity effects were related to pattern recognition receptor usage, to which end, we analyzed β-glucan-mediated Dectin-1 activation. We demonstrated that β-glucans, with different sources and solubilities, induced training and/or resilience effects. Notably, trained immunity significantly correlated with Dectin-1 receptor activation, yet Dectin-1 receptor activation did not perform as a sole predictor for β-glucan-mediated trained immunity. The model, as validated in this study, adds on to the existing in vitro model by specifically investigating macrophage responses and can be applied to select non-digestible dietary polysaccharides and other components for their potential to induce trained immunity.
Collapse
Affiliation(s)
- Bart G J Moerings
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands.,Nutritional Biology Group, Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Priscilla de Graaff
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands.,Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus Medical Center (MC)-Cancer Institute, Rotterdam, Netherlands
| | | | - Renger F Witkamp
- Nutritional Biology Group, Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus Medical Center (MC)-Cancer Institute, Rotterdam, Netherlands
| | - Jurriaan J Mes
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | | | - Coen Govers
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands.,Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
23
|
Candida Administration in Bilateral Nephrectomy Mice Elevates Serum (1→3)-β-D-glucan That Enhances Systemic Inflammation Through Energy Augmentation in Macrophages. Int J Mol Sci 2021; 22:ijms22095031. [PMID: 34068595 PMCID: PMC8126065 DOI: 10.3390/ijms22095031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Systemic inflammation, from gut translocation of organismal molecules, might worsen uremic complications in acute kidney injury (AKI). The monitoring of gut permeability integrity and/or organismal molecules in AKI might be clinically beneficial. Due to the less prominence of Candida albicans in human intestine compared with mouse gut, C. albicans were orally administered in bilateral nephrectomy (BiN) mice. Gut dysbiosis, using microbiome analysis, and gut permeability defect (gut leakage), which was determined by fluorescein isothiocyanate-dextran and intestinal tight-junction immunofluorescent staining, in mice with BiN-Candida was more severe than BiN without Candida. Additionally, profound gut leakage in BiN-Candida also resulted in gut translocation of lipopolysaccharide (LPS) and (1→3)-β-D-glucan (BG), the organismal components from gut contents, that induced more severe systemic inflammation than BiN without Candida. The co-presentation of LPS and BG in mouse serum enhanced inflammatory responses. As such, LPS with Whole Glucan Particle (WGP, a representative BG) induced more severe macrophage responses than LPS alone as determined by supernatant cytokines and gene expression of downstream signals (NFκB, Malt-1 and Syk). Meanwhile, WGP alone did not induced the responses. In parallel, WGP (with or without LPS), but not LPS alone, accelerated macrophage ATP production (extracellular flux analysis) through the upregulation of genes in mitochondria and glycolysis pathway (using RNA sequencing analysis), without the induction of cell activities. These data indicated a WGP pre-conditioning effect on cell energy augmentation. In conclusion, Candida in BiN mice accelerated gut translocation of BG that augmented cell energy status and enhanced pro-inflammatory macrophage responses. Hence, gut fungi and BG were associated with the enhanced systemic inflammation in acute uremia.
Collapse
|
24
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
25
|
Lo YW, Lee AYL, Liu YC, Ko HH, Peng HH, Lee HC, Pan PY, Chiang CP, Cheng SJ. β-glucan therapy converts the inhibition of myeloid-derived suppressor cells in oral cancer patients. Oral Dis 2021; 28:1484-1495. [PMID: 33655573 DOI: 10.1111/odi.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The myeloid-derived suppressor cells (MDSCs) frequently have a high expansion in cancer patients. This research explored whether administration of β-glucan could increase anti-tumor immunity in oral squamous cell carcinoma (OSCC) patients. MATERIALS AND METHODS This study evaluated the MDSC level of circulating blood as CD33+ /CD11b+ /HLA-DR-/low by flow cytometry in 30 healthy donors (HDs, group I), in 48 oral squamous cell carcinoma (OSCC) patients before and after 14-day preoperative administration of β-glucan (group II), and in 52 OSCC patients without taking β-glucan (group III). RESULTS A significantly higher mean MDSC level was observed in 100 OSCC patients than in 30 HDs (p < .001). There was a significant reduction of the mean MDSC level in group II patients after taking β-glucan (p < .001). Moreover, we discovered a significantly higher recurrence-free survival (RFS) in group II than in group III patients (p = .026). Finally, the multivariate Cox regression further identified the MDSC level ≤1% and administration of β-glucan as more favorable prognostic factors for OSCC patients. CONCLUSION Preoperative administration of β-glucan can augment anti-tumor immunity and increase RFS rate via subversion of suppressive function of MDSC in OSCC patients.
Collapse
Affiliation(s)
- Ya-Wen Lo
- School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Liu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Hsin Ko
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Dentistry, College of Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Hsin-Hui Peng
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Dentistry, College of Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Hsiang-Chieh Lee
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan
| | - Pei-Yao Pan
- Department of Dentistry, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Pin Chiang
- School of Dentistry, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Dentistry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shih-Jung Cheng
- School of Dentistry, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
26
|
Domínguez-Andrés J, Arts RJW, Bekkering S, Bahrar H, Blok BA, de Bree LCJ, Bruno M, Bulut Ö, Debisarun PA, Dijkstra H, Cristina Dos Santos J, Ferreira AV, Flores-Gomez D, Groh LA, Grondman I, Helder L, Jacobs C, Jacobs L, Jansen T, Kilic G, Klück V, Koeken VACM, Lemmers H, Moorlag SJCFM, Mourits VP, van Puffelen JH, Rabold K, Röring RJ, Rosati D, Tercan H, van Tuijl J, Quintin J, van Crevel R, Riksen NP, Joosten LAB, Netea MG. In vitro induction of trained immunity in adherent human monocytes. STAR Protoc 2021; 2:100365. [PMID: 33718890 PMCID: PMC7921712 DOI: 10.1016/j.xpro.2021.100365] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A growing number of studies show that innate immune cells can undergo functional reprogramming, facilitating a faster and enhanced response to heterologous secondary stimuli. This concept has been termed “trained immunity.” We outline here a protocol to recapitulate this in vitro using adherent monocytes from consecutive isolation of peripheral blood mononuclear cells. The induction of trained immunity and the associated functional reprogramming of monocytes is described in detail using β-glucan (from Candida albicans) and Bacillus Calmette-Guérin as examples. For complete details on the use and execution of this protocol, please refer to Repnik et al. (2003) and Bekkering et al. (2016). Isolation of PBMCs and monocytes using discontinuous density gradients In vitro induction of trained immunity in adherent monocytes Induction of trained immunity is assessed by cytokine production levels Generally applicable to test multiple stimuli and pharmacological compounds
Collapse
Affiliation(s)
- Jorge Domínguez-Andrés
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Rob J W Arts
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Siroon Bekkering
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Harsh Bahrar
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Bastiaan A Blok
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - L Charlotte J de Bree
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Mariolina Bruno
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Özlem Bulut
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Priya A Debisarun
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Helga Dijkstra
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Jéssica Cristina Dos Santos
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Anaísa V Ferreira
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Daniela Flores-Gomez
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Laszlo A Groh
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Inge Grondman
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Leonie Helder
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Cor Jacobs
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Liesbeth Jacobs
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Trees Jansen
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Gizem Kilic
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Viola Klück
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Valerie A C M Koeken
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.,Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) and TWINCORE, The Helmholtz Centre for Infection Research (HZI) and The Hannover Medical School (MHH), Hannover, Germany
| | - Heidi Lemmers
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Simone J C F M Moorlag
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Vera P Mourits
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Jelmer H van Puffelen
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Katrin Rabold
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Rutger J Röring
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Diletta Rosati
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Helin Tercan
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Julia van Tuijl
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Jessica Quintin
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, 75015 Paris, France
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
27
|
Circulating Bile Acids in Liver Failure Activate TGR5 and Induce Monocyte Dysfunction. Cell Mol Gastroenterol Hepatol 2021; 12:25-40. [PMID: 33545429 PMCID: PMC8082115 DOI: 10.1016/j.jcmgh.2021.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Retention of bile acids in the blood is a hallmark of liver failure. Recent studies have shown that increased serum bile acid levels correlate with bacterial infection and increased mortality. However, the mechanisms by which circulating bile acids influence patient outcomes still are elusive. METHODS Serum bile acid profiles in 33 critically ill patients with liver failure and their effects on Takeda G-protein-coupled receptor 5 (TGR5), an immunomodulatory receptor that is highly expressed in monocytes, were analyzed using tandem mass spectrometry, novel highly sensitive TGR5 bioluminescence resonance energy transfer using nanoluciferase (NanoBRET, Promega Corp, Madison, WI) technology, and in vitro assays with human monocytes. RESULTS Twenty-two patients (67%) had serum bile acids that led to distinct TGR5 activation. These TGR5-activating serum bile acids severely compromised monocyte function. The release of proinflammatory cytokines (eg, tumor necrosis factor α or interleukin 6) in response to bacterial challenge was reduced significantly if monocytes were incubated with TGR5-activating serum bile acids from patients with liver failure. By contrast, serum bile acids from healthy volunteers did not influence cytokine release. Monocytes that did not express TGR5 were protected from the bile acid effects. TGR5-activating serum bile acids were a risk factor for a fatal outcome in patients with liver failure, independent of disease severity. CONCLUSIONS Depending on their composition and quantity, serum bile acids in liver failure activate TGR5. TGR5 activation leads to monocyte dysfunction and correlates with mortality, independent of disease activity. This indicates an active role of TGR5 in liver failure. Therefore, TGR5 and bile acid metabolism might be promising targets for the treatment of immune dysfunction in liver failure.
Collapse
|
28
|
Thongsiri C, Nagai-Yoshioka Y, Yamasaki R, Adachi Y, Usui M, Nakashima K, Nishihara T, Ariyoshi W. Schizophyllum commune β-glucan: Effect on interleukin-10 expression induced by lipopolysaccharide from periodontopathic bacteria. Carbohydr Polym 2021; 253:117285. [DOI: 10.1016/j.carbpol.2020.117285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/20/2022]
|
29
|
Godwin MS, Jones M, Blackburn JP, Yu Z, Matalon S, Hastie AT, Meyers DA, Steele C. The chemokine CX3CL1/fractalkine regulates immunopathogenesis during fungal-associated allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol 2020; 320:L393-L404. [PMID: 33325803 DOI: 10.1152/ajplung.00376.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Individuals that present with difficult-to-control asthma and sensitivity to one or more fungal species are categorized as a subset of severe asthma patients belonging to a group herein referred to as severe asthma with fungal sensitization (SAFS). We have previously reported the identification of numerous cytokines and chemokines that were elevated in human asthmatics that were sensitized to fungi vs. nonfungal sensitized asthmatics. Here, we show that the unique chemokine CX3CL1 (fractalkine) is elevated in both bronchoalveolar lavage fluid and sputum from human asthmatics sensitized to fungi, implicating an association with CX3CL1 in fungal asthma severity. In an experimental model of fungal-associated allergic airway inflammation, we demonstrate that the absence of CX3CR1 signaling unexpectedly resulted in a profound impairment in lung function. Histological assessment of lung tissue revealed an unrestricted inflammatory response that was subsequently characterized by enhanced levels of neutrophils, eosinophils, and inflammatory monocytes. Neutrophilic inflammation correlated with elevated IL-17A, proinflammatory cytokines (TNF-α, IL-1α, and IL-1β), neutrophil survival factors (granulocyte colony-stimulating factor), and neutrophil-targeting chemokines (CCL3 and CCL4). Eosinophilia correlated with elevated type 2 responses (IL-5 and IL-13) whereas inflammatory monocyte levels correlated with elevated type 1 responses (IFN-γ and CXCL9) and survival factors (macrophage colony-stimulating factor). Despite enhanced inflammatory responses, the immunoregulatory cytokine IL-10 and the natural inhibitor of IL-1 signaling, IL-1RA, were significantly elevated rather than impaired. Regulatory T-cell levels were unchanged, as were levels of the anti-inflammatory cytokines IL-35 and IL-38. Taken together, the CX3CL1/CX3CR1 axis preserves lung function during fungal-associated allergic airway inflammation through a nonclassical immunoregulatory mechanism.
Collapse
Affiliation(s)
- Matthew S Godwin
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana
| | - MaryJane Jones
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana
| | - Jonathan P Blackburn
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhihong Yu
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Annette T Hastie
- Department of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | | | - Chad Steele
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana
| |
Collapse
|
30
|
Ludwig K, Husain RA, Rubio I. mTORC1 Is Not Principally Involved in the Induction of Human Endotoxin Tolerance. Front Immunol 2020; 11:1515. [PMID: 32849516 PMCID: PMC7426365 DOI: 10.3389/fimmu.2020.01515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/09/2020] [Indexed: 11/13/2022] Open
Abstract
Endotoxin tolerance represents a safeguard mechanism for preventing detrimental prolonged inflammation and exaggerated immune/inflammatory responses from innate immune cells to recurrent harmless pathogens. On the other hand, excessive immune tolerance can contribute to pathological immunosuppression, e.g., as present in sepsis. Monocyte activation is accompanied by intracellular metabolic rearrangements that are reportedly orchestrated by the metabolic signaling node mTORC1. mTORC1-dependent metabolic re-wiring plays a major role in monocyte/macrophage polarization, but whether mTORC1 participates in the induction of endotoxin tolerance and other immune adaptive programs, such as immune training, is not clear. This connection has been difficult to test in the past due to the lack of appropriate models of human endotoxin tolerance allowing for the genetic manipulation of mTORC1. We have addressed this shortcoming by investigating monocytes from tuberous sclerosis (TSC) patients that feature a functional loss of the tumor suppressor TSC1/2 and a concomitant hyperactivation of mTORC1. Subjecting these cells to various protocols of immune priming and adaptation showed that the TSC monocytes are not compromised in the induction of tolerance. Analogously, we find that pharmacological mTORC1 inhibition does not prevent endotoxin tolerance induction in human monocytes. Interestingly, neither manipulation affected the capacity of activated monocytes to switch to increased lactic fermentation. In sum, our findings document that mTORC1 is unlikely to be involved in the induction of endotoxin tolerance in human monocytes and argue against a causal link between an mTORC1-dependent metabolic switch and the induction of immune tolerance.
Collapse
Affiliation(s)
- Kristin Ludwig
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Ralf A Husain
- Department of Neuropediatrics, University Hospital Jena, Jena, Germany
| | - Ignacio Rubio
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital Jena, Jena, Germany.,Clinic of Anaesthesiology and Intensive Care and Center for Sepsis Control and Care (CSCC), University Hospital Jena, Jena, Germany
| |
Collapse
|
31
|
Pérez-Hernández CA, Kern CC, Butkeviciute E, McCarthy E, Dockrell HM, Moreno-Altamirano MMB, Aguilar-López BA, Bhosale G, Wang H, Gems D, Duchen MR, Smith SG, Sánchez-García FJ. Mitochondrial Signature in Human Monocytes and Resistance to Infection in C. elegans During Fumarate-Induced Innate Immune Training. Front Immunol 2020; 11:1715. [PMID: 32849605 PMCID: PMC7419614 DOI: 10.3389/fimmu.2020.01715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Monocytes can develop immunological memory, a functional characteristic widely recognized as innate immune training, to distinguish it from memory in adaptive immune cells. Upon a secondary immune challenge, either homologous or heterologous, trained monocytes/macrophages exhibit a more robust production of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, than untrained monocytes. Candida albicans, β-glucan, and BCG are all inducers of monocyte training and recent metabolic profiling analyses have revealed that training induction is dependent on glycolysis, glutaminolysis, and the cholesterol synthesis pathway, along with fumarate accumulation; interestingly, fumarate itself can induce training. Since fumarate is produced by the tricarboxylic acid (TCA) cycle within mitochondria, we asked whether extra-mitochondrial fumarate has an effect on mitochondrial function. Results showed that the addition of fumarate to monocytes induces mitochondrial Ca2+ uptake, fusion, and increased membrane potential (Δψm), while mitochondrial cristae became closer to each other, suggesting that immediate (from minutes to hours) mitochondrial activation plays a role in the induction phase of innate immune training of monocytes. To establish whether fumarate induces similar mitochondrial changes in vivo in a multicellular organism, effects of fumarate supplementation were tested in the nematode worm Caenorhabditis elegans. This induced mitochondrial fusion in both muscle and intestinal cells and also increased resistance to infection of the pharynx with E. coli. Together, these findings contribute to defining a mitochondrial signature associated with the induction of innate immune training by fumarate treatment, and to the understanding of whole organism infection resistance.
Collapse
Affiliation(s)
- C Angélica Pérez-Hernández
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Carina C Kern
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Egle Butkeviciute
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Elizabeth McCarthy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Hazel M Dockrell
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Bruno A Aguilar-López
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gauri Bhosale
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Hongyuan Wang
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - David Gems
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Steven G Smith
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
32
|
Aaron L, Torsten M. Candida albicans in celiac disease: A wolf in sheep's clothing. Autoimmun Rev 2020; 19:102621. [PMID: 32693029 DOI: 10.1016/j.autrev.2020.102621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022]
Abstract
Candida albicans is a commensal fungus with a potential pathogenicity and celiac disease is an autoimmune condition. Both share multiple pathophysiological junctions, including serological markers against cell-wall proteins of Candida, anti-gliadin antibodies are positive in both entities, gluten and a candidal virulence factor share sequence similarity and the autoantigen of celiac disease, the tissue transglutaminase, is pivotal in Candida albicans commensalism and hostile behavior and its covalently cross linked products are stable and resistant to breakdown in the two entities. Those autoimmune/infectious cross roads are the basis for the hypothesis that Candida albicans is an additional environmental factor for celiac disease autoimmunogenesis.
Collapse
|
33
|
Geller A, Yan J. Could the Induction of Trained Immunity by β-Glucan Serve as a Defense Against COVID-19? Front Immunol 2020; 11:1782. [PMID: 32760409 PMCID: PMC7372085 DOI: 10.3389/fimmu.2020.01782] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/03/2020] [Indexed: 12/22/2022] Open
Abstract
As the SARS-CoV-2 virus wreaks havoc on the populations, health care infrastructures and economies of nations around the world, finding ways to protect health care workers and bolster immune responses in the general population while we await an effective vaccine will be the difference between life and death for many people. Recent studies show that innate immune populations may possess a form of memory, termed Trained Immunity (TRIM), where innate immune cells undergo metabolic, mitochondrial, and epigenetic reprogramming following exposure to an initial stimulus that results in a memory phenotype of enhanced immune responses when exposed to a secondary, heterologous, stimulus. Throughout the literature, it has been shown that the induction of TRIM using such inducers as the BCG vaccine and β-glucan can provide protection through altered immune responses against a range of viral infections. Here we hypothesize a potential role for β-glucan in decreasing worldwide morbidity and mortality due to COVID-19, and posit several ideas as to how TRIM may actually shape the observed epidemiological phenomena related to COVID-19. We also evaluate the potential effects of β-glucan in relation to the immune dysregulation and cytokine storm observed in COVID-19. Ultimately, we hypothesize that the use of oral β-glucan in a prophylactic setting could be an effective way to boost immune responses and abrogate symptoms in COVID-19, though clinical trials are necessary to confirm the efficacy of this treatment and to further examine differential effects of β-glucan's from various sources.
Collapse
Affiliation(s)
- Anne Geller
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, United States
- Immuno-Oncology Program, Division of Immunotherapy, Department of Surgery, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jun Yan
- Immuno-Oncology Program, Division of Immunotherapy, Department of Surgery, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
34
|
Imran S, Neeland MR, Shepherd R, Messina N, Perrett KP, Netea MG, Curtis N, Saffery R, Novakovic B. A Potential Role for Epigenetically Mediated Trained Immunity in Food Allergy. iScience 2020; 23:101171. [PMID: 32480123 PMCID: PMC7262566 DOI: 10.1016/j.isci.2020.101171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/01/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence of IgE-mediated food allergy is increasing at a rapid pace in many countries. The association of high food allergy rates with Westernized lifestyles suggests the role of gene-environment interactions, potentially underpinned by epigenetic variation, in mediating this process. Recent studies have implicated innate immune system dysfunction in the development and persistence of food allergy. These responses are characterized by increased circulating frequency of innate immune cells and heightened inflammatory responses to bacterial stimulation in food allergic patients. These signatures mirror those described in trained immunity, whereby innate immune cells retain a “memory” of earlier microbial encounters, thus influencing subsequent immune responses. Here, we propose that a robust multi-omics approach that integrates immunological, transcriptomic, and epigenomic datasets, combined with well-phenotyped and longitudinal food allergy cohorts, can inform the potential role of trained immunity in food allergy.
Collapse
Affiliation(s)
- Samira Imran
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Melanie R Neeland
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Rebecca Shepherd
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Nicole Messina
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Kirsten P Perrett
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia; Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Nigel Curtis
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia.
| |
Collapse
|
35
|
Pellon A, Sadeghi Nasab SD, Moyes DL. New Insights in Candida albicans Innate Immunity at the Mucosa: Toxins, Epithelium, Metabolism, and Beyond. Front Cell Infect Microbiol 2020; 10:81. [PMID: 32195196 PMCID: PMC7062647 DOI: 10.3389/fcimb.2020.00081] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
The mucosal surfaces of the human body are challenged by millions of microbes on a daily basis. Co-evolution with these microbes has led to the development of plastic mechanisms in both host and microorganisms that regulate the balance between preserving beneficial microbes and clearing pathogens. Candida albicans is a fungal pathobiont present in most healthy individuals that, under certain circumstances, can become pathogenic and cause everything from mild mucosal infections to life-threatening systemic diseases. As an essential part of the innate immunity in mucosae, epithelial cells elaborate complex immune responses that discriminate between commensal and pathogenic microbes, including C. albicans. Recently, several significant advances have been made identifying new pieces in the puzzle of host-microbe interactions. This review will summarize these advances in the context of our current knowledge of anti-Candida mucosal immunity, and their impact on epithelial immune responses to this fungal pathogen.
Collapse
Affiliation(s)
- Aize Pellon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Shervin Dokht Sadeghi Nasab
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
36
|
Heung LJ. Monocytes and the Host Response to Fungal Pathogens. Front Cell Infect Microbiol 2020; 10:34. [PMID: 32117808 PMCID: PMC7031161 DOI: 10.3389/fcimb.2020.00034] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Monocytes and their derivatives, including macrophages and dendritic cells, play diverse roles in the response to fungal pathogens. Sensing of fungi by monocytes triggers signaling pathways that mediate direct effects like phagocytosis and cytokine production. Monocytes can also present fungal antigens to elicit adaptive immune responses. These monocyte-mediated pathways may be either beneficial or harmful to the host. In some instances, fungi have developed mechanisms to evade the consequences of monocyte activation and subvert these cells to promote disease. Thus, monocytes are critically involved in mediating the outcomes of these often highly fatal infections. This review will highlight the roles of monocytes in the immune response to some of the major fungi that cause invasive human disease, including Aspergillus, Cryptococcus, Candida, Histoplasma, Blastomyces, and Coccidioides, and discuss potential strategies to manipulate monocyte responses in order to enhance anti-fungal immunity in susceptible hosts.
Collapse
Affiliation(s)
- Lena J Heung
- Division of Infectious Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|