1
|
Liu M, Wang Q, Xu W, Wu J, Xu X, Yang H, Li X. Natural products for treating cytokine storm-related diseases: Therapeutic effects and mechanisms. Biomed Pharmacother 2023; 167:115555. [PMID: 37776639 DOI: 10.1016/j.biopha.2023.115555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND A cytokine storm (CS) is a rapidly occurring, complex, and highly lethal systemic acute inflammatory response induced by pathogens and other factors. Currently, no clinical therapeutic drugs are available with a significant effect and minimal side effects. Given the pathogenesis of CS, natural products have become important resources for bioactive agents in the discovery of anti-CS drugs. PURPOSE This study aimed to provide guidance for preventing and treating CS-related diseases by reviewing the natural products identified to inhibit CS in recent years. METHODS A comprehensive literature review was conducted on CS and natural products, utilizing databases such as PubMed and Web of Science. The quality of the studies was evaluated and summarized for further analysis. RESULTS This study summarized more than 30 types of natural products, including 9 classes of flavonoids, phenols, and terpenoids, among others. In vivo and in vitro experiments demonstrated that these natural products could effectively inhibit CS via nuclear factor kappa-B, mitogen-activated protein kinase, and Mammalian target of rapamycin (mTOR) signaling pathways. Moreover, the enzyme inhibition assays revealed that more than 20 chemical components had the potential to inhibit ACE2, 3CL-protease, and papain-like protease activity. The experimental results were obtained using advanced technologies such as biochips and omics. CONCLUSIONS Various natural compounds in traditional Chinese medicine (TCM) extracts could directly or indirectly inhibit CS occurrence, potentially serving as effective drugs for treating CS-related diseases. This study may guide further exploration of the therapeutic effects and biochemical mechanisms of natural products on CS.
Collapse
Affiliation(s)
- Mei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wanai Xu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, China
| | - Jingyu Wu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, China
| | - Xingyue Xu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Wimalawansa SJ. Physiological Basis for Using Vitamin D to Improve Health. Biomedicines 2023; 11:1542. [PMID: 37371637 PMCID: PMC10295227 DOI: 10.3390/biomedicines11061542] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023] Open
Abstract
Vitamin D is essential for life-its sufficiency improves metabolism, hormonal release, immune functions, and maintaining health. Vitamin D deficiency increases the vulnerability and severity of type 2 diabetes, metabolic syndrome, cancer, obesity, and infections. The active enzyme that generates vitamin D [calcitriol: 1,25(OH)2D], CYP27B1 (1α-hydoxylase), and its receptors (VDRs) are distributed ubiquitously in cells. Once calcitriol binds with VDRs, the complexes are translocated to the nucleus and interact with responsive elements, up- or down-regulating the expression of over 1200 genes and modulating metabolic and physiological functions. Administration of vitamin D3 or correct metabolites at proper doses and frequency for longer periods would achieve the intended benefits. While various tissues have different thresholds for 25(OH)D concentrations, levels above 50 ng/mL are necessary to mitigate conditions such as infections/sepsis, cancer, and reduce premature deaths. Cholecalciferol (D3) (not its metabolites) should be used to correct vitamin D deficiency and raise serum 25(OH)D to the target concentration. In contrast, calcifediol [25(OH)D] raises serum 25(OH)D concentrations rapidly and is the agent of choice in emergencies such as infections, for those who are in ICUs, and for insufficient hepatic 25-hydroxylase (CYP2R1) activity. In contrast, calcitriol is necessary to maintain serum-ionized calcium concentration in persons with advanced renal failure and hypoparathyroidism. Calcitriol is, however, ineffective in most other conditions, including infections, and as vitamin D replacement therapy. Considering the high costs and higher incidence of adverse effects due to narrow therapeutic margins (ED50), 1α-vitamin D analogs, such as 1α-(OH)D and 1,25(OH)2D, should not be used for other conditions. Calcifediol analogs cost 20 times more than D3-thus, they are not indicated as a routine vitamin D supplement for hypovitaminosis D, osteoporosis, or renal failure. Healthcare workers should resist accepting inappropriate promotions, such as calcifediol for chronic renal failure and calcitriol for osteoporosis or infections-there is no physiological rationale for doing so. Maintaining the population's vitamin D sufficiency (above 40 ng/mL) with vitamin D3 supplements and/or daily sun exposure is the most cost-effective way to reduce chronic diseases and sepsis, overcome viral epidemics and pandemics, and reduce healthcare costs. Furthermore, vitamin D sufficiency improves overall health (hence reducing absenteeism), reduces the severity of chronic diseases such as metabolic and cardiovascular diseases and cancer, decreases all-cause mortality, and minimizes infection-related complications such as sepsis and COVID-19-related hospitalizations and deaths. Properly using vitamin D is the most cost-effective way to reduce chronic illnesses and healthcare costs: thus, it should be a part of routine clinical care.
Collapse
Affiliation(s)
- Sunil J Wimalawansa
- Medicine, Endocrinology & Nutrition, Cardio Metabolic Institute, (Former) Rutgers University, North Brunswick, NJ 08901, USA
| |
Collapse
|
3
|
Mohammed MA. Fighting cytokine storm and immunomodulatory deficiency: By using natural products therapy up to now. Front Pharmacol 2023; 14:1111329. [PMID: 37124230 PMCID: PMC10134036 DOI: 10.3389/fphar.2023.1111329] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
A novel coronavirus strain (COVID-19) caused severe illness and mortality worldwide from 31 December 2019 to 21 March 2023. As of this writing, 761,071,826 million cases have been diagnosed worldwide, with 6,879,677 million deaths accorded by WHO organization and has spread to 228 countries. The number of deaths is closely connected to the growth of innate immune cells in the lungs, mainly macrophages, which generate inflammatory cytokines (especially IL-6 and IL-1β) that induce "cytokine storm syndrome" (CSS), multi-organ failure, and death. We focus on promising natural products and their biologically active chemical constituents as potential phytopharmaceuticals that target virus-induced pro-inflammatory cytokines. Successful therapy for this condition is currently rare, and the introduction of an effective vaccine might take months. Blocking viral entrance and replication and regulating humoral and cellular immunity in the uninfected population are the most often employed treatment approaches for viral infections. Unfortunately, no presently FDA-approved medicine can prevent or reduce SARS-CoV-2 access and reproduction. Until now, the most important element in disease severity has been the host's immune response activation or suppression. Several medicines have been adapted for COVID-19 patients, including arbidol, favipiravir, ribavirin, lopinavir, ritonavir, hydroxychloroquine, chloroquine, dexamethasone, and anti-inflammatory pharmaceutical drugs, such as tocilizumab, glucocorticoids, anakinra (IL-1β cytokine inhibition), and siltuximab (IL-6 cytokine inhibition). However, these synthetic medications and therapies have several side effects, including heart failure, permanent retinal damage in the case of hydroxyl-chloroquine, and liver destruction in the case of remdesivir. This review summarizes four strategies for fighting cytokine storms and immunomodulatory deficiency induced by COVID-19 using natural product therapy as a potential therapeutic measure to control cytokine storms.
Collapse
Affiliation(s)
- Mona A. Mohammed
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
4
|
Niculae CM, Hristea A, Moroti R. Mechanisms of COVID-19 Associated Pulmonary Thrombosis: A Narrative Review. Biomedicines 2023; 11:929. [PMID: 36979908 PMCID: PMC10045826 DOI: 10.3390/biomedicines11030929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
COVID-19, the infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is frequently associated with pulmonary thrombotic events, especially in hospitalized patients. Severe SARS-CoV-2 infection is characterized by a proinflammatory state and an associated disbalance in hemostasis. Immune pathology analysis supports the inflammatory nature of pulmonary arterial thrombi composed of white blood cells, especially neutrophils, CD3+ and CD20+ lymphocytes, fibrin, red blood cells, and platelets. Immune cells, cytokines, chemokines, and the complement system are key drivers of immunothrombosis, as they induce the damage of endothelial cells and initiate proinflammatory and procoagulant positive feedback loops. Neutrophil extracellular traps induced by COVID-19-associated "cytokine storm", platelets, red blood cells, and coagulation pathways close the inflammation-endotheliopathy-thrombosis axis, contributing to SARS-CoV-2-associated pulmonary thrombotic events. The hypothesis of immunothrombosis is also supported by the minor role of venous thromboembolism with chest CT imaging data showing peripheral blood clots associated with inflammatory lesions and the high incidence of thrombotic events despite routine thromboprophylaxis. Understanding the complex mechanisms behind COVID-19-induced pulmonary thrombosis will lead to future combination therapies for hospitalized patients with severe disease that would target the crossroads of inflammatory and coagulation pathways.
Collapse
Affiliation(s)
- Cristian-Mihail Niculae
- Infectious Diseases Department, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (A.H.); (R.M.)
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| | - Adriana Hristea
- Infectious Diseases Department, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (A.H.); (R.M.)
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| | - Ruxandra Moroti
- Infectious Diseases Department, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (A.H.); (R.M.)
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| |
Collapse
|
5
|
He X, Yin J, Yu M, Qiu J, Wang A, Wang H, He X, Wu X. Identification and validation of potential hub genes in rheumatoid arthritis by bioinformatics analysis. Am J Transl Res 2022; 14:6751-6762. [PMID: 36247278 PMCID: PMC9556438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is considered to be a chronic immune disease pathologically characterized by synovial inflammation and bone destruction. At present, the potential pathogenesis of RA is still unclear. Hub genes are recognized to play a pivotal role in the occurrence and progression of RA. METHODS Firstly, we attempted to screen hub genes that are associated with RA, to clarify the underlying pathological mechanisms of RA, and to offer potential treatment methods for RA. We acquired these datasets (GSE12021, GSE55235, and GSE55457) of RA patients and healthy samples from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were recognized via R software. Then, Gene ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were utilized to deeply explore the underlying biological functions and pathways closely associated with RA. In addition, a protein-protein interaction (PPI) network was built to further evaluate and screen for hub genes. Finally, on the basis of the results of PPI analysis, we confirmed the mRNA expression levels of five hub genes in the synovial tissue of rats modeled with RA. RESULTS In the human microarray datasets, LCK, JAK2, SOCS3, STAT1, and EGFR were identified as hub genes associated with RA by bioinformatics analysis. Furthermore, we verified the differential expression levels of hub genes in rat synovial tissues via qRT-PCR (P < 0.05). CONCLUSIONS Our findings suggest that the hub genes LCK, JAK2, SOCS3, STAT1, and EGFR might have vital roles in the progression of RA and may offer novel therapeutic treatments for RA.
Collapse
Affiliation(s)
- Xinling He
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou, Sichuan, China
| | - Ji Yin
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou, Sichuan, China
| | - Mingfang Yu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou, Sichuan, China
- The Traditional Chinese Medicine Hospital of LuzhouLuzhou, Sichuan, China
| | - Jiao Qiu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou, Sichuan, China
| | - Aiyang Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou, Sichuan, China
| | - Haoyu Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou, Sichuan, China
| | - Xueyi He
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou, Sichuan, China
| | - Xiao Wu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou, Sichuan, China
| |
Collapse
|
6
|
Dimiati H, Widasari N. COVID-19 and Thrombosis Complication in Children. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Since it was discovered in Wuhan in December 2019, most studies on COVID-19 have been centered on symptomatic adults. An expanded pro-inflammatory cytokine reaction, abnormal clot formation, overactive platelets, and hypercoagulable state are among the well-known clinical characteristics of endothelial dysfunction that may arise in patients with COVID-19. These conditions can lead to venous thromboembolism, arterial thrombosis, and pulmonary embolism. To date, the predominance of thromboembolic complications in children infected with severe acute respiratory syndrome coronavirus 2 has not been fully documented, and there is no explicit recommendation for the prevention of thrombosis in children.
Collapse
|
7
|
Yeh JJ, Hung TW, Lin CL, Chen TT, Liw PX, Yu YL, Kao CH. Colchicine Is a Weapon for Managing the Heart Disease Among Interstitial Lung Disease With Viral Infection: Have We Found the Holy Grail? Front Cardiovasc Med 2022; 9:925211. [PMID: 35837610 PMCID: PMC9273766 DOI: 10.3389/fcvm.2022.925211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThis study investigated the effect of colchicine use on the risks of heart disease (HD), pericarditis, endocarditis, myocarditis, cardiomyopathy, cardiac arrhythmia, and cardiac failure in patients having interstitial lung disease (ILD) with virus infection (ILD cohort).MethodsWe retrospectively enrolled ILD cohort between 2000 and 2013 from the Longitudinal Health Insurance Database and divided them into colchicine users (n = 12,253) and colchicine non-users (n = 12,253) through propensity score matching. The event of interest was the diagnosis of HD. The incidence of HD was analyzed using multivariate Cox proportional hazards models between colchicine users and the comparison cohort after adjustment for age, sex, medication, comorbidities, and index date based on the time-dependent analysis.ResultsColchicine users had a significantly lower risk of HD (aHR = 0.87, 95% confidence interval (CI]) = 0.82–0.92) than did the colchicine non-user. For colchicine non-users as the reference, the aHR (95% CI) of the patients who received colchicine of 2–7, 8–30, 31–150, and > 150 days were 0.89 (0.81–0.98), 0.84 (0.76–0.94), 090 (0.80–0.99), and 0.83 (0.74–0.93), respectively; regardless of duration use, the lower risk of HD persisted in colchicine users. The cumulative incidence of HD in colchicine users was significantly lower than that in the colchicine non-users (log-rank p < 0.001).ConclusionThe addition of short-term or long-term colchicine to standard medical therapy may have benefits to prevent the HD among the ILD patients concurrent with a virus infection or comorbidities even in elderly patients.
Collapse
Affiliation(s)
- Jun-Jun Yeh
- Department of Family Medicine, Geriatric Medicine, Chest Medicine and Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Tuey-Wen Hung
- Department of Family Medicine and Geriatric Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Cheng-Li Lin
- College of Medicine, China Medical University, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Tse Chen
- Department of Family Medicine and Geriatric Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Pei-Xuan Liw
- Department of Family Medicine and Geriatric Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Ya-Lun Yu
- Department of Family Medicine and Geriatric Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Nuclear Medicine and Positron Emission Tomography (PET) Center, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Chia-Hung Kao, ,
| |
Collapse
|
8
|
Maideen NMP, Balasubramaniam R, Manavalan G, Balasubramanian K, Nivedhitha S, Thirumal M, Kumar S V. An Insight of Clinical Evidences of Ayurveda Interventions in the Management of COVID-19 Patients. Infect Disord Drug Targets 2022; 22:74-82. [PMID: 35319399 DOI: 10.2174/1871526522666220321152504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/06/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) caused Coronavirus disease 2019 (COVID-19) and the patients with COVID-19 might be managed with traditional medicine like Ayurveda alone or in combination with standard allopathic treatment as Ayurveda is one of the oldest traditional medicinal systems followed by millions around the globe. METHODS The literature was searched in databases such as LitCOVID, Google Scholar, Science Direct, EBSCO, Scopus, Web of science, EMBASE, and reference lists to identify articles relevant to the use of Ayurvedic medicines in the management of COVID-19. RESULTS Several clinical studies have determined the efficacy of Ayurvedic medicines and formulations in the management of patients with COVID-19. CONCLUSION The Ayurvedic medicines and formulations having antiviral, antioxidant, anti-inflammatory, and immunomodulatory properties could be used along with standard allopathic medicines to assist in the earlier clearance of virus, speedy recovery of patients with COVID-19, faster discharge from hospitals, and the prevention of further deterioration.
Collapse
Affiliation(s)
| | | | - Gobinath Manavalan
- Department of Pharmaceutical Chemistry, Ratnam Institute of Pharmacy, Nellore, AP, India
| | | | - Nivedhitha S
- Department of Pharmacognosy, Ratnam Institute of Pharmacy, Nellore, AP, India
| | - Thirumal M
- Department of Pharmacognosy, SRM College of Pharmacy, Chennai, TN, India
| | - Vasanth Kumar S
- Department of Pharmaceutics, KK College of Pharmacy, Gerugambakkam, TN, India
| |
Collapse
|
9
|
Aptamers-Diagnostic and Therapeutic Solution in SARS-CoV-2. Int J Mol Sci 2022; 23:ijms23031412. [PMID: 35163338 PMCID: PMC8836149 DOI: 10.3390/ijms23031412] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
The SARS-CoV-2 virus is currently the most serious challenge to global public health. Its emergence has severely disrupted the functioning of health services and the economic and social situation worldwide. Therefore, new diagnostic and therapeutic tools are urgently needed to allow for the early detection of the SARS-CoV-2 virus and appropriate treatment, which is crucial for the effective control of the COVID-19 disease. The ideal solution seems to be the use of aptamers—short fragments of nucleic acids, DNA or RNA—that can bind selected proteins with high specificity and affinity. They can be used in methods that base the reading of the test result on fluorescence phenomena, chemiluminescence, and electrochemical changes. Exploiting the properties of aptamers will enable the introduction of rapid, sensitive, specific, and low-cost tests for the routine diagnosis of SARS-CoV-2. Aptamers are excellent candidates for the development of point-of-care diagnostic devices and are potential therapeutic tools for the treatment of COVID-19. They can effectively block coronavirus activity in multiple fields by binding viral proteins and acting as carriers of therapeutic substances. In this review, we present recent developments in the design of various types of aptasensors to detect and treat the SARS-CoV-2 infection.
Collapse
|
10
|
Shahzamani K, Mahmoudian F, Ahangarzadeh S, Ranjbar MM, Beikmohammadi L, Bahrami S, Mohammadi E, Esfandyari S, Alibakhshi A, Javanmard SH. Vaccine design and delivery approaches for COVID-19. Int Immunopharmacol 2021; 100:108086. [PMID: 34454291 PMCID: PMC8380485 DOI: 10.1016/j.intimp.2021.108086] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022]
Abstract
COVID-19 is still a deadly disease that remains yet a major challenge for humans. In recent times, many large pharmaceutical and non-pharmaceutical companies have invested a lot of time and cost in fighting this disease. In this regard, today's scientific knowledge shows that designing and producing an effective vaccine is the best possible way to diminish the disease burden and dissemination or even eradicate the disease. Due to the urgent need, many vaccines are now available earlier than scheduled. New technologies have also helped to produce much more effective vaccines, although the potential side effects must be taken into account. Thus, in this review, the types of vaccines and vaccine designs made against COVID-19, the vaccination programs, as well as the delivery methods and molecules that have been used to deliver some vaccines that need a carrier will be described.
Collapse
Affiliation(s)
- Kiana Shahzamani
- Isfahan Gastroenterology and Hepatology Research Center (lGHRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Mahmoudian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Leila Beikmohammadi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Samira Bahrami
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elmira Mohammadi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran; Core Research Facilities, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Esfandyari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Alibakhshi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
11
|
Vázquez-Jiménez A, Avila-Ponce De León UE, Matadamas-Guzman M, Muciño-Olmos EA, Martínez-López YE, Escobedo-Tapia T, Resendis-Antonio O. On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers. Front Immunol 2021; 12:705646. [PMID: 34603282 PMCID: PMC8481922 DOI: 10.3389/fimmu.2021.705646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 is a disease with a spectrum of clinical responses ranging from moderate to critical. To study and control its effects, a large number of researchers are focused on two substantial aims. On the one hand, the discovery of diverse biomarkers to classify and potentially anticipate the disease severity of patients. These biomarkers could serve as a medical criterion to prioritize attention to those patients with higher prone to severe responses. On the other hand, understanding how the immune system orchestrates its responses in this spectrum of disease severities is a fundamental issue required to design new and optimized therapeutic strategies. In this work, using single-cell RNAseq of bronchoalveolar lavage fluid of nine patients with COVID-19 and three healthy controls, we contribute to both aspects. First, we presented computational supervised machine-learning models with high accuracy in classifying the disease severity (moderate and severe) in patients with COVID-19 starting from single-cell data from bronchoalveolar lavage fluid. Second, we identified regulatory mechanisms from the heterogeneous cell populations in the lungs microenvironment that correlated with different clinical responses. Given the results, patients with moderate COVID-19 symptoms showed an activation/inactivation profile for their analyzed cells leading to a sequential and innocuous immune response. In comparison, severe patients might be promoting cytotoxic and pro-inflammatory responses in a systemic fashion involving epithelial and immune cells without the possibility to develop viral clearance and immune memory. Consequently, we present an in-depth landscape analysis of how transcriptional factors and pathways from these heterogeneous populations can regulate their expression to promote or restrain an effective immune response directly linked to the patients prognosis.
Collapse
Affiliation(s)
- Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Ugo Enrique Avila-Ponce De León
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biológicas, UNAM, Mexico City, Mexico
| | - Meztli Matadamas-Guzman
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Erick Andrés Muciño-Olmos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Yoscelina E. Martínez-López
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Médicas y de la Salud, UNAM, Mexico City, Mexico
| | - Thelma Escobedo-Tapia
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, UNAM, Mexico City, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación, UNAM, Mexico City, Mexico
| |
Collapse
|
12
|
Farzan N, Vahabi S, Hashemi Madani SS, Farzan B. Evaluating characteristics associated with the mortality among invasive ventilation COIVD -19 patients. Ann Med Surg (Lond) 2021; 69:102832. [PMID: 34512967 PMCID: PMC8423777 DOI: 10.1016/j.amsu.2021.102832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is associated acute respiratory distress syndrome that leads to intensive care unit admission and subsequent need of invasive ventilation. The aim of this study is to evaluate mortality rate and associated parameters among COVID 19 patients under invasive ventilation. METHODS In this retrospective studies, COVID 19 patients referred to our center we evaluated. The data regarding demographic characteristics, comorbidities, biochemical and radiographic findings, need of invasive ventilation and mortality were collected and recorded for all the patients. Statistical analysis was performed to evaluate the risk of mortality in invasive ventilation patients relative to each risk factor or paraclinical or clinical feature. RESULTS Among patients included in the study, 63 patients underwent invasive ventilation where 53 (84%) of these died. The mortality rate among invasive ventilation was significantly associated with advanced age, p = 0.006 whereas it was not significantly associated with smoking, gender, c-reactive protein, platelet count, hypertension, lymphopenia, leukopenia, creatinine kinase, addiction, blood urea nitrogen to creatinine ratio, malignancy, cough, fever, nausea, chronic obstructive pulmonary disease and erythrocyte sedimentation rate. CONCLUSIONS The findings of our study indicate that advanced age can increase the risk of mortality in COVID 19 patients under invasive ventilation whereas, mortality among invasive ventilation patients is high, irrespective of their characteristic. Guidelines are therefore, required regarding the use of invasive ventilation among these patients.
Collapse
Affiliation(s)
- Nina Farzan
- Department of Emergency Medicine, Clinical Research Development Center, Qom University of Medical Sciences, Qom, Iran
| | - Sepideh Vahabi
- Department of Anesthesiology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shima Sadat Hashemi Madani
- Emergency Medicine Department, Student Research Development Center, Qom University of Medical Sciences, Qom, Iran
| | - Behrooz Farzan
- Department of Anesthesiology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
13
|
Zareie A, Soleimani D, Askari G, Jamialahmadi T, Guest PC, Bagherniya M, Sahebkar A. Cinnamon: A Promising Natural Product Against COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1327:191-195. [PMID: 34279839 DOI: 10.1007/978-3-030-71697-4_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
COVID-19 is a pandemic and acute respiratory disease. Every day, all around the world, researchers are endeavoring to find effective or potential adjuvant therapies. Studies illustrate that essential oils from cinnamon and derivatives such as cinnamaldehyde and cinnamic acid possess numerous biological activities. In this paper, we have reviewed the possible mechanisms of cinnamon on the inflammatory cascade as a potential alternative therapy to decrease oxidative stress and inflammation in COVID-19 patients.
Collapse
Affiliation(s)
- Azadeh Zareie
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Soleimani
- Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Askari
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran. .,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran. .,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland. .,Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
14
|
Ratcliffe NA, Castro HC, Paixão IC, Mello CB. COVID-19: Innovative Antiviral Drugs Required for Long-Term Prevention and Control of Coronavirus Diseases. Curr Med Chem 2021; 28:3554-3567. [PMID: 33109030 DOI: 10.2174/0929867327666201027152400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic has had global catastrophic effects on financial markets, jobs and peoples' lives. Future prevention/therapy of COVID-19 will rely heavily on vaccine development and attempts to repurpose drugs previously used for other microbial diseases. Little attention, however, has been paid to possible difficulties and delays in producing these drugs. Sometimes, unfortunately, these endeavours have been politicized and if these two approaches founder in any way or resistance subsequently occurs, then the world will be left once again to the mercy of these devastating viral pandemics. This review, therefore, briefly outlines the challenges in the development of vaccines and repurposed antiviral drugs, which will hopefully lead to new treatments for COVID-19. It also concludes, however, that the armoury against COVID-19 urgently needs to be enlarging due to the potential severity and likely future reoccurrence of new emergent viruses. Therefore, serious consideration is given to alternative ways of preventing and controlling these pathogens that have received scant attention from the media in the present pandemic. The development of innovative, broad-spectrum, antiviral drugs from natural products is therefore particularly advocated with the challenges involved by new regulatory and scientific initiatives.
Collapse
Affiliation(s)
- Norman A Ratcliffe
- Programa de Pos-Graduacao em Ciencias e Biotecnologia, IB, Universidade Federal Fluminense, Niteroi, Brazil
| | - Helena C Castro
- Programa de Pos-Graduacao em Ciencias e Biotecnologia, IB, Universidade Federal Fluminense, Niteroi, Brazil
| | - Izabel C Paixão
- Programa de Pos-Graduacao em Ciencias e Biotecnologia, IB, Universidade Federal Fluminense, Niteroi, Brazil
| | - Cicero B Mello
- Programa de Pos-Graduacao em Ciencias e Biotecnologia, IB, Universidade Federal Fluminense, Niteroi, Brazil
| |
Collapse
|
15
|
Peter AE, Sandeep BV, Rao BG, Kalpana VL. Calming the Storm: Natural Immunosuppressants as Adjuvants to Target the Cytokine Storm in COVID-19. Front Pharmacol 2021; 11:583777. [PMID: 33708109 PMCID: PMC7941276 DOI: 10.3389/fphar.2020.583777] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has caused a global health crisis, with no specific antiviral to treat the infection and the absence of a suitable vaccine to prevent it. While some individuals contracting the SARS-CoV-2 infection exhibit a well coordinated immune response and recover, others display a dysfunctional immune response leading to serious complications including ARDS, sepsis, MOF; associated with morbidity and mortality. Studies revealed that in patients with a dysfunctional immune response, there is a massive cytokine and chemokine release, referred to as the 'cytokine storm'. As a result, such patients exhibit higher levels of pro-inflammatory/modulatory cytokines and chemokines like TNFα, INFγ, IL-1β, IL-2, IL-4, IL-6, IL-7, IL-9, IL-10, IL-12, IL-13, IL-17, G-CSF, GM-CSF, MCSF, HGF and chemokines CXCL8, MCP1, IP10, MIP1α and MIP1β. Targeting this cytokine storm is a novel, promising treatment strategy to alleviate this excess influx of cytokines observed at the site of infection and their subsequent disastrous consequences. Natural immunosuppressant compounds, derived from plant sources like curcumin, luteolin, piperine, resveratrol are known to inhibit the production and release of pro-inflammatory cytokines and chemokines. This inhibitory effect is mediated by altering signal pathways like NF-κB, JAK/STAT, MAPK/ERK that are involved in the production and release of cytokines and chemokines. The use of these natural immunosuppressants as adjuvants to ameliorate the cytokine storm; in combination with antiviral agents and other treatment drugs currently in use presents a novel, synergistic approach for the treatment and effective cure of COVID-19. This review briefly describes the immunopathogenesis of the cytokine storm observed in SARS-CoV-2 infection and details some natural immunosuppressants that can be used as adjuvants in treating COVID-19 disease.
Collapse
Affiliation(s)
- Angela E. Peter
- Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam, India
| | - B. V. Sandeep
- Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam, India
| | - B. Ganga Rao
- Andhra University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - V. Lakshmi Kalpana
- Department of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam, India
| |
Collapse
|
16
|
Cavalli G, Colafrancesco S, Emmi G, Imazio M, Lopalco G, Maggio MC, Sota J, Dinarello CA. Interleukin 1α: a comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun Rev 2021; 20:102763. [PMID: 33482337 DOI: 10.1016/j.autrev.2021.102763] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
The interleukin (IL)-1 family member IL-1α is a ubiquitous and pivotal pro-inflammatory cytokine. The IL-1α precursor is constitutively present in nearly all cell types in health, but is released upon necrotic cell death as a bioactive mediator. IL-1α is also expressed by infiltrating myeloid cells within injured tissues. The cytokine binds the IL-1 receptor 1 (IL-1R1), as does IL-1β, and induces the same pro-inflammatory effects. Being a bioactive precursor released upon tissue damage and necrotic cell death, IL-1α is central to the pathogenesis of numerous conditions characterized by organ or tissue inflammation. These include conditions affecting the lung and respiratory tract, dermatoses and inflammatory skin disorders, systemic sclerosis, myocarditis, pericarditis, myocardial infarction, coronary artery disease, inflammatory thrombosis, as well as complex multifactorial conditions such as COVID-19, vasculitis and Kawasaki disease, Behcet's syndrome, Sjogren Syndrome, and cancer. This review illustrates the clinical relevance of IL-1α to the pathogenesis of inflammatory diseases, as well as the rationale for the targeted inhibition of this cytokine for treatment of these conditions. Three biologics are available to reduce the activities of IL-1α; the monoclonal antibody bermekimab, the IL-1 soluble receptor rilonacept, and the IL-1 receptor antagonist anakinra. These advances in mechanistic understanding and therapeutic management make it incumbent on physicians to be aware of IL-1α and of the opportunity for therapeutic inhibition of this cytokine in a broad spectrum of diseases.
Collapse
Affiliation(s)
- Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy, and Rare Diseases, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy.
| | - Serena Colafrancesco
- Dipartimento of Clinical Sciences (Internal Medicine, Anesthesia and Resuscitation, and Cardiology), Rheumatology Unit, Sapienza University of Rome, Rome, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Firenze, Italy
| | - Massimo Imazio
- University Division of Cardiology, Cardiovascular and Throracic Department, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Giuseppe Lopalco
- Department of Emergency and Organ Transplantation, Rheumatology Unit, University of Bari, Bari, Italy
| | - Maria Cristina Maggio
- Department of Health Promotion, Maternal and Infantile Care, Department of Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Jurgen Sota
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
17
|
Simonis A, Theobald SJ, Fätkenheuer G, Rybniker J, Malin JJ. A comparative analysis of remdesivir and other repurposed antivirals against SARS-CoV-2. EMBO Mol Med 2021; 13:e13105. [PMID: 33015938 PMCID: PMC7646058 DOI: 10.15252/emmm.202013105] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
The ongoing SARS-CoV-2 pandemic stresses the need for effective antiviral drugs that can quickly be applied in order to reduce morbidity, mortality, and ideally viral transmission. By repurposing of broadly active antiviral drugs and compounds that are known to inhibit viral replication of related viruses, several advances could be made in the development of treatment strategies against COVID-19. The nucleoside analog remdesivir, which is known for its potent in vitro activity against Ebolavirus and other RNA viruses, was recently shown to reduce the time to recovery in patients with severe COVID-19. It is to date the only approved antiviral for treating COVID-19. Here, we provide a mechanism and evidence-based comparative review of remdesivir and other repurposed drugs with proven in vitro activity against SARS-CoV-2.
Collapse
Affiliation(s)
- Alexander Simonis
- Department I of Internal MedicineDivision of Infectious DiseasesUniversity of CologneCologneGermany
- Faculty of MedicineCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Sebastian J Theobald
- Department I of Internal MedicineDivision of Infectious DiseasesUniversity of CologneCologneGermany
- Faculty of MedicineCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Gerd Fätkenheuer
- Department I of Internal MedicineDivision of Infectious DiseasesUniversity of CologneCologneGermany
| | - Jan Rybniker
- Department I of Internal MedicineDivision of Infectious DiseasesUniversity of CologneCologneGermany
- Faculty of MedicineCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- German Center for Infection Research (DZIF)Partner Site Bonn‐CologneCologneGermany
| | - Jakob J Malin
- Department I of Internal MedicineDivision of Infectious DiseasesUniversity of CologneCologneGermany
- Faculty of MedicineCenter for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| |
Collapse
|
18
|
Islam ABMMK, Khan MAAK, Ahmed R, Hossain MS, Kabir SMT, Islam MS, Siddiki AMAMZ. Transcriptome of nasopharyngeal samples from COVID-19 patients and a comparative analysis with other SARS-CoV-2 infection models reveal disparate host responses against SARS-CoV-2. J Transl Med 2021; 19:32. [PMID: 33413422 PMCID: PMC7790360 DOI: 10.1186/s12967-020-02695-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although it is becoming evident that individual's immune system has a decisive influence on SARS-CoV-2 disease progression, pathogenesis is largely unknown. In this study, we aimed to profile the host transcriptome of COVID-19 patients from nasopharyngeal samples along with virus genomic features isolated from respective host, and a comparative analyses of differential host responses in various SARS-CoV-2 infection systems. RESULTS Unique and rare missense mutations in 3C-like protease observed in all of our reported isolates. Functional enrichment analyses exhibited that the host induced responses are mediated by innate immunity, interferon, and cytokine stimulation. Surprisingly, induction of apoptosis, phagosome, antigen presentation, hypoxia response was lacking within these patients. Upregulation of immune and cytokine signaling genes such as CCL4, TNFA, IL6, IL1A, CCL2, CXCL2, IFN, and CCR1 were observed in lungs. Lungs lacked the overexpression of ACE2 as suspected, however, high ACE2 but low DPP4 expression was observed in nasopharyngeal cells. Interestingly, directly or indirectly, viral proteins specially non-structural protein mediated overexpression of integrins such as ITGAV, ITGA6, ITGB7, ITGB3, ITGA2B, ITGA5, ITGA6, ITGA9, ITGA4, ITGAE, and ITGA8 in lungs compared to nasopharyngeal samples suggesting the possible way of enhanced invasion. Furthermore, we found comparatively highly expressed transcription factors such as CBP, CEBP, NFAT, ATF3, GATA6, HDAC2, TCF12 which have pivotal roles in lung injury. CONCLUSIONS Even though this study incorporates a limited number of cases, our data will provide valuable insights in developing potential studies to elucidate the differential host responses on the viral pathogenesis in COVID-19, and incorporation of further data will enrich the search of an effective therapeutics.
Collapse
Affiliation(s)
| | | | - Rasel Ahmed
- Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh
| | - Md Sabbir Hossain
- Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh
| | - Shah Md Tamim Kabir
- Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh
| | - Md Shahidul Islam
- Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh
| | - A M A M Zonaed Siddiki
- Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University (CVASU), Khulshi, Chittagong, Bangladesh
| |
Collapse
|
19
|
Lee C, Choi WJ. Overview of COVID-19 inflammatory pathogenesis from the therapeutic perspective. Arch Pharm Res 2021; 44:99-116. [PMID: 33398692 PMCID: PMC7781412 DOI: 10.1007/s12272-020-01301-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023]
Abstract
The novel beta coronavirus (SARS-CoV-2, designated as COVID-19) that is responsible for severe acute respiratory syndrome has devastated the global economy and health care system. Since COVID-19 changed the definition of “normal” in ordinary life around the world, the development of effective therapeutics and preventive measures is desperately needed to fight SARS-CoV-2 infection and restore normalcy. A clear understanding of COVID-19 pathogenesis is crucial in providing the scientific rationale necessary to develop anti-COVID19 drugs and vaccines. According to the most recently published literature, COVID-19 pathogenesis was postulated to occur in three sequential phases: pulmonary, proinflammatory, and prothrombic. Herein, virus-host interactions, potential pathogenic mechanisms, and clinical manifestations are described for each phase. Additionally, based on this pathogenesis model, various therapeutic strategies involving current clinical trials are presented with an explanation of their modes of action and example drugs. This review is a thorough, updated summary of COVID-19 pathogenesis and the therapeutic options available for this disease.
Collapse
Affiliation(s)
- Choongho Lee
- College of Pharmacy, Dongguk University, Goyang, 10326, Republic of Korea.
| | - Won Jun Choi
- College of Pharmacy, Dongguk University, Goyang, 10326, Republic of Korea
| |
Collapse
|
20
|
Bigdelian H, Sedighi M, Sabri MR, Dehghan B, Mahdavi C, Ahmadi A, Ghaderian M, Rahimi H, Sadeghizadeh A, Emadoleslami M, Mostafavi SN, Saleh R, Javadi N, Derakhshan M, Pourmoghaddas Z, Sarfarazi Moghadam S. Case Report: Acute Intracardiac Thrombosis in Children With Coronavirus Disease 2019 (COVID-19). Front Pediatr 2021; 9:656720. [PMID: 34249807 PMCID: PMC8267003 DOI: 10.3389/fped.2021.656720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/25/2021] [Indexed: 01/22/2023] Open
Abstract
We herein describe a case series of children with SARS-CoV-2 infection (COVID-19) complicated with acute intracardiac thrombosis. The diagnosis of COVID-19 was confirmed through the reverse transcription-polymerase chain reaction (RT-PCR). Transthoracic echocardiography of patients revealed large intracardiac mobile masses resected successfully via cardiac surgery. The underlying mechanisms of this thrombus in the COVID-19 infection may be attributed to the hypercoagulation and inflammatory state of the disease incurred by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Hamid Bigdelian
- Department of Cardiovascular Surgery, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran.,Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Sedighi
- Department of Anesthesiology and Pain Medicine, Pain Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sabri
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahar Dehghan
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Chehreh Mahdavi
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Ahmadi
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Ghaderian
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Rahimi
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Sadeghizadeh
- Department of Pediatrics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Monirsadat Emadoleslami
- Department of Pediatrics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Nasser Mostafavi
- Department of Pediatrics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rana Saleh
- Department of Pediatrics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Niloofar Javadi
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Derakhshan
- Department of Pathology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Zahra Pourmoghaddas
- Department of Pediatrics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Sarfarazi Moghadam
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Cavalli G, Farina N, Campochiaro C, De Luca G, Della-Torre E, Tomelleri A, Dagna L. Repurposing of Biologic and Targeted Synthetic Anti-Rheumatic Drugs in COVID-19 and Hyper-Inflammation: A Comprehensive Review of Available and Emerging Evidence at the Peak of the Pandemic. Front Pharmacol 2020; 11:598308. [PMID: 33442386 PMCID: PMC7798432 DOI: 10.3389/fphar.2020.598308] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a condition caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Severe cases of COVID-19 result in acute respiratory distress syndrome and death. A detrimental, hyper-inflammatory immune response with excess release of cytokines is the main driver of disease development and of tissue damage in these patients. Thus, repurposing of biologic agents and other pharmacological inhibitors of cytokines used for the treatment of various inflammatory conditions emerged as a logical therapeutic strategy to quench inflammation and improve the clinical outcome of COVID-19 patients. Evaluated agents include the interleukin one receptor blocker anakinra, monoclonal antibodies inhibiting IL-6 tocilizumab and sarilumab, monoclonal antibodies inhibiting granulocyte-monocyte colony stimulating factor and tumor necrosis factor, and Janus kinase inhibitors. In this review, we discuss the efficacy and safety of these therapeutic options based on direct personal experience and on published evidence from observational studies and randomized clinical trials.
Collapse
Affiliation(s)
- Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Nicola Farina
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giacomo De Luca
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Emanuel Della-Torre
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Tomelleri
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
22
|
Cavalli G, Farina N, Campochiaro C, Baldissera E, Dagna L. Current treatment options and safety considerations when treating adult-onset Still's disease. Expert Opin Drug Saf 2020; 19:1549-1558. [PMID: 33078630 DOI: 10.1080/14740338.2020.1839411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Adult onset Still disease (AOSD) is a rare systemic inflammatory condition. The clinical spectrum of this disease ranges from self-limiting forms with mild symptoms to life-threatening cases. Glucocorticoids and non-steroidal anti-inflammatory drugs (NSAIDs) represent the first line of therapy for AOSD, with add-on therapy with second-line drug reserved to steroid-dependent patients and in life-threatening cases. Currently, early treatment with conventional disease modifying anti-rheumatic drugs (DMARDs) and biologic agents blocking causal cytokines is advocated in patients with severe and recalcitrant clinical manifestations. AREAS COVERED This review analyzes the available controlled evidence and observational data regarding the efficacy and safety of conventional and biological pharmacological agents in the treatment of AOSD. EXPERT OPINION Non-steroidal anti-inflammatory drugs (NSAIDs) and glucocorticoids are effective in controlling clinical manifestations in the majority of AOSD patients. Conventional DMARDs can be 20 effective in some severe and steroid-dependent cases of AOSD; however, anti-cytokine agents represent an effective and overall more suitable alternative in this specific subset of patients. IL-1 and IL-6 blockade are effective in treating systemic and articular inflammation of AOSD patients. IL-1 blockade also has an excellent safety profile and therefore represent the first choice of biologic treatment in this clinical scenario.
Collapse
Affiliation(s)
- Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital , Milan, Italy.,Unitof Immunology, Rheumatology, Allergy and Rare Diseases, Vita-Salute San Raffaele University , Milan, Italy
| | - Nicola Farina
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital , Milan, Italy.,Unitof Immunology, Rheumatology, Allergy and Rare Diseases, Vita-Salute San Raffaele University , Milan, Italy
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital , Milan, Italy.,Unitof Immunology, Rheumatology, Allergy and Rare Diseases, Vita-Salute San Raffaele University , Milan, Italy
| | - Elena Baldissera
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital , Milan, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital , Milan, Italy.,Unitof Immunology, Rheumatology, Allergy and Rare Diseases, Vita-Salute San Raffaele University , Milan, Italy
| |
Collapse
|
23
|
Skinner HD. Mining the past to treat the present, ever mindful of the future: Low-dose radiotherapy and COVID-19 pneumonia. Cancer 2020; 126:5017-5021. [PMID: 32985700 PMCID: PMC7536983 DOI: 10.1002/cncr.33201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
This editorial discusses an interim analysis of the clinical trial by Hess et al. The trial examines the use of low‐dose radiotherapy in the treatment of patients with coronavirus disease 2019 (COVID‐19) pneumonia.
Collapse
Affiliation(s)
- Heath D Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
24
|
Altmayer V, Saheb S, Rohaut B, Marois C, Cao A, Gallo A, Le Guennec L, Weiss N, Demeret S. Therapeutic plasma exchange in a critically ill Covid-19 patient. J Clin Apher 2020; 36:179-182. [PMID: 32875601 DOI: 10.1002/jca.21830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Here we describe the effect of therapeutic plasma exchange with 5% albumin as sole replacement solution for the management of Covid-19. A 74-year-old man was admitted for severe Covid-19 acute respiratory distress syndrome. Based on the growing body of evidence that cytokine release syndrome, and especially interleukin-6, plays a key role in critically ill Covid-19 patients, we decided to implement therapeutic plasma exchange as a rescue therapy. The patient's clinical status rapidly improved, and biological records showed convincing results of decrease in interleukin-6 and inflammatory parameters under treatment. This case presents a proof-of-concept for the use of therapeutic plasma exchange with 5% albumin as sole replacement solution in a critically ill Covid-19 patient with cytokine release syndrome. This could constitute a major benefit in terms of security compared to long-lasting immunosuppressive monoclonal antibodies, or to therapeutic plasma exchange with plasma as replacement fluid. Hence, we think that a further evaluation of risk-benefit balance of this therapy in severe cases of Covid-19 should rapidly be undertaken.
Collapse
Affiliation(s)
- Victor Altmayer
- Département de Neurologie, Unité de Médecine Intensive Réanimation Neurologique, APHP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Samir Saheb
- Service d'hématologie, Unité d'hémobiothérapie, APHP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Benjamin Rohaut
- Département de Neurologie, Unité de Médecine Intensive Réanimation Neurologique, APHP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Inserm U1127, Paris, France.,CNRS UMR, Paris, France.,Sorbonne Université, Paris, France
| | - Clémence Marois
- Département de Neurologie, Unité de Médecine Intensive Réanimation Neurologique, APHP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Albert Cao
- Département de Neurologie, Unité de Médecine Intensive Réanimation Neurologique, APHP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Antonio Gallo
- Service d'hématologie, Unité d'hémobiothérapie, APHP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Loïc Le Guennec
- Département de Neurologie, Unité de Médecine Intensive Réanimation Neurologique, APHP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Paris, France
| | - Nicolas Weiss
- Département de Neurologie, Unité de Médecine Intensive Réanimation Neurologique, APHP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de recherche Saint-Antoine, Maladies métaboliques, biliaires et fibro-inflammatoire du foie, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Sophie Demeret
- Département de Neurologie, Unité de Médecine Intensive Réanimation Neurologique, APHP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
25
|
Piyush R, Rajarshi K, Chatterjee A, Khan R, Ray S. Nucleic acid-based therapy for coronavirus disease 2019. Heliyon 2020; 6:e05007. [PMID: 32984620 PMCID: PMC7501848 DOI: 10.1016/j.heliyon.2020.e05007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/02/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), the pandemic that originated in China has already spread into more than 190 countries, resulting in huge loss of human life and many more are at the stake of losing it; if not intervened with the best therapeutics to contain the disease. For that aspect, various scientific groups are continuously involved in the development of an effective line of treatment to control the novel coronavirus from spreading rapidly. Worldwide scientists are evaluating various biomolecules and synthetic inhibitors against COVID-19; where the nucleic acid-based molecules may be considered as potential drug candidates. These molecules have been proved potentially effective against SARS-CoV, which shares high sequence similarity with SARS-CoV-2. Recent advancements in nucleic acid-based therapeutics are helpful in targeted drug delivery, safely and effectively. The use of nucleic acid-based molecules also known to regulate the level of gene expression inside the target cells. This review mainly focuses on various nucleic acid-based biologically active molecules and their therapeutic potentials in developing vaccines for SARS-CoV-2.
Collapse
Affiliation(s)
- Ravikant Piyush
- School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Keshav Rajarshi
- School of Community Science and Technology (SOCSAT) Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, West Bengal 711103, India
| | - Aroni Chatterjee
- Indian Council of Medical Research (ICMR)-Virus Research Laboratory, NICED, Kolkata, India
| | - Rajni Khan
- Motihari College of Engineering, Bariyarpur, Motihari, NH 28A, Furshatpur, Motihari, Bihar 845401, India
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University Motihari, 845401, India
| |
Collapse
|