1
|
Meng L, Yang Y, He S, Chen H, Zhan Y, Yang R, Li Z, Zhu J, Zhou J, Li Y, Xie L, Chen G, Zheng S, Yao X, Dong R. Single-cell sequencing of the vermiform appendix during development identifies transcriptional relationships with appendicitis in preschool children. BMC Med 2024; 22:383. [PMID: 39267041 PMCID: PMC11395239 DOI: 10.1186/s12916-024-03611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The development of the human vermiform appendix at the cellular level, as well as its function, is not well understood. Appendicitis in preschool children, although uncommon, is associated with a high perforation rate and increased morbidity. METHODS We performed single-cell RNA sequencing (scRNA-seq) on the human appendix during fetal and pediatric stages as well as preschool-age inflammatory appendices. Transcriptional features of each cell compartment were discussed in the developing appendix. Cellular interactions and differentiation trajectories were also investigated. We compared scRNA-seq profiles from preschool appendicitis to those of matched healthy controls to reveal disease-associated changes. Bulk transcriptomic data, immunohistochemistry, and real-time quantitative PCR were used to validate the findings. RESULTS Our analysis identified 76 cell types in total and described the cellular atlas of the developing appendix. We discovered the potential role of the BMP signaling pathway in appendiceal epithelium development and identified HOXC8 and PITX2 as the specific regulons of appendix goblet cells. Higher pericyte coverage, endothelial angiogenesis, and goblet mucus scores together with lower epithelial and endothelial tight junction scores were found in the preschool appendix, which possibly contribute to the clinical features of preschool appendicitis. Preschool appendicitis scRNA-seq profiles revealed that the interleukin-17 signaling pathway may participate in the inflammation process. CONCLUSIONS Our study provides new insights into the development of the appendix and deepens the understanding of appendicitis in preschool children.
Collapse
Affiliation(s)
- Lingdu Meng
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Yifan Yang
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Shiwei He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian, China
| | - Huifen Chen
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Yong Zhan
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Ran Yang
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Zifeng Li
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Jiajie Zhu
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Jin Zhou
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Yi Li
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Lulu Xie
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Gong Chen
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Shan Zheng
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China.
| | - Xiaoying Yao
- Family Planning Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| | - Rui Dong
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China.
| |
Collapse
|
2
|
The SMML, Schreurs RRCE, Drewniak A, Bakx R, de Meij TGJ, Budding AE, Poort L, Cense HA, Heij HA, van Heurn LWE, Gorter RR, Bunders MJ. Enhanced Th17 responses in the appendix of children with complex compared to simple appendicitis are associated with microbial dysbiosis. Front Immunol 2024; 14:1258363. [PMID: 38239362 PMCID: PMC10794624 DOI: 10.3389/fimmu.2023.1258363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/17/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Appendicitis is one of the most common causes of acute abdominal surgery in children. The clinical course of appendicitis ranges from simple to complex appendicitis. The mechanisms underlying the heterogeneity of appendicitis in children remain largely unclear. Dysregulated T cell responses play an important role in several inflammatory diseases of the intestine, but the extend of T cell dysregulation in appendicitis in children is less well known. Methods To characterize appendiceal T cells in simple and complex appendicitis we performed in-depth immunophenotyping of appendiceal-derived T cells by flow cytometry and correlated this to appendiceal-derived microbiota analyses of the same patient. Results Appendix samples of twenty children with appendicitis (n = 8 simple, n = 12 complex) were collected. T cells in complex appendicitis displayed an increased differentiated phenotype compared to simple appendicitis, including a loss of both CD27 and CD28 by CD4+ T cells and to a lesser extent by CD8+ T cells. Frequencies of phenotypic tissue-resident memory CD69+CD4+ T cells and CD69+CD8+ T cells were decreased in children with complex compared to simple appendicitis, indicating disruption of local tissue-resident immune responses. In line with the increased differentiated phenotype, cytokine production of in particular IL-17A by CD4+ T cells was increased in children with complex compared to simple appendicitis. Furthermore, frequencies of IL-17A+ CD4+ T cells correlated with a dysregulation of the appendiceal microbiota in children with complex appendicitis. Conclusion In conclusion, disruption of local T cell responses, and enhanced pro-inflammatory Th17 responses correlating to changes in the appendiceal microbiota were observed in children with complex compared to simple appendicitis. Further studies are needed to decipher the role of a dysregulated network of microbiota and Th17 cells in the development of complex appendicitis in children.
Collapse
Affiliation(s)
- Sarah-May M. L. The
- Department of Paediatric Surgery, Emma Children’s Hospital, Amsterdam University Medical Center (UMC), University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Renée R. C. E. Schreurs
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Paediatrics, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Agata Drewniak
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Roel Bakx
- Department of Paediatric Surgery, Emma Children’s Hospital, Amsterdam University Medical Center (UMC), University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
- Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam, Netherlands
| | - Tim G. J. de Meij
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
- Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam, Netherlands
- Department of Paediatric Gastroenterology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | | | - Huib A. Cense
- Department of Surgery, Red Cross Hospital, Beverwijk, Netherlands
| | - Hugo A. Heij
- Department of Paediatric Surgery, Emma Children’s Hospital, Amsterdam University Medical Center (UMC), University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - L. W. Ernest van Heurn
- Department of Paediatric Surgery, Emma Children’s Hospital, Amsterdam University Medical Center (UMC), University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
- Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam, Netherlands
| | - Ramon R. Gorter
- Department of Paediatric Surgery, Emma Children’s Hospital, Amsterdam University Medical Center (UMC), University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
- Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam, Netherlands
| | - Madeleine J. Bunders
- Leibniz Institute of Virology, Hamburg, Germany
- Third Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Xue S, Abdullahi R, Wu N, Zheng J, Su M, Xu M. Gut microecological regulation on bronchiolitis and asthma in children: A review. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:975-985. [PMID: 37105551 PMCID: PMC10542989 DOI: 10.1111/crj.13622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/22/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Asthma and bronchiolitis in children are considered common clinical problems associated with gut microbiota. However, the exact relationship between gut microbiota and the above-mentioned diseases remains unclear. Here, we discussed recent advances in understanding the potential mechanism underlying immune regulation of gut microbiota on asthma and bronchiolitis in children as well as the role of the gut-lung axis. METHODS We retrieved and assessed all relevant original articles related to gut microbiota, airway inflammation-induced wheezing in children, and gut-lung axis studies from databases that have been published so far, including PubMed/MEDLINE, Scopus, Google Scholar, China National Knowledge Infrastructure (CNKI) and the Wanfang Database. RESULTS The infant period is critical for the development of gut microbiota, which can be influenced by gestational age, delivery mode, antibiotic exposure and feeding mode. The gut microbiota in children with asthma and bronchiolitis is significantly distinct from those in healthy subjects. Gut microbiota dysbiosis is implicated in asthma and bronchiolitis in children. The presence of intestinal disturbances in lung diseases highlights the importance of the gut-lung axis. CONCLUSION Gut microbiota dysbiosis potentially increases the risk of asthma and bronchiolitis in children. Moreover, a deeper understanding of the gut-lung axis with regard to the gut microbiota of children with respiratory diseases could contribute to clinical practice for pulmonary diseases.
Collapse
Affiliation(s)
- Sichen Xue
- Department of PediatricsThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Department of Pediatric Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Rukkaiya Abdullahi
- Department of Pediatric Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Naisheng Wu
- Department of PediatricsThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Jishan Zheng
- Department of PediatricsThe Ningbo Women and Children's HospitalNingboChina
| | - Miaoshang Su
- Department of Pediatric Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Manhuan Xu
- College of Laboratory Medicine and Life ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
4
|
Boicean A, Bratu D, Fleaca SR, Vasile G, Shelly L, Birsan S, Bacila C, Hasegan A. Exploring the Potential of Fecal Microbiota Transplantation as a Therapy in Tuberculosis and Inflammatory Bowel Disease. Pathogens 2023; 12:1149. [PMID: 37764957 PMCID: PMC10535282 DOI: 10.3390/pathogens12091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
This review explores the potential benefits of fecal microbiota transplantation (FMT) as an adjunct treatment in tuberculosis (TB), drawing parallels from its efficacy in inflammatory bowel disease (IBD). FMT has shown promise in restoring the gut microbial balance and modulating immune responses in IBD patients. Considering the similarities in immunomodulation and dysbiosis between IBD and TB, this review hypothesizes that FMT may offer therapeutic benefits as an adjunct therapy in TB. Methods: We conducted a systematic review of the existing literature on FMT in IBD and TB, highlighting the mechanisms and potential implications of FMT in the therapeutic management of both conditions. The findings contribute to understanding FMT's potential role in TB treatment and underscore the necessity for future research in this direction to fully leverage its clinical applications. Conclusion: The integration of FMT into the comprehensive management of TB could potentially enhance treatment outcomes, reduce drug resistance, and mitigate the side effects of conventional therapies. Future research endeavors should focus on well-designed clinical trials to develop guidelines concerning the safety and short- and long-term benefits of FMT in TB patients, as well as to assess potential risks.
Collapse
Affiliation(s)
- Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Dan Bratu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Sorin Radu Fleaca
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Gligor Vasile
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (G.V.); (L.S.)
| | - Leeb Shelly
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (G.V.); (L.S.)
| | - Sabrina Birsan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Ciprian Bacila
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Adrian Hasegan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| |
Collapse
|
5
|
Enjeti A, Sathkumara HD, Kupz A. Impact of the gut-lung axis on tuberculosis susceptibility and progression. Front Microbiol 2023; 14:1209932. [PMID: 37485512 PMCID: PMC10358729 DOI: 10.3389/fmicb.2023.1209932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Tuberculosis (TB) has remained at the forefront of the global infectious disease burden for centuries. Concerted global efforts to eliminate TB have been hindered by the complexity of Mycobacterium tuberculosis (Mtb), the emergence of antibiotic resistant Mtb strains and the recent impact of the ongoing pandemic of coronavirus disease 2019 (COVID19). Examination of the immunomodulatory role of gastrointestinal microbiota presents a new direction for TB research. The gut microbiome is well-established as a critical modulator of early immune development and inflammatory responses in humans. Recent studies in animal models have further substantiated the existence of the 'gut-lung axis', where distal gastrointestinal commensals modulate lung immune function. This gut microbiome-lung immune crosstalk is postulated to have an important correlation with the pathophysiology of TB. Further evaluation of this gut immunomodulation in TB may provide a novel avenue for the exploration of therapeutic targets. This mini-review assesses the proposed mechanisms by which the gut-lung axis impacts TB susceptibility and progression. It also examines the impact of current anti-TB therapy on the gut microbiome and the effects of gut dysbiosis on treatment outcomes. Finally, it investigates new therapeutic targets, particularly the use of probiotics in treatment of antibiotic resistant TB and informs future developments in the field.
Collapse
Affiliation(s)
- Aditya Enjeti
- College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Harindra Darshana Sathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
6
|
Salehian S, Fleming L, Saglani S, Custovic A. Phenotype and endotype based treatment of preschool wheeze. Expert Rev Respir Med 2023; 17:853-864. [PMID: 37873657 DOI: 10.1080/17476348.2023.2271832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Preschool wheeze (PSW) is a significant public health issue, with a high presentation rate to emergency departments, recurrent symptoms, and severe exacerbations. A heterogenous condition, PSW comprises several phenotypes that may relate to a range of pathobiological mechanisms. However, treating PSW remains largely generalized to inhaled corticosteroids and a short acting beta agonist, guided by symptom-based labels that often do not reflect underlying pathways of disease. AREAS COVERED We review the observable features and characteristics used to ascribe phenotypes in children with PSW and available pathobiological evidence to identify possible endotypes. These are considered in the context of treatment options and future research directions. The role of machine learning (ML) and modern analytical techniques to identify patterns of disease that distinguish phenotypes is also explored. EXPERT OPINION Distinct clusters (phenotypes) of severe PSW are characterized by different underlying mechanisms, some shared and some unique. ML-based methodologies applied to clinical, biomarker, and environmental data can help design tools to differentiate children with PSW that continues into adulthood, from those in whom wheezing resolves, identifying mechanisms underpinning persistence and resolution. This may help identify novel therapeutic targets, inform mechanistic studies, and serve as a foundation for stratification in future interventional therapeutic trials.
Collapse
Affiliation(s)
- Sormeh Salehian
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| | - Louise Fleming
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| | - Adnan Custovic
- NIHR Imperial Biomedical Research Centre (BRC), London, UK
| |
Collapse
|
7
|
Wilburn AN, McAlees JW, Haslam DB, Graspeuntner S, Schmudde I, Laumonnier Y, Rupp J, Chougnet CA, Deshmukh H, Zacharias WJ, König P, Lewkowich IP. Delayed Microbial Maturation Durably Exacerbates Th17-driven Asthma in Mice. Am J Respir Cell Mol Biol 2023; 68:498-510. [PMID: 36622830 PMCID: PMC10174167 DOI: 10.1165/rcmb.2022-0367oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/09/2023] [Indexed: 01/10/2023] Open
Abstract
Microbial maturation disrupted by early-life dysbiosis has been linked with increased asthma risk and severity; however, the immunological mechanisms underpinning this connection are poorly understood. We sought to understand how delaying microbial maturation drives worsened asthma outcomes later in life and its long-term durability. Drinking water was supplemented with antibiotics on Postnatal Days 10-20. To assess the immediate and long-term effects of delaying microbial maturation on experimental asthma, we initiated house dust mite exposure when bacterial diversity was either at a minimum or had recovered. Airway hyperresponsiveness, histology, pulmonary leukocyte recruitment, flow cytometric analysis of cytokine-producing lymphocytes, and assessment of serum IgG1 (Immunoglobulin G1) and IgE (Immunoglobulin E) concentrations were performed. RT-PCR was used to measure IL-13 (Interleukin 13)-induced gene expression in sequentially sorted mesenchymal, epithelial, endothelial, and leukocyte cell populations from the lung. Delayed microbial maturation increased allergen-driven airway hyperresponsiveness and Th17 frequency compared with allergen-exposed control mice, even when allergen exposure began after bacterial diversity recovered. Blockade of IL-17A (Interleukin 17A) reversed the airway hyperresponsiveness phenotype. In addition, allergen exposure in animals that experienced delayed microbial maturation showed signs of synergistic signaling between IL-13 and IL-17A in the pulmonary mesenchymal compartment. Delaying microbial maturation in neonates promotes the development of more severe asthma by increasing Th17 frequency, even if allergen exposure is initiated weeks after microbial diversity is normalized. In addition, IL-17A-aggravated asthma is associated with increased expression of IL-13-induced genes in mesenchymal, but not epithelial cells.
Collapse
Affiliation(s)
| | | | | | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology
- German Center for Infection Research (DZIF), partner-site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany; and
| | - Inken Schmudde
- Institute of Anatomy, and
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology
- German Center for Infection Research (DZIF), partner-site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany; and
| | - Claire A. Chougnet
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Immunobiology
| | - Hitesh Deshmukh
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - William J. Zacharias
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Peter König
- Institute of Anatomy, and
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Ian P. Lewkowich
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Immunobiology
| |
Collapse
|
8
|
The gut microbiome and allergic rhinitis; refocusing on the role of probiotics as a treatment option. Eur Arch Otorhinolaryngol 2023; 280:511-517. [PMID: 36239785 DOI: 10.1007/s00405-022-07694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/05/2022] [Indexed: 01/21/2023]
Abstract
INTRODUCTION In the industrialized world, the incidence of Allergic rhinitis (AR), often known as hay fever, and other allergic disorders continues to grow. Recent studies have suggested environmental variables such as bacterial exposures as a potential reason for the rising prevalence of AR. With breakthroughs in our abilities to research the complex crosstalk of bacteria, the gut microbiomes' effect on human development, nutritional requirements, and immunologic disorders has become apparent METHODS: Three search engines, including Scopus, Medline, and PubMed, were searched for related published articles up to and including 1st July 2022. RESULTS Several studies have investigated links between commensal microbiome alterations and the development of atopic diseases such as asthma and AR. Besides, studies using probiotics for treating AR suggest that they may alleviate symptoms and improve patient's quality of life. CONCLUSION Research on probiotics and synbiotics for AR suggests they may improve symptoms, quality of life, and laboratory indicators. A better treatment strategy with advantages for patients may be achieved using probiotics, but only if more detailed in vitro and in vivo investigations are conducted with more participants.
Collapse
|
9
|
Romero-Figueroa MDS, Ramírez-Durán N, Montiel-Jarquín AJ, Horta-Baas G. Gut-joint axis: Gut dysbiosis can contribute to the onset of rheumatoid arthritis via multiple pathways. Front Cell Infect Microbiol 2023; 13:1092118. [PMID: 36779190 PMCID: PMC9911673 DOI: 10.3389/fcimb.2023.1092118] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/14/2023] Open
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disease characterized by loss of immune tolerance and chronic inflammation. It is pathogenesis complex and includes interaction between genetic and environmental factors. Current evidence supports the hypothesis that gut dysbiosis may play the role of environmental triggers of arthritis in animals and humans. Progress in the understanding of the gut microbiome and RA. has been remarkable in the last decade. In vitro and in vivo experiments revealed that gut dysbiosis could shape the immune system and cause persistent immune inflammatory responses. Furthermore, gut dysbiosis could induce alterations in intestinal permeability, which have been found to predate arthritis onset. In contrast, metabolites derived from the intestinal microbiota have an immunomodulatory and anti-inflammatory effect. However, the precise underlying mechanisms by which gut dysbiosis induces the development of arthritis remain elusive. This review aimed to highlight the mechanisms by which gut dysbiosis could contribute to the pathogenesis of RA. The overall data showed that gut dysbiosis could contribute to RA pathogenesis by multiple pathways, including alterations in gut barrier function, molecular mimicry, gut dysbiosis influences the activation and the differentiation of innate and acquired immune cells, cross-talk between gut microbiota-derived metabolites and immune cells, and alterations in the microenvironment. The relative weight of each of these mechanisms in RA pathogenesis remains uncertain. Recent studies showed a substantial role for gut microbiota-derived metabolites pathway, especially butyrate, in the RA pathogenesis.
Collapse
Affiliation(s)
| | - Ninfa Ramírez-Durán
- Laboratory of Medical and Environmental Microbiology, Department of Medicine, Autonomous University of the State of Mexico, Toluca, Mexico
| | - Alvaro José Montiel-Jarquín
- Dirección de Educación e Investigación en Salud, Hospital de Especialidades de Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Gabriel Horta-Baas
- Rheumatology Service, Internal Medicine Department, Instituto Mexicano del Seguro Social, Merida, Mexico
| |
Collapse
|
10
|
Zhang Z, Wang X, Li F. An exploration of alginate oligosaccharides modulating intestinal inflammatory networks via gut microbiota. Front Microbiol 2023; 14:1072151. [PMID: 36778853 PMCID: PMC9909292 DOI: 10.3389/fmicb.2023.1072151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Alginate oligosaccharides (AOS) can be obtained by acidolysis and enzymatic hydrolysis. The products obtained by different methods have different structures and physiological functions. AOS have received increasing interest because of their many health-promoting properties. AOS have been reported to exert protective roles for intestinal homeostasis by modulating gut microbiota, which is closely associated with intestinal inflammation, gut barrier strength, bacterial infection, tissue injury, and biological activities. However, the roles of AOS in intestinal inflammation network remain not well understood. A review of published reports may help us to establish the linkage that AOS may improve intestinal inflammation network by affecting T helper type 1 (Th1) Th2, Th9, Th17, Th22 and regulatory T (Treg) cells, and their secreted cytokines [the hub genes of protein-protein interaction networks include interleukin-1 beta (IL-1β), IL-2, IL-4, IL-6, IL-10 and tumor necrosis factor alpha (TNF-α)] via the regulation of probiotics. The potential functional roles of molecular mechanisms are explored in this study. However, the exact mechanism for the direct interaction between AOS and probiotics or pathogenic bacteria is not yet fully understood. AOS receptors may be located on the plasma membrane of gut microbiota and will be a key solution to address such an important issue. The present paper provides a better understanding of the protecting functions of AOS on intestinal inflammation and immunity.
Collapse
Affiliation(s)
- Zhikai Zhang
- Wuzhoufeng Agricultural Science and Technology Co., Ltd., Yantai, China
| | | | | |
Collapse
|
11
|
He Q, Shi Y, Tang Q, Xing H, Zhang H, Wang M, Chen X. Herbal medicine in the treatment of COVID-19 based on the gut-lung axis. ACUPUNCTURE AND HERBAL MEDICINE 2022; 2:172-183. [PMID: 37808350 PMCID: PMC9746256 DOI: 10.1097/hm9.0000000000000038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/12/2022] [Indexed: 08/18/2023]
Abstract
Respiratory symptoms are most commonly experienced by patients in the early stages of novel coronavirus disease 2019 (COVID-19). However, with a better understanding of COVID-19, gastrointestinal symptoms such as diarrhea, nausea, and vomiting have attracted increasing attention. The gastrointestinal tract may be a target organ of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The intestinal microecological balance is a crucial factor for homeostasis, including immunity and inflammation, which are closely related to COVID-19. Herbal medicine can restore intestinal function and regulate the gut flora structure. Herbal medicine has a long history of treating lung diseases from the perspective of the intestine, which is called the gut-lung axis. The physiological activities of guts and lungs influence each other through intestinal flora, microflora metabolites, and mucosal immunity. Microecological modulators are included in the diagnosis and treatment protocols for COVID-19. In this review, we demonstrate the relationship between COVID-19 and the gut, gut-lung axis, and the role of herbal medicine in treating respiratory diseases originating from the intestinal tract. It is expected that the significance of herbal medicine in treating respiratory diseases from the perspective of the intestinal tract could lead to new ideas and methods for treatment. Graphical abstract http://links.lww.com/AHM/A33.
Collapse
Affiliation(s)
- Qiaoyu He
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yumeng Shi
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Tang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mei Wang
- LU-European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University/SU Biomedicine, Leiden, Netherlands
| | - Xiaopeng Chen
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
12
|
Tuazon JA, Kilburg-Basnyat B, Oldfield LM, Wiscovitch-Russo R, Dunigan-Russell K, Fedulov AV, Oestreich KJ, Gowdy KM. Emerging Insights into the Impact of Air Pollution on Immune-Mediated Asthma Pathogenesis. Curr Allergy Asthma Rep 2022; 22:77-92. [PMID: 35394608 PMCID: PMC9246904 DOI: 10.1007/s11882-022-01034-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Increases in ambient levels of air pollutants have been linked to lung inflammation and remodeling, processes that lead to the development and exacerbation of allergic asthma. Conventional research has focused on the role of CD4+ T helper 2 (TH2) cells in the pathogenesis of air pollution-induced asthma. However, much work in the past decade has uncovered an array of air pollution-induced non-TH2 immune mechanisms that contribute to allergic airway inflammation and disease. RECENT FINDINGS In this article, we review current research demonstrating the connection between common air pollutants and their downstream effects on non-TH2 immune responses emerging as key players in asthma, including PRRs, ILCs, and non-TH2 T cell subsets. We also discuss the proposed mechanisms by which air pollution increases immune-mediated asthma risk, including pre-existing genetic risk, epigenetic alterations in immune cells, and perturbation of the composition and function of the lung and gut microbiomes. Together, these studies reveal the multifaceted impacts of various air pollutants on innate and adaptive immune functions via genetic, epigenetic, and microbiome-based mechanisms that facilitate the induction and worsening of asthma.
Collapse
Affiliation(s)
- J A Tuazon
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, 43210, USA
| | - B Kilburg-Basnyat
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, 27858, USA
| | - L M Oldfield
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
- Department of Synthetic Genomics, Replay Holdings LLC, San Diego, 92121, USA
| | - R Wiscovitch-Russo
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| | - K Dunigan-Russell
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, 43210, USA
| | - A V Fedulov
- Division of Surgical Research, Department of Surgery, Alpert Medical School, Brown University, Rhode Island Hospital, Providence, RI, 02903, USA
| | - K J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, The James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - K M Gowdy
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, 43210, USA.
| |
Collapse
|
13
|
Primary Prevention of Pediatric Asthma through Nutritional Interventions. Nutrients 2022; 14:nu14040754. [PMID: 35215404 PMCID: PMC8875095 DOI: 10.3390/nu14040754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Asthma is the most common chronic non-communicable disease in children, the pathogenesis of which involves several factors. The increasing burden of asthma worldwide has emphasized the need to identify the modifiable factors associated with the development of the disease. Recent research has focused on the relationship between dietary factors during the first 1000 days of life (including pregnancy)—when the immune system is particularly vulnerable to exogenous interferences—and allergic outcomes in children. Specific nutrients have been analyzed as potential targets for the prevention of childhood wheeze and asthma. Recent randomized controlled trials show that vitamin D supplementation during pregnancy, using higher doses than currently recommended, may be protective against early childhood wheezing but not school-age asthma. Omega-3 fatty acid supplementation during pregnancy and infancy may be associated with a reduced risk of childhood wheeze, although the evidence is conflicting. Data from observational studies suggest that some dietary patterns during pregnancy and infancy might also influence the risk of childhood asthma. However, the quality of the available evidence is insufficient to allow recommendations regarding dietary changes for the prevention of pediatric asthma. This review outlines the available high-quality evidence on the role of prenatal and perinatal nutritional interventions for the primary prevention of asthma in children and attempts to address unmet areas for future research in pediatric asthma prevention.
Collapse
|
14
|
Comberiati P, Di Cicco M, Paravati F, Pelosi U, Di Gangi A, Arasi S, Barni S, Caimmi D, Mastrorilli C, Licari A, Chiera F. The Role of Gut and Lung Microbiota in Susceptibility to Tuberculosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212220. [PMID: 34831976 PMCID: PMC8623605 DOI: 10.3390/ijerph182212220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Tuberculosis is one of the most common infectious diseases and infectious causes of death worldwide. Over the last decades, significant research effort has been directed towards defining the understanding of the pathogenesis of tuberculosis to improve diagnosis and therapeutic options. Emerging scientific evidence indicates a possible role of the human microbiota in the pathophysiology of tuberculosis, response to therapy, clinical outcomes, and post-treatment outcomes. Although human studies on the role of the microbiota in tuberculosis are limited, published data in recent years, both from experimental and clinical studies, suggest that a better understanding of the gut-lung microbiome axis and microbiome-immune crosstalk could shed light on the specific pathogenetic mechanisms of Mycobacterium tuberculosis infection and identify new therapeutic targets. In this review, we address the current knowledge of the host immune responses against Mycobacterium tuberculosis infection, the emerging evidence on how gut and lung microbiota can modulate susceptibility to tuberculosis, the available studies on the possible use of probiotic-antibiotic combination therapy for the treatment of tuberculosis, and the knowledge gaps and future research priorities in this field.
Collapse
Affiliation(s)
- Pasquale Comberiati
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.D.C.); (A.D.G.)
- Allergology and Pulmonology Section, Pediatrics Unit, Pisa University Hospital, 56126 Pisa, Italy
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Correspondence:
| | - Maria Di Cicco
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.D.C.); (A.D.G.)
- Allergology and Pulmonology Section, Pediatrics Unit, Pisa University Hospital, 56126 Pisa, Italy
| | - Francesco Paravati
- Department of Pediatrics, San Giovanni di Dio Hospital, 88900 Crotone, Italy; (F.P.); (F.C.)
| | - Umberto Pelosi
- Pediatric Unit, Santa Barbara Hospital, 09016 Iglesias, Italy;
| | - Alessandro Di Gangi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.D.C.); (A.D.G.)
- Allergology and Pulmonology Section, Pediatrics Unit, Pisa University Hospital, 56126 Pisa, Italy
| | - Stefania Arasi
- Area of Translational Research in Pediatric Specialities, Allergy Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Simona Barni
- Allergic Unit, Department of Pediatric, Meyer Children’s Hospital, 50139 Florence, Italy;
| | - Davide Caimmi
- Allergy Unit, CHU de Montpellier, Université de Montpellier, 34295 Montpellier, France;
- IDESP, UMR A11, Université de Montpellier, 34093 Montpellier, France
| | - Carla Mastrorilli
- Department of Pediatrics, University Hospital Consortium Corporation Polyclinic of Bari, Pediatric Hospital Giovanni XXIII, 70124 Bari, Italy;
| | - Amelia Licari
- Pediatric Clinic, Pediatrics Department, Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Fernanda Chiera
- Department of Pediatrics, San Giovanni di Dio Hospital, 88900 Crotone, Italy; (F.P.); (F.C.)
| |
Collapse
|
15
|
Fanfaret IS, Boda D, Ion LM, Hosseyni D, Leru P, Ali S, Corcea S, Bumbacea R. Probiotics and prebiotics in atopic dermatitis: Pros and cons (Review). Exp Ther Med 2021; 22:1376. [PMID: 34650624 PMCID: PMC8506923 DOI: 10.3892/etm.2021.10811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
Atopic dermatitis (AD) represents a chronic inflammatory skin condition in which the skin barrier is impaired; thus, the permeability is increased. Hence, there is a greater risk of allergic sensitization, as well as a higher pH and lower protection against resident microbes. Since this condition is currently increasing among children, it requires further study, as little is known regarding the pathogenesis that makes the skin prone to chronic relapsing inflammation. Trying to standardize the data regarding the use of prebiotics and probiotics in AD, we encountered tremendous variability in the literature data. Literature abounds in conflicting data: studies regarding prophylactic and therapeutic applications, different types of strains and dosages, applications in young children up to 5 years of age and above, usage of probiotics alone, prebiotics alone or synbiotics combined. There are also conflicting data regarding the outcome of these studies; some confirming a positive effect of prebiotics, probiotics or synbiotics and some showing no efficacy at all. The articles were divided into those assessing probiotics or prebiotics alone and a combination of the two, with studies showing a positive effect and studies proving no efficacy at all. We tried to critically analyze those articles showing weak and strong points. In summary, the most studied probiotics were the strains of Lactobacilli and Bifidobacteria. The Severity Scoring of Atopic Dermatitis (SCORAD) index was used to measure the efficacy of the treatment. Most studies compared their results with a placebo group and the efficacy when seen in moderate to severe forms of AD in patients with other allergic diseases present. However, the results are difficult to interpret, as in many studies the authors suggest that the disease may have a tendency to improve in time in some groups of patients.
Collapse
Affiliation(s)
| | - Daniel Boda
- Dermatology Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Pediatrics Department, 'Ponderas' Academic Hospital, 014142 Bucharest, Romania
| | - Laura Mihaela Ion
- Pediatrics Department, 'Ponderas' Academic Hospital, 014142 Bucharest, Romania
| | - Daniela Hosseyni
- Public Health Department, Harvard T.H. Chan School of Public Health, ECPE, PPCR Program, Boston, MA 02115, USA
| | - Poliana Leru
- Internal Medicine, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Selda Ali
- Allergy Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Allergy Department, 'Dr. Carol Davila' Clinical Nephrology Hospital, 010731 Bucharest, Romania
| | - Sabina Corcea
- Allergy Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Roxana Bumbacea
- Allergy Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Allergy Department, 'Dr. Carol Davila' Clinical Nephrology Hospital, 010731 Bucharest, Romania
| |
Collapse
|
16
|
Lactic Acid Bacteria Ameliorate Diesel Exhaust Particulate Matter-Exacerbated Allergic Inflammation in a Murine Model of Asthma. Life (Basel) 2020; 10:life10110260. [PMID: 33126646 PMCID: PMC7692958 DOI: 10.3390/life10110260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
Several air pollution components such as sulfur dioxide, ozone, nitrogen dioxide, and diesel exhaust particulate matter (DEPM) have been linked to the development of asthma. In this study, we investigated the therapeutic potential of three lactic acid bacteria species, Lactobacillus plantarum GREEN CROSS Wellbeing (GCWB)1001, Pediococcus acidilactici GCWB1085, and Lactobacillus rhamnosus GCWB1156, in preventing DEPM-exacerbated asthma in mice. BALB/c mice were first sensitized with ovalbumin (OVA) and were either challenged with OVA or DEPM (DEPM-exacerbated asthma model) by intranasal instillation. All three strains showed no hemolytic activity, suggesting a good safety profile. Oral administration of lactic acid bacteria reduced OVA + DEPM-induced inflammatory infiltration, goblet cell hyperplasia, airway remodeling, and the levels of proinflammatory cytokines and chemokines in bronchoalveolar lavage fluid (BALF). The probiotics also attenuated OVA + DEPM-induced immunoglobulin E (IgE) levels in serum and in BALF, and significantly reduced caspase-3 activity, total collagen level, and matrix metalloproteinase (MMP)-9 activity. In conclusion, lactic acid bacteria such as L. plantarum GCWB1001, P. acidilactici GCWB1085, and L. rhamnosus treatment in mice with asthma showed significant efficacy in preventing lung inflammation exacerbated by DEPM administration.
Collapse
|