1
|
Bizhani S, Afshari A, Yaghobi R. BK Polyomavirus and acute kidney injury in transplant recipients: signaling pathways and molecular mechanisms. Virol J 2025; 22:2. [PMID: 39755619 DOI: 10.1186/s12985-024-02620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
Acute kidney injury (AKI) is a condition that can result in changes in both urine production and creatinine levels in the bloodstream, complicating the treatment process and worsening outcomes for many hospitalized patients. BK polyomavirus (BKPyV), a member of the Polyomaviridae family, is prevalent in the population and remains latent in the body. It can reactivate in individuals with a compromised immune system, particularly post-kidney transplant, and can activate various transcription factors and immune mediators. Although reactivation is often asymptomatic, it can present as AKI, which is a risk factor for early loss of the transplanted organ. The immune response to BKPyV is crucial in controlling the virus and safeguarding organs from damage during infection. Understanding BKPyV pathways may offer novel opportunities for effectively treating BKPyV-associated complications. This review seeks to elucidate the potential mechanisms by which BKPyV reactivation can lead to AKI by analyzing various signaling pathways, as well as the identification of molecular mechanisms that BKPyV may utilize to induce AKI.
Collapse
Affiliation(s)
- Samar Bizhani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Alhazmi AI, El-Refaei MF, Abdallah EAA. Protective effects of gallic acid against nickel-induced kidney injury: impact of antioxidants and transcription factor on the incidence of nephrotoxicity. Ren Fail 2024; 46:2344656. [PMID: 38685608 PMCID: PMC11062283 DOI: 10.1080/0886022x.2024.2344656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024] Open
Abstract
Nickel (Ni) is a common metal with a nephrotoxic effect, damaging the kidneys. This study investigated the mechanism by which gallic acid (GA) protects mice kidneys against renal damage induced by Nickel oxide nanoparticles (NiO-NPs). Forty male Swiss albino mice were randomly assigned into four groups, each consisting of ten mice (n = 10/group): Group I the control group, received no treatment; Group II, the GA group, was administrated GA at a dosage of 110 mg/kg/day body weight; Group III, the NiO-NPs group, received injection of NiO-NPs at a concentration of 20 mg/kg body weight for 10 consecutive days; Group IV, the GA + NiO-NPs group, underwent treatment with both GA and NiO-NPs. The results showed a significant increase in serum biochemical markers and a reduction in antioxidant activities. Moreover, levels of 8-hydroxy-2'-deoxyguanosine (8-OH-dG), phosphorylated nuclear factor kappa B (p65), and protein carbonyl (PC) were significantly elevated in group III compared with group I. Furthermore, the western blot analysis revealed significant high NF-κB p65 expression, immunohistochemistry of the NF-κB and caspase-1 expression levels were significantly increased in group III compared to group I. Additionally, the histopathological inspection of the kidney in group III exhibited a substantial increase in extensive necrosis features compared with group I. In contrast, the concomitant coadministration of GA and NiO-NPs in group IV showed significant biochemical, antioxidant activities, immunohistochemical and histopathological improvements compared with group III. Gallic acid has a protective role against kidney dysfunction and renal damage in Ni-nanoparticle toxicity.
Collapse
Affiliation(s)
| | - Mohamed F. El-Refaei
- Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
- Biochemistry and Molecular Biology, Genetic Institute, Sadat City University, Sadat City, Egypt
| | - Eman A. A. Abdallah
- Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
- Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
3
|
Guo Y, Gujarati NA, Chow AK, Boysan BT, Bronstein R, He JC, Revelo MP, Pabla N, Rizzo RC, Das B, Mallipattu SK. A Small Molecule Agonist of Krüppel-Like Factor 15 in Proteinuric Kidney Disease. J Am Soc Nephrol 2024; 35:1671-1685. [PMID: 39133556 PMCID: PMC11617484 DOI: 10.1681/asn.0000000000000460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024] Open
Abstract
Key Points A human podocyte-based high-throughput screen identified a novel agonist of Krüppel-like factor 15 (BT503), independent of glucocorticoid signaling. BT503 demonstrated renoprotective effects in three independent proteinuric kidney murine models. BT503 directly binds to inhibitor of nuclear factor kappa-B kinase subunit beta to inhibit NF-κB activation, which, subsequently restores Krüppel-like factor 15 under cell stress. Background Podocyte loss is the major driver of primary glomerular diseases such as FSGS. While systemic glucocorticoids remain the initial and primary therapy for these diseases, high-dose and chronic use of glucocorticoids is riddled with systemic toxicities. Krüppel-like factor 15 (KLF15) is a glucocorticoid-responsive gene, which is essential for the restoration of mature podocyte differentiation markers and stabilization of actin cytoskeleton in the setting of cell stress. Induction of KLF15 attenuates podocyte injury and glomerulosclerosis in the setting of cell stress. Methods A cell-based high-throughput screen with a subsequent structure–activity relationship study was conducted to identify novel agonists of KLF15 in human podocytes. Next, the agonist was tested in cultured human podocytes under cell stress and in three independent proteinuric models (LPS, nephrotoxic serum nephritis, and HIV-1 transgenic mice). A combination of RNA sequencing and molecular modeling with experimental validation was conducted to demonstrate the direct target of the agonist. Results The high-throughput screen with structure–activity relationship study identified BT503, a urea-based compound, as a novel agonist of KLF15, independent of glucocorticoid signaling. BT503 demonstrated protective effects in cultured human podocytes and in three independent proteinuric murine models. Subsequent molecular modeling with experimental validation shows that BT503 targets the inhibitor of nuclear factor kappa-B kinase complex by directly binding to inhibitor of nuclear factor kappa-B kinase subunit beta to inhibit canonical NF-κB signaling, which, in turn, restores KLF15 under cell stress, thereby rescuing podocyte loss and ameliorating kidney injury. Conclusions By developing and validating a cell-based high-throughput screen in human podocytes, we identified a novel agonist for KLF15 with salutary effects in proteinuric murine models through direct inhibition of inhibitor of nuclear factor kappa-B kinase subunit beta kinase activity.
Collapse
Affiliation(s)
- Yiqing Guo
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Nehaben A. Gujarati
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Andrew K. Chow
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Brock T. Boysan
- Department of Chemistry, Stony Brook University, Stony Brook, New York
| | - Robert Bronstein
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - John C. He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Monica P. Revelo
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Navjot Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio
| | - Robert C. Rizzo
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Bhaskar Das
- Pharmaceutical Sciences, Long Island University, Brookville, New York
| | - Sandeep K. Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York
- Renal Section, Northport VA Medical Center, Northport, New York
| |
Collapse
|
4
|
Li J, Yan X, Wu Z, Shen J, Li Y, Zhao Y, Du F, Li M, Wu X, Chen Y, Xiao Z, Wang S. Role of miRNAs in macrophage-mediated kidney injury. Pediatr Nephrol 2024; 39:3397-3410. [PMID: 38801452 DOI: 10.1007/s00467-024-06414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Macrophages, crucial components of the human immune system, can be polarized into M1/M2 phenotypes, each with distinct functions and roles. Macrophage polarization has been reported to be significantly involved in the inflammation and fibrosis observed in kidney injury. MicroRNA (miRNA), a type of short RNA lacking protein-coding function, can inhibit specific mRNA by partially binding to its target mRNA. The intricate association between miRNAs and macrophages has been attracting increasing interest in recent years. This review discusses the role of miRNAs in regulating macrophage-mediated kidney injury. It shows how miRNAs can influence macrophage polarization, thereby altering the biological function of macrophages in the kidney. Furthermore, this review highlights the significance of miRNAs derived from exosomes and extracellular vesicles as a crucial mediator in the crosstalk between macrophages and kidney cells. The potential of miRNAs as treatment applications and biomarkers for macrophage-mediated kidney injury is also discussed.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xida Yan
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Pharmacy, Mianyang Central Hospital, Mianyang, China
| | - Zhigui Wu
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yalin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
Babu DD, Mehdi S, Krishna KL, Lalitha MS, Someshwara CK, Pathak S, Pesaladinne UR, Rajashekarappa RK, Mylaralinga PS. Diabetic neuropathy: understanding the nexus of diabetic neuropathy, gut dysbiosis and cognitive impairment. J Diabetes Metab Disord 2024; 23:1589-1600. [PMID: 39610501 PMCID: PMC11599548 DOI: 10.1007/s40200-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 11/30/2024]
Abstract
Objectives Diabetic neuropathy is a traditional and one of the most prevalent complications of diabetes mellitus. The exact pathophysiology of diabetic neuropathy is not fully understood. However, oxidative stress and inflammation are proven to be one of the major underlying mechanisms of neuropathy which is described in detail. Gut dysbiosis is being studied for various neurological disorders and its impact on diabetic neuropathy is also explained. Diabetic neuropathy also causes loss in an individual's quality of life and one such adverse event is cognitive dysfunction. The interrelation between the neuropathy, cognitive dysfunction and gut is reviewed. Methods The exact mechanism is not understood but several hypotheses, cross-sectional studies and systematic reviews suggest a relationship between cognition and neuropathy. The review has collected data from various review and research publications that justifies this inter-relationship. Results The multifactorial etiology and pathophysiology of diabetic neuropathy is described with special emphasis on the role of gut dysbiosis. There might exist a correlation between the neuropathy and cognitive impairment caused simultaneously in diabetic patients. Conclusions This review summarizes the relationship that might exist between diabetic neuropathy, cognitive dysfunction and the impact of disturbed gut microbiome on its development and progression.
Collapse
Affiliation(s)
- Divya Durai Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Kamsagara Linganna Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Mankala Sree Lalitha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Chethan Konasuru Someshwara
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Suman Pathak
- Department of Dravyaguna, Govt. Ayurvedic Medical College, Shimoga, Karnataka 577201 India
| | - Ujwal Reddy Pesaladinne
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | | | | |
Collapse
|
6
|
Saraswati S, Martínez P, Serrano R, Mejías D, Graña-Castro O, Álvarez Díaz R, Blasco MA. Renal fibroblasts are involved in fibrogenic changes in kidney fibrosis associated with dysfunctional telomeres. Exp Mol Med 2024; 56:2216-2230. [PMID: 39349834 PMCID: PMC11541748 DOI: 10.1038/s12276-024-01318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 10/03/2024] Open
Abstract
Tubulointerstitial fibrosis associated with chronic kidney disease (CKD) represents a global health care problem. We previously reported that short and dysfunctional telomeres lead to interstitial renal fibrosis; however, the cell-of-origin of kidney fibrosis associated with telomere dysfunction is currently unknown. We induced telomere dysfunction by deleting the Trf1 gene encoding a telomere-binding factor specifically in renal fibroblasts in both short-term and long-term life-long experiments in mice to identify the role of fibroblasts in renal fibrosis. Short-term Trf1 deletion in renal fibroblasts was not sufficient to trigger kidney fibrosis but was sufficient to induce inflammatory responses, ECM deposition, cell cycle arrest, fibrogenesis, and vascular rarefaction. However, long-term persistent deletion of Trf1 in fibroblasts resulted in kidney fibrosis accompanied by an elevated urinary albumin-to-creatinine ratio (uACR) and a decrease in mouse survival. These cellular responses lead to the macrophage-to-myofibroblast transition (MMT), endothelial-to-mesenchymal transition (EndMT), and partial epithelial-to-mesenchymal transition (EMT), ultimately causing kidney fibrosis at the humane endpoint (HEP) when the deletion of Trf1 in fibroblasts is maintained throughout the lifespan of mice. Our findings contribute to a better understanding of the role of dysfunctional telomeres in the onset of the profibrotic alterations that lead to kidney fibrosis.
Collapse
Affiliation(s)
- Sarita Saraswati
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Rosa Serrano
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Diego Mejías
- Confocal Microscopy Unit, Biotechnology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
- Advanced Optical Microscopy Unit, UCCTs, Instituto de Salud Carlos III (ISCIII), E-28220, Majadahonda, Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
- Department of Basic Medical Sciences, Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), School of Medicine, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Ruth Álvarez Díaz
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain.
| |
Collapse
|
7
|
Li X, Ma G, Liu J, Zhang G, Ma K, Ding B, Liang W, Gao W. The regulatory effect and mechanism of traditional Chinese medicine on the renal inflammatory signal transduction pathways in diabetic kidney disease: A review. Medicine (Baltimore) 2024; 103:e39746. [PMID: 39312356 PMCID: PMC11419508 DOI: 10.1097/md.0000000000039746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Inflammatory injury is a critical factor in the occurrence and development of diabetic kidney disease (DKD). Signal transduction pathways such as the nuclear factor kappa beta (NF-κB), mitogen-activated protein kinase (MAPK), NOD-like receptor protein 3, and Smads are important mechanisms of inflammatory kidney injury in DKD, and the NF-κB pathway plays a key role. The inflammatory factor network formed after activation of the NF-κB pathway connects different signaling pathways and exacerbates renal inflammatory damage. Many traditional Chinese medicine compounds, single agents, effective components and active ingredients can regulate the expression of key molecules in the signaling pathways associated with inflammatory injury, such as transforming growth factor-β activated kinase 1, NF-κB, p38MAPK, NOD-like receptor protein 3, and Smad7. These treatments have the characteristics of multiple targets and have multiple and overlapping effects, which can treat DKD kidney inflammation and injury through multiple mechanisms and apply the "holistic concept" of traditional Chinese medicine.
Collapse
Affiliation(s)
- Xiaoxia Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Guoping Ma
- The First Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jin Liu
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Guoqiang Zhang
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Kexin Ma
- The First Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Baozhu Ding
- Rural Physician College, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenjie Liang
- Hebei Key Laboratory of Integrative Medicine of Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Weifang Gao
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
8
|
Tawengi M, Al-Dali Y, Tawengi A, Benter IF, Akhtar S. Targeting the epidermal growth factor receptor (EGFR/ErbB) for the potential treatment of renal pathologies. Front Pharmacol 2024; 15:1394997. [PMID: 39234105 PMCID: PMC11373609 DOI: 10.3389/fphar.2024.1394997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Epidermal growth factor receptor (EGFR), which is referred to as ErbB1/HER1, is the prototype of the EGFR family of receptor tyrosine kinases which also comprises ErbB2 (Neu, HER2), ErbB3 (HER3), and ErbB4 (HER4). EGFR, along with other ErbBs, is expressed in the kidney tubules and is physiologically involved in nephrogenesis and tissue repair, mainly following acute kidney injury. However, its sustained activation is linked to several kidney pathologies, including diabetic nephropathy, hypertensive nephropathy, glomerulonephritis, chronic kidney disease, and renal fibrosis. This review aims to provide a summary of the recent findings regarding the consequences of EGFR activation in several key renal pathologies. We also discuss the potential interplay between EGFR and the reno-protective angiotensin-(1-7) (Ang-(1-7), a heptapeptide member of the renin-angiotensin-aldosterone system that counter-regulates the actions of angiotensin II. Ang-(1-7)-mediated inhibition of EGFR transactivation might represent a potential mechanism of action for its renoprotection. Our review suggests that there is a significant body of evidence supporting the potential inhibition of EGFR/ErbB, and/or administration of Ang-(1-7), as potential novel therapeutic strategies in the treatment of renal pathologies. Thus, EGFR inhibitors such as Gefitinib and Erlinotib that have an acceptable safety profile and have been clinically used in cancer chemotherapy since their FDA approval in the early 2000s, might be considered for repurposing in the treatment of renal pathologies.
Collapse
Affiliation(s)
- Mohamed Tawengi
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Yazan Al-Dali
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Ibrahim F Benter
- Faculty of Pharmacy, Final International University, Kyrenia, Cyprus
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Mahdavifard S, Nowruz N. Glutamine Defended the Kidneys Versus Lead Intoxication Via Elevating Endogenous Antioxidants, Reducing Inflammation and Carbonyl Stress, as well as Improving Insulin Resistance and Dyslipidemia. Biol Trace Elem Res 2024; 202:3141-3148. [PMID: 37776396 DOI: 10.1007/s12011-023-03887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Kidneys are primarily sensitive to lead (Pb) poisoning due to their cardinal role in lead excretion. Then, we studied the effect of glutamine (Gln) on lead nephrotoxicity in rats by assessing the histopathological and biochemical parameters (the renal NF-kβ expression, metabolic profile, oxidative stress, inflammatory markers, methylglyoxal (MGO), and glyoxalase-I activity). Forty rats were allotted into four groups (ten rats in each): normal (N), Gln-treated N, Pb intoxication (Pbi), and Gln-treated Pbi. The treated groups took 0.1% Gln in drinking water for 1 month. To motivate lead poisoning, rats gained 50 mg/l lead acetate in drinking water for 1 month. Oxidative stress indices (total glutathione, its reduced and oxidized forms, their ratios, advanced protein oxidation products, malondialdehyde, and ferric ion reducing power) and inflammatory markers (renal nuclear factor-kβ expression, interleukin 1β level, and myeloperoxidase activity) were measured. Furthermore, metabolic profile (fasting blood sugar, insulin, insulin resistance, lipid profile, and atherogenic index) and renal dysfunction parameters were determined. Pb-induced renal histopathological alterations were investigated by a pathologist. In the kidney of Pbi rats, the glomerulus was damaged. Gln prevented kidney damage and reduced kidney dysfunction parameters. In addition, Gln decreased oxidative stress and inflammation in sera and kidney homogenates. In addition, it improved insulin resistance, dyslipidemia, and carbonyl stress (p < 0.001). Gln guarded the kidneys versus lead intoxication by improving insulin resistance and dyslipidemia, elevating antioxidant markers, and diminishing inflammation and carbonyl stress.
Collapse
Affiliation(s)
- Sina Mahdavifard
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Najafzadeh Nowruz
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
10
|
Ratan Y, Rajput A, Pareek A, Pareek A, Kaur R, Sonia S, Kumar R, Singh G. Recent Advances in Biomolecular Patho-Mechanistic Pathways behind the Development and Progression of Diabetic Neuropathy. Biomedicines 2024; 12:1390. [PMID: 39061964 PMCID: PMC11273858 DOI: 10.3390/biomedicines12071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic neuropathy (DN) is a neurodegenerative disorder that is primarily characterized by distal sensory loss, reduced mobility, and foot ulcers that may potentially lead to amputation. The multifaceted etiology of DN is linked to a range of inflammatory, vascular, metabolic, and other neurodegenerative factors. Chronic inflammation, endothelial dysfunction, and oxidative stress are the three basic biological changes that contribute to the development of DN. Although our understanding of the intricacies of DN has advanced significantly over the past decade, the distinctive mechanisms underlying the condition are still poorly understood, which may be the reason behind the lack of an effective treatment and cure for DN. The present study delivers a comprehensive understanding and highlights the potential role of the several pathways and molecular mechanisms underlying the etiopathogenesis of DN. Moreover, Schwann cells and satellite glial cells, as integral factors in the pathogenesis of DN, have been enlightened. This work will motivate allied research disciplines to gain a better understanding and analysis of the current state of the biomolecular mechanisms behind the pathogenesis of DN, which will be essential to effectively address every facet of DN, from prevention to treatment.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Rahul Kumar
- Baba Ragav Das Government Medical College, Gorakhpur 273013, Uttar Pradesh, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
11
|
Zhou TY, Tian N, Li L, Yu R. Iridoids modulate inflammation in diabetic kidney disease: A review. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:210-222. [PMID: 38631983 DOI: 10.1016/j.joim.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/18/2024] [Indexed: 04/18/2024]
Abstract
In recent years, preclinical research on diabetic kidney disease (DKD) has surged to the forefront of scientific and clinical attention. DKD has become a pervasive complication of type 2 diabetes. Given the complexity of its etiology and pathological mechanisms, current interventions, including drugs, dietary modifications, exercise, hypoglycemic treatments and lipid-lowering methods, often fall short in achieving desired therapeutic outcomes. Iridoids, primarily derived from the potent components of traditional herbs, have been the subject of long-standing research. Preclinical data suggest that iridoids possess notable renal protective properties; however, there has been no summary of the research on their efficacy in the management and treatment of DKD. This article consolidates findings from in vivo and in vitro research on iridoids in the context of DKD and highlights their shared anti-inflammatory activities in treating this condition. Additionally, it explores how certain iridoid components modify their chemical structures through the regulation of intestinal flora, potentially bolstering their therapeutic effects. This review provides a focused examination of the mechanisms through which iridoids may prevent or treat DKD, offering valuable insights for future research endeavors. Please cite this article as: Zhou TY, Tian N, Li L, Yu R. Iridoids modulate inflammation in diabetic kidney disease: A review. J Integr Med. 2024; 22(3): 210-222.
Collapse
Affiliation(s)
- Tong-Yi Zhou
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Na Tian
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Liu Li
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Rong Yu
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China; Hunan Provincial Key Laboratory of Translational Research in Traditional Chinese Medicine Prescriptions and Zheng, Changsha 410208, Hunan Province, China.
| |
Collapse
|
12
|
Wu Z, Li H, Zhao W, Zheng M, Cheng J, Cao Z, Sun C. Kidney toxicity and transcriptome analyses of male ICR mice acutely exposed to the mushroom toxin α-amanitin. Food Chem Toxicol 2024; 187:114622. [PMID: 38531469 DOI: 10.1016/j.fct.2024.114622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Amatoxins are responsible for most fatal mushroom poisoning cases, as it causes both hepatotoxicity and nephrotoxicity. However, studies on amatoxin nephrotoxicity are limited. Here, we investigated nephrotoxicity over 4 days and nephrotoxicity/hepatotoxicity over 14 days in mice. The organ weight ratio, serological indices, and tissue histology results indicated that a nephrotoxicity mouse model was established with two stages: (1) no apparent effects within 24 h; and (2) the appearance of adverse effects, with gradual worsening within 2-14 days. For each stage, the kidney transcriptome revealed patterns of differential mRNA expression and significant pathway changes, and Western blot analysis verified the expression of key proteins. Amanitin-induced nephrotoxicity was directly related to RNA polymerase II because mRNA levels decreased, RNA polymerase II-related pathways were significantly enriched at the transcription level, and RNA polymerase II protein was degraded in the early poisoning stage. In the late stage, nephrotoxicity was more severe than hepatotoxicity. This is likely associated with inflammation because inflammation-related pathways were significantly enriched and NF-κB activation was increased in the kidney.
Collapse
Affiliation(s)
- Zhijun Wu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Haijiao Li
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Wenjin Zhao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Min Zheng
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Juan Cheng
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Zhengjie Cao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Chengye Sun
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| |
Collapse
|
13
|
Llorián-Salvador M, de la Fuente AG, McMurran CE, Dashwood A, Dooley J, Liston A, Penalva R, Dombrowski Y, Stitt AW, Fitzgerald DC. Regulatory T cells limit age-associated retinal inflammation and neurodegeneration. Mol Neurodegener 2024; 19:32. [PMID: 38581053 PMCID: PMC10996107 DOI: 10.1186/s13024-024-00724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/17/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Ageing is the principal risk factor for retinal degenerative diseases, which are the commonest cause of blindness in the developed countries. These conditions include age-related macular degeneration or diabetic retinopathy. Regulatory T cells play a vital role in immunoregulation of the nervous system by limiting inflammation and tissue damage in health and disease. Because the retina was long-considered an immunoprivileged site, the precise contribution of regulatory T cells in retinal homeostasis and in age-related retinal diseases remains unknown. METHODS Regulatory T cells were selectively depleted in both young (2-4 months) and aged (18-23 months) FoxP3-DTR mice. We evaluated neuroretinal degeneration, gliosis, subretinal space phagocyte infiltration, and retinal pigmented epithelium morphology through immunofluorescence analysis. Subsequently, aged Treg depleted animals underwent adoptive transfer of both young and aged regulatory T cells from wild-type mice, and the resulting impact on neurodegeneration was assessed. Statistical analyses employed included the U-Mann Whitney test, and for comparisons involving more than two groups, 1-way ANOVA analysis followed by Bonferroni's post hoc test. RESULTS Our study shows that regulatory T cell elimination leads to retinal pigment epithelium cell dysmorphology and accumulation of phagocytes in the subretinal space of young and aged mice. However, only aged mice experience retinal neurodegeneration and gliosis. Surprisingly, adoptive transfer of young but not aged regulatory T cells reverse these changes. CONCLUSION Our findings demonstrate an essential role for regulatory T cells in maintaining age retinal homeostasis and preventing age-related neurodegeneration. This previously undescribed role of regulatory T cells in limiting retinal inflammation, RPE/choroid epithelium damage and subsequently photoreceptor loss with age, opens novel avenues to explore regulatory T cell neuroprotective and anti-inflammatory properties as potential therapeutic approaches for age-related retinal diseases.
Collapse
Affiliation(s)
- María Llorián-Salvador
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
- Vall d'Hebron Research Institute (VHIR), Universitat Autónoma de Barcelona, 08035, Barcelona, Spain
| | - Alerie G de la Fuente
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK.
- Institute for Health and Biomedical Research of Alicante (ISABIAL) Alicante, 03010, Alicante, Spain.
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, 03550, Alicante, Spain.
| | - Christopher E McMurran
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Amy Dashwood
- Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - James Dooley
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Rosana Penalva
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
| | - Yvonne Dombrowski
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK.
| | - Denise C Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
| |
Collapse
|
14
|
Yang J, Pontoglio M, Terzi F. Bile Acids and Farnesoid X Receptor in Renal Pathophysiology. Nephron Clin Pract 2024; 148:618-630. [PMID: 38412845 DOI: 10.1159/000538038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Bile acids (BAs) act not only as lipids and lipid-soluble vitamin detergents but also function as signaling molecules, participating in diverse physiological processes. The identification of BA receptors in organs beyond the enterohepatic system, such as the farnesoid X receptor (FXR), has initiated inquiries into their organ-specific functions. Among these organs, the kidney prominently expresses FXR. SUMMARY This review provides a comprehensive overview of various BA species identified in kidneys and delves into the roles of renal apical and basolateral BA transporters. Furthermore, we explore changes in BAs and their potential implications for various renal diseases, particularly chronic kidney disease. Lastly, we center our discussion on FXR, a key BA receptor in the kidney and a potential therapeutic target for renal diseases, providing current insights into the protective mechanisms associated with FXR agonist treatments. KEY MESSAGES Despite the relatively low concentrations of BAs in the kidney, their presence is noteworthy, with rodents and humans exhibiting distinct renal BA compositions. Renal BA transporters efficiently facilitate either reabsorption into systemic circulation or excretion into the urine. However, adaptive changes in BA transporters are evident during cholestasis. Various renal diseases are accompanied by alterations in BA concentrations and FXR expression. Consequently, the activation of FXR in the kidney could be a promising target for mitigating kidney damage.
Collapse
Affiliation(s)
- Jiufang Yang
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France,
| | - Marco Pontoglio
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France
| | - Fabiola Terzi
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France
| |
Collapse
|
15
|
Yin G, Wang Z, Li P, Cao Y, Zhou Z, Wu W, Li X, Lou Q. Tim-3 deficiency aggravates cadmium nephrotoxicity via regulation of NF-κB signaling and mitochondrial damage. Int Immunopharmacol 2024; 128:111434. [PMID: 38176346 DOI: 10.1016/j.intimp.2023.111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Kidney is the target organ of serious cadmium injury. Kidney damage caused by cadmium exposure is greatly influenced by the inflammatory response and mitochondrial damage. T cell immunoglobulin domain and mucin domain 3 (Tim-3) is an essential protein that functions as a negative immunological checkpoint to regulate inflammatory responses. Mice were given cadmium treatments at various dosages (0, 1.5, 3, 4.5 mg/kg) and times (0, 3, 5, 7 days) to assess the effects of cadmium on kidney damage. We found that the optimal way to induce kidney injury in mice was to inject 4.5 mg/kg of cadmium intraperitoneally for five days. It is interesting that giving mice 4.5 mg/kg of cadmium intravenously for seven days drastically lowered their survival rate. After cadmium exposure, Tim-3 knockout mice exhibited higher blood concentrations of urea nitrogen and creatinine compared to control mice. Tim-3 impacted the expression of oxidative stress-associated genes such as UDP glucuronosyltransferase family 1 member A9 (Ugt1a9), oxidative stress-induced growth inhibitor 2 (Osgin2), and S100 calcium binding protein A8 (S100a8), according to RNA-seq and real-time RT-PCR data. Tim-3 deficiency also resulted in activated nuclear factor-kappa B (NF-κB) signaling pathway. The NF-κB inhibitor 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1) significantly alleviated cell apoptosis, oxidative stress response, and renal tubule inflammation in Tim-3 knockout mice exposed to cadmium. Furthermore, cadmium caused obvious B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax) translocation from cytoplasm to mitochondria, which can be inhibited by TPCA-1. In conclusion, Tim-3 prevented mitochondrial damage and NF-κB signaling activation, hence providing protection against cadmium nephrotoxicity.
Collapse
Affiliation(s)
- Guanyi Yin
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Zhonghang Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Peiyao Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Yaping Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Ziou Zhou
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Wenbin Wu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Xuemiao Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Qiang Lou
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
16
|
Yeh TH, Tu KC, Wang HY, Chen JY. From Acute to Chronic: Unraveling the Pathophysiological Mechanisms of the Progression from Acute Kidney Injury to Acute Kidney Disease to Chronic Kidney Disease. Int J Mol Sci 2024; 25:1755. [PMID: 38339031 PMCID: PMC10855633 DOI: 10.3390/ijms25031755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
This article provides a thorough overview of the biomarkers, pathophysiology, and molecular pathways involved in the transition from acute kidney injury (AKI) and acute kidney disease (AKD) to chronic kidney disease (CKD). It categorizes the biomarkers of AKI into stress, damage, and functional markers, highlighting their importance in early detection, prognosis, and clinical applications. This review also highlights the links between renal injury and the pathophysiological mechanisms underlying AKI and AKD, including renal hypoperfusion, sepsis, nephrotoxicity, and immune responses. In addition, various molecules play pivotal roles in inflammation and hypoxia, triggering maladaptive repair, mitochondrial dysfunction, immune system reactions, and the cellular senescence of renal cells. Key signaling pathways, such as Wnt/β-catenin, TGF-β/SMAD, and Hippo/YAP/TAZ, promote fibrosis and impact renal function. The renin-angiotensin-aldosterone system (RAAS) triggers a cascade leading to renal fibrosis, with aldosterone exacerbating the oxidative stress and cellular changes that promote fibrosis. The clinical evidence suggests that RAS inhibitors may protect against CKD progression, especially post-AKI, though more extensive trials are needed to confirm their full impact.
Collapse
Affiliation(s)
- Tzu-Hsuan Yeh
- Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan; (T.-H.Y.); (H.-Y.W.)
| | - Kuan-Chieh Tu
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan;
| | - Hsien-Yi Wang
- Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan; (T.-H.Y.); (H.-Y.W.)
- Department of Sport Management, College of Leisure and Recreation Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Jui-Yi Chen
- Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan; (T.-H.Y.); (H.-Y.W.)
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| |
Collapse
|
17
|
Yu B, Jin Q, Ji J. Natural products applied in acute kidney injury treatment: polymer matters. Biomater Sci 2024; 12:621-633. [PMID: 38131274 DOI: 10.1039/d3bm01772a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Acute kidney injury (AKI) is a global health threat due to its high morbidity and mortality. There is still a lack of effective therapeutic methods to deal with AKI clinically. Natural products with outstanding accessibility and bioactivity are potential candidates for AKI treatment. Natural product-based prodrugs or nano-structures with improved properties are frequently fabricated for maximizing bioavailability and decreasing side effects, in which natural polymers are selected as carriers, or natural drugs are loaded as cargos on designed polymers. In this review, the etiologies of AKI are briefly presented, and emerging natural products delivered rationally for AKI therapy, as either carriers or cargos, are both introduced. Moreover, the challenges of the future development of nature-based nanodrugs or prodrugs for AKI have also been discussed.
Collapse
Affiliation(s)
- Bo Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Qiao Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
18
|
Ren N, Wang WF, Zou L, Zhao YL, Miao H, Zhao YY. The nuclear factor kappa B signaling pathway is a master regulator of renal fibrosis. Front Pharmacol 2024; 14:1335094. [PMID: 38293668 PMCID: PMC10824958 DOI: 10.3389/fphar.2023.1335094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Renal fibrosis is increasingly recognized as a global public health problem. Acute kidney injury (AKI) and chronic kidney disease (CKD) both result in renal fibrosis. Oxidative stress and inflammation play central roles in progressive renal fibrosis. Oxidative stress and inflammation are closely linked and form a vicious cycle in which oxidative stress induces inflammation through various molecular mechanisms. Ample evidence has indicated that a hyperactive nuclear factor kappa B (NF-ƙB) signaling pathway plays a pivotal role in renal fibrosis. Hyperactive NF-ƙB causes the activation and recruitment of immune cells. Inflammation, in turn, triggers oxidative stress through the production of reactive oxygen species and nitrogen species by activating leukocytes and resident cells. These events mediate organ injury through apoptosis, necrosis, and fibrosis. Therefore, developing a strategy to target the NF-ƙB signaling pathway is important for the effective treatment of renal fibrosis. This Review summarizes the effect of the NF-ƙB signaling pathway on renal fibrosis in the context of AKI and CKD (immunoglobulin A nephropathy, membranous nephropathy, diabetic nephropathy, hypertensive nephropathy, and kidney transplantation). Therapies targeting the NF-ƙB signaling pathway, including natural products, are also discussed. In addition, NF-ƙB-dependent non-coding RNAs are involved in renal inflammation and fibrosis and are crucial targets in the development of effective treatments for kidney disease. This Review provides a clear pathophysiological rationale and specific concept-driven therapeutic strategy for the treatment of renal fibrosis by targeting the NF-ƙB signaling pathway.
Collapse
Affiliation(s)
- Na Ren
- The First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wen-Feng Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Yan-Long Zhao
- Dialysis Department of Nephrology Hospital, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, Shaanxi, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Ying L, Yeping J, Hui W, Nan Z, FuQian, Ying S. Screening of key genes in the pathogenesis of muscle atrophy in CKD-PEW children based on RNA sequencing. BMC Med Genomics 2023; 16:304. [PMID: 38017491 PMCID: PMC10683124 DOI: 10.1186/s12920-023-01718-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND In children with CKD, Protein Energy Wasting (PEW) is common, which affects the outcome of children and is an important cause of poor prognosis. We are aiming to explore the pathogenesis of muscle wasting in CKD-PEW children. METHODS Blood samples of 32 children diagnosed with chronic kidney disease (CKD) and protein energy wasting (PEW) in our hospital from January 2016 to June 2021 were collected. RNA sequencing and bioinformatics analysis were performed. RESULTS Based on GO (Gene Ontology) functional enrichment analysis, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis and differential gene expression analysis, a total of 25 CKD-PEW related genes were obtained including CRP, IL6, TNF, IL1B, CXCL8, IL12B, IL12A, IL18, IL1A, IL4, IL10, TGFB2, TGFB1, TGFB3, ADIPOQ, NAMPT, RETN, RETNLB, LEP, CD163, ICAM1, VCAM1, SELE, NF-κB1, NF-κB2. The most significantly differentially expressed gene was NF-κB2 (adjusted P = 2.81 × 10-16), and its expression was up-regulated by 3.92 times (corresponding log2FoldChange value was 1.979). Followed by RETN (adjusted P = 1.63 × 10-7), and its expression was up-regulated by 8.306 times (corresponding log2FoldChange value was 2.882). SELE gene were secondly significant (adjusted P = 5.81 × 10-7), and its expression was down-regulated by 22.05 times (corresponding log2FoldChange value was -4.696). CONCLUSIONS A variety of inflammatory factors are involved in the pathogenesis of CKD-PEW in children, and chronic inflammation may lead to the development of muscle atrophy in CKD-PEW. It is suggested for the first time that NF-κB is a key gene in the pathogenesis of muscle wasting in CKD-PEW children, and its increased expression may play an important role in the pathogenesis of muscle wasting in children with CKD-PEW.
Collapse
Affiliation(s)
- Liang Ying
- Department 2 of Nephrology, Beijing Key Laboratory for Chronic Renal Disease and Blood Purification, Beijing Children's Hospital Affiliated to Capital Medical University, Key Laboratory of Major Diseases in Children, National Center for Children's Health, China, Beijing, 100045, China
| | - Jiang Yeping
- Department 2 of Nephrology, Beijing Key Laboratory for Chronic Renal Disease and Blood Purification, Beijing Children's Hospital Affiliated to Capital Medical University, Key Laboratory of Major Diseases in Children, National Center for Children's Health, China, Beijing, 100045, China
| | - Wang Hui
- Department 2 of Nephrology, Beijing Key Laboratory for Chronic Renal Disease and Blood Purification, Beijing Children's Hospital Affiliated to Capital Medical University, Key Laboratory of Major Diseases in Children, National Center for Children's Health, China, Beijing, 100045, China
| | - Zhou Nan
- Department 2 of Nephrology, Beijing Key Laboratory for Chronic Renal Disease and Blood Purification, Beijing Children's Hospital Affiliated to Capital Medical University, Key Laboratory of Major Diseases in Children, National Center for Children's Health, China, Beijing, 100045, China
| | - FuQian
- Department 2 of Nephrology, Beijing Key Laboratory for Chronic Renal Disease and Blood Purification, Beijing Children's Hospital Affiliated to Capital Medical University, Key Laboratory of Major Diseases in Children, National Center for Children's Health, China, Beijing, 100045, China
| | - Shen Ying
- Department 2 of Nephrology, Beijing Key Laboratory for Chronic Renal Disease and Blood Purification, Beijing Children's Hospital Affiliated to Capital Medical University, Key Laboratory of Major Diseases in Children, National Center for Children's Health, China, Beijing, 100045, China.
| |
Collapse
|
20
|
Zhang Y, Ding X, Guo L, Zhong Y, Xie J, Xu Y, Li H, Zheng D. Comprehensive analysis of the relationship between xanthine oxidoreductase activity and chronic kidney disease. iScience 2023; 26:107332. [PMID: 37927553 PMCID: PMC10622700 DOI: 10.1016/j.isci.2023.107332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 11/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a common disease that seriously endangers human health. However, the potential relationship between xanthine oxidoreductase (XOR) activity and CKD remains unclear. In this study, we used clinical data, CKD datasets from the Gene Expression Omnibus database, and untargeted metabolomics to explain the relationship between XOR activity and CKD. First, XOR activity showed high correlation with the biomarkers of CKD, such as serum creatinine, blood urea nitrogen, uric acid, and estimated glomerular filtration rate. Then, we used least absolute shrinkage and selection operator logical regression algorithm and random forest algorithm to screen CKD molecular markers from differentially expressed genes, and the results of qRT-PCR of XDH, KOX-1, and ROMO1 were in accordance with the results of bioinformatics analyses. In addition, untargeted metabolomics analysis revealed that the purine metabolism pathway was significantly enriched in CKD patients in the simulated models of kidney fibrosis.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Xiaobao Ding
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Pharmacology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Lihao Guo
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Yanan Zhong
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Juan Xie
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Yong Xu
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Hailun Li
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Donghui Zheng
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| |
Collapse
|
21
|
Zheng WW, Zhou Q, Xue ML, Yu X, Chen JT, Ao L, Wang CD. Association between inflammatory bowel disease, nephrolithiasis, tubulointerstitial nephritis, and chronic kidney disease: A propensity score-matched analysis of US nationwide inpatient sample 2016-2018. J Dig Dis 2023; 24:572-583. [PMID: 37823607 DOI: 10.1111/1751-2980.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVES The incidence and prevalence of inflammatory bowel disease (IBD), mainly including ulcerative colitis (UC) and Crohn's disease (CD), are increasing globally. We aimed to evaluate the potential association between IBD and nephrolithiasis, tubulointerstitial nephritis, and chronic kidney disease (CKD). METHODS Data of hospitalized adults ≥20 years of age were extracted from the U.S. National Inpatient Sample (NIS) during 2016-2018. Patients with UC, CD, or CKD were identified through the International Classification of Diseases, Tenth Revision (ICD-10) codes. Propensity score matching (PSM) analysis (1:1) was conducted to balance the characteristics between groups. Logistic regression analyses were performed to determine the relationships between UC or CD and kidney conditions. RESULTS Three cohorts were included for analysis after PSM analysis. Cohorts 1, 2 and 3 contained 235 262 subjects (117 631 with CD or without IBD), 140 856 subjects (70 428 with UC or without IBD), and 139 098 subjects (69 549 with CD or UC), respectively. Multivariate analysis revealed that compared to non-IBD individuals, CD patients were significantly associated with greater odds for nephrolithiasis (adjusted odds ratio [aOR] 2.25, 95% confidence interval [CI] 2.08-2.43), tubulointerstitial nephritis (aOR 1.31, 95% CI 1.24-1.38), CKD at any stage (aOR 1.28, 95% CI 1.24-1.32), and moderate-to-severe CKD (aOR 1.22, 95% CI 1.17-1.26), while UC was associated with a higher rate of nephrolithiasis. Compared to UC, CD was associated with higher odds for all such kidney conditions. CONCLUSIONS Patients with CD are more likely to have nephrolithiasis, tubulointerstitial nephritis, CKD at any stage, and moderate-to-severe CKD compared to non-IBD individuals.
Collapse
Affiliation(s)
- Wei Wei Zheng
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
- The First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian Province, China
- Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, Fujian Province, China
| | - Quan Zhou
- Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian Province, China
- Fuzhou Center for Disease Control and Prevention Affiliated to Fujian Medical University, Fuzhou, Fujian Province, China
| | - Meng Li Xue
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
- The First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian Province, China
- Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, Fujian Province, China
| | - Xing Yu
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
- The First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian Province, China
- Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, Fujian Province, China
| | - Jin Tong Chen
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
- The First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian Province, China
- Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, Fujian Province, China
| | - Lu Ao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Cheng Dang Wang
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
- The First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian Province, China
- Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, Fujian Province, China
| |
Collapse
|
22
|
Ren LL, Miao H, Wang YN, Liu F, Li P, Zhao YY. TGF-β as A Master Regulator of Aging-Associated Tissue Fibrosis. Aging Dis 2023; 14:1633-1650. [PMID: 37196129 PMCID: PMC10529747 DOI: 10.14336/ad.2023.0222] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/22/2023] [Indexed: 05/19/2023] Open
Abstract
Fibrosis is the abnormal accumulation of extracellular matrix proteins such as collagen and fibronectin. Aging, injury, infections, and inflammation can cause different types of tissue fibrosis. Numerous clinical investigations have shown a correlation between the degree of liver and pulmonary fibrosis in patients and telomere length and mitochondrial DNA content, both of which are signs of aging. Aging involves the gradual loss of tissue function over time, which results in the loss of homeostasis and, ultimately, an organism's fitness. A major feature of aging is the accumulation of senescent cells. Senescent cells abnormally and continuously accumulate in the late stages of life, contributing to age-related fibrosis and tissue deterioration, among other aging characteristics. Furthermore, aging generates chronic inflammation, which results in fibrosis and decreases organ function. This finding suggests that fibrosis and aging are closely related. The transforming growth factor-beta (TGF-β) superfamily plays a crucial role in the physiological and pathological processes of aging, immune regulation, atherosclerosis, and tissue fibrosis. In this review, the functions of TGF-β in normal organs, aging, and fibrotic tissues is discussed: TGF-β signalling is altered with age and is an indicator of pathology associated with tissue fibrosis. In addition, this review discusses the potential targeting of noncoding.
Collapse
Affiliation(s)
- Li-Li Ren
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Fei Liu
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, Department of Nephrology, China-Japan Friendship Hospital, Beijing, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
23
|
Qu L, Jiao B. The Interplay between Immune and Metabolic Pathways in Kidney Disease. Cells 2023; 12:1584. [PMID: 37371054 PMCID: PMC10296595 DOI: 10.3390/cells12121584] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney disease is a significant health problem worldwide, affecting an estimated 10% of the global population. Kidney disease encompasses a diverse group of disorders that vary in their underlying pathophysiology, clinical presentation, and outcomes. These disorders include acute kidney injury (AKI), chronic kidney disease (CKD), glomerulonephritis, nephrotic syndrome, polycystic kidney disease, diabetic kidney disease, and many others. Despite their distinct etiologies, these disorders share a common feature of immune system dysregulation and metabolic disturbances. The immune system and metabolic pathways are intimately connected and interact to modulate the pathogenesis of kidney diseases. The dysregulation of immune responses in kidney diseases includes a complex interplay between various immune cell types, including resident and infiltrating immune cells, cytokines, chemokines, and complement factors. These immune factors can trigger and perpetuate kidney inflammation, causing renal tissue injury and progressive fibrosis. In addition, metabolic pathways play critical roles in the pathogenesis of kidney diseases, including glucose and lipid metabolism, oxidative stress, mitochondrial dysfunction, and altered nutrient sensing. Dysregulation of these metabolic pathways contributes to the progression of kidney disease by inducing renal tubular injury, apoptosis, and fibrosis. Recent studies have provided insights into the intricate interplay between immune and metabolic pathways in kidney diseases, revealing novel therapeutic targets for the prevention and treatment of kidney diseases. Potential therapeutic strategies include modulating immune responses through targeting key immune factors or inhibiting pro-inflammatory signaling pathways, improving mitochondrial function, and targeting nutrient-sensing pathways, such as mTOR, AMPK, and SIRT1. This review highlights the importance of the interplay between immune and metabolic pathways in kidney diseases and the potential therapeutic implications of targeting these pathways.
Collapse
Affiliation(s)
- Lili Qu
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| | - Baihai Jiao
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| |
Collapse
|
24
|
Song N, Xu Y, Paust HJ, Panzer U, de Las Noriega MM, Guo L, Renné T, Huang J, Meng X, Zhao M, Thaiss F. IKK1 aggravates ischemia-reperfusion kidney injury by promoting the differentiation of effector T cells. Cell Mol Life Sci 2023; 80:125. [PMID: 37074502 PMCID: PMC10115737 DOI: 10.1007/s00018-023-04763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/20/2023]
Abstract
Ischemia-reperfusion injury (IRI) is one of the major causes of acute kidney injury (AKI), and experimental work has revealed detailed insight into the inflammatory response in the kidney. T cells and NFκB pathway play an important role in IRI. Therefore, we examined the regulatory role and mechanisms of IkappaB kinase 1 (IKK1) in CD4+T lymphocytes in an experimental model of IRI. IRI was induced in CD4cre and CD4IKK1Δ mice. Compared to control mice, conditional deficiency of IKK1 in CD4+T lymphocyte significantly decreased serum creatinine, blood urea nitrogen (BUN) level, and renal tubular injury score. Mechanistically, lack in IKK1 in CD4+T lymphocytes reduced the ability of CD4 lymphocytes to differentiate into Th1/Th17 cells. Similar to IKK1 gene ablation, pharmacological inhibition of IKK also protected mice from IRI. Together, lymphocyte IKK1 plays a pivotal role in IRI by promoting T cells differentiation into Th1/Th17 and targeting lymphocyte IKK1 may be a novel therapeutic strategy for IRI.
Collapse
Affiliation(s)
- Ning Song
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Youzheng St 23, Harbin, 150001, China
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Yang Xu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Hans-Joachim Paust
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | | | - Linlin Guo
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, 55131, Germany
| | - Jiabin Huang
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Xianglin Meng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Youzheng St 23, Harbin, 150001, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Youzheng St 23, Harbin, 150001, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Friedrich Thaiss
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
25
|
The Development of Dyslipidemia in Chronic Kidney Disease and Associated Cardiovascular Damage, and the Protective Effects of Curcuminoids. Foods 2023; 12:foods12050921. [PMID: 36900438 PMCID: PMC10000737 DOI: 10.3390/foods12050921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Chronic kidney disease (CKD) is a health problem that is constantly growing. This disease presents a diverse symptomatology that implies complex therapeutic management. One of its characteristic symptoms is dyslipidemia, which becomes a risk factor for developing cardiovascular diseases and increases the mortality of CKD patients. Various drugs, particularly those used for dyslipidemia, consumed in the course of CKD lead to side effects that delay the patient's recovery. Therefore, it is necessary to implement new therapies with natural compounds, such as curcuminoids (derived from the Curcuma longa plant), which can cushion the damage caused by the excessive use of medications. This manuscript aims to review the current evidence on the use of curcuminoids on dyslipidemia in CKD and CKD-induced cardiovascular disease (CVD). We first described oxidative stress, inflammation, fibrosis, and metabolic reprogramming as factors that induce dyslipidemia in CKD and their association with CVD development. We proposed the potential use of curcuminoids in CKD and their utilization in clinics to treat CKD-dyslipidemia.
Collapse
|
26
|
Alshammari GM, Al-Ayed MS, Abdelhalim MA, Al-Harbi LN, Yahya MA. Effects of Antioxidant Combinations on the Renal Toxicity Induced Rats by Gold Nanoparticles. Molecules 2023; 28:molecules28041879. [PMID: 36838869 PMCID: PMC9959587 DOI: 10.3390/molecules28041879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
This study investigated some possible mechanisms underlying the nephrotoxic effect of gold nanoparticles (AuNPs) in rats and compared the protective effects of selected known antioxidants-namely, melanin, quercetin (QUR), and α-lipoic acid (α-LA). Rats were divided into five treatment groups (eight rats per group): control, AuNPs (50 nm), AuNPs + melanin (100 mg/kg), AuNPs + QUR (200 mg/kg), and AuNPs + α-LA (200 mg/kg). All treatments were administered i.p., daily, for 30 days. AuNPs promoted renal glomerular and tubular damage and impaired kidney function, as indicated by the higher serum levels of creatinine (Cr), urinary flow, and urea and albumin/Cr ratio. They also induced oxidative stress by promoting mitochondrial permeability transition pore (mtPTP) opening, the expression of NOX4, increasing levels of malondialdehyde (MDA), and suppressing glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). In addition, AuNPs induced renal inflammation and apoptosis, as evidenced by the increase in the total mRNA and the cytoplasmic and nuclear levels of NF-κB, mRNA levels of Bax and caspase-3, and levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Treatment with melanin, QUR, and α-lipoic acid (α-LA) prevented the majority of these renal damage effects of AuNPs and improved kidney structure and function, with QUR being the most powerful. In conclusion, in rats, AuNPs impair kidney function by provoking oxidative stress, inflammation, and apoptosis by suppressing antioxidants, promoting mitochondrial uncoupling, activating NF-κB, and upregulating NOX4. However, QUR remains the most powerful drug to alleviate this toxicity by reversing all of these mechanisms.
Collapse
Affiliation(s)
- Ghedeir M. Alshammari
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Mohammed S. Al-Ayed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Anwar Abdelhalim
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Sharma B, Yadav DK. L-Carnitine and Chronic Kidney Disease: A Comprehensive Review on Nutrition and Health Perspectives. J Pers Med 2023; 13:298. [PMID: 36836532 PMCID: PMC9960140 DOI: 10.3390/jpm13020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Progressive segmental glomerulosclerosis is acknowledged as a characteristic of Chronic Kidney Disease (CKD). It is a major health issue that exponentially reduces health and economy and also causes serious morbidity and mortality across the globe. This review is aimed at comprehending the health perspectives of L-Carnitine (LC) as an adjuvant regimen for alleviating CKD and its associated complications. The data were gathered from different online databases such as Science Direct, Google Scholar, ACS publication, PubMed, Springer, etc., using keywords such as CKD/Kidney disease, current epidemiology and its prevalence, LC supplementations, sources of LC, anti-oxidant and anti-inflammatory potential of LC and its supplementation for mimicking the CKD and its associated problem, etc. Various items of literature concerning CKD were gathered and screened by experts based on their inclusion and exclusion criteria. The findings suggest that, among the different comorbidities such as oxidative stress and inflammatory stress, erythropoietin-resistant anemia, intradialytic hypotension, muscle weakness, myalgia, etc., are considered as the most significant onset symptoms in CKD or hemodialysis patients. LC or creatine supplementation provides an effective adjuvant or therapeutic regimen that significantly reduces oxidative and inflammatory stress and erythropoietin-resistant anemia and evades comorbidities such as tiredness, impaired cognition, muscle weakness, myalgia, and muscle wasting. However, no significant changes were found in biochemical alteration such as creatinine, uric acid, urea, etc., after creatine supplementation in a patient with renal dysfunction. The expert-recommended dose of LC or creatine to a patient is approached for better outcomes of LC as a nutritional therapy regimen for CKD-associated complications. Hence, it can be suggested that LC provides an effective nutritional therapy to ameliorate impaired biochemicals and kidney function and to treat CKD and its associated complications.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY 11439, USA
| | - Dinesh Kumar Yadav
- Department of Pharmacognosy, SGT College of Pharmacy, SGT University, Gurugram 122505, India
| |
Collapse
|
28
|
Ogulur I, Pat Y, Aydin T, Yazici D, Rückert B, Peng Y, Kim J, Radzikowska U, Westermann P, Sokolowska M, Dhir R, Akdis M, Nadeau K, Akdis CA. Gut epithelial barrier damage caused by dishwasher detergents and rinse aids. J Allergy Clin Immunol 2023; 151:469-484. [PMID: 36464527 DOI: 10.1016/j.jaci.2022.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND The increased prevalence of many chronic inflammatory diseases linked to gut epithelial barrier leakiness has prompted us to investigate the role of extensive use of dishwasher detergents, among other factors. OBJECTIVE We sought to investigate the effects of professional and household dishwashers, and rinse agents, on cytotoxicity, barrier function, transcriptome, and protein expression in gastrointestinal epithelial cells. METHODS Enterocytic liquid-liquid interfaces were established on permeable supports, and direct cellular cytotoxicity, transepithelial electrical resistance, paracellular flux, immunofluorescence staining, RNA-sequencing transcriptome, and targeted proteomics were performed. RESULTS The observed detergent toxicity was attributed to exposure to rinse aid in a dose-dependent manner up to 1:20,000 v/v dilution. A disrupted epithelial barrier, particularly by rinse aid, was observed in liquid-liquid interface cultures, organoids, and gut-on-a-chip, demonstrating decreased transepithelial electrical resistance, increased paracellular flux, and irregular and heterogeneous tight junction immunostaining. When individual components of the rinse aid were investigated separately, alcohol ethoxylates elicited a strong toxic and barrier-damaging effect. RNA-sequencing transcriptome and proteomics data revealed upregulation in cell death, signaling and communication, development, metabolism, proliferation, and immune and inflammatory responses of epithelial cells. Interestingly, detergent residue from professional dishwashers demonstrated the remnant of a significant amount of cytotoxic and epithelial barrier-damaging rinse aid remaining on washed and ready-to-use dishware. CONCLUSIONS The expression of genes involved in cell survival, epithelial barrier, cytokine signaling, and metabolism was altered by rinse aid in concentrations used in professional dishwashers. The alcohol ethoxylates present in the rinse aid were identified as the culprit component causing the epithelial inflammation and barrier damage.
Collapse
Affiliation(s)
- Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Department of Medical Microbiology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin
| | - Tamer Aydin
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yaqi Peng
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Juno Kim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Patrick Westermann
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | | | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
29
|
Bian R, Xu X, Li W. Uncovering the molecular mechanisms between heart failure and end-stage renal disease via a bioinformatics study. Front Genet 2023; 13:1037520. [PMID: 36704339 PMCID: PMC9871391 DOI: 10.3389/fgene.2022.1037520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Heart failure (HF) is not only a common complication in patients with end-stage renal disease (ESRD) but also a major cause of death. Although clinical studies have shown that there is a close relationship between them, the mechanism of its occurrence is unclear. The aim of this study is to explore the molecular mechanisms between HF and ESRD through comprehensive bioinformatics analysis, providing a new perspective on the crosstalk between these two diseases. Methods: The HF and ESRD datasets were downloaded from the Gene Expression Omnibus (GEO) database; we identified and analyzed common differentially expressed genes (DEGs). First, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set variation analyses (GSVA) were applied to explore the potential biological functions and construct protein-protein interaction (PPI) networks. Also, four algorithms, namely, random forest (RF), Boruta algorithm, logical regression of the selection operator (LASSO), and support vector machine-recursive feature elimination (SVM-RFE), were used to identify the candidate genes. Subsequently, the diagnostic efficacy of hub genes for HF and ESRD was evaluated using eXtreme Gradient Boosting (XGBoost) algorithm. CIBERSORT was used to analyze the infiltration of immune cells. Thereafter, we predicted target microRNAs (miRNAs) using databases (miRTarBase, TarBase, and ENOCRI), and transcription factors (TFs) were identified using the ChEA3 database. Cytoscape software was applied to construct mRNA-miRNA-TF regulatory networks. Finally, the Drug Signatures Database (DSigDB) was used to identify potential drug candidates. Results: A total of 68 common DEGs were identified. The enrichment analysis results suggest that immune response and inflammatory factors may be common features of the pathophysiology of HF and ESRD. A total of four hub genes (BCL6, CCL5, CNN1, and PCNT) were validated using RF, LASSO, Boruta, and SVM-RFE algorithms. Their AUC values were all greater than 0.8. Immune infiltration analysis showed that immune cells such as macrophages, neutrophils, and NK cells were altered in HF myocardial tissue, while neutrophils were significantly correlated with all four hub genes. Finally, 11 target miRNAs and 10 TFs were obtained, and miRNA-mRNA-TF regulatory network construction was performed. In addition, 10 gene-targeted drugs were discovered. Conclusion: Our study revealed important crosstalk between HF and ESRD. These common pathways and pivotal genes may provide new ideas for further clinical treatment and experimental studies.
Collapse
|
30
|
Catalpol Attenuates Oxidative Stress and Inflammation via Mechanisms Involving Sirtuin-1 Activation and NF-κB Inhibition in Experimentally-Induced Chronic Kidney Disease. Nutrients 2023; 15:nu15010237. [PMID: 36615896 PMCID: PMC9824177 DOI: 10.3390/nu15010237] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Chronic kidney disease (CKD) is a stealthy disease, and its development is linked to mechanisms including inflammation and oxidative stress. Catalpol (CAT), an iridoid glucoside from the root of Rehmannia glutinosa, is reported to manifest anti-inflammatory, antioxidant, antiapoptotic and antifibrotic properties. Hence, we studied the possible nephroprotective effects of CAT and its mechanisms in an adenine-induced (0.2% w/w in feed for 4 weeks) murine model of CKD by administering 5 mg/kg CAT to BALB/c mice for the duration of 4 weeks except during weekends. Upon sacrifice, the kidney, plasma and urine were collected and various physiological, biochemical and histological endpoints were assessed. CAT significantly ameliorated the adenine-induced altered body and kidney weight, water intake, urine volume, and concentrations of urea and creatinine in plasma, as well as the creatinine clearance and the albumin and creatinine ratio. Moreover, CAT significantly ameliorated the effect of adenine-induced kidney injury by reducing the kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, cystatin C and adiponectin. Similarly, the augmented concentrations of markers of inflammation and oxidative stress in the adenine-treated group were markedly reduced with CAT pretreatment. Furthermore, CAT prevented adenine-induced deoxyribonucleic acid damage and apoptotic activity in the kidneys. Histologically, CAT significantly reduced the formation of tubular necrosis and dilation, as well as interstitial fibrosis in the kidney. In addition to that, CAT significantly decreased the adenine-induced increase in the phosphorylated NF-κB and reversed the reduced expression of sirtuin-1 in the kidney. In conclusion, CAT exhibits salutary effects against adenine-induced CKD in mice by mitigating inflammation, oxidative stress and fibrosis via mechanisms involving sirtuin-1 activation and NF-κB inhibition. Confirmatory studies are warranted in order to consider CAT as a potent nephroprotective agent against CKD.
Collapse
|
31
|
Gong Z, Liu W, Song R, Dong W, Zhang K, Li J, Zou H, Zhu J, Ma Y, Liu G, Liu Z. Nuclear factor-kappaB mediates the survival of rat kidney cells after cadmium exposure via promoting autophagy and inhibiting apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114465. [PMID: 38321684 DOI: 10.1016/j.ecoenv.2022.114465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 02/08/2024]
Abstract
Cadmium (Cd) is a heavy metal pollutant in the environment, and the kidney is one of the target organs after Cd exposure. Previous studies have shown that apoptosis and autophagy disorders are the main mechanisms of Cd-induced nephrotoxicity in rats. As a transcription factor that balances cell survival and death, nuclear factor-kappaB (NF-κB) protein plays dual regulatory effects on apoptosis and autophagy in multiple renal diseases. However, the regulatory mechanisms of NF-κB in Cd-induced kidney injury remain unclear. Therefore, the normal rat kidney cell line (NRK-52E cells) was applied to investigate the above questions in this study. Here, we found that Cd promotes the nuclear translocation and activation of NF-κB in a concentration-dependent manner, and activated NF-κB mediates NRK-52E cells survival after Cd exposure. Next, our study elaborated the mechanisms of NF-κB in antagonizing Cd-induced renal cytotoxicity. Inhibition of NF-κB by inhibitor BAY 11-7082 (BAY) and NF-κB p65 siRNA (siNF-κB p65) exacerbate Cd-induced apoptosis and autophagy inhibition, and then aggravate Cd-induced NRK-52E cells injury. Activation of NF-κB by activator phorbol-12-myristate-13-acetate (PMA) alleviates Cd-induced apoptosis and autophagy inhibition, and then attenuates Cd-induced NRK-52E cells injury. In conclusion, Cd exposure promotes the activation of NF-κB, and activated NF-κB mediates the survival of NRK-52E cells after Cd exposure via promoting autophagy and inhibiting apoptosis.
Collapse
Affiliation(s)
- Zhonggui Gong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China
| | - Wenjing Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China
| | - Wenxuan Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China
| | - Jiahui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China.
| |
Collapse
|
32
|
Mattinzoli D, Li M, Castellano G, Ikehata M, Armelloni S, Elli FM, Molinari P, Tsugawa K, Alfieri CM, Messa P. Fibroblast growth factor 23 level modulates the hepatocyte's alpha-2-HS-glycoprotein transcription through the inflammatory pathway TNFα/NFκB. Front Med (Lausanne) 2022; 9:1038638. [PMID: 36569120 PMCID: PMC9769965 DOI: 10.3389/fmed.2022.1038638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction High serum levels of fibroblast growth factor 23 (FGF23) characterize chronic kidney disease (CKD) since its early stages and have been suggested to contribute to inflammation and cardiovascular disease. However, the mechanisms linking FGF23 with these pathological conditions remain still incompletely defined. The alpha-2-HS-glycoprotein (AHSG), a liver-produced anti-inflammatory cytokine, is highly modulated by inflammation itself, also through the TNFα/NFκB signaling pathway. In our previous study, we found that FGF23 modulates the production of AHSG in the liver in a bimodal way, with stimulation and inhibition at moderately and highly increased FGF23 concentrations, respectively. Methods The present study, aiming to gain further insights into this bimodal behavior, was performed in hepatocyte human cells line (HepG2), using the following methods: immunochemistry, western blot, chromatin immunoprecipitation, fluorescence in situ hybridization (FISH), qRT-PCR, and gene SANGER sequencing. Results We found that FGF23 at 400 pg/ml activates nuclear translocation of NFκB, possibly increasing AHSG transcription. At variance, at 1,200 pg/ml, FGF23 inactivates NFκB through the activation of two specific NFκB inhibitors (IκBα and NKIRAS2) and induces its detachment from the AHSG promoter, reducing AHSG transcription. Conclusion These results add another piece to the puzzle of FGF23 involvement in the multifold interactions between CKD, inflammation, and cardiovascular disease, suggesting the involvement of the NFκB pathway, which might represent a potential therapeutic target in CKD.
Collapse
Affiliation(s)
- Deborah Mattinzoli
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Renal Research Laboratory, Milan, Italy,*Correspondence: Deborah Mattinzoli,
| | - Min Li
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Renal Research Laboratory, Milan, Italy
| | - Giuseppe Castellano
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Nephrology, Dialysis and Renal Transplant, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Masami Ikehata
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Renal Research Laboratory, Milan, Italy
| | - Silvia Armelloni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Renal Research Laboratory, Milan, Italy,Silvia Armelloni,
| | - Francesca Marta Elli
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
| | - Paolo Molinari
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Nephrology, Dialysis and Renal Transplant, Milan, Italy
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Carlo Maria Alfieri
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Nephrology, Dialysis and Renal Transplant, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Piergiorgio Messa
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Nephrology, Dialysis and Renal Transplant, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
33
|
Najafi M, Tavakol S, Zarrabi A, Ashrafizadeh M. Dual role of quercetin in enhancing the efficacy of cisplatin in chemotherapy and protection against its side effects: a review. Arch Physiol Biochem 2022; 128:1438-1452. [PMID: 32521182 DOI: 10.1080/13813455.2020.1773864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemotherapy has opened a new window in cancer therapy. However, the resistance of cancer cells has dramatically reduced the efficacy of chemotherapy. Cisplatin is a chemotherapeutic agent and its potential in cancer therapy has been restricted by resistance of cancer cells. As a consequence, the scientists have attempted to find new strategies in elevating chemotherapy efficacy. Due to great anti-tumour activity, naturally occurring compounds are of interest in polychemotherapy. Quercetin is a flavonoid with high anti-tumour activity against different cancers that can be used with cisplatin to enhance its efficacy and also are seen to sensitise cancer cells into chemotherapy. Furthermore, cisplatin has side effects such as nephrotoxicity and ototoxicity. Administration of quercetin is advantageous in reducing the adverse effects of cisplatin without compromising its anti-tumour activity. In this review, we investigate the dual role of quercetin in enhancing anti-tumour activity of cisplatin and simultaneous reduction in its adverse effects.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Turkey
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
34
|
Abstract
Renal fibrosis is a hallmark of end-stage chronic kidney disease. It is characterized by increased accumulation of extracellular matrix (ECM), which disrupts cellular organization and function within the kidney. Here, we review the bi-directional interactions between cells and the ECM that drive renal fibrosis. We will discuss the cells involved in renal fibrosis, changes that occur in the ECM, the interactions between renal cells and the surrounding fibrotic microenvironment, and signal transduction pathways that are misregulated as fibrosis proceeds. Understanding the underlying mechanisms of cell-ECM crosstalk will identify novel targets to better identify and treat renal fibrosis and associated renal disease.
Collapse
Affiliation(s)
- Kristin P. Kim
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Caitlin E. Williams
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
35
|
Kaur R, Singh R. Mechanistic insights into CKD-MBD-related vascular calcification and its clinical implications. Life Sci 2022; 311:121148. [DOI: 10.1016/j.lfs.2022.121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
36
|
Ban KY, Nam GY, Kim D, Oh YS, Jun HS. Prevention of LPS-Induced Acute Kidney Injury in Mice by Bavachin and Its Potential Mechanisms. Antioxidants (Basel) 2022; 11:2096. [PMID: 36358467 PMCID: PMC9686515 DOI: 10.3390/antiox11112096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 09/28/2023] Open
Abstract
Acute kidney injury (AKI) is a serious complication of sepsis with a rapid onset and high mortality rate. Bavachin, an active component of Psoralea corylifolia L., reportedly has antioxidant, anti-apoptotic, and anti-inflammatory effects; however, its beneficial effects on AKI remain undetermined. We investigated the protective effect of bavachin on lipopolysaccharide (LPS)-induced AKI in mice and elucidated the underlying mechanism in human renal tubular epithelial HK-2 cells. Increased serum creatinine and blood urea nitrogen levels were observed in LPS-injected mice; however, bavachin pretreatment significantly inhibited this increase. Bavachin improved the kidney injury score and decreased the expression level of tubular injury markers, such as neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), in both LPS-injected mice and LPS-treated HK-2 cells. LPS-induced oxidative stress via phosphorylated protein kinase C (PKC) β and upregulation of the NADPH oxidase (NOX) 4 pathway was also significantly decreased by treatment with bavachin. Moreover, bavachin treatment inhibited the phosphorylation of MAPKs (P38, ERK, and JNK) and nuclear factor (NF)-κB, as well as the increase in inflammatory cytokine levels in LPS-injected mice. Krüppel-like factor 5 (KLF5) expression was upregulated in the LPS-treated HK-2 cells and kidneys of LPS-injected mice. However, RNAi-mediated silencing of KLF5 inhibited the phosphorylation of NF-kB, consequently reversing LPS-induced KIM-1 and NGAL expression in HK-2 cells. Therefore, bavachin may ameliorate LPS-induced AKI by inhibiting oxidative stress and inflammation via the downregulation of the PKCβ/MAPK/KLF5 axis.
Collapse
Affiliation(s)
- Ka-Yun Ban
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
| | - Ga-Young Nam
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
| | - Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam 13135, Korea
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon 21565, Korea
| |
Collapse
|
37
|
Zhang N, Guan C, Liu Z, Li C, Yang C, Xu L, Niu M, Zhao L, Zhou B, Che L, Wang Y, Xu Y. Calycosin attenuates renal ischemia/reperfusion injury by suppressing NF-κB mediated inflammation via PPARγ/EGR1 pathway. Front Pharmacol 2022; 13:970616. [PMID: 36278223 PMCID: PMC9585199 DOI: 10.3389/fphar.2022.970616] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/26/2022] [Indexed: 08/10/2023] Open
Abstract
Renal ischemia reperfusion injury (IRI) is a leading and common cause of acute kidney injury (AKI), and inflammation is a critical factor in ischemic AKI progression. Calycosin (CAL), a major active component of Radix astragali, has been reported to have anti-inflammatory effect in multiple organs. However, whether CAL can alleviate renal IRI and its mechanism remain uncertain. In the present study, a renal IRI model is established by bilateral renal pedicles occlusion for 35 min in male C57BL/6 mice, and the effect of CAL on renal IRI is measured by serum creatinine and pathohistological assay. Hypoxia/reoxygenation (H/R) stimulated human renal tubular epithelial cells HK-2 were applied to explore the regulatory mechanisms of CAL. Luciferase reporter assay and molecular docking were applied to identify the CAL's target protein and pathway. In the mice with renal IRI, CAL dose dependently alleviated the renal injury and decreased nuclear factor kappa B (NF-κB) mediated inflammatory response. Bioinformatics analysis and experiments showed that early growth response 1 (EGR1) increased in mice with renal IRI and promoted NF-κB mediated inflammatory processes, and CAL dose-dependably reduced EGR1. Through JASPAR database and luciferase reporter assay, peroxisome proliferator-activated receptor γ (PPARγ) was predicted to be a transcription factor of EGR1 and repressed the expression of EGR1 in renal tubular epithelial cells. CAL could increase PPARγ in a dose dependent manner in mice with renal IRI and molecular docking predicted CAL could bind stably to PPARγ. In HK-2 cells after H/R, CAL increased PPARγ, decreased EGR1, and inhibited NF-κB mediated inflammatory response. However, PPARγ knockdown by siRNA transfection abrogated the anti-inflammation therapeutic effect of CAL. CAL produced a protective effect on renal IRI by attenuating NF-κB mediated inflammatory response via PPARγ/EGR1 pathway.
Collapse
|
38
|
Córdoba-David G, García-Giménez J, Cardoso Castelo-Branco R, Carrasco S, Cannata P, Ortiz A, Ramos AM. Crosstalk between TBK1/IKKε and the type I interferon pathway contributes to tubulointerstitial inflammation and kidney tubular injury. Front Pharmacol 2022; 13:987979. [PMID: 36386242 PMCID: PMC9647636 DOI: 10.3389/fphar.2022.987979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 09/01/2023] Open
Abstract
The type I interferon (TI-IFN) pathway regulates innate immunity, inflammation, and apoptosis during infection. However, the contribution of the TI-IFN pathway or upstream signaling pathways to tubular injury in kidney disease is poorly understood. Upon observing evidence of activation of upstream regulators of the TI-IFN pathway in a transcriptomics analysis of murine kidney tubulointerstitial injury, we have now addressed the impact of the TI-IFN and upstream signaling pathways on kidney tubulointerstitial injury. In cultured tubular cells and kidney tissue, IFNα/β binding to IFNAR activated the TI-IFN pathway and recruited antiviral interferon-stimulated genes (ISG) and NF-κB-associated proinflammatory responses. TWEAK and lipopolysaccharide (LPS) signaled through TBK1/IKKε and IRF3 to activate both ISGs and NF-κB. In addition, TWEAK recruited TLR4 to stimulate TBK1/IKKε-dependent ISG and inflammatory responses. Dual pharmacological inhibition of TBK1/IKKε with amlexanox decreased TWEAK- or LPS-induced ISG and cytokine responses, as well as cell death induced by a complex inflammatory milieu that included TWEAK. TBK1 or IRF3 siRNA prevented the TWEAK-induced ISG and inflammatory gene expression while IKKε siRNA did not. In vivo, kidney IFNAR and IFNβ were increased in murine LPS and folic acid nephrotoxicity while IFNAR was increased in human kidney biopsies with tubulointerstitial damage. Inhibition of TBK1/IKKε with amlexanox or IFNAR neutralization decreased TI-IFN pathway activation and protected from kidney injury induced by folic acid or LPS. In conclusion, TI-IFNs, TWEAK, and LPS engage interrelated proinflammatory and antiviral responses in tubular cells. Moreover, inhibition of TBK1/IKKε with amlexanox, and IFNAR targeting, may protect from tubulointerstitial kidney injury.
Collapse
Affiliation(s)
- Gina Córdoba-David
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jorge García-Giménez
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Susana Carrasco
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS 2040, Madrid, Spain
| | - Pablo Cannata
- Department of Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS 2040, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Adrián M. Ramos
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS 2040, Madrid, Spain
| |
Collapse
|
39
|
Tubular IKKβ Deletion Alleviates Acute Ischemic Kidney Injury and Facilitates Tissue Regeneration. Int J Mol Sci 2022; 23:ijms231710199. [PMID: 36077596 PMCID: PMC9456401 DOI: 10.3390/ijms231710199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
Acute kidney injury (AKI) is a common renal injury leading to relevant morbidity and mortality worldwide. Most of the clinical cases of AKI are caused by ischemia reperfusion (I/R) injury with renal ischemia injury followed by reperfusion injury and activation of the innate immune response converging to NF-ĸB pathway induction. Despite the clear role of NF-ĸB in inflammation, it has recently been acknowledged that NF-ĸB may impact other cell functions. To identify NF-ĸB function with respect to metabolism, vascular function and oxidative stress after I/R injury and to decipher in detail the underlying mechanism, we generated a transgenic mouse model with targeted deletion of IKKβ along the tubule and applied I/R injury followed by its analysis after 2 and 14 days after I/R injury. Tubular IKKβ deletion ameliorated renal function and reduced tissue damage. RNAseq data together with immunohistochemical, biochemical and morphometric analysis demonstrated an ameliorated vascular organization and mRNA expression profile for increased angiogenesis in mice with tubular IKKβ deletion at 2 days after I/R injury. RNAseq and protein analysis indicate an ameliorated metabolism, oxidative species handling and timely-adapted cell proliferation and apoptosis as well as reduced fibrosis in mice with tubular IKKβ deletion at 14 days after I/R injury. In conclusion, mice with tubular IKKβ deletion upon I/R injury display improved renal function and reduced tissue damage and fibrosis in association with improved vascularization, metabolism, reactive species disposal and fine-tuned cell proliferation.
Collapse
|
40
|
Antioxidative and Anti-Inflammatory Protective Effects of β-Caryophyllene against Amikacin-Induced Nephrotoxicity in Rat by Regulating the Nrf2/AMPK/AKT and NF- κB/TGF- β/KIM-1 Molecular Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4212331. [PMID: 36062191 PMCID: PMC9439917 DOI: 10.1155/2022/4212331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022]
Abstract
Herein, the molecular pathogenic pathways implicated in renal injury triggered by amikacin (AK), together with the alleviating actions of β-caryophyllene (BCP), were investigated. Adult male Wistar rats (n = 32) were disseminated to the four following groups (n = 8/group): normal group, positive control animals (PC) that received AK intraperitoneal injections for 14 days (500 mg/kg/day), and rats that received AK simultaneously with small (200 mg/kg/day) and high doses (400 mg/kg/day) of BCP. The PC renal tissues revealed abnormal histology alongside increased apoptosis and significantly elevated serum creatinine and urea with marked proteinuria and oliguria relative to the normal rats. Moreover, renal tissues from the PC animals also showed substantial upregulations in NF-κB/TGF-β/KIM-1, whilst Nrf2/AMPK/AKT/PCNA declined, at the gene and protein levels in comparison to the normal rats. Additionally, the levels of markers of oxidative stress (MDA/H2O2/protein adducts) and inflammation (TNF-α/IL-1β/IL-6/IL-18/TLR/HSP25) were substantially higher in the PC renal specimens, whereas the antioxidants (GSH/GPx/SOD1/CAT) and interleukin-10 decreased, relative to the NC group. Both BCP protocols improved the biochemical markers of renal functions, alleviated renal histopathology and apoptosis, and decreased NF-κB/TGF-β/KIM-1 alongside the concentrations of oxidative stress and proinflammatory markers, whilst promoting Nrf2/AMPK/AKT/IL-10/PCNA and the targeted antioxidants. However, the improving effects in the high-dose regimen were markedly stronger than those observed in animals treated with low dose of BCP. In conclusion, the present report is the first to connect NF-κB/TGF-β/KIM-1 proinflammatory and Nrf2/AMPK/AKT antioxidative stress pathways with the pathogenesis of AK-induced nephrotoxicity. Additionally, the current report is the first to disclose alleviating activities for BCP against AK-triggered nephrotoxicity by modulating multiple antioxidative stress with anti-inflammatory molecular pathways.
Collapse
|
41
|
Zhu J, Zhang Y, Shi L, Xia Y, Zha H, Li H, Song Z. RP105 protects against ischemic and septic acute kidney injury via suppressing TLR4/NF-κB signaling pathways. Int Immunopharmacol 2022; 109:108904. [PMID: 35696803 DOI: 10.1016/j.intimp.2022.108904] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 12/31/2022]
Abstract
Acute kidney injury (AKI) is a critical and severe clinical disease caused by a variety of factors. Toll-like receptors (TLRs) play a crucial role in pathogenesis of AKI. Radioprotective 105 kDa protein (RP105) is a member of the TLR family, but the role of RP105 in AKI is unknown. In this study, we overexpressed RP105 in renal tissue and cultured proximal tubular cells in which we then induced ischemic and septic AKI. Renal structure injuries were examined by hematoxylin eosin staining, while renal function was assessed by measuring serum blood urea nitrogen (BUN) and creatinine (SCr) levels. The TUNEL assay was used to detect apoptosis induced changes in the expression of RP105, and nuclear factor κB (NF-κB) in renal tissue detected by Western blot. Inflammatory cytokines including iNOS, IL-1β, IL-6, and TNF-α were detected by quantitative real-time PCR. The inflammatory indicators, F4/80 and MPO, were identified by IHC staining. The results showed that expression of the TLR4/NF-kB signaling pathway was enhanced in renal ischemia-reperfusion injury and septic renal injury, and that overexpression of RP105 in renal tissue alleviated ischemic and septic AKI. Moreover, RP105 gene delivery was associated with reduced renal inflammatory cells infiltration and inflammatory cytokines after AKI. RP105 overexpression also inhibited nuclear translocation of NF-κB after AKI in both in vitro and in vivo, and blunted the interaction between Myeloid Differentiation factor 2 (MD2) and TLR4. These results indicated that RP105 protected against renal ischemic and septic AKI injury by suppressing inflammatory responses mediated by TLR4 signaling pathways. This study suggests that the anti-inflammatory roles of RP105 have potential for preventing and treating renal ischemic and septic AKI.
Collapse
Affiliation(s)
- Jiefu Zhu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yafei Zhang
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei 443000, China
| | - Lang Shi
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yao Xia
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei 443000, China
| | - Hongchu Zha
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei 443000, China
| | - Huimin Li
- Department of Nephrology, Affiliated Renhe Hospital of Three Gorges University, Yichang, Hubei 443000, China
| | - Zhixia Song
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei 443000, China.
| |
Collapse
|
42
|
Barakat M, Hussein AM, Salama MF, Awadalla A, Barakat N, Serria M, El-Shafey M, El-Sherbiny M, El Adl MA. Possible Underlying Mechanisms for the Renoprotective Effect of Retinoic Acid-Pretreated Wharton's Jelly Mesenchymal Stem Cells against Renal Ischemia/Reperfusion Injury. Cells 2022; 11:cells11131997. [PMID: 35805083 PMCID: PMC9266019 DOI: 10.3390/cells11131997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives: The current work investigated the effect of Wharton jelly mesenchymal stem cells (WJ-MSCs) pretreated with all-trans-retinoic acid (ATRA) on renal ischemia in rats and the possible role of oxidative stress, apoptotic and Wnt/β-Catenin signaling pathways, and inflammatory cytokines in their effects. Methods: The study included 90 male Sprague Dawley rats that were allocated to five groups (n = 18 rats): (I) Sham-operated group (right nephrectomy was performed); (II) Ischemia/reperfusion injury (IRI) group, a sham group with 45-min renal ischemia on the left kidney; (III) ATRA group, an ischemic group with an intravenous (i.v.) administration of ATRA 10 µM, 10 min post-surgery); (IV) WJ-MSCs group, an IRI group with an i.v. administration of 150 µL containing 7 × 106 WJ-MSCs, 10 min post-surgery; (V) WJ-MSCs + ATRA group, an IRI group with an i.v. administration of 150 µL of 7 × 106 WJ-MSCs pretreated with 10 µM ATRA. At the end of the experiments, serum creatinine, BUN micro-albuminuria (MAU), urinary protein, markers of redox state in the left kidney (MDA, CAT, SOD, and GSH), and the expression of Bax, IL-6, HIF-1α, Wnt7B, and β-catenin genes at the level of mRNA as well as for immunohistochemistry for NFkB and β-Catenin markers were analyzed. Results: The current study found that 45-min of renal ischemia resulted in significant impairment of kidney function (evidenced by the increase in serum creatinine, BUN, and urinary proteins) and deterioration of the kidney morphology, which was associated with a significant increase in redox state (evidenced by an increase in MDA and a decrease in GSH, SOD, and CAT), and a significant increase in inflammatory and apoptotic processes (evidenced by an increase in Bax and IL-6, NFkB, Wnt7B, β-catenin and HIF-1α) in kidney tissues (p < 0.05). On the other hand, treatment with ATRA, WJ-MSCs, or a combination of both, caused significant improvement in kidney function and morphology, which was associated with significant attenuation of oxidative stress, apoptotic markers, and inflammatory cytokines (IL6 and NFkB) with the upregulation of HIF-1α and β-catenin in kidney tissues (p < 0.05). Moreover, the renoprotective effect of WJ-MSCs pretreated with ATRA was more potent than WJ-MSCs alone. Conclusions: It is concluded that preconditioning of WJ-MSCs with ATRA may enhance their renoprotective effect. This effect could be due to the upregulation of the beta-catenin/Wnt pathway and attenuation of apoptosis, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Mai Barakat
- Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (M.B.); (M.F.S.); (M.A.E.A.)
- Institute of Global Public Health and Human Ecology, School of Science and Engineering, American University, Cairo 11835, Egypt
| | - Abdelaziz M. Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: ; Tel.: +20-10-0242-1140
| | - Mohamed F. Salama
- Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (M.B.); (M.F.S.); (M.A.E.A.)
| | - Amira Awadalla
- Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt; (A.A.); (N.B.)
| | - Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt; (A.A.); (N.B.)
| | - Mohamed Serria
- Department of Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Mohamed El-Shafey
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
- Physiological Sciences Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 71666, Saudi Arabia;
| | - Mohamed A. El Adl
- Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (M.B.); (M.F.S.); (M.A.E.A.)
| |
Collapse
|
43
|
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther 2022; 7:182. [PMID: 35680856 PMCID: PMC9184651 DOI: 10.1038/s41392-022-01036-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a chronic renal dysfunction syndrome that is characterized by nephron loss, inflammation, myofibroblasts activation, and extracellular matrix (ECM) deposition. Lipotoxicity and oxidative stress are the driving force for the loss of nephron including tubules, glomerulus, and endothelium. NLRP3 inflammasome signaling, MAPK signaling, PI3K/Akt signaling, and RAAS signaling involves in lipotoxicity. The upregulated Nox expression and the decreased Nrf2 expression result in oxidative stress directly. The injured renal resident cells release proinflammatory cytokines and chemokines to recruit immune cells such as macrophages from bone marrow. NF-κB signaling, NLRP3 inflammasome signaling, JAK-STAT signaling, Toll-like receptor signaling, and cGAS-STING signaling are major signaling pathways that mediate inflammation in inflammatory cells including immune cells and injured renal resident cells. The inflammatory cells produce and secret a great number of profibrotic cytokines such as TGF-β1, Wnt ligands, and angiotensin II. TGF-β signaling, Wnt signaling, RAAS signaling, and Notch signaling evoke the activation of myofibroblasts and promote the generation of ECM. The potential therapies targeted to these signaling pathways are also introduced here. In this review, we update the key signaling pathways of lipotoxicity, oxidative stress, inflammation, and myofibroblasts activation in kidneys with chronic injury, and the targeted drugs based on the latest studies. Unifying these pathways and the targeted therapies will be instrumental to advance further basic and clinical investigation in CKD.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ben Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
44
|
Moon JJ, Choi Y, Kim KH, Seo A, Kwon S, Kim YC, Kim DK, Kim YS, Yang SH. Inhibiting Transglutaminase 2 Mediates Kidney Fibrosis via Anti-Apoptosis. Biomedicines 2022; 10:biomedicines10061345. [PMID: 35740367 PMCID: PMC9220123 DOI: 10.3390/biomedicines10061345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Transglutaminase 2 (TG2) is a calcium-dependent transamidating acyltransferase enzyme of the protein-glutamine γ-glutamyltransferase family implicated in kidney injury. In this study, we identified associations between TG2 and chronic kidney disease (CKD) identified by visualizing TG2 in kidney biopsy samples derived from CKD patients using immunohistochemistry and measuring the plasma TG2 concentrations. Our study revealed a connection between TG2 and the pathological markers of kidney disease. We showed high plasma TG2 levels in samples from patients with advanced CKD. In addition, we observed an increase in TG2 expression in tissues concomitant with advanced CKD in human samples. Moreover, we investigated the effect of TG2 inhibition on kidney injury using cystamine, a well-known competitive inhibitor of TG2. TG2 inhibition reduced apoptosis and accumulation of extracellular molecules (ECM) such as fibronectin and pro-inflammatory cytokine IL-8. Collectively, the increased expression of TG2 that was observed in advanced CKD, hence inhibiting TG2 activity, could protect kidney cells from ECM molecule accumulation, apoptosis, and inflammatory responses, thereby preventing kidney fibrosis.
Collapse
Affiliation(s)
- Jong-Joo Moon
- Biomedical Research Institute, Seoul National University, Seoul 03080, Korea; (J.-J.M.); (Y.C.); (K.-H.K.); (A.S.)
| | - Yejin Choi
- Biomedical Research Institute, Seoul National University, Seoul 03080, Korea; (J.-J.M.); (Y.C.); (K.-H.K.); (A.S.)
| | - Kyu-Hyeon Kim
- Biomedical Research Institute, Seoul National University, Seoul 03080, Korea; (J.-J.M.); (Y.C.); (K.-H.K.); (A.S.)
| | - Areum Seo
- Biomedical Research Institute, Seoul National University, Seoul 03080, Korea; (J.-J.M.); (Y.C.); (K.-H.K.); (A.S.)
| | - Soie Kwon
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea; (S.K.); (Y.-C.K.); (D.-K.K.); (Y.-S.K.)
| | - Yong-Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea; (S.K.); (Y.-C.K.); (D.-K.K.); (Y.-S.K.)
| | - Dong-Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea; (S.K.); (Y.-C.K.); (D.-K.K.); (Y.-S.K.)
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Kidney Research Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Yon-Su Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea; (S.K.); (Y.-C.K.); (D.-K.K.); (Y.-S.K.)
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Kidney Research Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Seung-Hee Yang
- Biomedical Research Institute, Seoul National University, Seoul 03080, Korea; (J.-J.M.); (Y.C.); (K.-H.K.); (A.S.)
- Kidney Research Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-2072-1724
| |
Collapse
|
45
|
Alquraishi M, Chahed S, Alani D, Puckett DL, Dowker PD, Hubbard K, Zhao Y, Kim JY, Nodit L, Fatima H, Donohoe D, Voy B, Chowanadisai W, Bettaieb A. Podocyte specific deletion of PKM2 ameliorates LPS-induced podocyte injury through beta-catenin. Cell Commun Signal 2022; 20:76. [PMID: 35637461 PMCID: PMC9150347 DOI: 10.1186/s12964-022-00884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is associated with a severe decline in kidney function caused by abnormalities within the podocytes' glomerular matrix. Recently, AKI has been linked to alterations in glycolysis and the activity of glycolytic enzymes, including pyruvate kinase M2 (PKM2). However, the contribution of this enzyme to AKI remains largely unexplored. METHODS Cre-loxP technology was used to examine the effects of PKM2 specific deletion in podocytes on the activation status of key signaling pathways involved in the pathophysiology of AKI by lipopolysaccharides (LPS). In addition, we used lentiviral shRNA to generate murine podocytes deficient in PKM2 and investigated the molecular mechanisms mediating PKM2 actions in vitro. RESULTS Specific PKM2 deletion in podocytes ameliorated LPS-induced protein excretion and alleviated LPS-induced alterations in blood urea nitrogen and serum albumin levels. In addition, PKM2 deletion in podocytes alleviated LPS-induced structural and morphological alterations to the tubules and to the brush borders. At the molecular level, PKM2 deficiency in podocytes suppressed LPS-induced inflammation and apoptosis. In vitro, PKM2 knockdown in murine podocytes diminished LPS-induced apoptosis. These effects were concomitant with a reduction in LPS-induced activation of β-catenin and the loss of Wilms' Tumor 1 (WT1) and nephrin. Notably, the overexpression of a constitutively active mutant of β-catenin abolished the protective effect of PKM2 knockdown. Conversely, PKM2 knockdown cells reconstituted with the phosphotyrosine binding-deficient PKM2 mutant (K433E) recapitulated the effect of PKM2 depletion on LPS-induced apoptosis, β-catenin activation, and reduction in WT1 expression. CONCLUSIONS Taken together, our data demonstrates that PKM2 plays a key role in podocyte injury and suggests that targetting PKM2 in podocytes could serve as a promising therapeutic strategy for AKI. TRIAL REGISTRATION Not applicable. Video abstract.
Collapse
Affiliation(s)
- Mohammed Alquraishi
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
- Present Address: Department of Community Health Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Samah Chahed
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Dina Alani
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Dexter L. Puckett
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Presley D. Dowker
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Katelin Hubbard
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Yi Zhao
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
- Present Address: Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105 USA
| | - Ji Yeon Kim
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Laurentia Nodit
- Department of Pathology, University of Tennessee Medical Center, Knoxville, TN 37920 USA
| | - Huma Fatima
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Dallas Donohoe
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Brynn Voy
- Tennessee Agricultural Experiment Station, University of Tennessee Institute of Agriculture, Knoxville, TN 37996-0840 USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840 USA
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078 USA
| | - Ahmed Bettaieb
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840 USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 USA
| |
Collapse
|
46
|
The Nephroprotective Effects of α-Bisabolol in Cisplatin-Induced Acute Kidney Injury in Mice. Biomedicines 2022; 10:biomedicines10040842. [PMID: 35453592 PMCID: PMC9032774 DOI: 10.3390/biomedicines10040842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 01/24/2023] Open
Abstract
Cisplatin (CP) treatment has been long associated with the development of acute kidney injury (AKI) through mechanisms involving inflammation and oxidative stress. α-Bisabolol (BIS), a sesquiterpene alcohol isolated from the essential oil of various plants, including chamomile, has garnered popularity lately due to its antioxidant, anti-inflammatory, and anticancer properties. Therefore, we investigated the nephroprotective effects of BIS in the murine model of CP-induced AKI and the underlying mechanism of action. BALB/c mice were given BIS orally at 25 mg/kg for 7 days. On day 7, they were given a single dose of CP at 20 mg/kg intraperitoneally. BIS treatment continued for 3 more days. The animals were sacrificed at the end of the experiment (day 11). Kidneys, plasma, and urine were collected, and subsequently, various physiological, biochemical, and histological parameters were assessed. BIS has significantly normalized the alterations of water intake, urine volume, relative kidney weight, and the concentrations of urea and creatinine, as well as the creatinine clearance induced by CP treatment. BIS significantly mitigated the effects of CP-induced kidney injury by reducing kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, adiponectin, and cystatin C. Likewise, the renal concentrations of proinflammatory cytokines, tumor necrosis factor α, interleukin (IL)-6 and IL-1β that were elevated in CP group were significantly reduced in mice treated with BIS and CP. A similar significant reduction was also observed in the CP-induced augmented levels of markers of oxidative stress, as well as the metabolite pteridine. Moreover, BIS significantly reduced the CP–induced renal DNA damage, and markedly lessened the acute tubular necrosis observed in kidney histology. Additionally, BIS significantly reduced the CP-induced increase in the phosphorylated nuclear factor κB (NFκB) in the kidney. These data strongly suggest that BIS exerts a protective action against CP-induced nephrotoxicity by mitigating inflammation and oxidative stress through the inhibition of NFκB activation. No overt adverse effects were noted with BIS treatment. Additional investigations should be done to consider BIS as an efficacious nephroprotective agent against CP.
Collapse
|
47
|
Salem F, Li XZ, Hindi J, Casablanca NM, Zhong F, El Jamal SM, Haroon Al Rasheed MR, Li L, Lee K, Chan L, He JC. Activation of STAT3 signaling pathway in the kidney of COVID-19 patients. J Nephrol 2022; 35:735-743. [PMID: 34626364 PMCID: PMC8501346 DOI: 10.1007/s40620-021-01173-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Acute kidney injury is common in patients with COVID-19, however mechanisms of kidney injury remain unclear. Since cytokine storm is likely a cause of AKI and glomerular disease, we investigated the two major transcription factors, STAT3 and NF-kB, which are known to be activated by cytokines. METHODS This is an observational study of the postmortem kidneys of 50 patients who died with COVID-19 in the Mount Sinai Hospital during the first pandemic surge. All samples were reviewed under light microscopy, electron microscopy, and immunofluorescence by trained renal pathologists. In situ hybridization evaluation for SARS-CoV-2 and immunostaining of transcription factors STAT3 and NF-kB were performed. RESULTS Consistent with previous findings, acute tubular injury was the major pathological finding, together with global or focal glomerulosclerosis. We were not able to detect SARS-CoV-2 in kidney cells. ACE2 expression was reduced in the tubular cells of patients who died with COVID-19 and did not co-localize with TMPRSS2. SARS-CoV-2 was identified occasionally in the mononuclear cells in the peritubular capillary and interstitium. STAT3 phosphorylation at Tyr705 was increased in 2 cases in the glomeruli and in 3 cases in the tubulointerstitial compartments. Interestingly, STAT3 phosphorylation at Ser727 increased in 9 cases but only in the tubulointerstitial compartment. A significant increase in NF-kB phosphorylation at Ser276 was also found in the tubulointerstitium of the two patients with increased p-STAT3 (Tyr705). CONCLUSIONS Our findings suggest that, instead of tyrosine phosphorylation, serine phosphorylation of STAT3 is commonly activated in the kidney of patients with COVID-19.
Collapse
Affiliation(s)
- Fadi Salem
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xue Zhu Li
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Judy Hindi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nitzy Munoz Casablanca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fang Zhong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Siraj M El Jamal
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Li Li
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lili Chan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Renal Program, James J Peters VAMC, Bronx, NY, USA.
| |
Collapse
|
48
|
Dou JY, Zhang M, Cen H, Chen YQ, Wu YF, Lu F, Zhou J, Liu XS, Gu YY. Salvia miltiorrhiza Bunge (Danshen) and Bioactive Compound Tanshinone IIA Alleviates Cisplatin-Induced Acute Kidney Injury Through Regulating PXR/NF-κB Signaling. Front Pharmacol 2022; 13:860383. [PMID: 35401224 PMCID: PMC8987575 DOI: 10.3389/fphar.2022.860383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: The present study aims to provide evidence on the potential protective role of Salvia miltiorrhiza Bunge (Danshen) and its bioactive compound Tanshinone IIA (TanIIA) in AKI and to reveal the specific regulatory function of PXR/NF-κB signaling in AKI-induced renal inflammation. Methods: A network pharmacological analysis was used to study target genes and regulatory networks in the treatment of Salvia miltiorrhiza on AKI. Further experiments with in vivo AKI mouse model and in vitro studies were applied to investigate the renal protective effect of TanIIA in AKI. The mechanisms of TanIIA regulating PXR/NF-κB signaling in renal inflammation were also studied. Results: Network pharmacology had suggested the nuclear receptor family as new therapeutic targets of Salvia miltiorrhiza in AKI treatment. The in vivo studies had demonstrated that TanIIA improved renal function and inflammation by reducing necrosis and promoting the proliferation of tubular epithelial cells. Improved renal arterial perfusion in AKI mice with TanIIA treatment was also recorded by ultrasonography. In vitro studies had shown that TanIIA ameliorated renal inflammation by activating the PXR while inhibiting PXR-mediated NF-κB signaling. The results had suggested a role of PXR activation against AKI-induced renal inflammation. Conclusion: Salvia miltiorrhiza Bunge (Danshen) may protect the kidneys against AKI by regulating nuclear receptors. TanIIA improved cell necrosis proliferation and reduced renal inflammation by upregulating the expression of the PXR and inhibiting NF-κB signaling in a PXR-dependent manner. The PXR may be a potential therapeutic target for AKI treatment.
Collapse
Affiliation(s)
- Jing-Yun Dou
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Zhang
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Cen
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Qin Chen
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Fan Wu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuhua Lu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xu-Sheng Liu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Yue-Yu Gu, ; Xu-Sheng Liu,
| | - Yue-Yu Gu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Yue-Yu Gu, ; Xu-Sheng Liu,
| |
Collapse
|
49
|
Delineation of the molecular mechanisms underlying Colistin-mediated toxicity using metabolomic and transcriptomic analyses. Toxicol Appl Pharmacol 2022; 439:115928. [DOI: 10.1016/j.taap.2022.115928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
|
50
|
Ashour H, Hashem HA, Khowailed AA, Rashed LA, Hassan RM, Soliman AS. Necrostatin-1 mitigates renal ischemia-reperfusion injury - time dependent- via aborting the interacting protein kinase (RIPK-1)-induced inflammatory immune response. Clin Exp Pharmacol Physiol 2022; 49:501-514. [PMID: 35090059 DOI: 10.1111/1440-1681.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/13/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022]
Abstract
The recently defined necroptosis process participates in the pathophysiology of several tissue injuries. Targeting the necroptosis mediator receptor-interacting protein kinase (RIPK1) by necrostatin-1 in different phases of ischemia-reperfusion injury (IRI) may provide new insight into the protection against renal IRI. The rat groups included (n= 8 in each group); 1) Sham, 2) Renal IRI, 3) Necrostatin-1 treatment 20 min before ischemia induction in a dose of 1.65 mg/kg/intravenous. 4) Necrostatin-1 injection just before reperfusion, 5) Necrostatin-1 injection 20 min after reperfusion establishment, and 6) drug injection at both the pre-ischemia and at reperfusion time in the same dose. Timing dependent, necrostatin-1 diminished RIPK1 (P < 0.001), and aborted the necroptosis induced renal cell injury. Necrostatin-1 decreased the renal chemokine (CXCL1), interleukin-6, intercellular adhesion molecule (ICAM-1), myeloperoxidase, and the nuclear factor (NFκB), concomitant with reduced inducible nitric oxide synthase (iNOS), inflammatory cell infiltration, and diminished cell death represented by apoptotic cell count and the BAX/Bcl2 protein ratio. In group six, the cell injury was minimum and the renal functions (creatinine, BUN, and creatinine clearance) were almost normalized. The inflammatory markers were diminished (P < 0.001) compared to the IRI group. The results were confirmed by histopathological examination. In conclusion, RIPK1 inhibition ameliorates the inflammatory immune response induced by renal IRI. The use of two doses was more beneficial as the pathophysiology of cell injury is characterized.
Collapse
Affiliation(s)
- Hend Ashour
- Department of Medical Physiology, Faculty of Medicine, King Khalid University, Abha, KSA.,Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt
| | - Heba A Hashem
- Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Akef A Khowailed
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Egypt
| | - Randa M Hassan
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Egypt
| | - Ayman S Soliman
- Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Egypt
| |
Collapse
|