1
|
Secombes CJ. Cytokines - Early vertebrate genes and evolution. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 160:105239. [PMID: 39117166 DOI: 10.1016/j.dci.2024.105239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
|
2
|
Díaz-García C, Moreno E, Talavera-Rodríguez A, Martín-Fernández L, González-Bodí S, Martín-Pedraza L, Pérez-Molina JA, Dronda F, Gosalbes MJ, Luna L, Vivancos MJ, Huerta-Cepas J, Moreno S, Serrano-Villar S. Fecal microbiota transplantation alters the proteomic landscape of inflammation in HIV: identifying bacterial drivers. MICROBIOME 2024; 12:214. [PMID: 39438902 PMCID: PMC11494993 DOI: 10.1186/s40168-024-01919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Despite effective antiretroviral therapy, people with HIV (PWH) experience persistent systemic inflammation and increased morbidity and mortality. Modulating the gut microbiome through fecal microbiota transplantation (FMT) represents a novel therapeutic strategy. We aimed to evaluate proteomic changes in inflammatory pathways following repeated, low-dose FMT versus placebo. METHODS This double-masked, placebo-controlled pilot study assessed the proteomic impacts of weekly FMT versus placebo treatment over 8 weeks on systemic inflammation in 29 PWH receiving stable antiretroviral therapy (ART). Three stool donors with high Faecalibacterium and butyrate profiles were selected, and their individual stools were used for FMT capsule preparation. Proteomic changes in 345 inflammatory proteins in plasma were quantified using the proximity extension assay, with samples collected at baseline and at weeks 1, 8, and 24. Concurrently, we characterized shifts in the gut microbiota composition and annotated functions through shotgun metagenomics. We fitted generalized additive models to evaluate the dynamics of protein expression. We selected the most relevant proteins to explore their correlations with microbiome composition and functionality over time using linear mixed models. RESULTS FMT significantly reduced the plasma levels of 45 inflammatory proteins, including established mortality predictors such as IL6 and TNF-α. We found notable reductions persisting up to 16 weeks after the final FMT procedure, including in the expression of proteins such as CCL20 and CD22. We identified changes in 46 proteins, including decreases in FT3LG, IL6, IL10RB, IL12B, and IL17A, which correlated with multiple bacterial species. We found that specific bacterial species within the Ruminococcaceae, Succinivibrionaceae, Prevotellaceae families, and the Clostridium genus, in addition to their associated genes and functions, were significantly correlated with changes in inflammatory markers. CONCLUSIONS Targeting the gut microbiome through FMT effectively decreased inflammatory proteins in PWH, with sustained effects. These findings suggest the potential of the microbiome as a therapeutic target to mitigate inflammation-related complications in this population, encouraging further research and development of microbiome-based interventions. Video Abstract.
Collapse
Affiliation(s)
- Claudio Díaz-García
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Alba Talavera-Rodríguez
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Lucía Martín-Fernández
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Sara González-Bodí
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Laura Martín-Pedraza
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - José A Pérez-Molina
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Fernando Dronda
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María José Gosalbes
- Área de Genómica y Salud, Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunidad Valenciana-Salud Pública, Valencia, Spain
- CIBERESP, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Laura Luna
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Jesús Vivancos
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28223, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
3
|
Sakaguchi H, Sato Y, Matsumoto R, Gomikawa J, Yoshida N, Suzuki T, Matsuda M, Iwanami N. Maturation of the medaka immune system depends on reciprocal interactions between the microbiota and the intestinal tract. Front Immunol 2023; 14:1259519. [PMID: 37767090 PMCID: PMC10520778 DOI: 10.3389/fimmu.2023.1259519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The interactions between the host immune system and intestinal microorganisms have been studied in many animals, including fish. However, a detailed analysis has not been performed in medaka, an established fish model for biological studies. Here, we investigated the effect of immunodeficiency on the microbiota composition and the effect of gut bacteria on intestinal epithelial development and immune responses in medaka. Chronological analysis of the intestinal microbiota of interleukin 2 receptor subunit gamma (il2rg) mutant medaka showed a gradual decrease in the evenness of operational taxonomic units, mainly caused by the increased abundance of the Aeromonadaceae family. Exposure of wild-type medaka to high doses of an intestine-derived opportunistic bacterium of the Aeromonadaceae family induced an inflammatory response, suggesting a harmful effect on adult il2rg mutants. In addition, we established germ-free conditions in larval medaka and observed large absorptive vacuoles in intestinal epithelial cells, indicating a block in epithelial maturation. Transcriptome analysis revealed a decrease in the expression of genes involved in the defense response, including the antimicrobial peptide gene hepcidin, whose expression is induced by lipopolysaccharide stimulation in normal larvae. These results show that reciprocal interactions between the microbiome and the intestinal tract are required for the maturation of the medaka immune system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Norimasa Iwanami
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| |
Collapse
|
4
|
Douglas A, Stevens B, Lynch L. Interleukin-17 as a key player in neuroimmunometabolism. Nat Metab 2023; 5:1088-1100. [PMID: 37488456 PMCID: PMC10440016 DOI: 10.1038/s42255-023-00846-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2023] [Indexed: 07/26/2023]
Abstract
In mammals, interleukin (IL)-17 cytokines are produced by innate and adaptive lymphocytes. However, the IL-17 family has widespread expression throughout evolution, dating as far back as cnidaria, molluscs and worms, which predate lymphocytes. The evolutionary conservation of IL-17 suggests that it is involved in innate defence strategies, but also that this cytokine family has a fundamental role beyond typical host defence. Throughout evolution, IL-17 seems to have a major function in homeostatic maintenance at barrier sites. Most recently, a pivotal role has been identified for IL-17 in regulating cellular metabolism, neuroimmunology and tissue physiology, particularly in adipose tissue. Here we review the emerging role of IL-17 signalling in regulating metabolic processes, which may shine a light on the evolutionary role of IL-17 beyond typical immune responses. We propose that IL-17 helps to coordinate the cross-talk among the nervous, endocrine and immune systems for whole-body energy homeostasis as a key player in neuroimmunometabolism.
Collapse
Affiliation(s)
- Aaron Douglas
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland
| | - Brenneth Stevens
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lydia Lynch
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland.
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Okamura Y, Kono T, Sakai M, Hikima JI. Evolutional perspective and functional characteristics of interleukin-17 in teleosts. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108496. [PMID: 36526158 DOI: 10.1016/j.fsi.2022.108496] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Interleukin (IL)-17 is a proinflammatory cytokine and plays essential roles in adaptive and innate immune responses against bacterial and fungal infections. Especially in mammalian mucosal tissues, it is well known that innate immune responses via IL-17A and IL-17F, such as the production of antimicrobial peptides, are very important for microbiota control. In contrast, interesting insights into the functions of IL-17 have recently been reported in several teleost species, although little research has been conducted on teleost IL-17. In the present review, we focused on current insights on teleost IL-17 and speculated on the different or consensus parts of teleost IL-17 signaling compared to that of mammals. This review focuses on the role of teleost IL-17 in intestinal immunity. We expect that this review will encourage a further understanding of the roles and importance of IL-17 signaling in teleosts.
Collapse
Affiliation(s)
- Yo Okamura
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
6
|
Gao S, Han C, Ye H, Chen Q, Huang J. Transcriptome analysis of the spleen provides insight into the immunoregulation of Scortum barcoo under Streptococcus agalactiae infection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114095. [PMID: 36116237 DOI: 10.1016/j.ecoenv.2022.114095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Jade perch (Scortum barcoo) is a freshwater fish with substantial economic value, which has been widely cultivated all over the world. However, with the intensification and expansion of farming, several bacterial and viral diseases have occurred in jade perch. To understand the immune response of jade perch against Streptococcus agalactiae (Group B Streptococcus, GBS), we performed a histopathological examination and transcriptome sequencing of jade perch spleen after artificial bacterial infection. GBS infection can cause structural changes and even necrosis of the jade perch spleen, which may affect the survival of infected individuals. A total of 144,458 unigenes were obtained through de novo assembly of spleen transcriptome. Among them, 1821 unigenes were identified as DEGs, including 1415 up-regulated and 406 down-regulated unigenes in the infection group. Moreover, the analysis of GO and KEGG revealed that many GO terms and pathways were involved in the host immune response, such as Toll-like receptor signaling pathway, Cytokine-cytokine receptor interaction, and TNF signaling pathway. In addition, according to transcriptome data and qRT-PCR analysis, the expression levels of many cytokines that participate in the inflammatory response changed a lot after GBS infection. Overall, this transcriptomic analysis provided valuable information for studying the immune response of jade perch against bacterial infection.
Collapse
Affiliation(s)
- Songze Gao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Chong Han
- School of Life Sciences, Guangzhou University, Guangzhou 51006, PR China.
| | - Hangyu Ye
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Qinghua Chen
- South China Institute of Environmental Science, MEE, Guangzhou 510610, PR China
| | - Jianrong Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
7
|
Evaluation of Cardiac Biomarkers and Expression Analysis of IL-1, IL-6, IL-10, IL-17, and IL-25 among COVID-19 Patients from Pakistan. Viruses 2022; 14:v14102149. [PMID: 36298704 PMCID: PMC9610190 DOI: 10.3390/v14102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 19 (COVID-19) is caused by viral infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Where upregulation of several important biomarkers and multiple organ dysfunction occurs, this study aimed to evaluate the association of cardiac biomarkers and CS induced acute lung damage with disease severity and mortality in survival of COVID-19 patients. A total of 500 COVID-19 patients with elevated cardiac biomarkers were studied for the analysis of myocardial abnormality through cardiac enzymes, inflammatory biomarkers, and the expression analysis of various cytokines, including IL-1, IL-6, IL-10, IL-17, and IL-25 genes. The elevation of various cardiac enzymes including LDH (87%), CK (78.4%), TNI (80.4%), CK-MB (83%), and D-dimer (80.8%) were found correlated (p < 0.001) with COVID-19 infection. Cardiac enzyme elevation was highly associated with an increased level of inflammatory biomarkers such as CRP (14.2%), SAA (11.4%) and erythrocyte sedimentation rate (ESR) (7.8%) (p = 0.001 for all). The quantitative expression analysis of IL-10, 1L-17, and 1L-25 were found to be high, while those of IL-1 and IL-6 were moderately elevated. The death-to-live ratio of COVID-19 patients was 457:43 indicating that the patients having elevated levels of both CKMB, D-dimer, CK and IL-1, IL-6, IL-10 and D-dimer, Troponin, CK and IL-1, IL-10 had high fatality rate (73% and 12% respectively). The current finding concludes that the evaluation of cardiac biomarkers with cytokine storm plays a significant role in COVID-19-associated anatomical organ damage, myocardial injury, and mortality. Physicians should pay special attention to cardiac biomarkers in patients with old age, inflammation, and comorbidities among COVID-19 infections.
Collapse
|
8
|
Cohen-Rengifo M, Danion M, Gonzalez AA, Bégout ML, Cormier A, Noël C, Cabon J, Vitré T, Mark FC, Mazurais D. The extensive transgenerational transcriptomic effects of ocean acidification on the olfactory epithelium of a marine fish are associated with a better viral resistance. BMC Genomics 2022; 23:448. [PMID: 35710351 PMCID: PMC9204966 DOI: 10.1186/s12864-022-08647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background Progressive CO2-induced ocean acidification (OA) impacts marine life in ways that are difficult to predict but are likely to become exacerbated over generations. Although marine fishes can balance acid–base homeostasis efficiently, indirect ionic regulation that alter neurosensory systems can result in behavioural abnormalities. In marine invertebrates, OA can also affect immune system function, but whether this is the case in marine fishes is not fully understood. Farmed fish are highly susceptible to disease outbreak, yet strategies for overcoming such threats in the wake of OA are wanting. Here, we exposed two generations of the European sea bass (Dicentrarchus labrax) to end-of-century predicted pH levels (IPCC RCP8.5), with parents (F1) being exposed for four years and their offspring (F2) for 18 months. Our design included a transcriptomic analysis of the olfactory rosette (collected from the F2) and a viral challenge (exposing F2 to betanodavirus) where we assessed survival rates. Results We discovered transcriptomic trade-offs in both sensory and immune systems after long-term transgenerational exposure to OA. Specifically, RNA-Seq analysis of the olfactory rosette, the peripheral olfactory organ, from 18-months-old F2 revealed extensive regulation in genes involved in ion transport and neuronal signalling, including GABAergic signalling. We also detected OA-induced up-regulation of genes associated with odour transduction, synaptic plasticity, neuron excitability and wiring and down-regulation of genes involved in energy metabolism. Furthermore, OA-exposure induced up-regulation of genes involved in innate antiviral immunity (pathogen recognition receptors and interferon-stimulated genes) in combination with down-regulation of the protein biosynthetic machinery. Consistently, OA-exposed F2 challenged with betanodavirus, which causes damage to the nervous system of marine fish, had acquired improved resistance. Conclusion F2 exposed to long-term transgenerational OA acclimation showed superior viral resistance, though as their metabolic and odour transduction programs were altered, odour-mediated behaviours might be consequently impacted. Although it is difficult to unveil how long-term OA impacts propagated between generations, our results reveal that, across generations, trade-offs in plastic responses is a core feature of the olfactory epithelium transcriptome in OA-exposed F2 offspring, and will have important consequences for how cultured and wild fish interacts with its environment. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08647-w.
Collapse
Affiliation(s)
| | - Morgane Danion
- Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Anne-Alicia Gonzalez
- MGX, CNRS, INSERM, University of Montpellier, Biocampus Montpellier, Montpellier, France
| | - Marie-Laure Bégout
- MARBEC, University of Montpellier, CNRS, IFREMER, 34250, Palavas-les-Flots, IRD, France
| | | | - Cyril Noël
- IFREMER, SEBIMER, 29280, Plouzané, France
| | - Joëlle Cabon
- Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Technopôle Brest-Iroise, 29280, Plouzané, France
| | | | - Felix C Mark
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Department of Integrative Ecophysiology, 27570, Bremerhaven, Germany
| | | |
Collapse
|
9
|
Abstract
Cytokines belong to the most widely studied group of intracellular molecules involved in the function of the immune system. Their secretion is induced by various infectious stimuli. Cytokine release by host cells has been extensively used as a powerful tool for studying immune reactions in the early stages of viral and bacterial infections. Recently, research attention has shifted to the investigation of cytokine responses using mRNA expression, an essential mechanism related to pathogenic and nonpathogenic-immune stimulants in fish. This review represents the current knowledge of cytokine responses to infectious diseases in the common carp (Cyprinus carpio L.). Given the paucity of literature on cytokine responses to many infections in carp, only select viral diseases, such as koi herpesvirus disease (KHVD), spring viremia of carp (SVC), and carp edema virus disease (CEVD), are discussed. Aeromonas hydrophila is one of the most studied bacterial pathogens associated with cytokine responses in common carp. Therefore, the cytokine-based immunoreactivity raised by this specific bacterial pathogen is also highlighted in this review.
Collapse
|
10
|
Liu H, Li X, Lei H, Li D, Chen H, Schlenk D, Yan B, Yongju L, Xie L. Dietary Seleno-l-methionine Alters the Microbial Communities and Causes Damage in the Gastrointestinal Tract of Japanese Medaka Oryzias latipes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16515-16525. [PMID: 34874707 DOI: 10.1021/acs.est.1c04533] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Excess dietary seleno-l-methionine (Se-Met) induces various adverse effects in fish inhabiting the Se-contaminated environments. However, there is an extreme paucity of data on the effects of excess dietary Se-Met on the microbiota in the gastrointestinal (GI) tract in fish. In this study, Japanese medaka Oryzias latipes (three months old) were fed the Se-Met enriched diets at environmentally relevant concentrations: 2.90 (Control: (C), 6.69 (L), 11.89 (M), and 27.05 (H) μg Se/g dw) for 60 d. Histopathological, high throughput sequencing, and biochemical approaches were used to investigate the alterations in histology and microbial communities of the GI tract, enzymatic activity, and transcripts of closely related genes. The results showed that the fish weight was reduced at ∼13% from the L and H treatments. Decreased height and thickness of villus in the GI tract were observed in the H treatment. Meanwhile, the level of D-lactate and activity of diamine oxidase (DAO), protease, and lipase were inhibited in the H treatment. The transcripts of the genes related to the inflammation (i.e., IL-1β and IL-8) were elevated, while those of the genes related to the intestinal barrier (i.e., cdh1, ZO-1, ocln, and cldn7) were inhibited in the H treatment. In addition, alpha diversity at the genus level was higher in the L treatment than the control, and the composition of the microbial community was altered by dietary Se-Met. Furthermore, 5 genera (Rhodobacter, Cloacibacterium, Bdellovibrio, Shinella, and Aeromonas) exhibited the largest variation in abundance among treatments. This study has demonstrated that excess dietary Se-Met inhibits growth, causes hispathological damage to the GI tract, and alters the composition of the microbial community in Oryzias latipes.
Collapse
Affiliation(s)
- Hongsong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Haojun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92507, United States
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Luo Yongju
- Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
11
|
Okamura Y, Miyanishi H, Kono T, Sakai M, Hikima JI. Identification and expression of phospholipase A2 genes related to transcriptional control in the interleukin-17A/F1 pathway in the intestines of Japanese medaka Oryzias latipes. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100028. [PMID: 36420487 PMCID: PMC9680080 DOI: 10.1016/j.fsirep.2021.100028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
Phospholipase A2 (PLA2), a phospholipid hydrolase, has recently attracted attention owing to its broad functionality. Immunological evidence has revealed increased susceptibility to infectious diseases and immunodeficiency in knockout (KO) mice of several pla2 genes. However, no progress has been made in terms of immunological research on any pla2 gene in fish. In this study, we focused on the intestinal immune responses of fish PLA2s. The full-length open reading frames of pla2g1b, pla2g3, pla2g10, pla2g12b1, pla2g12b2, and pla2g15 cDNAs were cloned in Japanese medaka (Orizias latipes), and their gene expressions were quantified by real-time PCR (qPCR) and in situ hybridization (ISH). Characterization of pla2 genes revealed a functional domain and three-dimensional structure similar to the mammalian counterparts. In addition, expression of pla2g1b, pla2g12b1, and pla2g12b2 was extremely high in Japanese medaka intestines. ISH detected strong expression of pla2g1b mRNAs in the basal muscle layer, and pla2g12b1 and pla2g12b2 mRNAs were detected in the epithelial cells. In the medaka exposed to Edwardsiella piscicida, pla2g12b1, pla2g12b2 and pla2g15 were significantly induced in the anterior and posterior intestines, and pla2g1b was upregulated in the anterior intestine. Furthermore, pla2g1b, pla2g3, pla2g10, and pla2g12b2 were significantly downregulated in the IL-17A/F1 KO medaka compared to those in wild-type medaka. These results suggest that these PLA2s are involved in intestinal immunity in teleosts.
Collapse
Affiliation(s)
- Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Jun-ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Corresponding author.
| |
Collapse
|
12
|
Harada N, Okamura Y, Kono T, Sakai M, Hikima JI. Identification of two interleukin 17 receptor C (IL-17RC) genes and their binding activities to three IL-17A/F ligands in the Japanese medaka, Oryzias latipes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104179. [PMID: 34171369 DOI: 10.1016/j.dci.2021.104179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
In mammals, interleukin (IL)-17 receptor C (IL-17RC) and IL-17RA mediate IL-17A and IL-17F signaling to produce mucin, antimicrobial peptides, and maintain healthy intestinal flora. However, IL-17RC signaling in fish remains unclear. In this study, three il17rc transcripts (il17rca1, il17rca2, and il17rcb) from the Japanese medaka (Oryzias latipes) were cloned; il17rca1 and il17rca2 mRNAs were alternatively spliced from il17rca pre-mRNA as transcript variants. The il17rca and il17rcb genes were located on chromosomes 7 and 5, respectively. Teleost clades containing medaka il17rca and il17rcb clustered separately from the tetrapod clade. In adult tissues, il17rca1 expression was significantly higher than il17rca2 and il17rcb. Conversely, il17rcb expression was significantly higher in embryos and larvae. These expression patterns changed following infection with Edwardsiella piscicida and Aeromonas hydrophila. Furthermore, an immunoprecipitation assay using recombinant IL-17RCs and rIL-17A/Fs suggested that, in teleosts, three ligands could function in signaling through two IL-17RCs.
Collapse
Affiliation(s)
- Nanaki Harada
- International Course of Agriculture, Graduate School of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
13
|
Xue T, Liu Y, Cao M, Zhang X, Fu Q, Yang N, Li C. Genome-wide identification of interleukin-17 (IL-17) / interleukin-17 receptor (IL- 17R) in turbot (Scophthalmus maximus) and expression pattern analysis after Vibrio anguillarum infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104070. [PMID: 33757802 DOI: 10.1016/j.dci.2021.104070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 05/22/2023]
Abstract
Interleukin-17 (IL-17) is a cytokine secreted by a variety of immune cells that plays an important role in host defense against pathogens. IL-17 usually activates downstream immune signaling pathway by binding to heterodimeric or homodimeric complex formed by IL-17 receptors (IL-17R). Describing the characteristics, tissue distribution of IL-17 and IL-17 receptor family members and their expression after pathogen infection will provide a reference for host defense against disease of turbot. In this study, six IL-17 family members and nine IL-17 receptor family members were identified by analyzing the turbot (Scophthalmus maximus) genome. Different from other vertebrates, most members of the IL-17 receptor family own two copies. Protein structure analysis showed that the six IL-17 family members contained typical "IL-17" domains, and the nine IL-17 receptor family members contained typical "SEFIR domain" or "IL17_R_N domain". Syntenic analysis revealed that all IL-17s and IL-17Rs were chromosomally conserved compared with other fish. The phylogenetic analysis further confirmed the evolutionary conservatism of different copies of IL-17C and IL-17Rs. Tissue distribution results showed that IL-17 and IL-17R genes were highly expressed in immune-related tissues. The expression of IL-17C and its receptor in the mucosal immune tissues after infection with V. anguillarum were analyzed subsequently, which were significantly increased in the skin. The results are consistent with previous studies showing that IL-17 and IL-17 receptor play an important role in promoting innate immune response.
Collapse
Affiliation(s)
- Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yiping Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
14
|
Okamura Y, Kinoshita M, Kono T, Sakai M, Hikima JI. Deficiency of interleukin-17 receptor A1 induces microbiota disruption in the intestine of Japanese medaka, Oryzias latipes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100885. [PMID: 34339936 DOI: 10.1016/j.cbd.2021.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/11/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
The mutual relationship between the intestinal immune system and the gut microbiota has received a great deal of attention. In mammals, interleukin-17A and F (IL-17A/F) are inflammatory cytokines and key regulators of the gut microbiota. However, in teleosts, the function of IL-17A/F in controlling the gut microbiota is poorly understood. We attempted to elucidate the importance of teleost IL-17 signaling in controlling gut microbiota. We previously established a knockout (KO) of IL-17 receptor A (RA) 1, a receptor for IL-17A/F, in the Japanese medaka (Oryzias latipes) using the CRISPR-Cas9 system and performed 16S rRNA-based metagenomic analyses using the anterior and posterior sections of the intestinal tract. The number of observed OTUs in the anterior intestine was significantly decreased in IL-17RA1 KO medaka compared to that in the wild-type (WT). Furthermore, β-diversity analysis (weighted UniFrac) revealed considerably different bacterial composition in the anterior intestine of IL-17RA1 KO compared to WT, with similar findings in α-diversity. Notably, the pathogen Plesiomonas shigelloides was significantly increased in the posterior intestine of IL-17RA1 KO medaka. These findings indicate that signaling via IL-17RA1 is required to maintain a healthy gut microbiota in teleosts and mammals. The involvement of IL-17RA1 in controlling the gut microbiota has been demonstrated, resulting in microbiome dysbiosis in IL-17RA1 KO medaka.
Collapse
Affiliation(s)
- Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
15
|
Okamura Y, Miyanishi H, Kinoshita M, Kono T, Sakai M, Hikima JI. A defective interleukin-17 receptor A1 causes weight loss and intestinal metabolism-related gene downregulation in Japanese medaka, Oryzias latipes. Sci Rep 2021; 11:12099. [PMID: 34103614 PMCID: PMC8187396 DOI: 10.1038/s41598-021-91534-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/27/2021] [Indexed: 02/08/2023] Open
Abstract
In the intestine, the host must be able to control the gut microbiota and efficiently absorb transiently supplied metabolites, at the risk of enormous infection. In mammals, the inflammatory cytokine interleukin (IL)-17A/F is one of the key mediators in the intestinal immune system. However, many functions of IL-17 in vertebrate intestines remain unclarified. In this study, we established a gene-knockout (KO) model of IL-17 receptor A1 (IL-17RA1, an IL-17A/F receptor) in Japanese medaka (Oryzias latipes) using genome editing technique, and the phenotypes were compared to wild type (WT) based on transcriptome analyses. Upon hatching, homozygous IL-17RA1-KO medaka mutants showed no significant morphological abnormality. However, after 4 months, significant weight decreases and reduced survival rates were observed in IL-17RA1-KO medaka. Comparison of gene-expression patterns in WT and IL-17RA1-KO medaka revealed that various metabolism- and immune-related genes were significantly down-regulated in IL-17RA1-KO medaka intestine, particularly genes related to mevalonate metabolism (mvda, acat2, hmgcs1, and hmgcra) and genes related to IL-17 signaling (such as il17c, il17a/f1, and rorc) were found to be decreased. Conversely, expression of genes related to cardiovascular system development, including fli1a, sox7, and notch1b in the anterior intestine, and that of genes related to oxidation-reduction processes including ugp2a, aoc1, and nos1 in posterior intestine was up-regulated in IL-17RA1-KO medaka. These findings show that IL-17RA regulated immune- and various metabolism-related genes in the intestine for maintaining the health of Japanese medaka.
Collapse
Affiliation(s)
- Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture , Kyoto University, Kyoto, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture , University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture , University of Miyazaki, Miyazaki, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture , University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|