1
|
Rahman MA, Silva de Castro I, Schifanella L, Bissa M, Franchini G. Vaccine induced mucosal and systemic memory NK/ILCs elicit decreased risk of SIV/SHIV acquisition. Front Immunol 2024; 15:1441793. [PMID: 39301032 PMCID: PMC11410642 DOI: 10.3389/fimmu.2024.1441793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024] Open
Abstract
SIV and HIV-based envelope V1-deleted (ΔV1) vaccines, delivered systemically by the DNA/ALVAC/gp120 platform, decrease the risk of mucosal SIV or SHIV acquisition more effectively than V1-replete vaccines. Here we investigated the induction of mucosal and systemic memory-like NK cells as well as antigen-reactive ILC response by DNA/ALVAC/gp120-based vaccination and their role against SIV/SHIV infection. ΔV1 HIV vaccination elicited a higher level of mucosal TNF-α+ and CD107+ memory-like NK cells than V1-replete vaccination, suggesting immunogen dependence. Mucosal memory-like NK cells, systemic granzyme B+ memory NK cells, and vaccine-induced mucosal envelope antigen-reactive IL-17+ NKp44+ ILCs, IL-17+ ILC3s, and IL-13+ ILC2 subsets were linked to a lower risk of virus acquisition. Additionally, mucosal memory-like NK cells and mucosal env-reactive IFN-γ+ ILC1s and env- reactive IL-13+ ILC2 subsets correlated with viral load control. We further observed a positive correlation between post-vaccination systemic and mucosal memory-like NK cells, suggesting vaccination enhances the presence of these cells in both compartments. Mucosal and systemic memory-like NK cells positively correlated with V2-specific ADCC responses, a reproducible correlate of reduced risk of SIV/HIV infection. In contrast, an increased risk was associated with the level of mucosal PMA/Ionomycin-induced IFN-γ+ and CD107+ NKG2A-NKp44- ILCs. Plasma proteomic analyses demonstrated that suppression of mucosal memory-like NK cells was linked to the level of CCL-19, LT-α, TNFSF-12, and IL-15, suppression of systemic env-reactive granzyme B+ memory-like NK cells was associated with the level of OLR1, CCL-3, and OSM, and suppression of IL-17+ ILCs immunity was correlated with the level of IL-6 and CXCL-9. In contrast, FLT3 ligand was associated with promotion of protective mucosal env-reactive IL-17+ responses. These findings emphasize the importance of mucosal memory-like NK cell and envelope- reactive ILC responses for protection against mucosal SIV/SHIV acquisition.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
2
|
Sui Y, Berzofsky JA. Trained immunity inducers in cancer immunotherapy. Front Immunol 2024; 15:1427443. [PMID: 39081326 PMCID: PMC11286386 DOI: 10.3389/fimmu.2024.1427443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
While most of the cancer immunotherapy strategies engage adaptive immunity, especially tumor-associated T cells, the small fraction of responding patients and types of cancers amenable, and the possibility of severe adverse effects limit its usage. More effective and general interventions are urgently needed. Recently, a de facto innate immune memory, termed 'trained immunity', has become a new research focal point, and promises to be a powerful tool for achieving long-term therapeutic benefits against cancers. Trained immunity-inducing agents such as BCG and fungal glucan have been shown to be able to avert the suppressive tumor microenvironment (TME), enhance T cell responses, and eventually lead to tumor regression. Here, we review the current understating of trained immunity induction and highlight the critical roles of emergency granulopoiesis, interferon γ and tissue-specific induction. Preclinical and clinical studies that have exploited trained immunity inducers for cancer immunotherapy are summarized, and repurposed trained immunity inducers from other fields are proposed. We also outline the challenges and opportunities for trained immunity in future cancer immunotherapies. We envisage that more effective cancer vaccines will combine the induction of trained immunity with T cell therapies.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | | |
Collapse
|
3
|
Rahman MA, Gelanew T, Barman S, Nainu F. Editorial: Vaccine-induced innate immunity and its role in viral infections. Front Immunol 2024; 15:1440061. [PMID: 39055719 PMCID: PMC11270504 DOI: 10.3389/fimmu.2024.1440061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Affiliation(s)
- Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tesfaye Gelanew
- Viral Diseases Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Soumik Barman
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
4
|
Sui Y, Meyer TJ, Fennessey CM, Keele BF, Dadkhah K, Ma C, LaBranche CC, Breed MW, Kramer JA, Li J, Howe SE, Ferrari G, Williams LD, Cam M, Kelly MC, Shen X, Tomaras GD, Montefiori D, Greten TF, Miller CJ, Berzofsky JA. Innate protection against intrarectal SIV acquisition by a live SHIV vaccine. JCI Insight 2024; 9:e175800. [PMID: 38912579 PMCID: PMC11383375 DOI: 10.1172/jci.insight.175800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Identifying immune correlates of protection is a major challenge in AIDS vaccine development. Anti-Envelope antibodies have been considered critical for protection against SIV/HIV (SHIV) acquisition. Here, we evaluated the efficacy of an SHIV vaccine against SIVmac251 challenge, where the role of antibody was excluded, as there was no cross-reactivity between SIV and SHIV envelope antibodies. After 8 low-dose intrarectal challenges with SIVmac251, 12 SHIV-vaccinated animals demonstrated efficacy, compared with 6 naive controls, suggesting protection was achieved in the absence of anti-envelope antibodies. Interestingly, CD8+ T cells (and some NK cells) were not essential for preventing viral acquisition, as none of the CD8-depleted macaques were infected by SIVmac251 challenges. Initial investigation of protective innate immunity revealed that protected animals had elevated pathways related to platelet aggregation/activation and reduced pathways related to interferon and responses to virus. Moreover, higher expression of platelet factor 4 on circulating platelet-leukocyte aggregates was associated with reduced viral acquisition. Our data highlighted the importance of innate immunity, identified mechanisms, and may provide opportunities for novel HIV vaccines or therapeutic strategy development.
Collapse
Affiliation(s)
| | - Thomas J Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | | - Kimia Dadkhah
- Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Chi Ma
- Thoracic and GI Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Celia C LaBranche
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Matthew W Breed
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Bethesda, Maryland, USA
| | - Josh A Kramer
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Bethesda, Maryland, USA
| | | | | | | | - LaTonya D Williams
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Michael C Kelly
- Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - David Montefiori
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tim F Greten
- Thoracic and GI Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Christopher J Miller
- Center for Comparative Medicine, University of California, Davis, Davis, California, USA
| | | |
Collapse
|
5
|
Feng D, Zhao H, Wang Q, Wu J, Ouyang L, Jia S, Lu Q, Zhao M. Aberrant H3K4me3 modification of immune response genes in CD4 + T cells of patients with systemic lupus erythematosus. Int Immunopharmacol 2024; 130:111748. [PMID: 38432146 DOI: 10.1016/j.intimp.2024.111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/17/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Increasing evidence has highlighted the significant role of histone modifications in pathogenesis of systemic lupus erythematosus (SLE). However, few studies have comprehensively analyzed trimethylation of histone H3 lysine 4 (H3K4me3) features at specific immune gene loci in SLE patients. METHODS We conducted H3K4me3 chromatin immunoprecipitation sequencing (ChIP-seq) on CD4+ T cells from SLE patients and healthy controls (HC). Differential H3K4me3 peaks were identified, followed by enrichment analysis. We integrated online RNA-seq and DNA methylation datasets to explore the relationship between H3K4me3 modification, DNA methylation and gene expression. We validated several upregulated peak regions by ChIP-qPCR and confirmed their impact on gene expression using RT-qPCR. Finally, we investigated the impact of H3K4 methyltransferases KMT2A on the expression of immune response genes. RESULTS we identified 147 downregulated and 2701 upregulated H3K4me3 peaks in CD4+ T cells of SLE. The upregulated peaks primarily classified as gained peaks and enriched in immune response genes such as FCGR2A, C5AR1, SERPING1 and OASL. Genes with upregulated H3K4me3 and downregulated DNA methylations in the promoter were highly expressed in SLE patients. These genes, including OAS1, IFI27 and IFI44L, were enriched in immune response pathways. The IFI44L locus also showed increased H3K27ac modification, chromatin accessibility and chromatin interactions in SLE. Moreover, knockdown of KMT2A can downregulate the expression of immune response genes in T cells. CONCLUSION Our study uncovers dysregulated H3K4me3 modification patterns in immune response genes loci, which also exhibit downregulated DNA methylation and higher mRNA expression in CD4+ T cells of SLE patients.
Collapse
Affiliation(s)
- Delong Feng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hongjun Zhao
- Department of Rheumatology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qian Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiali Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lianlian Ouyang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Sujie Jia
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Song Y, Mehl F, Zeichner SL. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines (Basel) 2024; 12:191. [PMID: 38400174 PMCID: PMC10892965 DOI: 10.3390/vaccines12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Frances Mehl
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Steven L. Zeichner
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
7
|
Dagenais A, Villalba-Guerrero C, Olivier M. Trained immunity: A “new” weapon in the fight against infectious diseases. Front Immunol 2023; 14:1147476. [PMID: 36993966 PMCID: PMC10040606 DOI: 10.3389/fimmu.2023.1147476] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Innate immune cells can potentiate the response to reinfection through an innate form of immunological memory known as trained immunity. The potential of this fast-acting, nonspecific memory compared to traditional adaptive immunological memory in prophylaxis and therapy has been a topic of great interest in many fields, including infectious diseases. Amidst the rise of antimicrobial resistance and climate change—two major threats to global health—, harnessing the advantages of trained immunity compared to traditional forms of prophylaxis and therapy could be game-changing. Here, we present recent works bridging trained immunity and infectious disease that raise important discoveries, questions, concerns, and novel avenues for the modulation of trained immunity in practice. By exploring the progress in bacterial, viral, fungal, and parasitic diseases, we equally highlight future directions with a focus on particularly problematic and/or understudied pathogens.
Collapse
Affiliation(s)
- Amy Dagenais
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Carlos Villalba-Guerrero
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- *Correspondence: Martin Olivier,
| |
Collapse
|
8
|
Effective innate immune response in natural HIV-1 controllers. Can mimicking lead to novel preventive and cure strategies against HIV-1? Curr Opin HIV AIDS 2022; 17:308-314. [PMID: 35938465 PMCID: PMC9415221 DOI: 10.1097/coh.0000000000000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW HIV-1 controller individuals represents a model that can be useful for the development of novel vaccines and therapies. Initial studies pointed to the involvement of improved adaptive immunity, however, new emerging evidence suggests the contribution of innate cells to effective antiviral responses in spontaneous controllers. Therefore, understanding the alterations on innate cell subsets might be crucial to develop new effective therapeutic strategies. RECENT FINDINGS Among different innate immune cells, dendritic cell (DC) and natural killer (NK) cell are essential for effective antiviral responses. DC from controllers display improved innate detection of HIV-1 transcripts, higher induction of interferons, higher antigen presenting capacities and increased metabolism and higher capacities to induce polyfunctional CD8+ T-cell responses. Such properties have been mimicked by Toll-like receptor ligands and applied to DC-based immunotherapies in humans and in animal models. NK cells from controllers display higher expression of activating receptors promoting increased antibody-dependent cellular cytotoxicity (ADCC) and natural cytotoxicity activities. Neutralizing antibodies in combination with interleukin-15 superagonist or interferon-α can increase ADCC and cytotoxicity in NK cells from HIV-1 progressors. SUMMARY Mimicking DC and NK cell innate profiles in controllers has become a promising strategy to step forward a novel efficient immunotherapy against the HIV-1 infection.
Collapse
|
9
|
Lee A, Wimmers F, Pulendran B. Epigenetic adjuvants: durable reprogramming of the innate immune system with adjuvants. Curr Opin Immunol 2022; 77:102189. [PMID: 35588691 PMCID: PMC9924100 DOI: 10.1016/j.coi.2022.102189] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 01/25/2023]
Abstract
Development of effective vaccines is a critical global health priority. Stimulating antigen-specific B and T cells to elicit long-lasting protection remains the central paradigm of vaccinology. Adjuvants are components that enhance vaccine immunogenicity by targeting specific innate immune receptors and pathways. Recent data highlight the capacity of adjuvants to induce durable epigenetic reprogramming of the innate immune system to engender heightened resistance against pathogens. This raises the prospect of developing epigenetic adjuvants that, in addition to stimulating robust T and B cell responses, convey broad protection against diverse pathogens by training the innate immune system. In this review, we discuss our emerging understanding of the various vaccines and adjuvants and their effects on durable reprogramming of the innate immune response, their putative mechanisms of action, and the promise and challenges of developing epigenetic adjuvants as a universal vaccine strategy.
Collapse
Affiliation(s)
- Audrey Lee
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Oriol-Tordera B, Esteve-Codina A, Berdasco M, Rosás-Umbert M, Gonçalves E, Duran-Castells C, Català-Moll F, Llano A, Cedeño S, Puertas MC, Tolstrup M, Søgaard OS, Clotet B, Martínez-Picado J, Hanke T, Combadiere B, Paredes R, Hartigan-O'Connor D, Esteller M, Meulbroek M, Calle ML, Sanchez-Pla A, Moltó J, Mothe B, Brander C, Ruiz-Riol M. Epigenetic landscape in the kick-and-kill therapeutic vaccine BCN02 clinical trial is associated with antiretroviral treatment interruption (ATI) outcome. EBioMedicine 2022; 78:103956. [PMID: 35325780 PMCID: PMC8938861 DOI: 10.1016/j.ebiom.2022.103956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The BCN02-trial combined therapeutic vaccination with a viral latency reversing agent (romidepsin, RMD) in HIV-1-infected individuals and included a monitored antiretroviral pause (MAP) as an efficacy read-out identifying individuals with an early or late (< or > 4weeks) viral-rebound. Integrated -omics analyses were applied prior treatment interruption to identify markers of virus control during MAP. METHODS PBMC, whole-genome DNA methylation and transcriptomics were assessed in 14 BCN02 participants, including 8 Early and 4 Late viral-rebound individuals. Chromatin state, histone marks and integration analysis (histone-3 acetylation (H3Ac), viral load, proviral levels and HIV-specific T cells responses) were included. REDUC-trial samples (n = 5) were included as a control group for RMD administration alone. FINDINGS DNA methylation imprints after receiving the complete intervention discriminated Early versus Late viral-rebound individuals before MAP. Also, differential chromatin accessibility and histone marks at DNA methylation level were detected. Importantly, the differential DNA methylation positions (DMPs) between Early and Late rebounders before MAP were strongly associated with viral load, proviral levels as well as the HIV-specific T-cell responses. Most of these DMPs were already present prior to the intervention and accentuated after RMD infusion. INTERPRETATION This study identifies host DNA methylation profiles and epigenetic cascades that are predictive of subsequent virus control in a kick-and-kill HIV cure strategy. FUNDING European Union Horizon 2020 Framework Programme for Research and Innovation under Grant Agreement N°681137-EAVI2020 and N°847943-MISTRAL, the Ministerio de Ciencia e Innovación (SAF2017_89726_R), and the National Institutes of Health-National Institute of Allergy and Infectious Diseases Program Grant P01-AI131568.
Collapse
Affiliation(s)
- Bruna Oriol-Tordera
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia, Universitat Autònoma de Barcelona, Av. de Can Domènech 737, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico (CNAG), Barcelona Science Park - Tower I, Carrer de Baldiri Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10-12, Barcelona 08002, Spain
| | - María Berdasco
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute, Vinguda de la Granvia de l'Hospitalet 199, L'Hospitalet de Llobregat, Barcelona 08907, Spain; Epigenetic Therapies Group, Experimental and Clinical Hematology Program (PHEC), Josep Carreras Leukaemia Research Institute, Ctra de Can Ruti - Camí de les Escoles, s/n, Badalona, Barcelona 08916, Spain
| | - Míriam Rosás-Umbert
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; Department of Clinical Medicine - Department of Infectious Disease, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, East Jutland, Aarhus 8200, Denmark
| | - Elena Gonçalves
- Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Sorbonne Université, Bd de l'Hôpital 91, Paris, Île de France 75013, France
| | - Clara Duran-Castells
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia, Universitat Autònoma de Barcelona, Av. de Can Domènech 737, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Francesc Català-Moll
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain
| | - Anuska Llano
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain
| | - Samandhy Cedeño
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain
| | - Maria C Puertas
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; CIBERINFEC, Madrid, Spain
| | - Martin Tolstrup
- Department of Clinical Medicine - Department of Infectious Disease, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, East Jutland, Aarhus 8200, Denmark
| | - Ole S Søgaard
- Department of Clinical Medicine - Department of Infectious Disease, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, East Jutland, Aarhus 8200, Denmark
| | - Bonaventura Clotet
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; CIBERINFEC, Madrid, Spain; Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Ctra del Canyet s/n, Badalona, Barcelona 08916, Spain; Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Carrer Miquel Martí i Pol, 1, Vic, Barcelona 08500, Spain
| | - Javier Martínez-Picado
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; CIBERINFEC, Madrid, Spain; Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Carrer Miquel Martí i Pol, 1, Vic, Barcelona 08500, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, Barcelona 08010, Spain
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford, Oxfordshire OX3 7DQ, UK; Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo 2-2-1, Kumamoto City, Chuo-ku 860-0811, Japan
| | - Behazine Combadiere
- Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Sorbonne Université, Bd de l'Hôpital 91, Paris, Île de France 75013, France
| | - Roger Paredes
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; CIBERINFEC, Madrid, Spain; Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Ctra del Canyet s/n, Badalona, Barcelona 08916, Spain; Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Carrer Miquel Martí i Pol, 1, Vic, Barcelona 08500, Spain
| | - Dennis Hartigan-O'Connor
- Department of Medical Microbiology and Immunology, University of California, Veterinary Medicine 3A, Davis, CA 95616, USA; Division of Experimental Medicine, UC Davis School of Medicine, 4610 X Street, Sacramento, CA 95817, USA
| | - Manel Esteller
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, Barcelona 08010, Spain; Cancer and Leukemia Epigenetics and Biology Program (PEBCL), Josep Carreras Leukaemia Research Institute, Ctra de Can Ruti - Camí de les Escoles, s/n, Badalona, Barcelona 08916, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Av. Monforte de Lemos 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain; Department of Physiological Sciences II, School of Medicine, University of Barcelona, Feixa Llarga, s/n, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Michael Meulbroek
- Projecte dels NOMS-Hispanosida, BCN Checkpoint, Carrer del Comte Borrell, 164-166, Barcelona 08015, Spain
| | - María Luz Calle
- Biosciences Department, Faculty of Sciences and Technology, University of Vic-Central University of Catalonia, Carrer de la Laura 13 - Torre dels Frares, Vic, Barcelona 08500, Spain
| | - Alex Sanchez-Pla
- Statistics Department, Biology Faculty, University of Barcelona, Diagonal 643, Barcelona 08028, Spain; Statistics and Bioinformatics Unit Vall d'Hebron Institut de Recerca (VHIR), Passeig de la Vall d'Hebron, 129, Barcelona 08035, Spain
| | - José Moltó
- CIBERINFEC, Madrid, Spain; Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Ctra del Canyet s/n, Badalona, Barcelona 08916, Spain
| | - Beatriz Mothe
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; CIBERINFEC, Madrid, Spain; Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Ctra del Canyet s/n, Badalona, Barcelona 08916, Spain; Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Carrer Miquel Martí i Pol, 1, Vic, Barcelona 08500, Spain
| | - Christian Brander
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Carrer Miquel Martí i Pol, 1, Vic, Barcelona 08500, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, Barcelona 08010, Spain
| | - Marta Ruiz-Riol
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, 2nd floor, Ctra del canyet s/n, Badalona, Barcelona 08916, Spain; CIBERINFEC, Madrid, Spain.
| |
Collapse
|
11
|
Chavakis T, Wielockx B, Hajishengallis G. Inflammatory Modulation of Hematopoiesis: Linking Trained Immunity and Clonal Hematopoiesis with Chronic Disorders. Annu Rev Physiol 2021; 84:183-207. [PMID: 34614373 DOI: 10.1146/annurev-physiol-052521-013627] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inflammation-adapted hematopoietic stem and progenitor cells (HSPCs) have long been appreciated as key drivers of emergency myelopoiesis, thereby enabling the bone marrow to meet the elevated demand for myeloid cell generation under various stress conditions, such as systemic infection, inflammation, or myelosuppressive insults. In recent years, HSPC adaptations were associated with potential involvement in the induction of long-lived trained immunity and the emergence of clonal hematopoiesis of indeterminate potential (CHIP). Whereas trained immunity has context-dependent effects, protective in infections and tumors but potentially detrimental in chronic inflammatory diseases, CHIP increases the risk for hematological neoplastic disorders and cardiometabolic pathologies. This review focuses on the inflammatory regulation of HSPCs in the aforementioned processes and discusses how modulation of HSPC function could lead to novel therapeutic interventions. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic, Technische Universität Dresden, 01307 Dresden, Germany; ,
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic, Technische Universität Dresden, 01307 Dresden, Germany; ,
| | - George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030, USA;
| |
Collapse
|
12
|
Yaseen MM, Abuharfeil NM, Darmani H. The impact of MDSCs on the efficacy of preventive and therapeutic HIV vaccines. Cell Immunol 2021; 369:104440. [PMID: 34560382 DOI: 10.1016/j.cellimm.2021.104440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/07/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022]
Abstract
In spite of four decades of research on human immunodeficiency virus (HIV), the virus remains a major health problem, affecting tens of millions of people around the world. As such, developing an effective preventive/protective and therapeutic vaccines against HIV are essential to prevent/limit the continuous spread of the virus as well as to control the disease progression and to completely eradicate the virus from HIV infected patients, respectively. There are several factors that have impeded the development of such vaccines, and we need to gain further insight into these factors in order to enhance our knowledge concerning the proper immune activation pathways in the hope of accelerating the development of the highly sought-after vaccine. Recently, new immune cell populations, namely the myeloid-derived suppressor cells (MDSCs), were added to the battle of HIV infection. Indeed, MDSCs seem to play a central role in determining the efficacy of therapeutic and preventive vaccines, especially because vaccines, in general, enhance immune responses, while as a potent immunosuppressor cell population, MDSCs, in turn, subvert and limit the activation of immune responses. Hence, in this work, we sought to address the role of MDSCs in the context of preventive/protective, as well as, therapeutic HIV vaccines.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Homa Darmani
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
13
|
Sui Y, Li J, Zhang R, Prabhu SK, Andersen H, Venzon D, Cook A, Brown R, Teow E, Velasco J, Greenhouse J, Putman-Taylor T, Campbell TA, Pessaint L, Moore IN, Lagenaur L, Talton J, Breed MW, Kramer J, Bock KW, Minai M, Nagata BM, Lewis MG, Wang LX, Berzofsky JA. Protection against SARS-CoV-2 infection by a mucosal vaccine in rhesus macaques. JCI Insight 2021; 6:148494. [PMID: 33908897 PMCID: PMC8262352 DOI: 10.1172/jci.insight.148494] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
Effective SARS-CoV-2 vaccines are urgently needed. Although most vaccine strategies have focused on systemic immunization, here we compared the protective efficacy of 2 adjuvanted subunit vaccines with spike protein S1: an intramuscularly primed/boosted vaccine and an intramuscularly primed/intranasally boosted mucosal vaccine in rhesus macaques. The intramuscular-alum–only vaccine induced robust binding and neutralizing antibody and persistent cellular immunity systemically and mucosally, whereas intranasal boosting with nanoparticles, including IL-15 and TLR agonists, elicited weaker T cell and Ab responses but higher dimeric IgA and IFN-α. Nevertheless, following SARS-CoV-2 challenge, neither group showed detectable subgenomic RNA in upper or lower respiratory tracts versus naive controls, indicating full protection against viral replication. Although mucosal and systemic protective mechanisms may differ, results demonstrate both vaccines can protect against respiratory SARS-CoV-2 exposure. In summary, we have demonstrated that the mucosal vaccine was safe after multiple doses and cleared the input virus more efficiently in the nasal cavity and thus may act as a potent complementary reinforcing boost for conventional systemic vaccines to provide overall better protection.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Jianping Li
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Roushu Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Sunaina Kiran Prabhu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | | | - David Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | - Ian N Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | - Laurel Lagenaur
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Jim Talton
- Alchem Laboratories Corporation, Alachua, Florida, USA
| | - Matthew W Breed
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Bethesda, Maryland, USA
| | - Josh Kramer
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Bethesda, Maryland, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | | | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Palgen JL, Feraoun Y, Dzangué-Tchoupou G, Joly C, Martinon F, Le Grand R, Beignon AS. Optimize Prime/Boost Vaccine Strategies: Trained Immunity as a New Player in the Game. Front Immunol 2021; 12:612747. [PMID: 33763063 PMCID: PMC7982481 DOI: 10.3389/fimmu.2021.612747] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Most vaccines require multiple doses to induce long-lasting protective immunity in a high frequency of vaccines, and to ensure strong both individual and herd immunity. Repetitive immunogenic stimulations not only increase the intensity and durability of adaptive immunity, but also influence its quality. Several vaccine parameters are known to influence adaptive immune responses, including notably the number of immunizations, the delay between them, and the delivery sequence of different recombinant vaccine vectors. Furthermore, the initial effector innate immune response is key to activate and modulate B and T cell responses. Optimization of homologous and heterologous prime/boost vaccination strategies requires a thorough understanding of how vaccination history affects memory B and T cell characteristics. This requires deeper knowledge of how innate cells respond to multiple vaccine encounters. Here, we review how innate cells, more particularly those of the myeloid lineage, sense and respond differently to a 1st and a 2nd vaccine dose, both in an extrinsic and intrinsic manner. On one hand, the presence of primary specific antibodies and memory T cells, whose critical properties change with time after priming, provides a distinct environment for innate cells at the time of re-vaccination. On the other hand, innate cells themselves can exert enhanced intrinsic antimicrobial functions, long after initial stimulation, which is referred to as trained immunity. We discuss the potential of trained innate cells to be game-changers in prime/boost vaccine strategies. Their increased functionality in antigen uptake, antigen presentation, migration, and as cytokine producers, could indeed improve the restimulation of primary memory B and T cells and their differentiation into potent secondary memory cells in response to the boost. A better understanding of trained immunity mechanisms will be highly valuable for harnessing the full potential of trained innate cells, to optimize immunization strategies.
Collapse
Affiliation(s)
- Jean-Louis Palgen
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France.,School of Medical Sciences, Kirby Institute for Infection and Immunity, Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW, Australia
| | - Yanis Feraoun
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Gaëlle Dzangué-Tchoupou
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Candie Joly
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Frédéric Martinon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| |
Collapse
|
15
|
Daniell H, Jin S, Zhu X, Gitzendanner MA, Soltis DE, Soltis PS. Green giant-a tiny chloroplast genome with mighty power to produce high-value proteins: history and phylogeny. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:430-447. [PMID: 33484606 PMCID: PMC7955891 DOI: 10.1111/pbi.13556] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 05/04/2023]
Abstract
Free-living cyanobacteria were entrapped by eukaryotic cells ~2 billion years ago, ultimately giving rise to chloroplasts. After a century of debate, the presence of chloroplast DNA was demonstrated in the 1960s. The first chloroplast genomes were sequenced in the 1980s, followed by ~100 vegetable, fruit, cereal, beverage, oil and starch/sugar crop chloroplast genomes in the past three decades. Foreign genes were expressed in isolated chloroplasts or intact plant cells in the late 1980s and stably integrated into chloroplast genomes, with typically maternal inheritance shown in the 1990s. Since then, chloroplast genomes conferred the highest reported levels of tolerance or resistance to biotic or abiotic stress. Although launching products with agronomic traits in important crops using this concept has been elusive, commercial products developed include enzymes used in everyday life from processing fruit juice, to enhancing water absorption of cotton fibre or removal of stains as laundry detergents and in dye removal in the textile industry. Plastid genome sequences have revealed the framework of green plant phylogeny as well as the intricate history of plastid genome transfer events to other eukaryotes. Discordant historical signals among plastid genes suggest possible variable constraints across the plastome and further understanding and mitigation of these constraints may yield new opportunities for bioengineering. In this review, we trace the evolutionary history of chloroplasts, status of autonomy and recent advances in products developed for everyday use or those advanced to the clinic, including treatment of COVID-19 patients and SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xin‐Guang Zhu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | | | - Douglas E. Soltis
- Florida Museum of Natural History and Department of BiologyUniversity of FloridaGainesvilleFLUSA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
16
|
Kumar A, Prasoon P, Sekhawat PS, Pareek V, Faiq MA, Kumari C, Narayan RK, Kulandhasamy M, Kant K. Pathogenesis guided therapeutic management of COVID-19: an immunological perspective. Int Rev Immunol 2020; 40:54-71. [PMID: 33111578 DOI: 10.1080/08830185.2020.1840566] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lack of standardized therapeutic approaches is arguably the significant contributor to the high burden of mortality observed in the ongoing pandemic of the Coronavirus disease, 2019 (COVID-19). Evidence is accumulating on SARS-CoV-2 specific immune cell dysregulation and consequent tissue injury in COVID-19. Currently, no definite drugs or vaccines are available against the disease; however initial results of the ongoing clinical trials have raised some hope. In this article, taking insights from the emerging empirical evidence about host-virus interactions, we deliberate upon plausible pathogenic mechanisms and suitable therapeutic approaches for COVID-19.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India.,Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Pranav Prasoon
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India.,Pittsburgh Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Prakash S Sekhawat
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India.,Department of Hematology, Nil RatanSircar Medical College and Hospital (NRSMCH), Kolkata, India
| | - Vikas Pareek
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India.,National Brain Research Center, Manesar, Haryana, India
| | - Muneeb A Faiq
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India.,NYU Robert I Grossman School of Medicine, New York University (NYU) Langone Health Center, New York, New York, USA
| | - Chiman Kumari
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India.,Department of Anatomy, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ravi K Narayan
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India.,Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Maheswari Kulandhasamy
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India.,Department of Biochemistry, Maulana Azad Medical College (MAMC), New Delhi, India
| | - Kamla Kant
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India.,Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bathinda, India
| |
Collapse
|
17
|
Federico S, Pozzetti L, Papa A, Carullo G, Gemma S, Butini S, Campiani G, Relitti N. Modulation of the Innate Immune Response by Targeting Toll-like Receptors: A Perspective on Their Agonists and Antagonists. J Med Chem 2020; 63:13466-13513. [PMID: 32845153 DOI: 10.1021/acs.jmedchem.0c01049] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are a class of proteins that recognize pathogen-associated molecular patterns (PAMPs) and damaged-associated molecular patterns (DAMPs), and they are involved in the regulation of innate immune system. These transmembrane receptors, localized at the cellular or endosomal membrane, trigger inflammatory processes through either myeloid differentiation primary response 88 (MyD88) or TIR-domain-containing adapter-inducing interferon-β (TRIF) signaling pathways. In the last decades, extensive research has been performed on TLR modulators and their therapeutic implication under several pathological conditions, spanning from infections to cancer, from metabolic disorders to neurodegeneration and autoimmune diseases. This Perspective will highlight the recent discoveries in this field, emphasizing the role of TLRs in different diseases and the therapeutic effect of their natural and synthetic modulators, and it will discuss insights for the future exploitation of TLR modulators in human health.
Collapse
Affiliation(s)
- Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|