1
|
Cho H, Lim J. The emerging role of gut hormones. Mol Cells 2024:100126. [PMID: 39426686 DOI: 10.1016/j.mocell.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024] Open
Abstract
The gut is traditionally recognized as the central organ for the digestion and absorption of nutrients, however it also functions as a significant endocrine organ, secreting a variety of hormones such as glucagon-like peptide 1 (GLP-1), serotonin, somatostatin, and glucocorticoids. These gut hormones, produced by specialized intestinal epithelial cells (IECs), are crucial not only for digestive processes but also for the regulation of a wide range of physiological functions, including appetite, metabolism, and immune responses. While gut hormones can exert systemic effects, they also play a pivotal role in maintaining local homeostasis within the gut. This review discusses the role of the gut as an endocrine organ, emphasizing the stimuli, the newly discovered functions, and the clinical significance of gut-secreted hormones. Deciphering the emerging role of gut hormones will lead to a better understanding of gut homeostasis, innovative treatments for disorders in the gut as well as systemic diseases.
Collapse
Affiliation(s)
- Hyeryeong Cho
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaechul Lim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; The Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Arreaza-Gil V, Escobar-Martínez I, Soliz-Rueda JR, Suárez M, Muguerza B, Schellekens H, Torres-Fuentes C, Arola-Arnal A. Photoperiod effects on corticosterone and seasonal clocks in cafeteria-induced obese fischer 344 rats are influenced by gut microbiota. Sci Rep 2024; 14:22560. [PMID: 39343766 PMCID: PMC11439935 DOI: 10.1038/s41598-024-73289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024] Open
Abstract
Seasonal rhythms are gaining attention given their impact on metabolic disorders development such as obesity gut microbiota is emerging as a key factor in mediating this link. However, the underlying mechanisms are still poorly understood. In this regard, corticosterone may play a role as it has been shown to be affected by gut bacteria and seasonal rhythms, and has been linked to obesity. Thus, this study aimed to investigate if seasonal rhythms effects on corticosterone are influenced by gut microbiota in obese rats and whether this may be related to seasonal and clock genes expression in the pituitary gland and colon. Fischer 344 male rats fed with cafeteria diet (CAF) were housed under different photoperiods for 9 weeks and treated with an antibiotic cocktail (ABX) in drinking water during the last 4 weeks. Rats fed with standard chow and CAF-fed rats without ABX were included as controls. ABX altered gut microbiota, corticosterone levels and seasonal clock expression in the pituitary depending on photoperiod conditions. These results suggest a link between gut bacteria, seasonal rhythms and corticosterone and a novel nutrigenomic target for obesity.
Collapse
Affiliation(s)
- Verónica Arreaza-Gil
- Nutrigenomics Research Group, Departament de Bioquímica I Biotecnologia, Universitat Rovira I Virgili, 43007, Tarragona, Spain
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Iván Escobar-Martínez
- Nutrigenomics Research Group, Departament de Bioquímica I Biotecnologia, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Jorge R Soliz-Rueda
- Nutrigenomics Research Group, Departament de Bioquímica I Biotecnologia, Universitat Rovira I Virgili, 43007, Tarragona, Spain
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Manuel Suárez
- Nutrigenomics Research Group, Departament de Bioquímica I Biotecnologia, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Begoña Muguerza
- Nutrigenomics Research Group, Departament de Bioquímica I Biotecnologia, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Harriet Schellekens
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
| | - Cristina Torres-Fuentes
- Nutrigenomics Research Group, Departament de Bioquímica I Biotecnologia, Universitat Rovira I Virgili, 43007, Tarragona, Spain.
| | - Anna Arola-Arnal
- Nutrigenomics Research Group, Departament de Bioquímica I Biotecnologia, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| |
Collapse
|
3
|
Mulder RH, Kraaij R, Schuurmans IK, Frances-Cuesta C, Sanz Y, Medina-Gomez C, Duijts L, Rivadeneira F, Tiemeier H, Jaddoe VWV, Felix JF, Cecil CAM. Early-life stress and the gut microbiome: A comprehensive population-based investigation. Brain Behav Immun 2024; 118:117-127. [PMID: 38402916 PMCID: PMC7615798 DOI: 10.1016/j.bbi.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024] Open
Abstract
Early-life stress (ELS) has been robustly associated with a range of poor mental and physical health outcomes. Recent studies implicate the gut microbiome in stress-related mental, cardio-metabolic and immune health problems, but research on humans is scarce and thus far often based on small, selected samples, often using retrospective reports of ELS. We examined associations between ELS and the human gut microbiome in a large, population-based study of children. ELS was measured prospectively from birth to 10 years of age in 2,004 children from the Generation R Study. We studied overall ELS, as well as unique effects of five different ELS domains, including life events, contextual risk, parental risk, interpersonal risk, and direct victimization. Stool microbiome was assessed using 16S rRNA sequencing at age 10 years and data were analyzed at multiple levels (i.e. α- and β-diversity indices, individual genera and predicted functional pathways). In addition, we explored potential mediators of ELS-microbiome associations, including diet at age 8 and body mass index at 10 years. While no associations were observed between overall ELS (composite score of five domains) and the microbiome after multiple testing correction, contextual risk - a specific ELS domain related to socio-economic stress, including risk factors such as financial difficulties and low maternal education - was significantly associated with microbiome variability. This ELS domain was associated with lower α-diversity, with β-diversity, and with predicted functional pathways involved, amongst others, in tryptophan biosynthesis. These associations were in part mediated by overall diet quality, a pro-inflammatory diet, fiber intake, and body mass index (BMI). These results suggest that stress related to socio-economic adversity - but not overall early life stress - is associated with a less diverse microbiome in the general population, and that this association may in part be explained by poorer diet and higher BMI. Future research is needed to test causality and to establish whether modifiable factors such as diet could be used to mitigate the negative effects of socio-economic adversity on the microbiome and related health consequences.
Collapse
Affiliation(s)
- Rosa H Mulder
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Isabel K Schuurmans
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Carlos Frances-Cuesta
- Microbiome, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Severo Ochoa Centre of Excellence, National Research Council (IATA-CSIC), Valencia, Spain.
| | - Yolanda Sanz
- Microbiome, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Severo Ochoa Centre of Excellence, National Research Council (IATA-CSIC), Valencia, Spain.
| | - Carolina Medina-Gomez
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
4
|
Lu X, Chen B, Xu D, Hu W, Wang X, Dai Y, Wang Q, Peng Y, Chen K, Zhao D, Wang H. Epigenetic programming mediates abnormal gut microbiota and disease susceptibility in offspring with prenatal dexamethasone exposure. Cell Rep Med 2024; 5:101398. [PMID: 38301654 PMCID: PMC10897547 DOI: 10.1016/j.xcrm.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/08/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Prenatal dexamethasone exposure (PDE) can lead to increased susceptibility to various diseases in adult offspring, but its effect on gut microbiota composition and the relationship with disease susceptibility remains unclear. In this study, we find sex-differential changes in the gut microbiota of 6-month-old infants with prenatal dexamethasone therapy (PDT) that persisted in female infants up to 2.5 years of age with altered bile acid metabolism. PDE female offspring rats show abnormal colonization and composition of gut microbiota and increased susceptibility to cholestatic liver injury. The aberrant gut microbiota colonization in the PDE offspring can be attributed to the inhibited Muc2 expression caused by decreased CDX2 expression before and after birth. Integrating animal and cell experiments, we further confirm that dexamethasone could inhibit Muc2 expression by activating GR/HDAC11 signaling and regulating CDX2 epigenetic modification. This study interprets abnormal gut microbiota and disease susceptibility in PDT offspring from intrauterine intestinal dysplasia.
Collapse
Affiliation(s)
- Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Beidi Chen
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Dan Xu
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Hu
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Xia Wang
- Department of Pediatrics, Children's Digital Health, and Data Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Qian Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yu Peng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Kaiqi Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Dongchi Zhao
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Department of Pediatrics, Children's Digital Health, and Data Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
5
|
Sandor LF, Ragacs R, Gyori DS. Local Effects of Steroid Hormones within the Bone Microenvironment. Int J Mol Sci 2023; 24:17482. [PMID: 38139309 PMCID: PMC10744126 DOI: 10.3390/ijms242417482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Steroid hormone production via the adrenal cortex, gonads, and placenta (so-called glandular steroidogenesis) is responsible for the endocrine control of the body's homeostasis and is organized by a feedback regulatory mechanism based on the hypothalamus-pituitary-steroidogenic gland axis. On the other hand, recently discovered extraglandular steroidogenesis occurring locally in different tissues is instead linked to paracrine or autocrine signaling, and it is independent of the control by the hypothalamus and pituitary glands. Bone cells, such as bone-forming osteoblasts, osteoblast-derived osteocytes, and bone-resorbing osteoclasts, respond to steroid hormones produced by both glandular and extraglandular steroidogenesis. Recently, new techniques to identify steroid hormones, as well as synthetic steroids and steroidogenesis inhibitors, have been introduced, which greatly empowered steroid hormone research. Based on recent literature and new advances in the field, here we review the local role of steroid hormones in regulating bone homeostasis and skeletal lesion formation. The novel idea of extraglandular steroidogenesis occurring within the skeletal system raises the possibility of the development of new therapies for the treatment of bone diseases.
Collapse
Affiliation(s)
| | | | - David S. Gyori
- Department of Physiology, School of Medicine, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
6
|
Lai TT, Liou CW, Tsai YH, Lin YY, Wu WL. Butterflies in the gut: the interplay between intestinal microbiota and stress. J Biomed Sci 2023; 30:92. [PMID: 38012609 PMCID: PMC10683179 DOI: 10.1186/s12929-023-00984-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Psychological stress is a global issue that affects at least one-third of the population worldwide and increases the risk of numerous psychiatric disorders. Accumulating evidence suggests that the gut and its inhabiting microbes may regulate stress and stress-associated behavioral abnormalities. Hence, the objective of this review is to explore the causal relationships between the gut microbiota, stress, and behavior. Dysbiosis of the microbiome after stress exposure indicated microbial adaption to stressors. Strikingly, the hyperactivated stress signaling found in microbiota-deficient rodents can be normalized by microbiota-based treatments, suggesting that gut microbiota can actively modify the stress response. Microbiota can regulate stress response via intestinal glucocorticoids or autonomic nervous system. Several studies suggest that gut bacteria are involved in the direct modulation of steroid synthesis and metabolism. This review provides recent discoveries on the pathways by which gut microbes affect stress signaling and brain circuits and ultimately impact the host's complex behavior.
Collapse
Affiliation(s)
- Tzu-Ting Lai
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Chia-Wei Liou
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Hsuan Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yuan-Yuan Lin
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Wei-Li Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
| |
Collapse
|
7
|
Roe K. Eight influenza virus cellular manipulations which can boost concurrent SARS-CoV-2 infections to severe outcomes. Hum Cell 2023; 36:1581-1592. [PMID: 37306884 DOI: 10.1007/s13577-023-00923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
Viral pathogens in the lungs can cause severe outcomes, including acute lung injury and acute respiratory distress syndrome. Dangerous respiratory pathogens include some influenza A and B viruses, and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Unfortunately, concurrent infections of influenza virus and SARS-CoV-2 increase severe outcome probabilities. Influenza viruses have eight cellular manipulations which can assist concurrent SARS-CoV-2 viral infections. The eight cellular manipulations include: (1) viral protein binding with cellular sensors to block antiviral transcription factors and cytokine expressions, (2) viral protein binding with cell proteins to impair cellular pre-messenger ribonucleic acid splicing, (3) increased ribonucleic acid virus replication through the phosphatidylinositol 3-kinase/Akt (protein kinase B) pathway, (4) regulatory ribonucleic acids to manipulate cellular sensors and pathways to suppress antiviral defenses, (5) exosomes to transmit influenza virus to uninfected cells to weaken cellular defenses before SARS-CoV-2 infection, (6) increased cellular cholesterol and lipids to improve virion synthesis stability, quality and virion infectivity, (7) increased cellular autophagy, benefiting influenza virus and SARS-CoV-2 replications and (8) adrenal gland stimulation to produce glucocorticoids, which suppress immune cells, including reduced synthesis of cytokines, chemokines and adhesion molecules. Concurrent infections by one of the influenza viruses and SARS-CoV-2 will increase the probability of severe outcomes, and with sufficient synergy potentially enable the recurrence of tragic pandemics.
Collapse
|
8
|
Hilakivi-Clarke L, de Oliveira Andrade F. Social Isolation and Breast Cancer. Endocrinology 2023; 164:bqad126. [PMID: 37586098 DOI: 10.1210/endocr/bqad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Although the role of life stressors in breast cancer remains unclear, social isolation is consistently associated with increased breast cancer risk and mortality. Social isolation can be defined as loneliness or an absence of perceived social connections. In female mice and rats, social isolation is mimicked by housing animals 1 per cage. Social isolation causes many biological changes, of which an increase in inflammatory markers and disruptions in mitochondrial and cellular metabolism are commonly reported. It is not clear how the 2 traditional stress-induced pathways, namely, the hypothalamic-pituitary-adrenocortical axis (HPA), resulting in a release of glucocorticoids from the adrenal cortex, and autonomic nervous system (ANS), resulting in a release of catecholamines from the adrenal medulla and postganglionic neurons, could explain the increased breast cancer risk in socially isolated individuals. For instance, glucocorticoid receptor activation in estrogen receptor positive breast cancer cells inhibits their proliferation, and activation of β-adrenergic receptor in immature immune cells promotes their differentiation toward antitumorigenic T cells. However, activation of HPA and ANS pathways may cause a disruption in the brain-gut-microbiome axis, resulting in gut dysbiosis. Gut dysbiosis, in turn, leads to an alteration in the production of bacterial metabolites, such as short chain fatty acids, causing a systemic low-grade inflammation and inducing dysfunction in mitochondrial and cellular metabolism. A possible causal link between social isolation-induced increased breast cancer risk and mortality and gut dysbiosis should be investigated, as it offers new tools to prevent breast cancer.
Collapse
Affiliation(s)
- Leena Hilakivi-Clarke
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Fabia de Oliveira Andrade
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
9
|
Papageorgiou SG, Mavroeidi I, Kostakis M, Spathis A, Leventakou D, Kritikou E, Oikonomopoulos N, Kourkouti C, Krania M, Bouchla A, Thomopoulos T, Tsakiraki Z, Markakis K, Panayiotides IG, Thomaidis N, Pappa V, Foukas PG, Peppa M. Primary Adrenal Lymphomas with Cushing's Syndrome: Two Cases with Evidence of Endogeneous Cortisol Production by the Neoplastic Lymphoid Cells. J Clin Med 2023; 12:5032. [PMID: 37568434 PMCID: PMC10419581 DOI: 10.3390/jcm12155032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Primary adrenal lymphoma (PAL) is a rare entity that presents as unilateral or bilateral rapidly growing adrenal masses, with signs and symptoms most commonly related to adrenal insufficiency due to the mass effect on the surrounding tissues. Although steroeidogenesis has not been previously described in PAL, we herein report two cases of PAL presenting as adrenal incidentalomas (AIs) that demonstrated autonomous cortisol production. A 52-year-old woman presented with lumbar pain; a computed tomography (CT) scan demonstrated a left AI measuring 8.5 × 15 × 10 cm. Similarly, an 80-year-old woman presented with lumbar pain, demonstrating in a CT scan a bilateral AI (right: 9 × 6.5 cm, left: 3.6 × 3.2 cm). Both cases underwent a full hormonal evaluation according to the algorithm for the investigation of AIs, demonstrating increased 24-h cortisol excretion, suppressed fasting adrenocorticotropic hormone (ACTH) levels, and non-suppressed serum cortisol levels in both the overnight and the low-dose dexamethasone suppression tests, indicating autonomous cortisol secretion and Cushing's syndrome. In a relatively short time, both patients developed night sweats, and their clinical picture deteriorated, while the CT scans showed increased dimensions of the masses with radiological characteristics compatible to lymphoma. Both patients underwent ultrasound-guided biopsies (FNBs), revealing infiltration of the left adrenal by diffuse large B-cell lymphoma in the first case, whereas bilateral adrenal infiltration from the same histological type was noted in the second case. Subsequently, they were treated with immunochemotherapy, but the second patient died from an infection shortly after the initiation of the treatment. To our knowledge, this is the first report of PAL presenting with Cushing's syndrome due to autonomous cortisol production, indicating that neoplastic lymphoid cells in PAL might acquire the potential for steroidogenesis; therefore, more cases of PAL should be analyzed so as to further elucidate the complex pathogenesis and the natural course of this entity.
Collapse
Affiliation(s)
- Sotirios G. Papageorgiou
- Hematology Unit, Second Propaedeutic Department of Internal Medicine and Research Institute, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.B.); (T.T.); (V.P.)
| | - Ioanna Mavroeidi
- Endocrine Unit, Second Propaedeutic Department of Internal Medicine and Research Institute, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (I.M.); (C.K.); (M.K.); (M.P.)
| | - Marios Kostakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece; (M.K.); (E.K.); (N.T.)
| | - Aris Spathis
- Second Department of Pathology, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.S.); (D.L.); (Z.T.); (I.G.P.)
| | - Danai Leventakou
- Second Department of Pathology, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.S.); (D.L.); (Z.T.); (I.G.P.)
| | - Evangelia Kritikou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece; (M.K.); (E.K.); (N.T.)
| | - Nikolaos Oikonomopoulos
- Second Department of Radiology, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Chrysoula Kourkouti
- Endocrine Unit, Second Propaedeutic Department of Internal Medicine and Research Institute, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (I.M.); (C.K.); (M.K.); (M.P.)
| | - Maria Krania
- Endocrine Unit, Second Propaedeutic Department of Internal Medicine and Research Institute, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (I.M.); (C.K.); (M.K.); (M.P.)
| | - Anthi Bouchla
- Hematology Unit, Second Propaedeutic Department of Internal Medicine and Research Institute, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.B.); (T.T.); (V.P.)
| | - Thomas Thomopoulos
- Hematology Unit, Second Propaedeutic Department of Internal Medicine and Research Institute, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.B.); (T.T.); (V.P.)
| | - Zoi Tsakiraki
- Second Department of Pathology, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.S.); (D.L.); (Z.T.); (I.G.P.)
| | - Konstantinos Markakis
- Second Propaedeutic Department of Internal Medicine and Research Institute, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Ioannis G. Panayiotides
- Second Department of Pathology, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.S.); (D.L.); (Z.T.); (I.G.P.)
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece; (M.K.); (E.K.); (N.T.)
| | - Vasiliki Pappa
- Hematology Unit, Second Propaedeutic Department of Internal Medicine and Research Institute, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.B.); (T.T.); (V.P.)
| | - Periklis G. Foukas
- Second Department of Pathology, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.S.); (D.L.); (Z.T.); (I.G.P.)
| | - Melpomeni Peppa
- Endocrine Unit, Second Propaedeutic Department of Internal Medicine and Research Institute, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (I.M.); (C.K.); (M.K.); (M.P.)
| |
Collapse
|
10
|
Li Z, Ouyang H, Zhu J. Traditional Chinese medicines and natural products targeting immune cells in the treatment of metabolic-related fatty liver disease. Front Pharmacol 2023; 14:1195146. [PMID: 37361209 PMCID: PMC10289001 DOI: 10.3389/fphar.2023.1195146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
MAFLD stands for metabolic-related fatty liver disease, which is a prevalent liver disease affecting one-third of adults worldwide, and is strongly associated with obesity, hyperlipidemia, and type 2 diabetes. It encompasses a broad spectrum of conditions ranging from simple liver fat accumulation to advanced stages like chronic inflammation, tissue damage, fibrosis, cirrhosis, and even hepatocellular carcinoma. With limited approved drugs for MAFLD, identifying promising drug targets and developing effective treatment strategies is essential. The liver plays a critical role in regulating human immunity, and enriching innate and adaptive immune cells in the liver can significantly improve the pathological state of MAFLD. In the modern era of drug discovery, there is increasing evidence that traditional Chinese medicine prescriptions, natural products and herb components can effectively treat MAFLD. Our study aims to review the current evidence supporting the potential benefits of such treatments, specifically targeting immune cells that are responsible for the pathogenesis of MAFLD. By providing new insights into the development of traditional drugs for the treatment of MAFLD, our findings may pave the way for more effective and targeted therapeutic approaches.
Collapse
|
11
|
Wollmuth EM, Angert ER. Microbial circadian clocks: host-microbe interplay in diel cycles. BMC Microbiol 2023; 23:124. [PMID: 37161348 PMCID: PMC10173096 DOI: 10.1186/s12866-023-02839-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Circadian rhythms, observed across all domains of life, enable organisms to anticipate and prepare for diel changes in environmental conditions. In bacteria, a circadian clock mechanism has only been characterized in cyanobacteria to date. These clocks regulate cyclical patterns of gene expression and metabolism which contribute to the success of cyanobacteria in their natural environments. The potential impact of self-generated circadian rhythms in other bacterial and microbial populations has motivated extensive research to identify novel circadian clocks. MAIN TEXT Daily oscillations in microbial community composition and function have been observed in ocean ecosystems and in symbioses. These oscillations are influenced by abiotic factors such as light and the availability of nutrients. In the ocean ecosystems and in some marine symbioses, oscillations are largely controlled by light-dark cycles. In gut systems, the influx of nutrients after host feeding drastically alters the composition and function of the gut microbiota. Conversely, the gut microbiota can influence the host circadian rhythm by a variety of mechanisms including through interacting with the host immune system. The intricate and complex relationship between the microbiota and their host makes it challenging to disentangle host behaviors from bacterial circadian rhythms and clock mechanisms that might govern the daily oscillations observed in these microbial populations. CONCLUSIONS While the ability to anticipate the cyclical behaviors of their host would likely be enhanced by a self-sustained circadian rhythm, more evidence and further studies are needed to confirm whether host-associated heterotrophic bacteria possess such systems. In addition, the mechanisms by which heterotrophic bacteria might respond to diel cycles in environmental conditions has yet to be uncovered.
Collapse
Affiliation(s)
- Emily M Wollmuth
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA
| | - Esther R Angert
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Ahmed A, Reinhold C, Breunig E, Phan TS, Dietrich L, Kostadinova F, Urwyler C, Merk VM, Noti M, Toja da Silva I, Bode K, Nahle F, Plazzo AP, Koerner J, Stuber R, Menche C, Karamitopoulou E, Farin HF, Gollob KJ, Brunner T. Immune escape of colorectal tumours via local LRH-1/Cyp11b1-mediated synthesis of immunosuppressive glucocorticoids. Mol Oncol 2023. [PMID: 36861295 PMCID: PMC10399709 DOI: 10.1002/1878-0261.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/28/2023] [Indexed: 03/03/2023] Open
Abstract
Control of tumour development and growth by the immune system critically defines patient fate and survival. What regulates the escape of colorectal tumours from destruction by the immune system remains currently unclear. Here, we investigated the role of intestinal synthesis of glucocorticoids in the tumour development during an inflammation-induced mouse model of colorectal cancer. We demonstrate that the local synthesis of immunoregulatory glucocorticoids has dual roles in the regulation of intestinal inflammation and tumour development. In the inflammation phase, LRH-1/Nr5A2-regulated and Cyp11b1-mediated intestinal glucocorticoid synthesis prevents tumour development and growth. In established tumours, however, tumour-autonomous Cyp11b1-mediated glucocorticoid synthesis suppresses anti-tumour immune responses and promotes immune escape. Transplantation of glucocorticoid synthesis-proficient colorectal tumour organoids into immunocompetent recipient mice resulted in rapid tumour growth, whereas transplantation of Cyp11b1-deleted and glucocorticoid synthesis-deficient tumour organoids was characterized by reduced tumour growth and increased immune cell infiltration. In human colorectal tumours, high expression of steroidogenic enzymes correlated with the expression of other immune checkpoints and suppressive cytokines, and negatively correlated with overall patients' survival. Thus, LRH-1-regulated tumour-specific glucocorticoid synthesis contributes to tumour immune escape and represents a novel potential therapeutic target.
Collapse
Affiliation(s)
- Asma Ahmed
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany.,Department of Pharmacology, Faculty of Medicine, University of Khartoum, Sudan
| | - Cindy Reinhold
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Eileen Breunig
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Truong San Phan
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Lea Dietrich
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Feodora Kostadinova
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Corinne Urwyler
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
| | - Verena M Merk
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Mario Noti
- Institute of Pathology, University of Bern, Switzerland
| | - Israel Toja da Silva
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,National Institute for Science and Technology - Oncogenomics and Therapeutic Innovation (INCT-INOTE), São Paulo, Brazil
| | - Konstantin Bode
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Fatima Nahle
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Anna Pia Plazzo
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Germany
| | - Regula Stuber
- Institute of Pathology, University of Bern, Switzerland
| | - Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | | | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Kenneth J Gollob
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,National Institute for Science and Technology - Oncogenomics and Therapeutic Innovation (INCT-INOTE), São Paulo, Brazil.,Albert Einstein Israelite Hospital, São Paulo, Brazil
| | - Thomas Brunner
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| |
Collapse
|
13
|
Dhami M, Raj K, Singh S. Relevance of Gut Microbiota to Alzheimer's Disease (AD): Potential Effects of Probiotic in Management of AD. AGING AND HEALTH RESEARCH 2023. [DOI: 10.1016/j.ahr.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
14
|
Human lung carcinomas synthesize immunoregulatory glucocorticoids. Genes Immun 2023; 24:52-56. [PMID: 36653475 PMCID: PMC9935384 DOI: 10.1038/s41435-023-00194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
The need for new options in lung cancer treatment inevitably leads back to basic research. The tumor itself and the tumor environment especially the interaction with the immune system need to be better understood to develop targeted therapies. In the context of lung cancer glucocorticoids (GC) are mainly known as a combination drug to attenuate side-effects of chemotherapies. However, endogenous extra-adrenal GC have been shown to substantially regulate local immune responses within various tissues, including the lung. In this study we investigated whether primary lung tumors have maintained the capacity to synthesize GC and may thereby regulate anti-tumor immune responses. We show that several non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC) cell lines express key steroidogenic enzymes and synthesize bioactive GC under steady state conditions. We also show that tumor-derived GC can inhibit splenic T cell activation, thus demonstrating their immunoregulatory potential. Moreover, steroidogenic enzymes were detected by quantitative RT-PCR and immunohistochemistry in tissue sections of different human lung tumors, further strengthening the idea that human lung carcinomas regulate their microenvironment by releasing immunoregulatory GC, which potentially contributes to immune evasion and treatment resistance.
Collapse
|
15
|
Slominski AT, Slominski RM, Raman C, Chen JY, Athar M, Elmets C. Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides. Am J Physiol Cell Physiol 2022; 323:C1757-C1776. [PMID: 36317800 PMCID: PMC9744652 DOI: 10.1152/ajpcell.00147.2022] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
The skin, which is comprised of the epidermis, dermis, and subcutaneous tissue, is the largest organ in the human body and it plays a crucial role in the regulation of the body's homeostasis. These functions are regulated by local neuroendocrine and immune systems with a plethora of signaling molecules produced by resident and immune cells. In addition, neurotransmitters, endocrine factors, neuropeptides, and cytokines released from nerve endings play a central role in the skin's responses to stress. These molecules act on the corresponding receptors in an intra-, juxta-, para-, or autocrine fashion. The epidermis as the outer most component of skin forms a barrier directly protecting against environmental stressors. This protection is assured by an intrinsic keratinocyte differentiation program, pigmentary system, and local nervous, immune, endocrine, and microbiome elements. These constituents communicate cross-functionally among themselves and with corresponding systems in the dermis and hypodermis to secure the basic epidermal functions to maintain local (skin) and global (systemic) homeostasis. The neurohormonal mediators and cytokines used in these communications regulate physiological skin functions separately or in concert. Disturbances in the functions in these systems lead to cutaneous pathology that includes inflammatory (i.e., psoriasis, allergic, or atopic dermatitis, etc.) and keratinocytic hyperproliferative disorders (i.e., seborrheic and solar keratoses), dysfunction of adnexal structure (i.e., hair follicles, eccrine, and sebaceous glands), hypersensitivity reactions, pigmentary disorders (vitiligo, melasma, and hypo- or hyperpigmentary responses), premature aging, and malignancies (melanoma and nonmelanoma skin cancers). These cellular, molecular, and neural components preserve skin integrity and protect against skin pathologies and can act as "messengers of the skin" to the central organs, all to preserve organismal survival.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| | - Radomir M Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jake Y Chen
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| |
Collapse
|
16
|
Steroid hormone regulation of immune responses in cancer. IMMUNOMETABOLISM (COBHAM (SURREY, ENGLAND)) 2022; 4:e00012. [PMID: 36337733 PMCID: PMC9622373 DOI: 10.1097/in9.0000000000000012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Steroid hormones are derived from cholesterol and can be classified into sex hormones (estrogens, androgens, progesterone) that are primarily synthesized in the gonads and adrenal hormones (glucocorticoids and mineralocorticoids) that are primarily synthesized in the adrenal gland. Although, it has long been known that steroid hormones have potent effects on the immune system, recent studies have led to renewed interest in their role in regulating anti-tumor immunity. Extra-glandular cells, such as epithelial cells and immune cells, have been shown to synthesize glucocorticoids and thereby modulate immune responses in the tumor microenvironment. Additionally, new insight into the role of androgens on immune cell responses have shed light on mechanisms underpinning the observed sex bias in cancer survival outcomes. Here, we review the role of steroid hormones, specifically glucocorticoids and androgens, in regulating anti-tumor immunity and discuss how their modulation could pave the way for designing novel therapeutic strategies to improve anti-tumor immune responses.
Collapse
|
17
|
Paul KC, Kusters C, Furlong M, Zhang K, Yu Y, Folle AD, Del Rosario I, Keener A, Bronstein J, Sinsheimer JS, Horvath S, Ritz B. Immune system disruptions implicated in whole blood epigenome-wide association study of depression among Parkinson's disease patients. Brain Behav Immun Health 2022; 26:100530. [PMID: 36325427 PMCID: PMC9618774 DOI: 10.1016/j.bbih.2022.100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022] Open
Abstract
Although Parkinson's Disease (PD) is typically described in terms of motor symptoms, depression is a common feature. We explored whether depression influences blood-based genome-wide DNA methylation (DNAm) in 692 subjects from a population-based PD case-control study, using both a history of clinically diagnosed depression and current depressive symptoms measured by the geriatric depression scale (GDS). While PD patients in general had more immune activation and more accelerated epigenetic immune system aging than controls, the patients experiencing current depressive symptoms (GDS≥5) showed even higher levels of both markers than patients without current depressive symptoms (GDS<5). For PD patients with a history of clinical depression compared to those without, we found no differences in immune cell composition. However, a history of clinical depression among patients was associated with differentially methylated CpGs. Epigenome-wide association analysis (EWAS) revealed 35 CpGs associated at an FDR≤0.05 (569 CpGs at FDR≤0.10, 1718 CpGs at FDR≤0.15). Gene set enrichment analysis implicated immune system pathways, including immunoregulatory interactions between lymphoid and non-lymphoid cells (p-adj = 0.003) and cytokine-cytokine receptor interaction (p-adj = 0.004). Based on functional genomics, 25 (71%) of the FDR≤0.05 CpGs were associated with genetic variation at 45 different methylation quantitative trait loci (meQTL). Twenty-six of the meQTLs were also expression QTLs (eQTLs) associated with the abundance of 53 transcripts in blood and 22 transcripts in brain (substantia nigra, putamen basal ganglia, or frontal cortex). Notably, cg15199181 was strongly related to rs823114 (SNP-CpG p-value = 3.27E-310), a SNP identified in a PD meta-GWAS and related to differential expression of PM20D1, RAB29, SLC41A1, and NUCKS1. The entire set of genes detected through functional genomics was most strongly overrepresented for interferon-gamma-mediated signaling pathway (enrichment ratio = 18.8, FDR = 4.4e-03) and T cell receptor signaling pathway (enrichment ratio = 13.2, FDR = 4.4e-03). Overall, the current study provides evidence of immune system involvement in depression among Parkinson's patients. Parkinson's disease (PD) is associated with clinical depression prior to PD onset and depressive symptoms after PD diagnosis. Epigenome-wide analysis revealed CpGs related to current depressive symptoms and a history of clinical depression among PD patients. Patients experiencing current depressive symptoms had the highest epigenetic-based neutrophil-to-lymphocyte ratio on average. Patients with a history of clinical depression had differentially methylated CpGs in genes enriched for immune system pathways. Many of the depression associated CpGs were linked to differential expression through meQTL/eQTLs, which included GWAS variants.
Collapse
Affiliation(s)
- Kimberly C. Paul
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
- Corresponding author. 73-320B CHS, CAMPUS-177220, UCLA, Los Angeles, CA, 90095, USA.
| | - Cynthia Kusters
- Departments of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Melissa Furlong
- University of Arizona, Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Keren Zhang
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Yu Yu
- Center for Health Policy Research, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Aline Duarte Folle
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Irish Del Rosario
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Adrienne Keener
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jeff Bronstein
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Janet S. Sinsheimer
- Departments of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Steve Horvath
- Departments of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| |
Collapse
|
18
|
Zhu DY, Lu J, Xu R, Yang JZ, Meng XR, Ou-Yang XN, Yan QY, Nie RF, Zhao T, Chen YD, Lu Y, Zhang YN, Li WJ, Shen X. FX5, a non-steroidal glucocorticoid receptor antagonist, ameliorates diabetic cognitive impairment in mice. Acta Pharmacol Sin 2022; 43:2495-2510. [PMID: 35260821 PMCID: PMC9525278 DOI: 10.1038/s41401-022-00884-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/06/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic cognitive impairment (DCI) is a common diabetic complication characterized by learning and memory deficits. In diabetic patients, hyperactivated hypothalamic-pituitary-adrenal (HPA) axis leads to abnormal increase of glucocorticoids (GCs), which causes the damage of hippocampal neurons and cognitive impairment. In this study we investigated the cognition-improving effects of a non-steroidal glucocorticoid receptor (GR) antagonist 5-chloro-N-[4-chloro-3-(trifluoromethyl) phenyl]thiophene-2-sulfonamide (FX5) in diabetic mice. Four weeks after T1DM or T2DM was induced, the mice were administered FX5 (20, 40 mg·kg-1·d-1, i.g.) for 8 weeks. Cognitive impairment was assessed in open field test, novel object recognition test, Y-maze test, and Morris water maze test. We showed that FX5 administration significantly ameliorated the cognitive impairments in both type 1 and 2 diabetic mice. Similar cognitive improvement was observed in diabetic mice following brain GR-specific knockdown by injecting AAV-si-GR. Moreover, AAV-si-GR injection occluded the cognition-improving effects of FX5, suggesting that FX5 functioning as a non-steroidal GR antagonist. In PA-treated primary neurons (as DCI model in vitro), we demonstrated that FX5 (2, 5, 10 μM) dose-dependently ameliorated synaptic impairment via upregulating GR/BDNF/TrkB/CREB pathway, protected against neuronal apoptosis through repressing GR/PI3K/AKT/GSK3β-mediated tauopathy and subsequent endoplasmic reticulum stress. In LPS-treated primary microglia, FX5 dose-dependently inhibited inflammation through GR/NF-κB/NLRP3/ASC/Caspase-1 pathway. These beneficial effects were also observed in the hippocampus of diabetic mice following FX5 administration. Collectively, we have elucidated the mechanisms underlying the beneficial effects of non-steroidal GR antagonist FX5 on DCI and highlighted the potential of FX5 in the treatment of the disease.
Collapse
Affiliation(s)
- Dan-Yang Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rui Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan-Zhen Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiang-Rui Meng
- Faculty of Art and Science, Queens University, Kingston, ON, K7L 3N6, Canada
| | - Xing-Nan Ou-Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiu-Ying Yan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rui-Fang Nie
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tong Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yi-di Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yi-Nan Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wen-Jun Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
19
|
Lim J, Lin EV, Hong JY, Vaidyanathan B, Erickson SA, Annicelli C, Medzhitov R. Induction of natural IgE by glucocorticoids. J Exp Med 2022; 219:213459. [PMID: 36098746 PMCID: PMC9475297 DOI: 10.1084/jem.20220903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/24/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
IgE mediates allergic responses by coating mast cell or basophil surfaces and inducing degranulation upon binding a specific allergen. IgE can also be spontaneously produced in the absence of foreign allergens; yet the origin, regulation, and functions of such "natural" IgE still remain largely unknown. Here, we find that glucocorticoids enhance the production of IgE in B cells both in vivo and ex vivo without antigenic challenge. Such IgE production is promoted by B cell-intrinsic glucocorticoid receptor signaling that reinforces CD40 signaling and synergizes with the IL-4/STAT6 pathway. In addition, we found that rare B cells in the mesenteric lymph nodes are responsible for the production of glucocorticoid-inducible IgE. Furthermore, locally produced glucocorticoids in the gut may induce natural IgE during perturbations of gut homeostasis, such as dysbiosis. Notably, mice preemptively treated with glucocorticoids were protected from subsequent pathogenic anaphylaxis. Together, our results suggest that glucocorticoids, classically considered to be broadly immunosuppressive, have a selective immunostimulatory role in B cells.
Collapse
Affiliation(s)
- Jaechul Lim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Erica V. Lin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Jun Young Hong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT,Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea,Jun Young Hong:
| | - Bharat Vaidyanathan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Steven A. Erickson
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Charles Annicelli
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT,Correspondence to Ruslan Medzhitov:
| |
Collapse
|
20
|
Söderman J, Berglind L, Almer S. Inverse and Concordant Mucosal Pathway Gene Expressions in Inflamed and Non-Inflamed Ulcerative Colitis Patients: Potential Relevance to Aetiology and Pathogenesis. Int J Mol Sci 2022; 23:ijms23136944. [PMID: 35805947 PMCID: PMC9266769 DOI: 10.3390/ijms23136944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Ulcerative colitis (UC) arises from a complex interplay between host and environmental factors, but with a largely unsolved pathophysiology. The pathophysiology was outlined by RNA-sequencing of mucosal biopsies from non-inflamed and inflamed colon of UC patients (14 and 17, respectively), and from 27 patients without intestinal inflammation. Genes differentially expressed (DE), or present in enriched gene sets, were investigated using statistical text analysis of functional protein information. Compared with controls, inflamed and non-inflamed UC mucosa displayed 9360 and 52 DE genes, respectively. Seventy-three non-pseudogenes were DE relative to both gender and inflammation. Mitochondrial processes were downregulated in inflamed and upregulated in non-inflamed UC mucosa, whereas angiogenesis and endoplasmic reticulum (ER) stress were upregulated in both tissue states. Immune responses were upregulated in inflamed mucosa, whereas the non-inflamed UC mucosa presented both up- and downregulated gene sets. DE and enriched genes overlapped with genes present in inflammatory bowel disease genome-wide associated loci (p = 1.43 × 10−18), especially regarding immune responses, respiratory chain, angiogenesis, ER stress, and steroid hormone metabolism. Apart from confirming established pathophysiological mechanisms of immune cells, our study provides evidence for involvement of less described pathways (e.g., respiratory chain, ER stress, fatty-acid oxidation, steroid hormone metabolism and angiogenesis).
Collapse
Affiliation(s)
- Jan Söderman
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
- Laboratory Medicine, Region Jönköping County, 551 85 Jönköping, Sweden;
- Correspondence:
| | - Linda Berglind
- Laboratory Medicine, Region Jönköping County, 551 85 Jönköping, Sweden;
| | - Sven Almer
- Department of Medicine, Solna, Karolinska Institutet, 171 77 Stockholm, Sweden;
- IBD Unit, Division of Gastroenterology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
21
|
Gu X, Li SY, Matsuyama S, DeFalco T. Immune Cells as Critical Regulators of Steroidogenesis in the Testis and Beyond. Front Endocrinol (Lausanne) 2022; 13:894437. [PMID: 35573990 PMCID: PMC9096076 DOI: 10.3389/fendo.2022.894437] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Steroidogenesis is an essential biological process for embryonic development, reproduction, and adult health. While specific glandular cells, such as Leydig cells in the testis, are traditionally known to be the principal players in steroid hormone production, there are other cell types that contribute to the process of steroidogenesis. In particular, immune cells are often an important component of the cellular niche that is required for the production of steroid hormones. For several decades, studies have reported that testicular macrophages and Leydig cells are intimately associated and exhibit a dependency on the other cell type for their proper development; however, the mechanisms that underlie the functional relationship between macrophages and Leydig cells are unclear. Beyond the testis, in certain instances immune cells themselves, such as certain types of lymphocytes, are capable of steroid hormone production, thus highlighting the complexity and diversity that underlie steroidogenesis. In this review we will describe how immune cells are critical regulators of steroidogenesis in the testis and in extra-glandular locations, as well as discuss how this area of research offers opportunities to uncover new insights into steroid hormone production.
Collapse
Affiliation(s)
- Xiaowei Gu
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Shu-Yun Li
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Satoko Matsuyama
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
22
|
Herselman MF, Bailey S, Bobrovskaya L. The Effects of Stress and Diet on the "Brain-Gut" and "Gut-Brain" Pathways in Animal Models of Stress and Depression. Int J Mol Sci 2022; 23:ijms23042013. [PMID: 35216133 PMCID: PMC8875876 DOI: 10.3390/ijms23042013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Compelling evidence is building for the involvement of the complex, bidirectional communication axis between the gastrointestinal tract and the brain in neuropsychiatric disorders such as depression. With depression projected to be the number one health concern by 2030 and its pathophysiology yet to be fully elucidated, a comprehensive understanding of the interactions between environmental factors, such as stress and diet, with the neurobiology of depression is needed. In this review, the latest research on the effects of stress on the bidirectional connections between the brain and the gut across the most widely used animal models of stress and depression is summarised, followed by comparisons of the diversity and composition of the gut microbiota across animal models of stress and depression with possible implications for the gut–brain axis and the impact of dietary changes on these. The composition of the gut microbiota was consistently altered across the animal models investigated, although differences between each of the studies and models existed. Chronic stressors appeared to have negative effects on both brain and gut health, while supplementation with prebiotics and/or probiotics show promise in alleviating depression pathophysiology.
Collapse
|
23
|
Nedungadi D, Ryan N, Anderson K, Lamenza FF, Jordanides PP, Swingler MJ, Rakotondraibe L, Riedl KM, Iwenofu H, Oghumu S. Modulation of the oral glucocorticoid system during black raspberry mediated oral cancer chemoprevention. Carcinogenesis 2021; 43:28-39. [PMID: 34888650 DOI: 10.1093/carcin/bgab118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/17/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022] Open
Abstract
Recent reports suggest that glucocorticoids (GCs), which can be synthesized in the oral mucosa, play an important role in cancer development. Therefore, the objectives of this study were to characterize the role of the oral GC system in oral cancer, and determine the effect of black raspberry (BRB) administration on GC modulation during oral cancer chemoprevention. We determined the expression of GC enzymes in various oral cancer cell lines, and investigated the role of the GC inactivating enzyme HSD11B2 on CAL27 oral cancer cells using siRNA mediated knockdown approaches. Using two in vivo models of oral carcinogenesis with 4-nitroquinoline-1-oxide (4NQO) carcinogen on C57Bl/6 mice and F344 rats, we determined the effect of BRB on GC modulation during HNSCC chemoprevention. Our results demonstrate that HSD11B2, which inactivates cortisol to cortisone, is downregulated during oral carcinogenesis in clinical and experimental models. Knockdown of HSD11B2 in oral cancer cells promotes cellular proliferation, invasion and expression of angiogenic biomarkers EGFR and VEGFA. An ethanol extract of BRB increased HSD11B2 expression on oral cancer cells. Dietary administration of 5% BRB increased Hsd11b2 gene and protein expression and reduced the active GC, corticosterone, in cancer-induced mouse tongues. Our results demonstrate that the oral GC system is modulated during oral carcinogenesis, and black raspberry administration upregulates Hsd11b2 during oral cancer chemoprevention. In conclusion, our findings challenge the use of synthetic glucocorticoids in head and neck cancer, and support the use of natural product alternatives that potentially modulate GC metabolism in a manner that supports oral cancer chemoprevention.
Collapse
Affiliation(s)
- Divya Nedungadi
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nathan Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Division of Anatomy, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kelvin Anderson
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Felipe F Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Pete P Jordanides
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michael J Swingler
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Liva Rakotondraibe
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Kenneth M Riedl
- Department of Food Science, Parker Food Science Building, The Ohio State University, Columbus, Ohio, USA
| | - Hans Iwenofu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
24
|
Maskal JM, Brito LF, Duttlinger AW, Kpodo KR, McConn BR, Byrd CJ, Richert BT, Marchant JN, Lay DC, Perry SD, Lucy MC, Safranski TJ, Johnson JS. Characterizing the postnatal hypothalamic-pituitary-adrenal axis response of in utero heat stressed pigs at 10 and 15 weeks of age. Sci Rep 2021; 11:22527. [PMID: 34795321 PMCID: PMC8602641 DOI: 10.1038/s41598-021-01889-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
In utero heat stress alters postnatal physiological and behavioral stress responses in pigs. However, the mechanisms underlying these alterations have not been determined. The study objective was to characterize the postnatal hypothalamic–pituitary–adrenal axis response of in utero heat-stressed pigs. Pigs were subjected to a dexamethasone suppression test followed by a corticotrophin releasing hormone challenge at 10 and 15 weeks of age. Following the challenge, hypothalamic, pituitary, and adrenal tissues were collected from all pigs for mRNA abundance analyses. At 10 weeks of age, in utero heat-stressed pigs had a reduced (P < 0.05) cortisol response to the corticotrophin releasing hormone challenge versus controls. Additionally, the cortisol response tended to be greater overall (P < 0.10) in 15 versus 10-week-old pigs in response to the dexamethasone suppression test. The cortisol response tended to be reduced overall (P < 0.10) in 15 versus 10-week-old pigs in response to the corticotrophin releasing hormone challenge. Hypothalamic corticotropin releasing hormone mRNA abundance tended to be greater (P < 0.10) in in utero heat-stressed versus control pigs at 15-weeks of age. In summary, in utero heat stress altered some aspects of the hypothalamic–pituitary–adrenal axis related to corticotropin releasing hormone signaling, and age influenced this response.
Collapse
Affiliation(s)
- Jacob M Maskal
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Alan W Duttlinger
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Kouassi R Kpodo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Betty R McConn
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA
| | - Christopher J Byrd
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Brian T Richert
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jeremy N Marchant
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN, 47907, USA
| | - Donald C Lay
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN, 47907, USA
| | - Shelbi D Perry
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65221, USA
| | - Matthew C Lucy
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65221, USA
| | - Tim J Safranski
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65221, USA
| | - Jay S Johnson
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN, 47907, USA.
| |
Collapse
|
25
|
Tang S, Zhang Z, Oakley RH, Li W, He W, Xu X, Ji M, Xu Q, Chen L, Wellman AS, Li Q, Li L, Li JL, Li X, Cidlowski JA, Li X. Intestinal epithelial glucocorticoid receptor promotes chronic inflammation-associated colorectal cancer. JCI Insight 2021; 6:151815. [PMID: 34784298 PMCID: PMC8783679 DOI: 10.1172/jci.insight.151815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Synthetic immunosuppressive glucocorticoids (GCs) are widely used to control inflammatory bowel disease (IBD). However, the impact of GC signaling on intestinal tumorigenesis remains controversial. Here, we report that intestinal epithelial GC receptor (GR), but not whole intestinal tissue GR, promoted chronic intestinal inflammation-associated colorectal cancer in both humans and mice. In patients with colorectal cancer, GR was enriched in intestinal epithelial cells and high epithelial cell GR levels were associated with poor prognosis. Consistently, intestinal epithelium–specific deletion of GR (GR iKO) in mice increased macrophage infiltration, improved tissue recovery, and enhanced antitumor response in a chronic inflammation–associated colorectal cancer model. Consequently, GR iKO mice developed fewer and less advanced tumors than control mice. Furthermore, oral GC administration in the early phase of tissue injury delayed recovery and accelerated the formation of aggressive colorectal cancers. Our study reveals that intestinal epithelial GR signaling repressed acute colitis but promoted chronic inflammation–associated colorectal cancer. Our study suggests that colorectal epithelial GR could serve as a predictive marker for colorectal cancer risk and prognosis. Our findings further suggest that, although synthetic GC treatment for IBD should be used with caution, there is a therapeutic window for GC therapy during colorectal cancer development in immunocompetent patients.
Collapse
Affiliation(s)
- Shuang Tang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhan Zhang
- Central for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | | | - Wenling Li
- Biostatistics and Computational Biology Branch, NIEHS/NIH, Research Triangle Park, United States of America
| | - Weijing He
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaojiang Xu
- Integrated Bioinformatics, NIEHS/NIH, Research Triangle Park, United States of America
| | - Ming Ji
- Signal Transduction Laboratory, NIEHS/NIH, Research Triangle Park, United States of America
| | - Qing Xu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, United States of America
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Alicia S Wellman
- Signal Transduction Laboratory, NIEHS/NIH, Research Triangle Park, United States of America
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Leping Li
- Biostatistics and Computational Biology Branch, NIEHS/NIH, Research Triangle Park, United States of America
| | - Jian-Liang Li
- NIEHS/NIH, Research Triangle Park, United States of America
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - John A Cidlowski
- Signal Transduction Laboratory, NIEHS/NIH, Research Triangle Park, United States of America
| | - Xiaoling Li
- Signal Transduction Laboratory, NIEHS/NIH, Research Triangle Park, United States of America
| |
Collapse
|
26
|
Fortea M, Albert-Bayo M, Abril-Gil M, Ganda Mall JP, Serra-Ruiz X, Henao-Paez A, Expósito E, González-Castro AM, Guagnozzi D, Lobo B, Alonso-Cotoner C, Santos J. Present and Future Therapeutic Approaches to Barrier Dysfunction. Front Nutr 2021; 8:718093. [PMID: 34778332 PMCID: PMC8582318 DOI: 10.3389/fnut.2021.718093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
There is converging and increasing evidence, but also uncertainty, for the role of abnormal intestinal epithelial barrier function in the origin and development of a growing number of human gastrointestinal and extraintestinal inflammatory disorders, and their related complaints. Despite a vast literature addressing factors and mechanisms underlying changes in intestinal permeability in humans, and its connection to the appearance and severity of clinical symptoms, the ultimate link remains to be established in many cases. Accordingly, there are no directives or clinical guidelines related to the therapeutic management of intestinal permeability disorders that allow health professionals involved in the management of these patients to carry out a consensus treatment based on clinical evidence. Instead, there are multiple pseudoscientific approaches and commercial propaganda scattered on the internet that confuse those affected and health professionals and that often lack scientific rigor. Therefore, in this review we aim to shed light on the different therapeutic options, which include, among others, dietary management, nutraceuticals and medical devices, microbiota and drugs, and epigenetic and exosomes-manipulation, through an objective evaluation of the scientific publications in this field. Advances in the knowledge and management of intestinal permeability will sure enable better options of dealing with this group of common disorders to enhance quality of life of those affected.
Collapse
Affiliation(s)
- Marina Fortea
- Laboratory for Enteric NeuroScience, Translational Research Center for GastroIntestinal Disorders, University of Leuven, Leuven, Belgium
| | - Mercé Albert-Bayo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Mar Abril-Gil
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - John-Peter Ganda Mall
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xavier Serra-Ruiz
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Alejandro Henao-Paez
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Elba Expósito
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Ana María González-Castro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Danila Guagnozzi
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Alonso-Cotoner
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
27
|
Pu J, Zhou X, Liu J, Hou P, Ji M. Therapeutic potential and deleterious effect of glucocorticoids on azoxymethane/dextran sulfate sodium-induced colorectal cancer in mice. Am J Cancer Res 2021; 11:4866-4883. [PMID: 34765297 PMCID: PMC8569368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023] Open
Abstract
Glucocorticoids (GCs) are widely used in the treatment of various autoimmune and inflammatory diseases, including inflammatory bowel disease (IBD). However, the effect of GCs on the progression of colitis-associated colorectal cancer (CAC) has not been well explored. In this study, we first established a colorectal cancer model induced by azoxymethane and dextran sulfate sodium (AOM/DSS) and a colitis model induced by DSS in mice. Dexamethasone (DEX) was then administered at different periods of time to determine its effect on tumorigenesis and tumor progression. Meanwhile, body weight, stool property and fecal blood of mice were recorded. At the end of this study, the number and load of tumors were evaluated, and the expression of proteins associated with cell proliferation was analyzed. To evaluate the inflammation in colon, we detected the level of pro-inflammatory cytokine TNFα, and the mucosal infiltration of inflammatory cells. Our results revealed that AOM injection followed by three cycles of drinking water containing 1.5% DSS successfully induced multiple tumor formation in mouse colon and rectum. Both early and late DEX intervention suppressed tumor growth in mouse colorectum, and downregulated the expression of PCNA and cyclin D1. Moreover, DEX treatment significantly inhibited TNFα production, mucosal infiltration of inflammatory cells, and the activity of MAPK/JNK pathway, particularly early DEX intervention. However, we also found that DEX treatment deteriorated the general state of mouse manifested by greater loss of body weight and rectal bleeding. In summary, both early and late DEX interventions significantly ameliorate colonic inflammation and inhibit the progression of AOM/DSS-induced colorectal cancer, at least partly due to the inhibition of MAPK/JNK pathway. It is noteworthy that the deleterious effect on the general condition of mouse may limit the duration of GCs treatment.
Collapse
Affiliation(s)
- Jun Pu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Xinrui Zhou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Jiaxin Liu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Meiju Ji
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| |
Collapse
|
28
|
Myung CH, Lee JE, Jo CS, Park JI, Hwang JS. Regulation of Melanophilin (Mlph) gene expression by the glucocorticoid receptor (GR). Sci Rep 2021; 11:16813. [PMID: 34413386 PMCID: PMC8376885 DOI: 10.1038/s41598-021-96276-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Mlph plays a crucial role in regulating skin pigmentation through the melanosome transport process. Although Mlph is a major component involved in melanosome transport, the mechanism that regulates the expression of the Mlph gene has not been identified. In this study, we demonstrate that Mlph expression is regulated by the glucocorticoid receptor (GR). Alteration of GR activity using a specific GR agonist or antagonist only regulated the expression of Mlph among the 3 key melanosome transport proteins. Translocation of GR from the cytosol into the nucleus following Dex treatment was confirmed by separating the cytosol and nuclear fractions and by immunofluorescence staining. In ChIP assays, Dex induced GR binding to the Mlph promoter and we determined that Dex induced the GR binding motif on the Mlph promoter. Our findings contribute to understanding the regulation of Mlph expression and to the novel role of GR in Mlph gene expression.
Collapse
Affiliation(s)
- Cheol Hwan Myung
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Ji Eun Lee
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Chan Song Jo
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Jong Il Park
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Jae Sung Hwang
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
29
|
Merk VM, Brunner T. Immunosuppressive glucocorticoids at epithelial barriers in the regulation of anti-viral immune response. VITAMINS AND HORMONES 2021; 117:77-100. [PMID: 34420586 DOI: 10.1016/bs.vh.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The anti-inflammatory action of adrenal-derived glucocorticoids has been recognized since several decades. This knowledge has found broad application in the clinics and today synthetic glucocorticoids are widely used in the treatment of various inflammatory diseases. However, the use of synthetic glucocorticoids in the treatment of diseases associated with viral infections of epithelial surfaces, like the lung or the intestine, is still under debate and seems not as efficient as desired. Basic research on the anti-viral immune responses and on regulatory mechanisms in the prevention of immunopathological disorders, however, has led us back again to focus on endogenous glucocorticoid synthesis. It has become established that this synthesis is not restricted to the adrenal glands alone, but that numerous tissues also produce glucocorticoids in situ. Extra-adrenal derived glucocorticoids have the capacity to locally control and maintain immune homeostasis under steady-state and inflammatory conditions. Here, we discuss the current knowledge of extra-adrenal glucocorticoid synthesis in the lung and the intestine, and its role in the regulation of anti-viral immune responses.
Collapse
Affiliation(s)
- V M Merk
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - T Brunner
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
30
|
Chakraborty S, Pramanik J, Mahata B. Revisiting steroidogenesis and its role in immune regulation with the advanced tools and technologies. Genes Immun 2021; 22:125-140. [PMID: 34127827 PMCID: PMC8277576 DOI: 10.1038/s41435-021-00139-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/03/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022]
Abstract
Historically tools and technologies facilitated scientific discoveries. Steroid hormone research is not an exception. Unfortunately, the dramatic advancement of the field faded this research area and flagged it as a solved topic. However, it should have been the opposite. The area should glitter with its strong foundation and attract next-generation scientists. Over the past century, a myriad of new facts on biochemistry, molecular biology, cell biology, physiology and pathology of the steroid hormones was discovered. Several innovations were made and translated into life-saving treatment strategies such as synthetic steroids, and inhibitors of steroidogenesis and steroid signaling. Steroid molecules exhibit their diverse effects on cell metabolism, salt and water balance, development and function of the reproductive system, pregnancy, and immune-cell function. Despite vigorous research, the molecular basis of the immunomodulatory effect of steroids is still mysterious. The recent excitement on local extra-glandular steroidogenesis in regulating inflammation and immunity is revitalizing the topic with a new perspective. Therefore, here we review the role of steroidogenesis in regulating inflammation and immunity, discuss the unresolved questions, and how this area can bring another golden age of steroid hormone research with the development of new tools and technologies and advancement of the scientific methods.
Collapse
Affiliation(s)
| | - Jhuma Pramanik
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Bidesh Mahata
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
31
|
Vanderhaeghen T, Beyaert R, Libert C. Bidirectional Crosstalk Between Hypoxia Inducible Factors and Glucocorticoid Signalling in Health and Disease. Front Immunol 2021; 12:684085. [PMID: 34149725 PMCID: PMC8211996 DOI: 10.3389/fimmu.2021.684085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoid-induced (GC) and hypoxia-induced transcriptional responses play an important role in tissue homeostasis and in the regulation of cellular responses to stress and inflammation. Evidence exists that there is an important crosstalk between both GC and hypoxia effects. Hypoxia is a pathophysiological condition to which cells respond quickly in order to prevent metabolic shutdown and death. The hypoxia inducible factors (HIFs) are the master regulators of oxygen homeostasis and are responsible for the ability of cells to cope with low oxygen levels. Maladaptive responses of HIFs contribute to a variety of pathological conditions including acute mountain sickness (AMS), inflammation and neonatal hypoxia-induced brain injury. Synthetic GCs which are analogous to the naturally occurring steroid hormones (cortisol in humans, corticosterone in rodents), have been used for decades as anti-inflammatory drugs for treating pathological conditions which are linked to hypoxia (i.e. asthma, ischemic injury). In this review, we investigate the crosstalk between the glucocorticoid receptor (GR), and HIFs. We discuss possible mechanisms by which GR and HIF influence one another, in vitro and in vivo, and the therapeutic effects of GCs on HIF-mediated diseases.
Collapse
Affiliation(s)
- Tineke Vanderhaeghen
- Centre for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Centre for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Centre for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Merk VM, Phan TS, Brunner T. Regulation of Tissue Immune Responses by Local Glucocorticoids at Epithelial Barriers and Their Impact on Interorgan Crosstalk. Front Immunol 2021; 12:672808. [PMID: 34012456 PMCID: PMC8127840 DOI: 10.3389/fimmu.2021.672808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
The anti-inflammatory role of extra-adrenal glucocorticoid (GC) synthesis at epithelial barriers is of increasing interest with regard to the search for alternatives to synthetic corticosteroids in the therapy of inflammatory disorders. Despite being very effective in many situations the use of synthetic corticosteroids is often controversial, as exemplified in the treatment of influenza patients and only recently in the current COVID-19 pandemic. Exploring the regulatory capacity of locally produced GCs in balancing immune responses in barrier tissues and in pathogenic disorders that lead to symptoms in multiple organs, could provide new perspectives for drug development. Intestine, skin and lung represent the first contact zones between potentially harmful pathogens or substances and the body, and are therefore important sites of immunoregulatory mechanisms. Here, we review the role of locally produced GCs in the regulation of type 2 immune responses, like asthma, atopic dermatitis and ulcerative colitis, as well as type 1 and type 3 infectious, inflammatory and autoimmune diseases, like influenza infection, psoriasis and Crohn’s disease. In particular, we focus on the role of locally produced GCs in the interorgan communication, referred to as gut-skin axis, gut-lung axis or lung-skin axis, all of which are interconnected in the pathogenic crosstalk atopic march.
Collapse
Affiliation(s)
- Verena M Merk
- Department of Biology, Chair of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - Truong San Phan
- Department of Biology, Chair of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - Thomas Brunner
- Department of Biology, Chair of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
33
|
Ergang P, Vagnerová K, Hermanová P, Vodička M, Jágr M, Šrůtková D, Dvořáček V, Hudcovic T, Pácha J. The Gut Microbiota Affects Corticosterone Production in the Murine Small Intestine. Int J Mol Sci 2021; 22:ijms22084229. [PMID: 33921780 PMCID: PMC8073041 DOI: 10.3390/ijms22084229] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/14/2023] Open
Abstract
Glucocorticoids (GCs) are hormones that are released in response to stressors and exhibit many activities, including immunomodulatory and anti-inflammatory activities. They are primarily synthesized in the adrenal gland but are also produced in peripheral tissues via regeneration of adrenal 11-oxo metabolites or by de novo synthesis from cholesterol. The present study investigated the influence of the microbiota on de novo steroidogenesis and regeneration of corticosterone in the intestine of germ-free (GF) and specific pathogen-free mice challenged with a physical stressor (anti-CD3 antibody i.p. injection). In the small intestine, acute immune stress resulted in increased mRNA levels of the proinflammatory cytokines IL1β, IL6 and Tnfα and genes involved in de novo steroidogenesis (Stard3 and Cyp11a1), as well as in regeneration of active GCs from their 11-oxo metabolites (Hsd11b1). GF mice showed a generally reduced transcriptional response to immune stress, which was accompanied by decreased intestinal corticosterone production and reduced expression of the GC-sensitive marker Fkbp5. In contrast, the interaction between stress and the microbiota was not detected at the level of plasma corticosterone or the transcriptional response of adrenal steroidogenic enzymes. The results indicate a differential immune stress-induced intestinal response to proinflammatory stimuli and local corticosterone production driven by the gut microbiota.
Collapse
Affiliation(s)
- Peter Ergang
- Institute of Physiology, Czech Academy of Sciences, CZ-142 20 Prague, Czech Republic; (P.E.); (K.V.); (M.V.)
| | - Karla Vagnerová
- Institute of Physiology, Czech Academy of Sciences, CZ-142 20 Prague, Czech Republic; (P.E.); (K.V.); (M.V.)
| | - Petra Hermanová
- Institute of Microbiology, Czech Academy of Sciences, CZ-549 22 Nový Hrádek, Czech Republic; (P.H.); (D.Š.); (T.H.)
| | - Martin Vodička
- Institute of Physiology, Czech Academy of Sciences, CZ-142 20 Prague, Czech Republic; (P.E.); (K.V.); (M.V.)
| | - Michal Jágr
- Crop Research Institute, CZ-161 06 Prague, Czech Republic; (M.J.); (V.D.)
| | - Dagmar Šrůtková
- Institute of Microbiology, Czech Academy of Sciences, CZ-549 22 Nový Hrádek, Czech Republic; (P.H.); (D.Š.); (T.H.)
| | - Václav Dvořáček
- Crop Research Institute, CZ-161 06 Prague, Czech Republic; (M.J.); (V.D.)
| | - Tomáš Hudcovic
- Institute of Microbiology, Czech Academy of Sciences, CZ-549 22 Nový Hrádek, Czech Republic; (P.H.); (D.Š.); (T.H.)
| | - Jiří Pácha
- Institute of Physiology, Czech Academy of Sciences, CZ-142 20 Prague, Czech Republic; (P.E.); (K.V.); (M.V.)
- Department of Physiology, Faculty of Science, Charles University, CZ-128 00 Prague, Czech Republic
- Correspondence:
| |
Collapse
|
34
|
Ly LK, Doden HL, Ridlon JM. Gut feelings about bacterial steroid-17,20-desmolase. Mol Cell Endocrinol 2021; 525:111174. [PMID: 33503463 PMCID: PMC8886824 DOI: 10.1016/j.mce.2021.111174] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Advances in technology are only beginning to reveal the complex interactions between hosts and their resident microbiota that have co-evolved over centuries. In this review, we present compelling evidence that implicates the host-associated microbiome in the generation of 11β-hydroxyandrostenedione, leading to the formation of potent 11-oxy-androgens. Microbial steroid-17,20-desmolase cleaves the side-chain of glucocorticoids (GC), including cortisol (and its derivatives of cortisone, 5α-dihydrocortisol, and also (allo)- 3α, 5α-tetrahydrocortisol, but not 3α-5β-tetrahydrocortisol) and drugs (prednisone and dexamethasone). In addition to side-chain cleavage, we discuss the gut microbiome's robust potential to transform a myriad of steroids, mirroring much of the host's metabolism. We also explore the overlooked role of intestinal steroidogenesis and efflux pumps as a potential route for GC transport into the gut. Lastly, we propose several health implications from microbial steroid-17,20-desmolase function, including aberrant mineralocorticoid, GC, and androgen receptor signaling in colonocytes, immune cells, and prostate cells, which may exacerbate disease states.
Collapse
Affiliation(s)
- Lindsey K Ly
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Heidi L Doden
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jason M Ridlon
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center of Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
35
|
Ito Y, Sasaki T, Li Y, Tanoue T, Sugiura Y, Skelly AN, Suda W, Kawashima Y, Okahashi N, Watanabe E, Horikawa H, Shiohama A, Kurokawa R, Kawakami E, Iseki H, Kawasaki H, Iwakura Y, Shiota A, Yu L, Hisatsune J, Koseki H, Sugai M, Arita M, Ohara O, Matsui T, Suematsu M, Hattori M, Atarashi K, Amagai M, Honda K. Staphylococcus cohnii is a potentially biotherapeutic skin commensal alleviating skin inflammation. Cell Rep 2021; 35:109052. [PMID: 33910010 DOI: 10.1016/j.celrep.2021.109052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/09/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
Host-microbe interactions orchestrate skin homeostasis, the dysregulation of which has been implicated in chronic inflammatory conditions such as atopic dermatitis and psoriasis. Here, we show that Staphylococcus cohnii is a skin commensal capable of beneficially inhibiting skin inflammation. We find that Tmem79-/- mice spontaneously develop interleukin-17 (IL-17)-producing T-cell-driven skin inflammation. Comparative skin microbiome analysis reveals that the disease activity index is negatively associated with S. cohnii. Inoculation with S. cohnii strains isolated from either mouse or human skin microbiota significantly prevents and ameliorates dermatitis in Tmem79-/- mice without affecting pathobiont burden. S. cohnii colonization is accompanied by activation of host glucocorticoid-related pathways and induction of anti-inflammatory genes in the skin and is therefore effective at suppressing inflammation in diverse pathobiont-independent dermatitis models, including chemically induced, type 17, and type 2 immune-driven models. As such, S. cohnii strains have great potential as effective live biotherapeutics for skin inflammation.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan; JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Youxian Li
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Takeshi Tanoue
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan; JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ashwin N Skelly
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Wataru Suda
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan; Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | - Nobuyuki Okahashi
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Eiichiro Watanabe
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Hiroto Horikawa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Aiko Shiohama
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Rina Kurokawa
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan; Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Eiryo Kawakami
- Medical Sciences Innovation Hub Program (MIH), RIKEN, Kanagawa 230-0045, Japan
| | - Hachiro Iseki
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Hiroshi Kawasaki
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan; JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan; Medical Sciences Innovation Hub Program (MIH), RIKEN, Kanagawa 230-0045, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Atsushi Shiota
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan; JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo 189-0002, Japan
| | - Junzo Hisatsune
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo 189-0002, Japan
| | - Haruhiko Koseki
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan; Medical Sciences Innovation Hub Program (MIH), RIKEN, Kanagawa 230-0045, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo 189-0002, Japan
| | - Makoto Arita
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Osamu Ohara
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan; Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | - Takeshi Matsui
- JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masahira Hattori
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan; Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan; JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan; JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan; JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan.
| |
Collapse
|
36
|
Phan TS, Schink L, Mann J, Merk VM, Zwicky P, Mundt S, Simon D, Kulms D, Abraham S, Legler DF, Noti M, Brunner T. Keratinocytes control skin immune homeostasis through de novo-synthesized glucocorticoids. SCIENCE ADVANCES 2021; 7:7/5/eabe0337. [PMID: 33514551 PMCID: PMC7846173 DOI: 10.1126/sciadv.abe0337] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/10/2020] [Indexed: 05/06/2023]
Abstract
Glucocorticoids (GC), synthesized by the 11β-hydroxylase (Cyp11b1), control excessive inflammation through immunosuppressive actions. The skin was proposed to regulate homeostasis by autonomous GC production in keratinocytes. However, their immunosuppressive capacity and clinical relevance remain unexplored. Here, we demonstrate the potential of skin-derived GC and their role in the regulation of physiological and prevalent inflammatory skin conditions. In line with 11β-hydroxylase deficiency in human inflammatory skin disorders, genetic in vivo Cyp11b1 ablation and long-term GC deficiency in keratinocytes primed the murine skin immune system resulting in spontaneous skin inflammation. Deficient skin GC in experimental models for inflammatory skin disorders led to exacerbated contact hypersensitivity and psoriasiform skin inflammation accompanied by decreased regulatory T cells and the involvement of unconventional T cells. Our findings provide insights on how skin homeostasis and pathology are critically regulated by keratinocyte-derived GC, emphasizing the immunoregulatory potential of endogenous GC in the regulation of epithelial immune microenvironment.
Collapse
Affiliation(s)
- Truong San Phan
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Leonhard Schink
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jasmin Mann
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Verena M Merk
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Pascale Zwicky
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Dagmar Simon
- Department of Dermatology, Inselspital University Hospital, Bern, Switzerland
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, Germany
| | - Susanne Abraham
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, Germany
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Mario Noti
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
37
|
Zhang Z, Jiang Z, Zhang Y, Zhang Y, Yan Y, Bhushan S, Meinhardt A, Qin Z, Wang M. Corticosterone Enhances the AMPK-Mediated Immunosuppressive Phenotype of Testicular Macrophages During Uropathogenic Escherichia coli Induced Orchitis. Front Immunol 2020; 11:583276. [PMID: 33363533 PMCID: PMC7752858 DOI: 10.3389/fimmu.2020.583276] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Testicular macrophages (TM) play a central role in maintaining testicular immune privilege and protecting spermatogenesis. Recent studies showed that their immunosuppressive properties are maintained by corticosterone in the testicular interstitial fluid, but the underlying molecular mechanisms are unknown. In this study, we treated mouse bone marrow-derived macrophages (BMDM) with corticosterone (50 ng/ml) and uncovered AMP-activated protein kinase (AMPK) activation as a critical event in M2 polarization at the phenotypic, metabolic, and cytokine production level. Primary TM exhibited remarkably similar metabolic and phenotypic features to corticosterone-treated BMDM, which were partially reversed by AMPK-inhibition. In a murine model of uropathogenic E. coli-elicited orchitis, intraperitoneal injection with corticosterone (0.1mg/day) increased the percentage of M2 TM in vivo, in a partially AMPK-dependent manner. This study integrates the influence of corticosterone on M2 macrophage metabolic pathways, phenotype, and function, and highlights a promising new avenue for the development of innovative therapeutics for orchitis patients.
Collapse
Affiliation(s)
- Zhengguo Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziming Jiang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiming Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Yan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sudhanshu Bhushan
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Ming Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Himmelstein R, Spahija A, Fokidis HB. Evidence for fasting induced extra-adrenal steroidogenesis in the male brown anole, Anolis sagrei. Comp Biochem Physiol B Biochem Mol Biol 2020; 253:110544. [PMID: 33338607 DOI: 10.1016/j.cbpb.2020.110544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
Glucocorticoids (GCs) and dehydroepiandrosterone (DHEA) are steroids secreted by the adrenal glands into circulation to effect distant target tissues and coordinate physiological processes. This classic systemic view of steroids has been challenged by evidence that other tissues can independently synthesize their own steroids. Little is known however regarding circumstances that can promote this extra-adrenal steroidogenesis. Here we tested if fasting can induce tissues to increase GC and DHEA synthesis in the brown anole lizard Anolis sagrei. Lizards fasted for eight days lost body mass and increased fatty acid oxidation. Fasting also increased plasma concentrations of DHEA and corticosterone, but not cortisol. Corticosterone concentration within the adrenals, heart, intestines, lungs and liver exceeded that in plasma, with the latter two increasing with fasting. Levels of DHEA in the adrenals and heart were higher than in plasma, but no significant effect of fasting was observed, expect for a noticeable increase in intestinal DHEA. Two steroidogenic genes, the steroidogenic acute regulatory (Star) protein and Cyp17a1, a cytochrome P450 enzyme, were expressed in several tissues including the liver, lungs and intestines, which were increased with fasting. Continued research should aim to test for expression of additional enzymes further along the steroidogenic pathway. Nonetheless these data document potential extra-adrenal steroidogenesis as a possible mechanism for coping with energy shortages, although much work remains to be done to determine the specific roles of locally synthesized steroids in each tissue.
Collapse
Affiliation(s)
| | - Ada Spahija
- Department of Biology, Rollins College, Winter Park, FL, USA
| | - H Bobby Fokidis
- Department of Biology, Rollins College, Winter Park, FL, USA.
| |
Collapse
|
39
|
Brazel CB, Simon JC, Tuckermann JP, Saalbach A. Inhibition of 11β-HSD1 Expression by Insulin in Skin: Impact for Diabetic Wound Healing. J Clin Med 2020; 9:jcm9123878. [PMID: 33260645 PMCID: PMC7760287 DOI: 10.3390/jcm9123878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/20/2023] Open
Abstract
Chronic, non-healing wounds impose a great burden on patients, professionals and health care systems worldwide. Diabetes mellitus (DM) and obesity are globally highly prevalent metabolic disorders and increase the risk for developing chronic wounds. Glucocorticoids (GCs) are endogenous stress hormones that exert profound effects on inflammation and repair systems. 11-beta-hydroxysteroid dehydrogenase 1 (11β-HSD1) is the key enzyme which controls local GC availability in target tissues such as skin. Since treatment with GCs has detrimental side effects on skin integrity, causing atrophy and delayed wound healing, we asked whether the dysregulated expression of 11β-HSD1 and consequently local GC levels in skin contribute to delayed wound healing in obese, diabetic db/db mice. We found increased expression of 11β-HSD1 during disturbed wound healing and in the healthy skin of obese, diabetic db/db mice. Cell analysis revealed increased expression of 11β-HSD1 in fibroblasts, myeloid cells and dermal white adipose tissue from db/db mice, while expression in keratinocytes was unaffected. Among diabetes- and obesity-related factors, insulin and insulin-like growth factor 1 down-regulated 11β-HSD1 expression in fibroblasts and myeloid cells, while glucose, fatty acids, TNF-α and IL-1β did not affect it. Insulin exerted its inhibitory effect on 11β-HSD1 expression by activating PI3-kinase/Akt-signalling. Consequently, the inhibitory effect of insulin is attenuated in fibroblasts from insulin-resistant db/db mice. We conclude that insulin resistance in obesity and diabetes prevents the down-regulation of 11β-HSD1, leading to elevated endogenous GC levels in diabetic skin, which could contribute to impaired wound healing in patients with DM.
Collapse
Affiliation(s)
- Christina B. Brazel
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (C.B.B.); (J.C.S.)
| | - Jan C. Simon
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (C.B.B.); (J.C.S.)
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany;
- Klinikum der Universität München, Ludwig-Maximilian University of Munich, 80336 Munich, Germany
| | - Anja Saalbach
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (C.B.B.); (J.C.S.)
- Correspondence: ; Tel.: +49-341-9725880; Fax: +49-341-9725878
| |
Collapse
|
40
|
Michalek S, Brunner T. Nuclear-mitochondrial crosstalk: On the role of the nuclear receptor liver receptor homolog-1 (NR5A2) in the regulation of mitochondrial metabolism, cell survival, and cancer. IUBMB Life 2020; 73:592-610. [PMID: 32931651 DOI: 10.1002/iub.2386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Liver receptor homolog-1 (LRH-1, NR5A2) is an orphan nuclear receptor with widespread activities in the regulation of development, stemness, metabolism, steroidogenesis, and proliferation. Many of the LRH-1-regulated processes target the mitochondria and associated activities. While under physiological conditions, a balanced LRH-1 expression and regulation contribute to the maintenance of a physiological equilibrium, deregulation of LRH-1 has been associated with inflammation and cancer. In this review, we discuss the role and mechanism(s) of how LRH-1 regulates metabolic processes, cell survival, and cancer in a nuclear-mitochondrial crosstalk, and evaluate its potential as a pharmacological target.
Collapse
Affiliation(s)
- Svenja Michalek
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
41
|
Ronchetti S, Gentili M, Ricci E, Migliorati G, Riccardi C. Glucocorticoid-Induced Leucine Zipper as a Druggable Target in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2020; 26:1017-1025. [PMID: 31961437 DOI: 10.1093/ibd/izz331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders with a complex pathogenesis, affecting people of all ages. They are characterized by alternating phases of clinical relapse and remission, depending on the fine balance between immune cells and the gut microbiota. The cross talk between cells of the immune system and the gut microbiota can result in either tolerance or inflammation, according to multifactorial triggers, ranging from environmental factors to genetic susceptibility. Glucocorticoid (GC) administration remains the first-line treatment for IBDs, although long-term use is limited by development of serious adverse effects. Recently, new alternative pharmacological therapies have been developed, although these are not always effective in IBD patients. There is a constant demand for effective new drug targets to guarantee total remission and improve the quality of life for IBD patients. The glucocorticoid-induced leucine zipper (GILZ) has been implicated as a promising candidate for this purpose, in view of its powerful anti-inflammatory effects that mimic those of GCs while avoiding their unwanted adverse reactions. Here we present and discuss the latest findings about the involvement of GILZ in IBDs.
Collapse
Affiliation(s)
- Simona Ronchetti
- Department of Medicine, Pharmacology Division, University of Perugia, Italy
| | - Marco Gentili
- Department of Medicine, Pharmacology Division, University of Perugia, Italy
| | - Erika Ricci
- Department of Medicine, Pharmacology Division, University of Perugia, Italy
| | | | - Carlo Riccardi
- Department of Medicine, Pharmacology Division, University of Perugia, Italy
| |
Collapse
|