1
|
Hetemäki I, Sarkkinen J, Wong HH, Heikkilä N, Laakso S, Miettinen S, Mäyränpää MI, Mäkitie O, Arstila TP, Kekäläinen E. Reduction in mucosal-associated invariant T cells (MAIT) in APECED patients is associated with elevated serum IFN-γ concentration. Eur J Immunol 2024; 54:e2451189. [PMID: 39292205 PMCID: PMC11628920 DOI: 10.1002/eji.202451189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Mucosal-associated invariant T cells (MAIT) are innate-like lymphocytes enriched in mucosal organs where they contribute to antimicrobial defense. APECED is an inborn error of immunity characterized by immune dysregulation and chronic mucocutaneous candidiasis. Reduction in the frequency of circulating MAITs has been reported in many inborn errors of immunity, but only in a few of them, the functional competence of MAITs has been assessed. Here, we show in a cohort of 24 patients with APECED, that the proportion of circulating MAITs was reduced compared with healthy age and sex-matched controls (1.1% vs. 2.6% of CD3+ T cells; p < 0.001) and the MAIT cell immunophenotype was more activated. Functionally the IFN-γ secretion of patient MAITs after stimulation was comparable to healthy controls. We observed in the patients elevated serum IFN-γ (46.0 vs. 21.1 pg/mL; p = 0.01) and IL-18 (42.6 vs. 13.7 pg/mL; p < 0.001) concentrations. Lower MAIT proportion did not associate with the levels of neutralizing anti-IL-22 or anti-IL-12/23 antibodies but had a clear negative correlation with serum concentrations of IFN-γ, IL-18, and protein C-reactive protein. Our data suggest that reduction of circulating MAITs in patients with APECED correlates with chronic type 1 inflammation but the remaining MAITs are functionally competent.
Collapse
Affiliation(s)
- Iivo Hetemäki
- Translational Immunology Research ProgramUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Joona Sarkkinen
- Translational Immunology Research ProgramUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Huai Hui Wong
- ImmuDocs National Doctoral Education Pilot ProgramUniversity of HelsinkiHelsinkiFinland
| | - Nelli Heikkilä
- Translational Immunology Research ProgramUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Saila Laakso
- Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Folkhälsan Research CenterInstitute of GeneticsHelsinkiFinland
| | - Simo Miettinen
- Translational Immunology Research ProgramUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Mikko I. Mäyränpää
- Department of PathologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Outi Mäkitie
- Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Folkhälsan Research CenterInstitute of GeneticsHelsinkiFinland
- Department of Molecular Medicine, Karolinska Institutet, and Clinical GeneticsKarolinska University HospitalStockholmSweden
| | - T Petteri Arstila
- Translational Immunology Research ProgramUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Eliisa Kekäläinen
- Translational Immunology Research ProgramUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
2
|
Millet N, Sekar J, Solis NV, Millet A, Aggor FE, Wildeman A, Lionakis MS, Gaffen SL, Jendzjowsky N, Filler SG, Swidergall M. Non-canonical IL-22 receptor signaling remodels the mucosal barrier during fungal immunosurveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.08.611873. [PMID: 39314368 PMCID: PMC11419061 DOI: 10.1101/2024.09.08.611873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mucosal barrier integrity is vital for homeostasis with commensal organisms while preventing pathogen invasion. We unexpectedly found that fungal-induced immunosurveillance enhances resistance to fungal outgrowth and tissue invasion by remodeling the oral mucosal epithelial barrier in mouse models of adult and neonatal Candida albicans colonization. Epithelial subset expansion and tissue remodeling were dependent on interleukin-22 (IL-22) and signal transducer and activator of transcription 3 (STAT3) signaling, through a non-canonical receptor complex composed of glycoprotein 130 (gp130) coupled with IL-22RA1 and IL-10RB. Immunosurveillance-induced epithelial remodeling was restricted to the oral mucosa, whereas barrier architecture was reset once fungal-specific immunity developed. Collectively, these findings identify fungal-induced transient mucosal remodeling as a critical determinant of resistance to mucosal fungal infection during early stages of microbial colonization.
Collapse
Affiliation(s)
- Nicolas Millet
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jinendiran Sekar
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Norma V. Solis
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Antoine Millet
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Felix E.Y. Aggor
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA, USA
| | - Asia Wildeman
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Sarah L. Gaffen
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA, USA
| | - Nicholas Jendzjowsky
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
3
|
Napiórkowska-Baran K, Darwish S, Kaczor J, Treichel P, Szymczak B, Szota M, Koperska K, Bartuzi Z. Oral Diseases as a Manifestation of Inborn Errors of Immunity. J Clin Med 2024; 13:5079. [PMID: 39274292 PMCID: PMC11396297 DOI: 10.3390/jcm13175079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Oral findings such as inflammation, ulcerations, or lesions can indicate serious systemic diseases and should prompt suspicion of acquired chronic conditions or inborn errors of immunity (IEIs). Currently, there are approximately 500 disease entities classified as IEIs, with the list expanding annually. The awareness of the existence of such conditions is of paramount importance, as patients with these disorders frequently necessitate the utilization of enhanced diagnostic techniques. This is exemplified by patients with impaired antibody production, in whom conventional serological methods may prove to be undiagnostic. Patients with IEI may require distinct therapeutic approaches or antimicrobial prophylaxis throughout their lives. An accurate diagnosis and, more importantly, early identification of patients with immune deficiencies is crucial to ensure the quality and longevity of their lives. It is important to note that the failure to establish a proper diagnosis or to provide adequate treatment could also have legal implications for medical professionals. The article presents IEIs, which may manifest in the oral cavity, and their diagnosis alongside therapeutic procedures.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Samira Darwish
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Justyna Kaczor
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Maciej Szota
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Kinga Koperska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| |
Collapse
|
4
|
Hetemäki I, Saari V, Yohannes DA, Holopainen E, Holster T, Jokiranta S, Mäyränpää MI, Virtanen S, Mäkitie O, Kekäläinen E, Laakso S. Increased type 1 inflammation in gynecologic cervicovaginal samples in patients with APS-1. J Allergy Clin Immunol 2024; 153:1736-1742. [PMID: 38395084 DOI: 10.1016/j.jaci.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Inborn errors of immunity offer important insights into mucosal immunity. In autoimmune polyendocrine syndrome type-1 (APS-1), chronic mucocutaneous candidiasis has been ascribed to neutralizing IL-17 autoantibodies. Recent evidence implicates excessive T-cell IFN-γ secretion and ensuing epithelial barrier disruption in predisposition to candidiasis, but these results remain to be replicated. Whether IL-17 paucity, increased type I inflammation, or their combination underlies susceptibility to chronic mucocutaneus candidiasis in APS-1 is debated. OBJECTIVE Our aim was to characterize the immunologic features in the cervicovaginal mucosa of females with APS-1. METHODS Vaginal fluid was collected with a flocked swab from 17 females with APS-1 and 18 controls, and cytokine composition was analyzed using Luminex (Luminex Corporation, Austin, Tex). Cervical cell samples were obtained with a cervix brush from 6 patients and 6 healthy controls and subjected to transcriptome analysis. RESULTS The vaginal fluid samples from patients with APS-1 had IFN-γ concentrations comparable to those of the controls (2.6 vs 2.4 pg/mL) but high concentrations of the TH1 chemokines CXCL9 and CXCL10 (1094 vs 110 pg/mL [P < .001] and 4033 vs 273 pg/mL [P = .001], respectively), whereas the IL-17 levels in the samples from the 2 groups were comparable (28 vs 8.8 pg/mL). RNA sequencing of the cervical cells revealed upregulation of pathways related to mucosal inflammation and cell death in the patients with APS-1. CONCLUSION Excessive TH1 cell response appears to underlie disruption of the mucosal immune responses in the genital tract of patients with APS-1 and may contribute to susceptibility to candidiasis in the genital tract as well.
Collapse
Affiliation(s)
- Iivo Hetemäki
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Viivi Saari
- Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Dawit A Yohannes
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elina Holopainen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tiina Holster
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Suvi Jokiranta
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko I Mäyränpää
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Seppo Virtanen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Outi Mäkitie
- Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland; Department of Molecular Medicine and Surgery, Karolinska Institutet and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Saila Laakso
- Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland.
| |
Collapse
|
5
|
Peterson P. Novel Insights into the Autoimmunity from the Genetic Approach of the Human Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:3-18. [PMID: 38467969 DOI: 10.1007/978-981-99-9781-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a monogenic inborn error of autoimmunity that is caused by damaging germline variants in the AIRE gene and clinically manifests with multiple autoimmune diseases in patients. Studies on the function of the AIRE gene, discovered in 1997, have contributed to fundamental aspects of human immunology as they have been important in understanding the basic mechanism of immune balance between self and non-self. This chapter looks back to the discovery of the AIRE gene, reviews its main properties, and discusses the key findings of its function in the thymus. However, more recent autoantibody profilings in APECED patients have highlighted a gap in our knowledge of the disease pathology and point to the need to revisit the current paradigm of AIRE function. The chapter reviews these new findings in APECED patients, which potentially trigger new thoughts on the mechanism of immune tolerance.
Collapse
Affiliation(s)
- Pärt Peterson
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
6
|
Seth P, Dubey S. IL-22 as a target for therapeutic intervention: Current knowledge on its role in various diseases. Cytokine 2023; 169:156293. [PMID: 37441942 DOI: 10.1016/j.cyto.2023.156293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
IL-22 has emerged as a crucial cytokine mediating protective response against pathogens and tissue regeneration. Dysregulated production of IL-22 has been shown to play a pivotal role in the pathogenesis of various diseases like malignant tumours, viral, cardiovascular, allergic and autoimmune disorders. Interleukin 22 belongs to IFN-IL-10 cytokine family. It is a major proinflammatory cytokine secreted by activated Th1 cells (Th22), though can also be secreted by many other immune cells like group 3 innate lymphocytes, γδ T cells, NK cells, NK T cells, and mucosal associated invariant T cells. Th22 cells exclusively release IL-22 but not IL-17 or IFN-γ (as Th1 cells releases IFN-γ along with IL-22 and Th17 cells releases IL-17 along with IL-22) and also express aryl hydrocarbon receptor as the key transcription factor. Th22 cells also exhibit expression of chemokine receptor CCR6 and skin-homing receptors CCR4 and CCR10 indicating the involvement of this subset in bolstering epithelial barrier immunity and promoting secretion of antimicrobial peptides (AMPs) from intestinal epithelial cells. The function of IL-22 is modulated by IL-22 binding protein (binds to IL-22 and inhibits it binding to its cell surface receptor); which serves as a competitor for IL-22R1 chain of IL-22 receptor. The pathogenic and protective nature of the Th22 cells is modulated both by the site of infected tissue and the type of disease pathology. This review aims to discuss key features of IL-22 biology, comparisons between IL and 22 and IFN-γ and its role as a potential immune therapy target in different maladies.
Collapse
Affiliation(s)
- Pranav Seth
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Shweta Dubey
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India.
| |
Collapse
|
7
|
Howson LJ, Bryant VL. Insights into mucosal associated invariant T cell biology from human inborn errors of immunity. Front Immunol 2022; 13:1107609. [PMID: 36618406 PMCID: PMC9813737 DOI: 10.3389/fimmu.2022.1107609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Lauren J. Howson
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia,*Correspondence: Lauren J. Howson,
| | - Vanessa L. Bryant
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia,Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Saari V, Laakso S, Tiitinen A, Mäkitie O, Holopainen E. Endocrine Disorders and Genital Infections Impair Gynecological Health in APECED (APS-1). Front Endocrinol (Lausanne) 2021; 12:784195. [PMID: 34917035 PMCID: PMC8669951 DOI: 10.3389/fendo.2021.784195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/11/2021] [Indexed: 12/03/2022] Open
Abstract
Objective In autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) defects in the autoimmune regulator gene lead to impaired immunotolerance. We explored the effects of immunodeficiency and endocrinopathies on gynecologic health in patients with APECED. Design Cross-sectional cohort study combined with longitudinal follow-up data. Methods We carried out a gynecologic evaluation, pelvic ultrasound, and laboratory and microbiologic assessment in 19 women with APECED. Retrospective data were collected from previous study visits and hospital records. Results The study subjects' median age was 42.6 years (range, 16.7-65.5). Sixteen patients (84%) had premature ovarian insufficiency, diagnosed at the median age of 16.5 years; 75% of them used currently either combined contraception or hormonal replacement therapy. In 76% of women, the morphology and size of the uterus were determined normal for age, menopausal status, and current hormonal therapy. Fifteen patients (79%) had primary adrenal insufficiency; three of them used dehydroepiandrosterone substitution. All androgen concentrations were under the detection limit in 11 patients (58%). Genital infections were detected in nine patients (47%); most of them were asymptomatic. Gynecologic C. albicans infection was detected in four patients (21%); one of the strains was resistant to azoles. Five patients (26%) had human papillomavirus infection, three of which were high-risk subtypes. Cervical cell atypia was detected in one patient. No correlation between genital infections and anti-cytokine autoantibodies was found. Conclusions Ovarian and adrenal insufficiencies manifested with very low androgen levels in over half of the patients. Asymptomatic genital infections, but not cervical cell atypia, were common in female patients with APECED.
Collapse
Affiliation(s)
- Viivi Saari
- Children’s Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Saila Laakso
- Children’s Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Aila Tiitinen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Outi Mäkitie
- Children’s Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Elina Holopainen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
9
|
Zenewicz LA. IL-22 Binding Protein (IL-22BP) in the Regulation of IL-22 Biology. Front Immunol 2021; 12:766586. [PMID: 34868019 PMCID: PMC8634938 DOI: 10.3389/fimmu.2021.766586] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/25/2021] [Indexed: 01/21/2023] Open
Abstract
Cytokines are powerful mediators of inflammation. Consequently, their potency is regulated in many ways to protect the host. Several cytokines, including IL-22, have coordinating binding proteins or soluble receptors that bind to the cytokine, block the interaction with the cellular receptor, and thus prevent cellular signaling. IL-22 is a critical cytokine in the modulation of tissue responses during inflammation and is highly upregulated in many chronic inflammatory disease patients, including those with psoriasis, rheumatoid arthritis, and inflammatory bowel disease (IBD). In healthy individuals, low levels of IL-22 are secreted by immune cells, mainly in the gastrointestinal (GI) tract. However, much of this IL-22 is likely not biologically active due to the high levels of IL-22 binding protein (IL-22BP) produced by intestinal dendritic cells (DCs). IL-22BP is a soluble receptor homolog that binds to IL-22 with greater affinity than the membrane spanning receptor. Much is known regarding the regulation and function of IL-22 in health and disease. However, less is known about IL-22BP. In this review, we will focus on IL-22BP, including its regulation, role in IL-22 biology and inflammation, and promise as a therapeutic. IL-22 can be protective or pathogenic, depending on the context of inflammation. IL-22BP also has divergent roles. Ongoing and forthcoming studies will expand our knowledge of IL-22BP and IL-22 biology, and suggest that IL-22BP holds promise as a way to regulate IL-22 biology in patients with chronic inflammatory disease.
Collapse
Affiliation(s)
- Lauren A. Zenewicz
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
10
|
Oikonomou V, Break TJ, Gaffen SL, Moutsopoulos NM, Lionakis MS. Infections in the monogenic autoimmune syndrome APECED. Curr Opin Immunol 2021; 72:286-297. [PMID: 34418591 PMCID: PMC8578378 DOI: 10.1016/j.coi.2021.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is caused by mutations in the Autoimmune Regulator (AIRE) gene, which impair the thymic negative selection of self-reactive T-cells and underlie the development of autoimmunity that targets multiple endocrine and non-endocrine tissues. Beyond autoimmunity, APECED features heightened susceptibility to certain specific infections, which is mediated by anti-cytokine autoantibodies and/or T-cell driven autoimmune tissue injury. These include the 'signature' APECED infection chronic mucocutaneous candidiasis (CMC), but also life-threatening coronavirus disease 2019 (COVID-19) pneumonia, bronchiectasis-associated bacterial pneumonia, and sepsis by encapsulated bacteria. Here we discuss the expanding understanding of the immunological mechanisms that contribute to infection susceptibility in this prototypic syndrome of impaired central tolerance, which provide the foundation for devising improved diagnostic and therapeutic strategies for affected patients.
Collapse
Affiliation(s)
- Vasileios Oikonomou
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Timothy J Break
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sarah L Gaffen
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh PA, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
11
|
Break TJ, Oikonomou V, Dutzan N, Desai JV, Swidergall M, Freiwald T, Chauss D, Harrison OJ, Alejo J, Williams DW, Pittaluga S, Lee CCR, Bouladoux N, Swamydas M, Hoffman KW, Greenwell-Wild T, Bruno VM, Rosen LB, Lwin W, Renteria A, Pontejo SM, Shannon JP, Myles IA, Olbrich P, Ferré EMN, Schmitt M, Martin D, Barber DL, Solis NV, Notarangelo LD, Serreze DV, Matsumoto M, Hickman HD, Murphy PM, Anderson MS, Lim JK, Holland SM, Filler SG, Afzali B, Belkaid Y, Moutsopoulos NM, Lionakis MS. Response to Comments on "Aberrant type 1 immunity drives susceptibility to mucosal fungal infections". Science 2021; 373:eabi8835. [PMID: 34529475 PMCID: PMC10120387 DOI: 10.1126/science.abi8835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Puel and Casanova and Kisand et al. challenge our conclusions that interferonopathy and not IL-17/IL-22 autoantibodies promote candidiasis in autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy. We acknowledge that conclusive evidence for causation is difficult to obtain in complex human diseases. However, our studies clearly document interferonopathy driving mucosal candidiasis with intact IL-17/IL-22 responses in Aire-deficient mice, with strong corroborative evidence in patients.
Collapse
Affiliation(s)
- Timothy J. Break
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Vasileios Oikonomou
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nicolas Dutzan
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD, USA
| | - Jigar V. Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Marc Swidergall
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Oliver J. Harrison
- Metaorganism Immunity Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Julie Alejo
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - Drake W. Williams
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - Chyi-Chia R. Lee
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Muthulekha Swamydas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kevin W. Hoffman
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teresa Greenwell-Wild
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD, USA
| | - Vincent M. Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Wint Lwin
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Andy Renteria
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sergio M. Pontejo
- Molecular Signaling Section, Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD, USA
| | - John P. Shannon
- Viral Immunity and Pathogenesis Unit, LCIM, NIAID, NIH, Bethesda, MD, USA
| | - Ian A. Myles
- Epithelial Therapeutics Unit, LCIM, NIAID, NIH, Bethesda, MD, USA
| | - Peter Olbrich
- Immunopathogenesis Section, LCIM, NIAID, NIH, Bethesda, MD, USA
| | - Elise M. N. Ferré
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Monica Schmitt
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, NIDCR, NIH, Bethesda, Maryland, USA
| | | | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Norma V. Solis
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | | | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | | | - Philip M. Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Mark S. Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jean K. Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Scott G. Filler
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Niki M. Moutsopoulos
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
12
|
Kisand K, Meager A, Hayday A, Willcox N. Comment on "Aberrant type 1 immunity drives susceptibility to mucosal fungal infections". Science 2021; 373:eabi6235. [PMID: 34529474 DOI: 10.1126/science.abi6235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kai Kisand
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Anthony Meager
- Regaem Consultants, Whitchurch Gardens, Edgware, Middlesex, UK.,Francis Crick Institute, London, UK
| | - Adrian Hayday
- Regaem Consultants, Whitchurch Gardens, Edgware, Middlesex, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,Francis Crick Institute, London, UK
| | - Nick Willcox
- Francis Crick Institute, London, UK.,Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Peterson P, Kisand K, Kluger N, Ranki A. Loss of AIRE-Mediated Immune Tolerance and the Skin. J Invest Dermatol 2021; 142:760-767. [PMID: 34535292 DOI: 10.1016/j.jid.2021.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
The core function of the immune response is to distinguish between self and foreign. The multiorgan human autoimmune disease, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED/autoimmune polyendocrine syndrome type 1) is an example of what happens in the body when central immune tolerance goes astray. APECED revealed the existence and function of the autoimmune regulator gene, which has a central role in the development of tolerance. The discovery of autoimmune regulator was the start of a new period in immunology and in understanding the role of central and peripheral tolerance, also very relevant to many skin diseases as we highlight in this review.
Collapse
Affiliation(s)
- Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Nicolas Kluger
- Department of Dermatology, Allergology and Venereology, Clinicum, University of Helsinki, and Inflammation Center, Helsinki University Hospital, Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology, Allergology and Venereology, Clinicum, University of Helsinki, and Inflammation Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
14
|
Philippot Q, Casanova JL, Puel A. Candidiasis in patients with APS-1: low IL-17, high IFN-γ, or both? Curr Opin Immunol 2021; 72:318-323. [PMID: 34455138 DOI: 10.1016/j.coi.2021.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/18/2022]
Abstract
Chronic mucocutaneous candidiasis (CMC) is one of the earliest and most frequent clinical manifestations of autosomal recessive autoimmune polyendocrine syndrome type 1 (APS-1), a monogenic inborn error of immunity caused by deleterious variants of the autoimmune regulator (AIRE) gene. APS-1 patients suffer from various autoimmune diseases, due to the defective thymic deletion of autoreactive T cells, and the development of a large range of autoantibodies (auto-Abs) against various tissue antigens, and some cytokines. The mechanisms underlying CMC remained elusive for many years, until the description in 2010 of high serum titers of neutralizing auto-Abs against IL-17A, IL-17F, and/or IL-22, which are present in almost all APS-1 patients. Excessively high mucosal concentrations of IFN-γ were recently proposed as an alternative mechanism for CMC in APS-1.
Collapse
Affiliation(s)
- Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States; Howard Hughes Medical Institute, New York, NY, United States
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
15
|
Hetemäki I, Jian C, Laakso S, Mäkitie O, Pajari AM, de Vos WM, Arstila TP, Salonen A. Fecal Bacteria Implicated in Biofilm Production Are Enriched and Associate to Gastrointestinal Symptoms in Patients With APECED - A Pilot Study. Front Immunol 2021; 12:668219. [PMID: 34367134 PMCID: PMC8339580 DOI: 10.3389/fimmu.2021.668219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022] Open
Abstract
Backgrounds and Aims APECED is a rare autoimmune disease caused by mutations in the Autoimmune Regulator gene. A significant proportion of patients also have gastrointestinal symptoms, including malabsorption, chronic diarrhea, and obstipation. The pathological background of the gastrointestinal symptoms remains incompletely understood and involves multiple factors, with autoimmunity being the most common underlying cause. Patients with APECED have increased immune responses against gut commensals. Our objective was to evaluate whether the intestinal microbiota composition, predicted functions or fungal abundance differ between Finnish patients with APECED and healthy controls, and whether these associate to the patients' clinical phenotype and gastrointestinal symptoms. Methods DNA was isolated from fecal samples from 15 patients with APECED (median age 46.4 years) together with 15 samples from body mass index matched healthy controls. DNA samples were subjected to analysis of the gut microbiota using 16S rRNA gene amplicon sequencing, imputed metagenomics using the PICRUSt2 algorithm, and quantitative PCR for fungi. Extensive correlations of the microbiota with patient characteristics were determined. Results Analysis of gut microbiota indicated that both alpha- and beta-diversity were altered in patients with APECED compared to healthy controls. The fraction of Faecalibacterium was reduced in patients with APECED while that of Atopobium spp. and several gram-negative genera previously implicated in biofilm formation, e.g. Veillonella, Prevotella, Megasphaera and Heamophilus, were increased in parallel to lipopolysaccharide (LPS) synthesis in imputed metagenomics. The differences in gut microbiota were linked to patient characteristics, especially the presence of anti-Saccharomyces cerevisiae antibodies (ASCA) and severity of gastrointestinal symptoms. Conclusions Gut microbiota of patients with APECED is altered and enriched with predominantly gram-negative bacterial taxa that may promote biofilm formation and lead to increased exposure to LPS in the patients. The most pronounced alterations in the microbiota were associated with more severe gastrointestinal symptoms.
Collapse
Affiliation(s)
- Iivo Hetemäki
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Saila Laakso
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Clinical and Molecular Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Outi Mäkitie
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Clinical and Molecular Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anne-Maria Pajari
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Willem M. de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - T. Petteri Arstila
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Ingrosso G, Saldi S, Marani S, Wong AYW, Bertelli M, Aristei C, Zelante T. Breakdown of Symbiosis in Radiation-Induced Oral Mucositis. J Fungi (Basel) 2021; 7:jof7040290. [PMID: 33921294 PMCID: PMC8068946 DOI: 10.3390/jof7040290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 01/06/2023] Open
Abstract
Oral mucositis is an acute side effect of radiation therapy that is especially common with head and neck cancer treatment. In recent years, several studies have revealed the predisposing factors for mucositis, leading to the pre-treatment of patients to deter the development of opportunistic oral fungal infections. Although many clinical protocols already advise the use of probiotics to counteract inflammation and fungal colonization, preclinical studies are needed to better delineate the mechanisms by which a host may acquire benefits via co-evolution with oral microbiota, probiotics, and fungal commensals, such as Candida albicans, especially during acute inflammation. Here, we review the current understanding of radiation therapy-dependent oral mucositis in terms of pathology, prevention, treatment, and related opportunistic infections, with a final focus on the oral microbiome and how it may be important for future therapy.
Collapse
Affiliation(s)
- Gianluca Ingrosso
- Radiation Oncology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (G.I.); (S.M.); (C.A.)
- Radiation Oncology Section, Perugia General Hospital, 06129 Perugia, Italy;
| | - Simonetta Saldi
- Radiation Oncology Section, Perugia General Hospital, 06129 Perugia, Italy;
| | - Simona Marani
- Radiation Oncology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (G.I.); (S.M.); (C.A.)
- Radiation Oncology Section, Perugia General Hospital, 06129 Perugia, Italy;
| | - Alicia Y. W. Wong
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, 141 86 Stockholm, Sweden;
| | | | - Cynthia Aristei
- Radiation Oncology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (G.I.); (S.M.); (C.A.)
- Radiation Oncology Section, Perugia General Hospital, 06129 Perugia, Italy;
| | - Teresa Zelante
- Pathology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
- Correspondence: ; Tel.: +39-075-585-8236
| |
Collapse
|
17
|
Emerging Role for MAIT Cells in Control of Antimicrobial Resistance. Trends Microbiol 2020; 29:504-516. [PMID: 33353796 DOI: 10.1016/j.tim.2020.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance is a serious threat to global public health as antibiotics are losing effectiveness due to rapid development of resistance. The human immune system facilitates control and clearance of resistant bacterial populations during the course of antimicrobial therapy. Here we review current knowledge of mucosa-associated invariant T (MAIT) cells, an arm of the immune system on the border between innate and adaptive, and their critical place in human antibacterial immunity. We propose that MAIT cells play important roles against antimicrobial-resistant infections through their capacity to directly clear multidrug-resistant bacteria and overcome mechanisms of antimicrobial resistance. Finally, we discuss outstanding questions pertinent to the possible advancement of host-directed therapy as an alternative intervention strategy for antimicrobial-resistant bacterial infections.
Collapse
|