1
|
Rich HE, Bhutia S, Gonzales de Los Santos F, Entrup GP, Warheit-Niemi HI, Gurczynski SJ, Bame M, Douglas MT, Morris SB, Zemans RL, Lukacs NW, Moore BB. RSV enhances Staphylococcus aureus bacterial growth in the lung. Infect Immun 2024; 92:e0030424. [PMID: 39150268 PMCID: PMC11475690 DOI: 10.1128/iai.00304-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Patients coinfected with respiratory syncytial virus (RSV) and bacteria have longer hospital stays, higher risk of intensive care unit admission, and worse outcomes. We describe a model of RSV line 19F/methicillin-resistant Staphylococcus aureus (MRSA) USA300 coinfection that does not impair viral clearance, but prior RSV infection enhances USA300 MRSA bacterial growth in the lung. The increased bacterial burden post-RSV correlates with reduced accumulation of neutrophils and impaired bacterial killing by alveolar macrophages. Surprisingly, reduced neutrophil accumulation is likely not explained by reductions in phagocyte-recruiting chemokines or alterations in proinflammatory cytokine production compared with mice infected with S. aureus alone. Neutrophils from RSV-infected mice retain their ability to migrate toward chemokine signals, and neutrophils from the RSV-infected lung are better able to phagocytize and kill S. aureus ex vivo on a per cell basis. In contrast, while alveolar macrophages could ingest USA300 post-RSV, intracellular bacterial killing was impaired. The RSV/S. aureus coinfected lung promotes a state of overactivation in neutrophils, demonstrated by increased production of reactive oxygen species (ROS) that can drive formation of neutrophil extracellular traps (NETs), resulting in cell death. Mice with RSV/S. aureus coinfection had increased extracellular DNA and protein in bronchoalveolar lavage fluid and histological evidence confirmed NETosis in vivo. Taken together, these data highlight that prior RSV infection can prime the overactivation of neutrophils leading to cell death that impairs neutrophil accumulation in the lung. Additionally, alveolar macrophage killing of bacteria is impaired post-RSV. Together, these defects enhance USA300 MRSA bacterial growth in the lung post-RSV.
Collapse
Affiliation(s)
- Helen E. Rich
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Simran Bhutia
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Gabrielle P. Entrup
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Helen I. Warheit-Niemi
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen J. Gurczynski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Monica Bame
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael T. Douglas
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Susan B. Morris
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachel L. Zemans
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas W. Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Semmler F, Regis Belisário-Ferrari M, Kulosa M, Kaysser L. The Metabolic Potential of the Human Lung Microbiome. Microorganisms 2024; 12:1448. [PMID: 39065215 PMCID: PMC11278768 DOI: 10.3390/microorganisms12071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The human lung microbiome remains largely underexplored, despite its potential implications in the pharmacokinetics of inhaled drugs and its involvement in lung diseases. Interactions within these bacterial communities and with the host are complex processes which often involve microbial small molecules. In this study, we employed a computational approach to describe the metabolic potential of the human lung microbiome. By utilizing antiSMASH and BiG-SCAPE software, we identified 1831 biosynthetic gene clusters for the production of specialized metabolites in a carefully compiled genome database of lung-associated bacteria and fungi. It was shown that RiPPs represent the largest class of natural products within the bacteriome, while NRPs constitute the largest class of natural products in the lung mycobiome. All predicted BGCs were further categorized into 767 gene cluster families, and a subsequent network analysis highlighted that these families are widely distributed and contain many uncharacterized members. Moreover, in-depth annotation allowed the assignment of certain gene clusters to putative lung-specific functions within the microbiome, such as osmoadaptation or surfactant synthesis. This study establishes the lung microbiome as a prolific source for secondary metabolites and lays the groundwork for detailed investigation of this unique environment.
Collapse
Affiliation(s)
| | | | | | - Leonard Kaysser
- Department of Pharmaceutical Biology, Institute for Drug Discovery, University of Leipzig, 04317 Leipzig, Germany; (F.S.); (M.R.B.-F.); (M.K.)
| |
Collapse
|
3
|
Ahmed FF, Das AD, Sumi MJ, Islam MZ, Rahman MS, Rashid MH, Alyami SA, Alotaibi N, Azad AKM, Moni MA. Identification of genetic biomarkers, drug targets and agents for respiratory diseases utilising integrated bioinformatics approaches. Sci Rep 2023; 13:19072. [PMID: 37925496 PMCID: PMC10625598 DOI: 10.1038/s41598-023-46455-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
Respiratory diseases (RD) are significant public health burdens and malignant diseases worldwide. However, the RD-related biological information and interconnection still need to be better understood. Thus, this study aims to detect common differential genes and potential hub genes (HubGs), emphasizing their actions, signaling pathways, regulatory biomarkers for diagnosing RD and candidate drugs for treating RD. In this paper we used integrated bioinformatics approaches (such as, gene ontology (GO) and KEGG pathway enrichment analysis, molecular docking, molecular dynamic simulation and network-based molecular interaction analysis). We discovered 73 common DEGs (CDEGs) and ten HubGs (ATAD2B, PPP1CB, FOXO1, AKT3, BCR, PDE4D, ITGB1, PCBP2, CD44 and SMARCA2). Several significant functions and signaling pathways were strongly related to RD. We recognized six transcription factor (TF) proteins (FOXC1, GATA2, FOXL1, YY1, POU2F2 and HINFP) and five microRNAs (hsa-mir-218-5p, hsa-mir-335-5p, hsa-mir-16-5p, hsa-mir-106b-5p and hsa-mir-15b-5p) as the important transcription and post-transcription regulators of RD. Ten HubGs and six major TF proteins were considered drug-specific receptors. Their binding energy analysis study was carried out with the 63 drug agents detected from network analysis. Finally, the five complexes (the PDE4D-benzo[a]pyrene, SMARCA2-benzo[a]pyrene, HINFP-benzo[a]pyrene, CD44-ketotifen and ATAD2B-ponatinib) were selected for RD based on their strong binding affinity scores and stable performance as the most probable repurposable protein-drug complexes. We believe our findings will give readers, wet-lab scientists, and pharmaceuticals a thorough grasp of the biology behind RD.
Collapse
Affiliation(s)
- Fee Faysal Ahmed
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Arnob Dip Das
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mst Joynab Sumi
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Zohurul Islam
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- High Performance Computing (HPC) Laboratory, Department of Mathematics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Harun Rashid
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Salem A Alyami
- Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Saudi Arabia
| | - Naif Alotaibi
- Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Saudi Arabia
| | - A K M Azad
- Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Saudi Arabia
| | - Mohammad Ali Moni
- Artificial Intelligence and Data Science, School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
4
|
Müllertz OAO, Andersen P, Christensen D, Foged C, Thakur A. Pulmonary Administration of the Liposome-Based Adjuvant CAF01: Effect of Surface Charge on Mucosal Adjuvant Function. Mol Pharm 2023; 20:953-970. [PMID: 36583936 DOI: 10.1021/acs.molpharmaceut.2c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mucosal surfaces of the lungs represent a major site of entry for airborne pathogens, and pulmonary administration of vaccines is an attractive strategy to induce protective mucosal immunity in the airways. Recently, we demonstrated the potential of pulmonary vaccination with the tuberculosis subunit antigen H56 adjuvanted with the cationic liposomal adjuvant formulation CAF01, which consists of the cationic lipid dimethyldioctadecylammonium (DDA) bromide and the synthetic cord factor trehalose-6,6'-dibehenate. However, the cationic charge of DDA represents a major safety challenge. Hence, replacing DDA with a safer zwitterionic or anionic phospholipid is an attractive approach to improve vaccine safety, but the effect of liposomal surface charge on the induction of mucosal immunity after airway immunization is poorly understood. Here, we investigated the effect of surface charge by replacing the cationic DDA component of CAF01 with zwitterionic dipalmitoylphosphatidylcholine (DPPC) or anionic dipalmitoylphosphatidylglycerol (DPPG), and we show that charge modification enhances antigen-specific pulmonary T-cell responses against co-formulated H56. We systematically replaced DDA with either DPPC or DPPG and found that these modifications resulted in colloidally stable liposomes that have similar size and morphology to unmodified CAF01. DPPC- or DPPG-modified CAF01 displayed surface charge-dependent protein adsorption and induced slightly higher follicular helper T cells and germinal center B cells in the lung-draining lymph nodes than unmodified CAF01. In addition, modified CAF01 induced significantly higher levels of H56-specific Th17 cells and polyfunctional CD4+ T cells in the lungs, as compared to unmodified CAF01. However, the strong H56-specific humoral responses induced by CAF01 in the lungs and spleen were not influenced by surface charge. Hence, these results provide insights into the importance of surface charge for liposomal adjuvant function and can also guide the design of safe pulmonary subunit vaccines against other mucosal pathogens.
Collapse
Affiliation(s)
- Olivia Amanda Oest Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø2100, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, Copenhagen S2300, Denmark
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, Copenhagen S2300, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø2100, Denmark
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø2100, Denmark
| |
Collapse
|
5
|
The Relationship of Cholesterol Responses to Mitochondrial Dysfunction and Lung Inflammation in Chronic Obstructive Pulmonary Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020253. [PMID: 36837454 PMCID: PMC9958740 DOI: 10.3390/medicina59020253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Hyperlipidemia is frequently reported in chronic obstructive pulmonary disease (COPD) patients and is linked to the progression of the disease and its comorbidities. Hypercholesterolemia leads to cholesterol accumulation in many cell types, especially immune cells, and some recent studies suggest that cholesterol impacts lung epithelial cells' inflammatory responses and mitochondrial responses. Several studies also indicate that targeting cholesterol responses with either statins or liver X receptor (LXR) agonists may be plausible means of improving pulmonary outcomes. Equally, cholesterol metabolism and signaling are linked to mitochondrial dysfunction and inflammation attributed to COPD progression. Here, we review the current literature focusing on the impact of cigarette smoke on cholesterol levels, cholesterol efflux, and the influence of cholesterol on immune and mitochondrial responses within the lungs.
Collapse
|
6
|
Coya JM, Fraile-Ágreda V, de Tapia L, García-Fojeda B, Sáenz A, Bengoechea JA, Kronqvist N, Johansson J, Casals C. Cooperative action of SP-A and its trimeric recombinant fragment with polymyxins against Gram-negative respiratory bacteria. Front Immunol 2022; 13:927017. [PMID: 36159837 PMCID: PMC9493720 DOI: 10.3389/fimmu.2022.927017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
The exploration of therapies combining antimicrobial lung proteins and conventional antibiotics is important due to the growing problem of multidrug-resistant bacteria. The aim of this study was to investigate whether human SP-A and a recombinant trimeric fragment (rfhSP-A) have cooperative antimicrobial activity with antibiotics against pathogenic Gram-negative bacteria. We found that SP-A bound the cationic peptide polymyxin B (PMB) with an apparent dissociation constant (K D) of 0.32 ± 0.04 µM. SP-A showed synergistic microbicidal activity with polymyxin B and E, but not with other antibiotics, against three SP-A-resistant pathogenic bacteria: Klebsiella pneumoniae, non-typable Haemophilus influenzae (NTHi), and Pseudomonas aeruginosa. SP-A was not able to bind to K. pneumoniae, NTHi, or to mutant strains thereof expressing long-chain lipopolysaccharides (or lipooligosaccharides) and/or polysaccharide capsules. In the presence of PMB, SP-A induced the formation of SP-A/PMB aggregates that enhance PMB-induced bacterial membrane permeabilization. Furthermore, SP-A bound to a molecular derivative of PMB lacking the acyl chain (PMBN) with a K D of 0.26 ± 0.02 μM, forming SP-A/PMBN aggregates. PMBN has no bactericidal activity but can bind to the outer membrane of Gram-negative bacteria. Surprisingly, SP-A and PMBN showed synergistic bactericidal activity against Gram-negative bacteria. Unlike native supratrimeric SP-A, the trimeric rfhSP-A fragment had small but significant direct bactericidal activity against K. pneumoniae, NTHi, and P. aeruginosa. rfhSP-A did not bind to PMB under physiological conditions but acted additively with PMB and other antibiotics against these pathogenic bacteria. In summary, our results significantly improve our understanding of the antimicrobial actions of SP-A and its synergistic action with PMB. A peptide based on SP-A may aid the therapeutic use of PMB, a relatively cytotoxic antibiotic that is currently being reintroduced into clinics due to the global problem of antibiotic resistance.
Collapse
Affiliation(s)
- Juan Manuel Coya
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Víctor Fraile-Ágreda
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Lidia de Tapia
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Belén García-Fojeda
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Alejandra Sáenz
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - José A. Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Nina Kronqvist
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Huddinge, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Huddinge, Sweden
| | - Cristina Casals
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
7
|
Yadav D, Wairagu PM, Kwak M, Jin JO, Jin JO. Nanoparticle-Based Inhalation Therapy for Pulmonary Diseases. Curr Drug Metab 2022; 23:882-896. [PMID: 35927812 DOI: 10.2174/1389200223666220803103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 01/05/2023]
Abstract
The lung is exposed to various pollutants and is the primary site for the onset of various diseases, including infections, allergies, and cancers. One possible treatment approach for such pulmonary diseases involves direct administration of therapeutics to the lung so as to maintain the topical concentration of the drug. Particles with nanoscale diameters tend to reach the pulmonary region. Nanoparticles (NPs) have garnered significant interest for applications in biomedical and pharmaceutical industries because of their unique physicochemical properties and biological activities. In this article, we describe the biological and pharmacological activities of NPs as well as summarize their potential in the formulation of drugs employed to treat pulmonary diseases. Recent advances in the use of NPs in inhalation chemotherapy for the treatment of lung diseases have also been highlighted.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, South Korea
| | - Peninah M Wairagu
- Department of Biochemistry and Biotechnology, The Technical University of Kenya, Nairobi, Kenya
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jun-O Jin
- Department of Biotechnology, ITM University, Gwalior, Madhya Pradesh, 474011, India.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
8
|
Virk R, Buddenbaum N, Al-Shaer A, Armstrong M, Manke J, Reisdorph N, Sergin S, Fenton JI, Wallace ED, Ehrmann BM, Lovins HB, Gowdy KM, Smith MR, Smith GJ, Kelada SN, Shaikh SR. Obesity reprograms the pulmonary polyunsaturated fatty acid-derived lipidome, transcriptome, and gene-oxylipin networks. J Lipid Res 2022; 63:100267. [PMID: 36028048 PMCID: PMC9508350 DOI: 10.1016/j.jlr.2022.100267] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/27/2022] [Accepted: 08/14/2022] [Indexed: 01/13/2023] Open
Abstract
Obesity exacerbates inflammation upon lung injury; however, the mechanisms by which obesity primes pulmonary dysregulation prior to external injury are not well studied. Herein, we tested the hypothesis that obesity dysregulates pulmonary PUFA metabolism that is central to inflammation initiation and resolution. We first show that a high-fat diet (HFD) administered to C57BL/6J mice increased the relative abundance of pulmonary PUFA-containing triglycerides and the concentration of PUFA-derived oxylipins (particularly prostaglandins and hydroxyeicosatetraenoic acids), independent of an increase in total pulmonary PUFAs, prior to onset of pulmonary inflammation. Experiments with a genetic model of obesity (ob/ob) generally recapitulated the effects of the HFD on the pulmonary oxylipin signature. Subsequent pulmonary next-generation RNA sequencing identified complex and unique transcriptional regulation with the HFD. We found the HFD increased pathways related to glycerophospholipid metabolism and immunity, including a unique elevation in B cell differentiation and signaling. Furthermore, we conducted computational integration of lipidomic with transcriptomic data. These analyses identified novel HFD-driven networks between glycerophospholipid metabolism and B cell receptor signaling with specific PUFA-derived pulmonary oxylipins. Finally, we confirmed the hypothesis by demonstrating that the concentration of pulmonary oxylipins, in addition to inflammatory markers, were generally increased in mice consuming a HFD upon ozone-induced acute lung injury. Collectively, these data show that a HFD dysregulates pulmonary PUFA metabolism prior to external lung injury, which may be a mechanism by which obesity primes the lungs to respond poorly to infectious and/or inflammatory challenges.
Collapse
Affiliation(s)
- Rafia Virk
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicole Buddenbaum
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abrar Al-Shaer
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Jonathan Manke
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Selin Sergin
- Department of Food Science and Human Nutrition, College of Agriculture and Natural Resources and College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Jenifer I. Fenton
- Department of Food Science and Human Nutrition, College of Agriculture and Natural Resources and College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - E. Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brandie M. Ehrmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah B. Lovins
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - M Ryan Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA,Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Gregory J. Smith
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samir N.P. Kelada
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,For correspondence: Saame Raza Shaikh
| |
Collapse
|
9
|
Lenárt S, Lenárt P, Knopfová L, Kotasová H, Pelková V, Sedláková V, Vacek O, Pokludová J, Čan V, Šmarda J, Souček K, Hampl A, Beneš P. TACSTD2 upregulation is an early reaction to lung infection. Sci Rep 2022; 12:9583. [PMID: 35688908 PMCID: PMC9185727 DOI: 10.1038/s41598-022-13637-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
TACSTD2 encodes a transmembrane glycoprotein Trop2 commonly overexpressed in carcinomas. While the Trop2 protein was discovered already in 1981 and first antibody–drug conjugate targeting Trop2 were recently approved for cancer therapy, the physiological role of Trop2 is still not fully understood. In this article, we show that TACSTD2/Trop2 expression is evolutionarily conserved in lungs of various vertebrates. By analysis of publicly available transcriptomic data we demonstrate that TACSTD2 level consistently increases in lungs infected with miscellaneous, but mainly viral pathogens. Single cell and subpopulation based transcriptomic data revealed that the major source of TACSTD2 transcript are lung epithelial cells and their progenitors and that TACSTD2 is induced directly in lung epithelial cells following infection. Increase in TACSTD2 expression may represent a mechanism to maintain/restore epithelial barrier function and contribute to regeneration process in infected/damaged lungs.
Collapse
Affiliation(s)
- Sára Lenárt
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Peter Lenárt
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.,Faculty of Science, Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic.,Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Lucia Knopfová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Hana Kotasová
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vendula Pelková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Sedláková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondřej Vacek
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Pokludová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Vladimír Čan
- Department of Surgery, University Hospital Brno, Brno, Czech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Karel Souček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Aleš Hampl
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic. .,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
10
|
Wang W, Huang Z, Huang Y, Zhang X, Huang J, Cui Y, Yue X, Ma C, Fu F, Wang W, Wu C, Pan X. Pulmonary delivery nanomedicines towards circumventing physiological barriers: Strategies and characterization approaches. Adv Drug Deliv Rev 2022; 185:114309. [PMID: 35469997 DOI: 10.1016/j.addr.2022.114309] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/01/2022]
Abstract
Pulmonary delivery of nanomedicines is very promising in lung local disease treatments whereas several physiological barriers limit its application via the interaction with inhaled nanomedicines, namely bio-nano interactions. These bio-nano interactions may affect the pulmonary fate of nanomedicines and impede the distribution of nanomedicines in its targeted region, and subsequently undermine the therapeutic efficacy. Pulmonary diseases are under worse scenarios as the altered physiological barriers generally induce stronger bio-nano interactions. To mitigate the bio-nano interactions and regulate the pulmonary fate of nanomedicines, a number of manipulating strategies were established based on size control, surface modification, charge tuning and co-delivery of mucolytic agents. Visualized and non-visualized characterizations can be employed to validate the robustness of the proposed strategies. This review provides a guiding overview of the physiological barriers affecting the in vivo fate of inhaled nanomedicines, the manipulating strategies, and the validation methods, which will assist with the rational design and application of pulmonary nanomedicine.
Collapse
|
11
|
Fröhlich E. Non-Cellular Layers of the Respiratory Tract: Protection against Pathogens and Target for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14050992. [PMID: 35631578 PMCID: PMC9143813 DOI: 10.3390/pharmaceutics14050992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
Epithelial barriers separate the human body from the environment to maintain homeostasis. Compared to the skin and gastrointestinal tract, the respiratory barrier is the thinnest and least protective. The properties of the epithelial cells (height, number of layers, intercellular junctions) and non-cellular layers, mucus in the conducting airways and surfactant in the respiratory parts determine the permeability of the barrier. The review focuses on the non-cellular layers and describes the architecture of the mucus and surfactant followed by interaction with gases and pathogens. While the penetration of gases into the respiratory tract is mainly determined by their hydrophobicity, pathogens use different mechanisms to invade the respiratory tract. Often, the combination of mucus adhesion and subsequent permeation of the mucus mesh is used. Similar mechanisms are also employed to improve drug delivery across the respiratory barrier. Depending on the payload and target region, various mucus-targeting delivery systems have been developed. It appears that the mucus-targeting strategy has to be selected according to the planned application.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria; ; Tel.: +43-316-38573011
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
12
|
Milad N, Morissette MC. Revisiting the role of pulmonary surfactant in chronic inflammatory lung diseases and environmental exposure. Eur Respir Rev 2021; 30:30/162/210077. [PMID: 34911693 DOI: 10.1183/16000617.0077-2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Pulmonary surfactant is a crucial and dynamic lung structure whose primary functions are to reduce alveolar surface tension and facilitate breathing. Though disruptions in surfactant homeostasis are typically thought of in the context of respiratory distress and premature infants, many lung diseases have been noted to have significant surfactant abnormalities. Nevertheless, preclinical and clinical studies of pulmonary disease too often overlook the potential contribution of surfactant alterations - whether in quantity, quality or composition - to disease pathogenesis and symptoms. In inflammatory lung diseases, whether these changes are cause or consequence remains a subject of debate. This review will outline 1) the importance of pulmonary surfactant in the maintenance of respiratory health, 2) the diseases associated with primary surfactant dysregulation, 3) the surfactant abnormalities observed in inflammatory pulmonary diseases and, finally, 4) the available research on the interplay between surfactant homeostasis and smoking-associated lung disease. From these published studies, we posit that changes in surfactant integrity and composition contribute more considerably to chronic inflammatory pulmonary diseases and that more work is required to determine the mechanisms underlying these alterations and their potential treatability.
Collapse
Affiliation(s)
- Nadia Milad
- Faculty of Medicine, Université Laval, Quebec City, QC, Canada.,Quebec Heart and Lung Institute - Université Laval, Quebec City, QC, Canada
| | - Mathieu C Morissette
- Quebec Heart and Lung Institute - Université Laval, Quebec City, QC, Canada .,Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
13
|
The intracellular phase of extracellular respiratory tract bacterial pathogens and its role on pathogen-host interactions during infection. Curr Opin Infect Dis 2021; 34:197-205. [PMID: 33899754 DOI: 10.1097/qco.0000000000000727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW An initial intracellular phase of usually extracellular bacterial pathogens displays an important strategy to hide from the host's immune system and antibiotics therapy. It helps the bacteria, including bacterial pathogens of airway diseases, to persist and eventually switch to a typical extracellular infection. Several infectious diseases of the lung are life-threatening and their control is impeded by intracellular persistence of pathogens. Thus, molecular adaptations of the pathogens to this niche but also the host's response and potential targets to interfere are of relevance. Here we discuss examples of historically considered extracellular pathogens of the respiratory airway where the intracellular survival and proliferation is well documented, including infections by Staphylococcus aureus, Bordetella pertussis, Haemophilus influenzae, Pseudomonas aeruginosa, and others. RECENT FINDINGS Current studies focus on bacterial factors contributing to adhesion, iron acquisition, and intracellular survival as well as ways to target them for combatting the bacterial infections. SUMMARY The investigation of common and specific mechanisms of pathogenesis and persistence of these bacteria in the host may contribute to future investigations and identifications of relevant factors and/or bacterial mechanisms to be blocked to treat or improve prevention strategies.
Collapse
|
14
|
Kotlyarov S, Kotlyarova A. The Role of ABC Transporters in Lipid Metabolism and the Comorbid Course of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2021; 22:6711. [PMID: 34201488 PMCID: PMC8269124 DOI: 10.3390/ijms22136711] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks among the leading causes of morbidity and mortality worldwide. COPD rarely occurs in isolation and is often combined with various diseases. It is considered that systemic inflammation underlies the comorbid course of COPD. The data obtained in recent years have shown the importance of violations of the cross-links of lipid metabolism and the immune response, which are links in the pathogenesis of both COPD and atherosclerosis. The role of lipid metabolism disorders in the pathogenesis of the comorbid course of COPD and atherosclerosis and the participation of ATP-binding cassette (ABC) transporters in these processes is discussed in this article. It is known that about 20 representatives of a large family of ABC transporters provide lipid homeostasis of cells by moving lipids inside the cell and in its plasma membrane, as well as removing lipids from the cell. It was shown that some representatives of the ABC-transporter family are involved in various links of the pathogenesis of COPD and atherosclerosis, which can determine their comorbid course.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
15
|
Bai X, Yang W, Luan X, Li H, Li H, Tian D, Fan W, Li J, Wang B, Liu W, Sun L. Induction of cyclophilin A by influenza A virus infection facilitates group A Streptococcus coinfection. Cell Rep 2021; 35:109159. [PMID: 34010655 DOI: 10.1016/j.celrep.2021.109159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/02/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
During influenza A epidemics, bacterial coinfection is a major cause of increased morbidity and mortality. However, the roles of host factors in regulating influenza A virus (IAV)-triggered bacterial coinfection remain elusive. Cyclophilin A (CypA) is an important regulator of infection and immunity. Here, we show that IAV-induced CypA expression facilitates group A Streptococcus (GAS) coinfection both in vitro and in vivo. Upon IAV infection, CypA interacts with focal adhesion kinase (FAK) and inhibited E3 ligase cCbl-mediated, K48-linked ubiquitination of FAK, which positively regulates integrin α5 expression and actin rearrangement via the FAK/Akt signaling pathway to facilitate GAS colonization and invasion. Notably, CypA deficiency or inhibition by cyclosporine A significantly inhibits IAV-triggered GAS coinfection in mice. Collectively, these findings reveal that CypA is critical for GAS infection, and induction of CypA expression is another way for IAV to promote bacterial coinfection, suggesting that CypA is a promising therapeutic target for the secondary bacterial infection.
Collapse
Affiliation(s)
- Xiaoyuan Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxian Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Luan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heqiao Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deyu Tian
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beinan Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing 100101, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong 518107, China.
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Bobkova NV. The Balance between Two Branches of RAS Can Protect from Severe COVID-19 Course. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES A, MEMBRANE AND CELL BIOLOGY 2021; 15:36-51. [PMID: 33643542 PMCID: PMC7897458 DOI: 10.1134/s1990747821010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/09/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022]
Abstract
The COVID-19 pandemic has swept the world and required the mobilization of scientists and clinicians around the world to combat this serious disease. Along with SARS-CoV-2 virology research, understanding of the fundamental physiological processes, molecular and cellular mechanisms and intracellular signaling pathways underlying the clinical manifestations of COVID-19 is important for effective therapy of this disease. The review describes in detail the interaction of the components of the renin-angiotensin system (RAS) and receptors of end-glycosylated products (RAGE), which plays a special role in normal lung physiology and in pathological conditions in COVID-19, including the development of acute respiratory distress syndrome and "cytokine storm". A separate section is devoted to the latest developments aimed at correcting the dysfunction of the RAS caused by the binding of the virus to angiotensin converting enzyme 2 (ACE2)- the central element of this system. Analysis of published theoretical, clinical, and experimental data indicates the need for a complex treatment to prevent a severe course of COVID-19 using MasR agonists, blockers of the AT1R and NF-κB signaling pathway, as well as compounds with neuroprotective and neuroregenerative effects.
Collapse
Affiliation(s)
- N. V. Bobkova
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow oblast Russia
| |
Collapse
|
17
|
García-Mouton C, Hidalgo A, Arroyo R, Echaide M, Cruz A, Pérez-Gil J. Pulmonary Surfactant and Drug Delivery: An Interface-Assisted Carrier to Deliver Surfactant Protein SP-D Into the Airways. Front Bioeng Biotechnol 2021; 8:613276. [PMID: 33542913 PMCID: PMC7853302 DOI: 10.3389/fbioe.2020.613276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
This work is focused on the potential use of pulmonary surfactant to deliver full-length recombinant human surfactant protein SP-D (rhSP-D) using the respiratory air-liquid interface as a shuttle. Surfactant protein D (SP-D) is a collectin protein present in the pulmonary surfactant (PS) system, involved in innate immune defense and surfactant homeostasis. It has been recently suggested as a potential therapeutic to alleviate inflammatory responses and lung diseases in preterm infants suffering from respiratory distress syndrome (RDS) or bronchopulmonary dysplasia (BPD). However, none of the current clinical surfactants used for surfactant replacement therapy (SRT) to treat RDS contain SP-D. The interaction of SP-D with surfactant components, the potential of PS as a respiratory drug delivery system and the possibility to produce recombinant versions of human SP-D, brings the possibility of delivering clinical surfactants supplemented with SP-D. Here, we used an in vitro setup that somehow emulates the respiratory air-liquid interface to explore this novel approach. It consists in two different compartments connected with a hydrated paper bridge forming a continuous interface. We firstly analyzed the adsorption and spreading of rhSP-D alone from one compartment to another over the air-liquid interface, observing low interfacial activity. Then, we studied the interfacial spreading of the protein co-administered with PS, both at different time periods or as a mixed formulation, and which oligomeric forms of rhSP-D better traveled associated with PS. The results presented here demonstrated that PS may transport rhSP-D long distances over air-liquid interfaces, either as a mixed formulation or separately in a close window time, opening the doors to empower the current clinical surfactants and SRT.
Collapse
Affiliation(s)
- Cristina García-Mouton
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Alberto Hidalgo
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Raquel Arroyo
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Mercedes Echaide
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Antonio Cruz
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| |
Collapse
|
18
|
Lipid-Protein and Protein-Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis. Int J Mol Sci 2020; 21:ijms21103708. [PMID: 32466119 PMCID: PMC7279303 DOI: 10.3390/ijms21103708] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary surfactant is a lipid/protein complex synthesized by the alveolar epithelium and secreted into the airspaces, where it coats and protects the large respiratory air–liquid interface. Surfactant, assembled as a complex network of membranous structures, integrates elements in charge of reducing surface tension to a minimum along the breathing cycle, thus maintaining a large surface open to gas exchange and also protecting the lung and the body from the entrance of a myriad of potentially pathogenic entities. Different molecules in the surfactant establish a multivalent crosstalk with the epithelium, the immune system and the lung microbiota, constituting a crucial platform to sustain homeostasis, under health and disease. This review summarizes some of the most important molecules and interactions within lung surfactant and how multiple lipid–protein and protein–protein interactions contribute to the proper maintenance of an operative respiratory surface.
Collapse
|