1
|
Guo XL, Lu CX, Luo Y, Wang PP, Su WS, Yang SJ, Zhan LH. Circulating T-lymphocyte subsets as promising biomarkers for the identification of sepsis-induced acute kidney injury. J Chin Med Assoc 2024; 87:1068-1077. [PMID: 39363312 DOI: 10.1097/jcma.0000000000001177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND This retrospective study investigated whether disturbances in circulating T-lymphocyte subsets could predict the incidence of acute kidney injury (AKI) and in-hospital mortality in patients with sepsis. METHODS Clinical data from patients with sepsis admitted to the intensive care unit were reviewed. Logistic regression analyses were used to identify independent predictors of in-hospital mortality and the development of AKI. RESULTS Of 81 patients with sepsis, 50 developed AKI. Both nonsurvivors and patients with septic AKI exhibited higher Sequential Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation (APACHE) II scores. Nonsurvivors exhibited more organ damage, with significantly lower levels of peripheral T-lymphocyte subsets, including total circulating lymphocytes, and CD3 + , CD3 + CD4 + , and CD3 + CD8 + T-lymphocytes. Patients with septic AKI exhibited fewer total peripheral lymphocytes and fewer CD3 + , CD3 + CD4 + , and CD3 + CD8 + T-lymphocytes, with higher serum lactate levels and lower nadir platelet counts. Independent predictors of 30-day hospital mortality included maximum SOFA and APACHE II scores, occurrence of encephalopathy, and peripheral CD3 + and CD3 + CD8 + T-lymphocyte counts. Moreover, the maximum SOFA score and CD3 + and CD3 + CD8 + T-lymphocyte counts demonstrated good predictive power for AKI in receiver operating characteristic (ROC) curve analyses, with an area under the ROC curve of 0.810 (95% confidence interval [CI], 0.712-0.908) for SOFA score, 0.849 (95% CI, 0.764-0.934) for CD3 + T-lymphocytes, and 0.856 (95% CI, 0.772-0.941) for CD3 + CD8 + T-lymphocytes. CONCLUSION Patients with sepsis-induced AKI experienced T lymphopenia and increased in-hospital mortality. Higher maximum SOFA scores and reduced peripheral CD3 + and CD3 + CD8 + T-lymphocyte levels were associated with in-hospital mortality and the development of AKI in patients with sepsis.
Collapse
Affiliation(s)
- Xue-Ling Guo
- Department of Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Cheng-Xiang Lu
- Department of Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan Luo
- Department of Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ping-Ping Wang
- Department of Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wen-Song Su
- Department of Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Si-Jiu Yang
- Department of Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ling-Hui Zhan
- Department of Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Li F, Han X, Wu C, He J, Liu H, Li S, Li L, Long X, Sun H. Evaluation of immune and pyroptosis status in a model of sepsis-induced secondary pneumonia. Int Immunopharmacol 2024; 140:112835. [PMID: 39088917 DOI: 10.1016/j.intimp.2024.112835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/03/2024]
Abstract
In recent years, researchers have focused on studying the mechanism of sepsis-induced immunosuppression, but there is still a lack of suitable animal models that accurately reflect the process of sepsis-induced immunosuppression. The aim of this study was to evaluate the immune status at various stages in a model of sepsis-induced secondary pneumonia and to demonstrate whether pyroptosis is one of the modes of immune cell death in sepsis. Firstly, we established a sepsis model in C57BL/6J mice using cecal ligation and puncture (CLP). The surviving mice were treated with a 40 μL suspension of P.aeruginosa (Pa) under anesthesia on day 4 post-CLP to establish a sepsis-induced secondary pneumonia model. Secondly, routine blood tests, serum ALT and PCT levels, gross lung specimens, and H&E staining of the lung and liver tissues were used to assess the successful establishment of this model. Serum levels of TNF-α and IL-6, the CD4+/CD8+ratio in blood, H&E staining of the spleen, and immunohistochemistry of CD4 and CD8 in the spleen were detected to evaluate the immune status of the model mice. Finally, the expression levels of pyroptosis-related proteins in the spleen were detected by Western blot. The expression of GSDMD was assessed using immunohistochemistry, and pyroptosis was directly observed through transmission electron microscopy. The experimental results above confirmed the successful construction of the model for sepsis-induced secondary pneumonia, demonstrating its ability to reflect sepsis-induced immunosuppression. Moreover, the expression of pyroptosis-related proteins, immunohistochemical GSDMD, and transmission electron microscopy of the spleen showed that pyroptosis was one of the modes of immune cell death in sepsis.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Department of Infectious Diseases,The People's Hospital of Jiulongpo District, Chongqing,China
| | - Xinjing Han
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Chuanxin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jiahui He
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Huang Liu
- Department of Respiratory and Critical Care Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shuhua Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Li Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xianli Long
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Hang Sun
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
3
|
Vear A, Chakraborty A, Fahimi F, Ferens D, Widdop R, Samuel CS, Gaspari T, van Endert PM, Chai SY. Sex- and time-dependent role of insulin regulated aminopeptidase in lipopolysaccharide-induced inflammation. Front Immunol 2024; 15:1466692. [PMID: 39430768 PMCID: PMC11486674 DOI: 10.3389/fimmu.2024.1466692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
The enzyme, insulin regulated aminopeptidase (IRAP), is expressed in multiple immune cells such as macrophages, dendritic cells and T cells, where it plays a role in regulating the innate and adaptive immune response. There is a genetic association between IRAP and survival outcomes in patients with septic shock where a variant of its gene was found to be associated with increased 28-day mortality. This study investigated the role for IRAP in a lipopolysaccharide (LPS)-induced inflammatory response which is thought to model facets of the systemic inflammation observed in the early stages of human gram-negative sepsis. The frequencies and activation of splenic immune cell populations were investigated in the IRAP knockout (KO) mice compared to the wildtype controls over a period of 4-, 24-, or 48-hours following LPS stimulation. Dendritic cells isolated from the spleen of female IRAP KO mice, displayed significant increases in the activation markers CD40, CD86 and MHCII at 24 hours after LPS induction. A modest heightened pro-inflammatory response to LPS was observed with increased expression of activation marker CD40 in M1 macrophages from male IRAP knockout mice. Observations in vitro in bone marrow-derived macrophages (BMDM) revealed a heightened pro-inflammatory response to LPS with significant increases in the expression of CD40 in IRAP deficient cells compared with BMDM from WT mice. The heightened LPS-induced response was associated with increased pro-inflammatory cytokine secretion in these BMDM cells. A genotype difference was also detected in the BMDM from female mice displaying suppression of the LPS-induced increases in the activation markers CD40, CD86, CD80 and MHCII in IRAP deficient cells. Thus, this study suggests that IRAP plays specific time- and sex-dependent roles in the LPS-induced inflammatory response in dendritic cells and macrophages.
Collapse
Affiliation(s)
- Anika Vear
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Amlan Chakraborty
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Farnaz Fahimi
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dorota Ferens
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Robert Widdop
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chrishan S. Samuel
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tracey Gaspari
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Peter M. van Endert
- Institut Necker Enfants Malades, Université Paris Cité, INSERM, CNRS, Paris, France
- Service Immunologie Biologique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Siew Yeen Chai
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
4
|
He S, Zhang X, Wang Z, Zhang Q, Yao Y, Pang J, Chen Y. Classification and functional analysis of disulfidptosis-associated genes in sepsis. J Cell Mol Med 2024; 28:e70020. [PMID: 39400961 PMCID: PMC11472650 DOI: 10.1111/jcmm.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 10/15/2024] Open
Abstract
Sepsis represents a critical condition characterized by multiple-organ dysfunction resulting from inflammatory response to infection. Disulfidptosis is a newly identified type of programmed cell death that is intimately associated with the actin cytoskeleton collapse caused by glucose starvation and disulfide stress, but its role in sepsis is largely unknown. The study was to adopt a diagnostic and prognostic signature for sepsis with disulfidptosis based on the differentially expressed genes (DEGs) between sepsis and healthy people from GEO database. The disulfidptosis hub genes associated with sepsis were identified, and then developed consensus clustering and immune infiltration characteristics. Next, we evaluated disulfidptosis-related risk genes by using LASSO and Random Forest algorithms, and constructed the diagnostic sepsis model by nomogram. Finally, immune infiltration, GSVA analysis and mRNA-miRNA networks based on disulfidptosis-related DEGs were screened. There are five upregulated disulfidptosis-related genes and seven downregulated genes were filtered out. The six intersection disulfidptosis-related genes including LRPPRC, SLC7A11, GLUT, MYH9, NUBPL and GYS1 exhibited higher predictive ability for sepsis with an accuracy of 99.7%. In addition, the expression patterns of the critical genes were validated. The study provided a comprehensive view of disulfidptosis-based signatures to predict the prognosis, biological features and potential treatment directions for sepsis.
Collapse
Affiliation(s)
- Simeng He
- Department of Emergency MedicineQilu Hospital of Shandong UniversityJinanChina
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain CenterQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary‐Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Shandong Key Laboratory: Magnetic Field‐free Medicine and Functional ImagingQilu Hospital of Shandong UniversityJinanChina
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative DrugQilu Hospital of Shandong UniversityJinanChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanChina
| | - Xiangxin Zhang
- Department of Emergency MedicineQilu Hospital of Shandong UniversityJinanChina
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain CenterQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary‐Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Shandong Key Laboratory: Magnetic Field‐free Medicine and Functional ImagingQilu Hospital of Shandong UniversityJinanChina
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative DrugQilu Hospital of Shandong UniversityJinanChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanChina
| | - Zichen Wang
- Department of Emergency MedicineQilu Hospital of Shandong UniversityJinanChina
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain CenterQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary‐Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Shandong Key Laboratory: Magnetic Field‐free Medicine and Functional ImagingQilu Hospital of Shandong UniversityJinanChina
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative DrugQilu Hospital of Shandong UniversityJinanChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanChina
| | - Qingju Zhang
- Department of Emergency MedicineQilu Hospital of Shandong UniversityJinanChina
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain CenterQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary‐Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Shandong Key Laboratory: Magnetic Field‐free Medicine and Functional ImagingQilu Hospital of Shandong UniversityJinanChina
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative DrugQilu Hospital of Shandong UniversityJinanChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanChina
| | - Yu Yao
- Department of Emergency MedicineQilu Hospital of Shandong UniversityJinanChina
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain CenterQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary‐Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Shandong Key Laboratory: Magnetic Field‐free Medicine and Functional ImagingQilu Hospital of Shandong UniversityJinanChina
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative DrugQilu Hospital of Shandong UniversityJinanChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanChina
| | - Jiaojiao Pang
- Department of Emergency MedicineQilu Hospital of Shandong UniversityJinanChina
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain CenterQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary‐Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Shandong Key Laboratory: Magnetic Field‐free Medicine and Functional ImagingQilu Hospital of Shandong UniversityJinanChina
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative DrugQilu Hospital of Shandong UniversityJinanChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanChina
| | - Yuguo Chen
- Department of Emergency MedicineQilu Hospital of Shandong UniversityJinanChina
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain CenterQilu Hospital of Shandong UniversityJinanChina
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary‐Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Shandong Key Laboratory: Magnetic Field‐free Medicine and Functional ImagingQilu Hospital of Shandong UniversityJinanChina
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative DrugQilu Hospital of Shandong UniversityJinanChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
5
|
Wang Z, Zhang W, Chen L, Lu X, Tu Y. Lymphopenia in sepsis: a narrative review. Crit Care 2024; 28:315. [PMID: 39304908 PMCID: PMC11414153 DOI: 10.1186/s13054-024-05099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024] Open
Abstract
This narrative review provides an overview of the evolving significance of lymphopenia in sepsis, emphasizing its critical function in this complex and heterogeneous disease. We describe the causal relationship of lymphopenia with clinical outcomes, sustained immunosuppression, and its correlation with sepsis prediction markers and therapeutic targets. The primary mechanisms of septic lymphopenia are highlighted. In addition, the paper summarizes various attempts to treat lymphopenia and highlights the practical significance of promoting lymphocyte proliferation as the next research direction.
Collapse
Affiliation(s)
- Zhibin Wang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| | - Wenzhao Zhang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Linlin Chen
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Xin Lu
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Ye Tu
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
6
|
Fu Q, Zhu X, Fang Q, Han H, Wang Z, Xie J, Qian D, Wu X, Wu Y, Chen K. miR-155 enhances apoptosis of macrophage through suppressing PI3K-AKT activation in Pseudomonas aeruginosa keratitis. Heliyon 2024; 10:e36585. [PMID: 39263048 PMCID: PMC11385765 DOI: 10.1016/j.heliyon.2024.e36585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2023] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Keratitis induced by Pseudomonas aeruginosa (P. aeruginosa) is an acute and serious corneal inflammation. As a family of gene regulators, miRNAs play a crucial role in modulating host response after microbial invasion. However, their functions in P. aeruginosa keratitis remain largely unclear. In the present study, we demonstrated that miR-155 expression was significantly increased in macrophages and corneal tissue after P. aeruginosa infection. In vivo studies demonstrated that mice with miR-155 knockdown displayed more resistance to P. aeruginosa keratitis, with a lower bacterial burden. In addition, in vitro and in vivo studies indicated that miR-155 enhanced apoptosis of macrophages after P. aeruginosa infection, and resulted in a susceptible phenotype of P. aeruginosa keratitis. Moreover, miR-155 induced apoptosis through reducing activation of PI3K-Akt signaling pathway. Our data provided evidence of miR-155 mediated apoptosis of macrophage in P. aeruginosa keratitis, which may be an underlying target for the therapy of P. aeruginosa keratitis and other infectious diseases.
Collapse
Affiliation(s)
- Qiang Fu
- Zhongshan Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Xingyuan Zhu
- Zhongshan Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Qiongyan Fang
- Center for Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Hui Han
- Zhongshan Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Zhiying Wang
- Zhongshan Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Jinye Xie
- Zhongshan Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Dong Qian
- Zhongshan Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Xinger Wu
- Zhongshan Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Yongjian Wu
- Center for Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Kang Chen
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| |
Collapse
|
7
|
Xiang Y, Pan BH, Zhang J, Chen JQ, Fang H, Wang Q, Li LH, Chen TS, Chen JX, Li C, Zheng XF, Zhu SH. Suppression of overactivated immunity in the early stage is the key to improve the prognosis in severe burns. Front Immunol 2024; 15:1455899. [PMID: 39308854 PMCID: PMC11412824 DOI: 10.3389/fimmu.2024.1455899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Background Severe burns can lead to systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS) due to inflammation-immunity dysregulation. This study aimed to identify key immune-related molecules and potential drugs for immune regulation in severe burn treatment. Method Microarray datasets GSE77791 and GSE37069 were analyzed to identify immune-related differentially expressed genes (DEGs), enriched pathways and prognosis-related genes. The DGIdb database was used to identify potentially clinically relevant small molecular drugs for hub DEGs. Hub DEGs were validated by total RNA from clinical blood samples through qPCR. The efficacy of drug candidates was tested in a severe burn mouse model. Pathologic staining was used to observe organ damage. Enzyme Linked Immunosorbent Assay (ELISA) was used to detect the serum IL-1b, IL-6, TNF-a and MCP-1 contents. Activation of the NF-κB inflammatory pathway was detected by western blotting. Transcriptome sequencing was used to observe inflammatory-immune responses in the lung. Results A total of 113 immune-related DEGs were identified, and the presence of immune overactivation was confirmed in severe burns. S100A8 was not only significantly upregulated and identified to be prognosis-related among the hub DEGs but also exhibited an increasing trend in clinical blood samples. Methotrexate, which targets S100A8, as predicted by the DGIdb, significantly reduces transcription level of S100A8 and inflammatory cytokine content in blood, organ damage (lungs, liver, spleen, and kidneys) and mortality in severely burned mice when combined with fluid resuscitation. The inflammatory-immune response was suppressed in the lungs. Conclusion S100A8 with high transcription level in blood is a potential biomarker for poor severe burn prognosis. It suggested that methotrexate has a potential application in severe burn immunotherapy. Besides, it should be emphasized that fluid resuscitation is necessary for the function of methotrexate.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Burns, Changhai Hospital, Shanghai, China
| | - Bo-han Pan
- Department of Burns, Changhai Hospital, Shanghai, China
| | - Jin Zhang
- Department of Burns, Changhai Hospital, Shanghai, China
| | - Ji-qiu Chen
- Department of Burns, Changhai Hospital, Shanghai, China
| | - He Fang
- Department of Burns, Changhai Hospital, Shanghai, China
| | - Qun Wang
- Department of Burns, Changhai Hospital, Shanghai, China
| | - Lin-hui Li
- Department of Burns, Changhai Hospital, Shanghai, China
| | | | - Jia-xin Chen
- Department of Burns, Changhai Hospital, Shanghai, China
- Department of Intensive Care Unit, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Chan Li
- Department of Burns, Changhai Hospital, Shanghai, China
| | | | - Shi-hui Zhu
- Department of Burns and Plastic Surgery, Shanghai Children’s Medical Center, Shanghai, China
| |
Collapse
|
8
|
Erdem H, Balkan İİ, Karaali R, Ürkmez S, Mete B, Aygün G, Saltoğlu N, Tabak ÖF, Kuşkucu MA. Cell free DNA as a new prognostic biomarker for COVID-19, A prospective cohort study. Diagn Microbiol Infect Dis 2024; 110:116367. [PMID: 38896890 DOI: 10.1016/j.diagmicrobio.2024.116367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2023] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Predicting the need of hospitalization and intensive care in COVID-19 patients has been challenging with current diagnostic tests since the beginning of the pandemic. We aimed to test cell free DNA (cfDNA) as a novel biomarker for COVID-19 disease severity and mortality. cfDNA concentration was quantified by RT-PCR based test. One hundred and sixty-eight patients(85 outpatients, 61 inpatients,22 ICU) included the study. Mean initial plasma cfDNA levels were significantly different (p < 0.01) in outpatients (1.190,66 ng/ml), inpatients (8.258,10 ng/ml) and ICU patients (84.806,87 ng/ml). ROC analysis showed with 95 % specificity that patients with initial cfDNA concentrations ≥6.389 ng/ml need to be hospitalized and those ≥26.104 ng/ml require ICU referral. cfDNA concentration was correlated with neutrophil/lymphocyte ratio, lymphocyte level, CRP, AST, LDH, CK, fibrinogen, ferritin and D-dimer. Plasma cfDNA levels on admission, well correlating with disease severity and mortality in COVID-19 that found as a useful biomarker.
Collapse
Affiliation(s)
- Hazal Erdem
- Kars Harakani State Hospital, Infectious Diseases and Clinical Microbiology; Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Infectious Diseases and Clinical Microbiology.
| | - İlker İnanç Balkan
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Infectious Diseases and Clinical Microbiology
| | - Rıdvan Karaali
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Infectious Diseases and Clinical Microbiology
| | - Seval Ürkmez
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Anesthesiology and Reanimation
| | - Birgül Mete
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Infectious Diseases and Clinical Microbiology
| | - Gökhan Aygün
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Infectious Diseases and Clinical Microbiology; Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Medical Microbiology
| | - Neşe Saltoğlu
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Infectious Diseases and Clinical Microbiology
| | - Ömer Fehmi Tabak
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Infectious Diseases and Clinical Microbiology
| | - Mert Ahmet Kuşkucu
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Medical Microbiology; Koc University, School of Medicine, Medical Microbiology; Koç University İşbank Center for Infectious Diseases (KUISCID)
| |
Collapse
|
9
|
Li ZH, Wang Y, Yu XY. Exploring the role of pyroptosis and immune infiltration in sepsis based on bioinformatic analysis. Immunobiology 2024; 229:152826. [PMID: 38981197 DOI: 10.1016/j.imbio.2024.152826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2024] [Revised: 05/20/2024] [Accepted: 06/09/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE Sepsis is a disease that is typically treated in intensive care units with high mortality and morbidity. Pyroptosis is a newly identified type of programmed cell death and is characterized by inflammatory cytokine secretion. However, the role of pyroptosis in sepsis remains unclear. METHODS GSE28750 and GSE134347 datasets were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed pyroptosis genes (DEPGs) were identified between sepsis and healthy controls. Machine learning was used to further narrow the gene range. Receiver operating curves (ROC) were generated to estimate the diagnostic efficacy. Immune infiltration levels were estimated via single-sample gene set enrichment analysis (ssGSEA). A network database was used to predict the upstream transcription factors and miRNAs of DEPGs. Finally, the expression of the genes was validated by qRT-PCR between sepsis patients and healthy controls. RESULTS We found that the pyroptosis pathway was enriched and activated in sepsis. 8 DEPGs were identified. A heatmap showed that the genes, NLRC4, NAIP, IL-18, AIM2 and ELANE, were abundant in the sepsis samples, and the genes, NLRP1, CHMP7 and TP53, were abundant in the healthy control samples. The ssGSEA results showed that the abundances of activated dendritic cells, MDSC, macrophage, plasmacytoid dendritic cells, regulatory T-cells, and Th17-cells were significantly higher, while the activated B-cell, activated CD8 T-cell, CD56 dim tural killer cell, immature B-cell, monocyte, and T follicular helper cell abundances were lower in sepsis samples compared to healthy controls. The qRT-PCR results showed that the expression levels of NAIP, IL-18, TP53, CHMP7, NLRC4, ELANE and NLRP1 were consistant with the bioinformatic analyses, while the expression level of AIM2 has no significant difference. CONCLUSION Our study identified seven potential pyroptosis-related genes, NAIP, IL-18, TP53, CHMP7, NLRC4, ELANE and NLRP1. This study revealed that pyroptosis may promote sepsis development by activating the immune response.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Department of critical medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yi Wang
- Department of critical medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Xiang-You Yu
- Department of critical medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
10
|
Tian Y, Cao Y, Liu F, Xia L, Wang C, Su Z. Role of Histiocyte-Derived frHMGB1 as a Facilitator in Noncanonical Pyroptosis of Monocytes/Macrophages in Lethal Sepsis. J Infect Dis 2024; 230:298-308. [PMID: 38243905 DOI: 10.1093/infdis/jiae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024] Open
Abstract
In this study, we investigated the role of the noncanonical pyroptosis pathway in the progression of lethal sepsis. Our findings emphasize the significance of noncanonical pyroptosis in monocytes/macrophages for the survival of septic mice. We observed that inhibiting pyroptosis alone significantly improved the survival rate of septic mice and that the HMGB1 A box effectively suppressed this noncanonical pyroptosis, thereby enhancing the survival of septic mice. Additionally, our cell in vitro experiments unveiled that frHMGB1, originating from lipopolysaccharide-carrying histiocytes, entered macrophages via RAGE, resulting in the direct activation of caspase 11 and the induction of noncanonical pyroptosis. Notably, A box's competitive binding with lipopolysaccharide impeded its entry into the cell cytosol. These findings reveal potential therapeutic strategies for slowing the progression of lethal sepsis by modulating the noncanonical pyroptosis pathway.
Collapse
Affiliation(s)
- Yu Tian
- Institute for Medical Immunology, the Affiliated Hospital of Jiangsu University
- International Genome Center, Jiangsu University
| | - Yuwen Cao
- Institute for Medical Immunology, the Affiliated Hospital of Jiangsu University
- International Genome Center, Jiangsu University
| | - Fang Liu
- Institute for Medical Immunology, the Affiliated Hospital of Jiangsu University
- International Genome Center, Jiangsu University
| | - Lin Xia
- Institute for Medical Immunology, the Affiliated Hospital of Jiangsu University
- Department of Laboratory Medicine, the Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chao Wang
- Institute for Medical Immunology, the Affiliated Hospital of Jiangsu University
- International Genome Center, Jiangsu University
| | - Zhaoliang Su
- Institute for Medical Immunology, the Affiliated Hospital of Jiangsu University
- International Genome Center, Jiangsu University
| |
Collapse
|
11
|
Chen Y, Zhang P, Han F, Zhou Y, Wei J, Wang C, Song M, Lin S, Xu Y, Chen X. MiR-106a-5p targets PFKFB3 and improves sepsis through regulating macrophage pyroptosis and inflammatory response. J Biol Chem 2024; 300:107334. [PMID: 38705396 PMCID: PMC11190718 DOI: 10.1016/j.jbc.2024.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2023] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
The enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 (PFKFB3) is a critical regulator of glycolysis and plays a key role in modulating the inflammatory response, thereby contributing to the development of inflammatory diseases such as sepsis. Despite its importance, the development of strategies to target PFKFB3 in the context of sepsis remains challenging. In this study, we employed a miRNA-based approach to decrease PFKFB3 expression. Through multiple meta-analyses, we observed a downregulation of miR-106a-5p expression and an upregulation of PFKFB3 expression in clinical sepsis samples. These changes were also confirmed in blood monocytes from patients with early sepsis and from a mouse model of lipopolysaccharide (LPS)-induced sepsis. Overexpression of miR-106a-5p significantly decreased the LPS-induced increase in glycolytic capacity, inflammatory response, and pyroptosis in macrophages. Mechanistically, we identified PFKFB3 as a direct target protein of miR-106a-5p and demonstrated its essential role in LPS-induced pyroptosis and inflammatory response in macrophages. Furthermore, treatment with agomir-miR-106a-5p conferred a protective effect in an LPS mouse model of sepsis, but this effect was attenuated in myeloid-specific Pfkfb3 KO mice. These findings indicate that miR-106a-5p inhibits macrophage pyroptosis and inflammatory response in sepsis by regulating PFKFB3-mediated glucose metabolism, representing a potential therapeutic option for the treatment of sepsis.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ping Zhang
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fangwei Han
- School of Public Health, UNT Health Science Center, Fort Worth, Texas, USA
| | - Yanying Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Juexian Wei
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Cailing Wang
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mingchuan Song
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shaopeng Lin
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yiming Xu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Xiaohui Chen
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Orsini EM, Roychowdhury S, Gangadhariah M, Cross E, Abraham S, Reinhardt A, Grund ME, Zhou JY, Stuehr O, Pant B, Olman MA, Vachharajani V, Scheraga RG. TRPV4 Regulates the Macrophage Metabolic Response to Limit Sepsis-induced Lung Injury. Am J Respir Cell Mol Biol 2024; 70:457-467. [PMID: 38346220 PMCID: PMC11160412 DOI: 10.1165/rcmb.2023-0456oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
Sepsis is a systemic inflammatory response that requires effective macrophage metabolic functions to resolve ongoing inflammation. Previous work showed that the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), mediates macrophage phagocytosis and cytokine production in response to lung infection. Here, we show that TRPV4 regulates glycolysis in a stiffness-dependent manner by augmenting macrophage glucose uptake by GLUT1. In addition, TRPV4 is required for LPS-induced phagolysosome maturation in a GLUT1-dependent manner. In a cecal slurry mouse model of sepsis, TRPV4 regulates sepsis-induced glycolysis as measured by BAL fluid (BALF) lactate and sepsis-induced lung injury as measured by BALF total protein and lung compliance. TRPV4 is necessary for bacterial clearance in the peritoneum to limit sepsis-induced lung injury. It is interesting that BALF lactate is increased in patients with sepsis compared with healthy control participants, supporting the relevance of lung cell glycolysis to human sepsis. These data show that macrophage TRPV4 is required for glucose uptake through GLUT1 for effective phagolysosome maturation to limit sepsis-induced lung injury. Our work presents TRPV4 as a potential target to protect the lung from injury in sepsis.
Collapse
Affiliation(s)
- Erica M. Orsini
- Department of Pulmonary and Critical Care, Integrated Hospital Care Institute, and
| | - Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Mahesha Gangadhariah
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Emily Cross
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Susamma Abraham
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Amanda Reinhardt
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Megan E. Grund
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Julie Y. Zhou
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Olivia Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Bishnu Pant
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Mitchell A. Olman
- Department of Pulmonary and Critical Care, Integrated Hospital Care Institute, and
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Vidula Vachharajani
- Department of Pulmonary and Critical Care, Integrated Hospital Care Institute, and
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Rachel G. Scheraga
- Department of Pulmonary and Critical Care, Integrated Hospital Care Institute, and
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
13
|
Li F, Qu H, Li Y, Liu J, Fu H. Establishment and assessment of mortality risk prediction model in patients with sepsis based on early-stage peripheral lymphocyte subsets. Aging (Albany NY) 2024; 16:7460-7473. [PMID: 38669099 PMCID: PMC11087126 DOI: 10.18632/aging.205772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
This study is aimed to explore the value of lymphocyte subsets in evaluating the severity and prognosis of sepsis. The counts of lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and NK cells significantly decreased between day 1 and day 3 in both the survivor and the non-survivor groups. The peripheral lymphocyte subsets (PLS) at day 1 were not significantly different between the survivor and the non-survivor groups. However, at day 3, the counts of lymphocytes, CD3+ T cells, CD4+ T cells, and NK cells were remarkably lower in the non-survivor group. No significant differences in CD8+ T cells, or CD19+ B cells were observed. The PLS index was independently and significantly associated with the 28-day mortality risk in septic patients (OR: 3.08, 95% CI: 1.18-9.67). Based on these clinical parameters and the PLS index, we developed a nomograph for evaluating the individual mortality risk in sepsis. The area under the curve of prediction with the PLS index was significantly higher than that from the model with only clinical parameters (0.912 vs. 0.817). Our study suggests that the decline of PLS occurred in the early stage of sepsis. The new novel PLS index can be an independent predictor of 28-day mortality in septic patients. The prediction model based on clinical parameters and the PLS index has relatively high predicting ability.
Collapse
Affiliation(s)
- Fuzhu Li
- The First Affiliated Hospital, Department of Neurosurgical Intensive Care Unit, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, China
| | - Hongtao Qu
- The First Affiliated Hospital, Department of Neurosurgical Intensive Care Unit, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, China
| | - Yimin Li
- The First Affiliated Hospital, Department of Neurosurgical Intensive Care Unit, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, China
| | - Jie Liu
- Department of Emergency, Shenzhen United Family Hospital, Shenzhen, Guangdong 518048, China
| | - Hongyun Fu
- The Affiliated Nanhua Hospital, Department of Docimasiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421002, China
| |
Collapse
|
14
|
Ferreira GS, Frota ML, Gonzaga MJD, Vattimo MDFF, Lima C. The Role of Biomarkers in Diagnosis of Sepsis and Acute Kidney Injury. Biomedicines 2024; 12:931. [PMID: 38790893 PMCID: PMC11118225 DOI: 10.3390/biomedicines12050931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 05/26/2024] Open
Abstract
Sepsis and acute kidney injury (AKI) are two major public health concerns that contribute significantly to illness and death worldwide. Early diagnosis and prompt treatment are essential for achieving the best possible outcomes. To date, there are no specific clinical, imaging, or biochemical indicators available to diagnose sepsis, and diagnosis of AKI based on the KDIGO criterion has limitations. To improve the diagnostic process for sepsis and AKI, it is essential to continually evolve our understanding of these conditions. Delays in diagnosis and appropriate treatment can have serious consequences. Sepsis and AKI often occur together, and patients with kidney dysfunction are more prone to developing sepsis. Therefore, identifying potential biomarkers for both conditions is crucial. In this review, we talk about the main biomarkers that evolve the diagnostic of sepsis and AKI, namely neutrophil gelatinase-associated lipocalin (NGAL), proenkephalin (PENK), and cell-free DNA.
Collapse
Affiliation(s)
| | | | | | | | - Camila Lima
- Department of Medical-Surgical Nursing, School of Nursing, University of São Paulo, São Paulo 05403-000, Brazil; (G.S.F.); (M.L.F.); (M.J.D.G.); (M.d.F.F.V.)
| |
Collapse
|
15
|
Jiang R, Xu B, Zhi S, Sun L, Yu B, Huang Q, Shi Y. Scaffold hopping derived novel benzoxazepinone receptor-interacting protein kinase 1 (RIP1) inhibitors as anti-necroptosis agents: Anti-inflammatory effect in systemic inflammatory response syndrome (SIRS) and epilepsy. Eur J Med Chem 2024; 269:116304. [PMID: 38484677 DOI: 10.1016/j.ejmech.2024.116304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 03/02/2024] [Indexed: 04/07/2024]
Abstract
Necroptosis is a type of regulated cell death known for its pro-inflammatory nature due to the substantial release of cellular contents. The phosphorylation of key proteins, namely RIP1, RIP3, and mixed lineage kinase domain-like protein (MLKL), plays a pivotal role in the processes associated with necroptosis. Consequently, inhibiting the phosphorylation of any of these three key protein kinases could effectively block necroptosis. Utilizing a scaffold hopping strategy, we have successfully designed and synthesized a series of novel RIP1 inhibitors with selective and anti-necrotic properties, using compound o1 as the lead compound. In comparison to o1, SY1 has demonstrated heightened antinecroptosis activity and binding affinity in vitro studies. Moreover, SY1 has exhibited superior efficacy in both in vivo studies, specifically in the context of SIRS, and pharmacokinetic assessments. Furthermore, SY1 has proven effective in significantly suppressing the central inflammatory response induced by epilepsy.
Collapse
Affiliation(s)
- Ruiqi Jiang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Bin Xu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Shumeng Zhi
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Lei Sun
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Baocong Yu
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Qing Huang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Ying Shi
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| |
Collapse
|
16
|
Kiwit A, Lu Y, Lenz M, Knopf J, Mohr C, Ledermann Y, Klinke-Petrowsky M, Pagerols Raluy L, Reinshagen K, Herrmann M, Boettcher M, Elrod J. The Dual Role of Neutrophil Extracellular Traps (NETs) in Sepsis and Ischemia-Reperfusion Injury: Comparative Analysis across Murine Models. Int J Mol Sci 2024; 25:3787. [PMID: 38612596 PMCID: PMC11011604 DOI: 10.3390/ijms25073787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
A better understanding of the function of neutrophil extracellular traps (NETs) may facilitate the development of interventions for sepsis. The study aims to investigate the formation and degradation of NETs in three murine sepsis models and to analyze the production of reactive oxygen species (ROS) during NET formation. Murine sepsis was induced by midgut volvulus (720° for 15 min), cecal ligation and puncture (CLP), or the application of lipopolysaccharide (LPS) (10 mg/kg body weight i.p.). NET formation and degradation was modulated using mice that were genetically deficient for peptidyl arginine deiminase-4 (PAD4-KO) or DNase1 and 1L3 (DNase1/1L3-DKO). After 48 h, mice were killed. Plasma levels of circulating free DNA (cfDNA) and neutrophil elastase (NE) were quantified to assess NET formation and degradation. Plasma deoxyribonuclease1 (DNase1) protein levels, as well as tissue malondialdehyde (MDA) activity and glutathione peroxidase (GPx) activity, were quantified. DNase1 and DNase1L3 in liver, intestine, spleen, and lung tissues were assessed. The applied sepsis models resulted in a simultaneous increase in NET formation and oxidative stress. NET formation and survival differed in the three models. In contrast to LPS and Volvulus, CLP-induced sepsis showed a decreased and increased 48 h survival in PAD4-KO and DNase1/1L3-DKO mice, when compared to WT mice, respectively. PAD4-KO mice showed decreased formation of NETs and ROS, while DNase1/1L3-DKO mice with impaired NET degradation accumulated ROS and chronicled the septic state. The findings indicate a dual role for NET formation and degradation in sepsis and ischemia-reperfusion (I/R) injury: NETs seem to exhibit a protective capacity in certain sepsis paradigms (CLP model), whereas, collectively, they seem to contribute adversely to scenarios where sepsis is combined with ischemia-reperfusion (volvulus).
Collapse
Affiliation(s)
- Antonia Kiwit
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Yuqing Lu
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Moritz Lenz
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Jasmin Knopf
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Christoph Mohr
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Yannick Ledermann
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Michaela Klinke-Petrowsky
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Julia Elrod
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martini Strasse 52, 20246 Hamburg, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
17
|
Shkarina K, Broz P. Selective induction of programmed cell death using synthetic biology tools. Semin Cell Dev Biol 2024; 156:74-92. [PMID: 37598045 DOI: 10.1016/j.semcdb.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
Collapse
Affiliation(s)
- Kateryna Shkarina
- Institute of Innate Immunity, University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Switzerland.
| |
Collapse
|
18
|
Santacroce E, D’Angerio M, Ciobanu AL, Masini L, Lo Tartaro D, Coloretti I, Busani S, Rubio I, Meschiari M, Franceschini E, Mussini C, Girardis M, Gibellini L, Cossarizza A, De Biasi S. Advances and Challenges in Sepsis Management: Modern Tools and Future Directions. Cells 2024; 13:439. [PMID: 38474403 PMCID: PMC10931424 DOI: 10.3390/cells13050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Sepsis, a critical condition marked by systemic inflammation, profoundly impacts both innate and adaptive immunity, often resulting in lymphopenia. This immune alteration can spare regulatory T cells (Tregs) but significantly affects other lymphocyte subsets, leading to diminished effector functions, altered cytokine profiles, and metabolic changes. The complexity of sepsis stems not only from its pathophysiology but also from the heterogeneity of patient responses, posing significant challenges in developing universally effective therapies. This review emphasizes the importance of phenotyping in sepsis to enhance patient-specific diagnostic and therapeutic strategies. Phenotyping immune cells, which categorizes patients based on clinical and immunological characteristics, is pivotal for tailoring treatment approaches. Flow cytometry emerges as a crucial tool in this endeavor, offering rapid, low cost and detailed analysis of immune cell populations and their functional states. Indeed, this technology facilitates the understanding of immune dysfunctions in sepsis and contributes to the identification of novel biomarkers. Our review underscores the potential of integrating flow cytometry with omics data, machine learning and clinical observations to refine sepsis management, highlighting the shift towards personalized medicine in critical care. This approach could lead to more precise interventions, improving outcomes in this heterogeneously affected patient population.
Collapse
Affiliation(s)
- Elena Santacroce
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Miriam D’Angerio
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Linda Masini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Irene Coloretti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Stefano Busani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany;
| | - Marianna Meschiari
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Erica Franceschini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Cristina Mussini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Massimo Girardis
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| |
Collapse
|
19
|
Mytych JS, Pan Z, Lopez-Davis C, Redinger N, Lawrence C, Ziegler J, Popescu NI, James JA, Farris AD. Peptidoglycan from Bacillus anthracis Inhibits Human Macrophage Efferocytosis in Part by Reducing Cell Surface Expression of MERTK and TIM-3. Immunohorizons 2024; 8:269-280. [PMID: 38517345 PMCID: PMC10985058 DOI: 10.4049/immunohorizons.2300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024] Open
Abstract
Bacillus anthracis peptidoglycan (PGN) is a major component of the bacterial cell wall and a key pathogen-associated molecular pattern contributing to anthrax pathology, including organ dysfunction and coagulopathy. Increases in apoptotic leukocytes are a late-stage feature of anthrax and sepsis, suggesting there is a defect in apoptotic clearance. In this study, we tested the hypothesis that B. anthracis PGN inhibits the capacity of human monocyte-derived macrophages (MΦ) to efferocytose apoptotic cells. Exposure of CD163+CD206+ MΦ to PGN for 24 h impaired efferocytosis in a manner dependent on human serum opsonins but independent of complement component C3. PGN treatment reduced cell surface expression of the proefferocytic signaling receptors MERTK, TYRO3, AXL, integrin αVβ5, CD36, and TIM-3, whereas TIM-1, αVβ3, CD300b, CD300f, STABILIN-1, and STABILIN-2 were unaffected. ADAM17 is a major membrane-bound protease implicated in mediating efferocytotic receptor cleavage. We found multiple ADAM17-mediated substrates increased in PGN-treated supernatant, suggesting involvement of membrane-bound proteases. ADAM17 inhibitors TAPI-0 and Marimastat prevented TNF release, indicating effective protease inhibition, and modestly increased cell-surface levels of MerTK and TIM-3 but only partially restored efferocytic capacity by PGN-treated MΦ. We conclude that human serum factors are required for optimal recognition of PGN by human MΦ and that B. anthracis PGN inhibits efferocytosis in part by reducing cell surface expression of MERTK and TIM-3.
Collapse
Affiliation(s)
- Joshua S. Mytych
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zijian Pan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Charmaine Lopez-Davis
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Nancy Redinger
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Christina Lawrence
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Jadith Ziegler
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Narcis I. Popescu
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - A. Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
20
|
Wang H, Wang Y, Zhang D, Li P. Circulating nucleosomes as potential biomarkers for cancer diagnosis and treatment monitoring. Int J Biol Macromol 2024; 262:130005. [PMID: 38331061 DOI: 10.1016/j.ijbiomac.2024.130005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Nucleosomes play a crucial role in regulating gene expression through their composition and post-translational modifications. When cells die, intracellular endonucleases are activated and cleave chromatin into oligo- and mono-nucleosomes, which are then released into the body fluids. Studies have shown that the levels of nucleosomes are increased in serum and plasma in various cancer types, suggesting that analysis of circulating nucleosomes can provide an initial assessment of carcinogenesis. However, it should be noted that elevated serum nucleosome levels may not accurately diagnose certain tumor types, as increased cell death may occur in different pathological conditions. Nevertheless, detection of circulating nucleosomes and their histone modifications, along with specific tumor markers, can help diagnose certain types of cancer. Furthermore, monitoring changes in circulating nucleosome levels during chemotherapy or radiotherapy in patients with malignancies can provide valuable insights into clinical outcomes and therapeutic efficacy. The utilization of circulating nucleosomes as biomarkers is an exciting and emerging area of research, with the potential for early detection of various diseases and monitoring of treatment response. Integrating nucleosome-based biomarkers with existing ones may improve the specificity and sensitivity of current assays, offering the possibility of personalized precision medical treatment for patients.
Collapse
Affiliation(s)
- Huawei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
21
|
Ionescu (Miron) AI, Atasiei DI, Ionescu RT, Ultimescu F, Barnonschi AA, Anghel AV, Anghel CA, Antone-Iordache IL, Mitre R, Bobolocu AM, Zamfir A, Lișcu HD, Coniac S, Șandru F. Prediction of Subclinical and Clinical Multiple Organ Failure Dysfunction in Breast Cancer Patients-A Review Using AI Tools. Cancers (Basel) 2024; 16:381. [PMID: 38254870 PMCID: PMC11154446 DOI: 10.3390/cancers16020381] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
This review explores the interconnection between precursor lesions of breast cancer (typical ductal hyperplasia, atypical ductal/lobular hyperplasia) and the subclinical of multiple organ failure syndrome, both representing early stages marked by alterations preceding clinical symptoms, undetectable through conventional diagnostic methods. Addressing the question "Why patients with breast cancer exhibit a tendency to deteriorate", this study investigates the biological progression from a subclinical multiple organ failure syndrome, characterized by insidious but indisputable lesions, to an acute (clinical) state resembling a cascade akin to a waterfall or domino effect, often culminating in the patient's demise. A comprehensive literature search was conducted using PubMed, Google Scholar, and Scopus databases in October 2023, employing keywords such as "MODS", "SIRS", "sepsis", "pathophysiology of MODS", "MODS in cancer patients", "multiple organ failure", "risk factors", "cancer", "ICU", "quality of life", and "breast cancer". Supplementary references were extracted from the retrieved articles. This study emphasizes the importance of early identification and prevention of the multiple organ failure cascade at the inception of the malignant state, aiming to enhance the quality of life and extend survival. This pursuit contributes to a deeper understanding of risk factors and viable therapeutic options. Despite the existence of the subclinical multiple organ failure syndrome, current diagnostic methodologies remain inadequate, prompting consideration of AI as an increasingly crucial tool for early identification in the diagnostic process.
Collapse
Affiliation(s)
- Andreea-Iuliana Ionescu (Miron)
- Department of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.I.); (A.-A.B.); (A.-V.A.); (C.-A.A.); (I.-L.A.-I.); (R.M.); (A.M.B.); (A.Z.); (H.-D.L.)
- Department of Medical Oncology, Colțea Clinical Hospital, 030167 Bucharest, Romania;
| | - Dimitrie-Ionut Atasiei
- Department of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.I.); (A.-A.B.); (A.-V.A.); (C.-A.A.); (I.-L.A.-I.); (R.M.); (A.M.B.); (A.Z.); (H.-D.L.)
| | - Radu-Tudor Ionescu
- Department of Computer Science, University of Bucharest, 010041 Bucharest, Romania;
| | - Flavia Ultimescu
- Department of Pathology, Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania;
- Department of Pathological Anatomy, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andrei-Alexandru Barnonschi
- Department of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.I.); (A.-A.B.); (A.-V.A.); (C.-A.A.); (I.-L.A.-I.); (R.M.); (A.M.B.); (A.Z.); (H.-D.L.)
| | - Alexandra-Valentina Anghel
- Department of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.I.); (A.-A.B.); (A.-V.A.); (C.-A.A.); (I.-L.A.-I.); (R.M.); (A.M.B.); (A.Z.); (H.-D.L.)
| | - Cătălin-Alexandru Anghel
- Department of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.I.); (A.-A.B.); (A.-V.A.); (C.-A.A.); (I.-L.A.-I.); (R.M.); (A.M.B.); (A.Z.); (H.-D.L.)
| | - Ionuț-Lucian Antone-Iordache
- Department of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.I.); (A.-A.B.); (A.-V.A.); (C.-A.A.); (I.-L.A.-I.); (R.M.); (A.M.B.); (A.Z.); (H.-D.L.)
| | - Ruxandra Mitre
- Department of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.I.); (A.-A.B.); (A.-V.A.); (C.-A.A.); (I.-L.A.-I.); (R.M.); (A.M.B.); (A.Z.); (H.-D.L.)
- Department of Medical Oncology, Colțea Clinical Hospital, 030167 Bucharest, Romania;
| | - Alexandra Maria Bobolocu
- Department of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.I.); (A.-A.B.); (A.-V.A.); (C.-A.A.); (I.-L.A.-I.); (R.M.); (A.M.B.); (A.Z.); (H.-D.L.)
| | - Andreea Zamfir
- Department of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.I.); (A.-A.B.); (A.-V.A.); (C.-A.A.); (I.-L.A.-I.); (R.M.); (A.M.B.); (A.Z.); (H.-D.L.)
| | - Horia-Dan Lișcu
- Department of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.I.); (A.-A.B.); (A.-V.A.); (C.-A.A.); (I.-L.A.-I.); (R.M.); (A.M.B.); (A.Z.); (H.-D.L.)
- Department of Radiotherapy, Colțea Clinical Hospital, 030167 Bucharest, Romania
| | - Simona Coniac
- Department of Medical Oncology, Colțea Clinical Hospital, 030167 Bucharest, Romania;
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Florica Șandru
- Department of Dermatovenerology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Dermatology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
22
|
Cicchinelli S, Pignataro G, Gemma S, Piccioni A, Picozzi D, Ojetti V, Franceschi F, Candelli M. PAMPs and DAMPs in Sepsis: A Review of Their Molecular Features and Potential Clinical Implications. Int J Mol Sci 2024; 25:962. [PMID: 38256033 PMCID: PMC10815927 DOI: 10.3390/ijms25020962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Sepsis is a serious organ dysfunction caused by a dysregulated immune host reaction to a pathogen. The innate immunity is programmed to react immediately to conserved molecules, released by the pathogens (PAMPs), and the host (DAMPs). We aimed to review the molecular mechanisms of the early phases of sepsis, focusing on PAMPs, DAMPs, and their related pathways, to identify potential biomarkers. We included studies published in English and searched on PubMed® and Cochrane®. After a detailed discussion on the actual knowledge of PAMPs/DAMPs, we analyzed their role in the different organs affected by sepsis, trying to elucidate the molecular basis of some of the most-used prognostic scores for sepsis. Furthermore, we described a chronological trend for the release of PAMPs/DAMPs that may be useful to identify different subsets of septic patients, who may benefit from targeted therapies. These findings are preliminary since these pathways seem to be strongly influenced by the peculiar characteristics of different pathogens and host features. Due to these reasons, while initial findings are promising, additional studies are necessary to clarify the potential involvement of these molecular patterns in the natural evolution of sepsis and to facilitate their transition into the clinical setting.
Collapse
Affiliation(s)
- Sara Cicchinelli
- Department of Emergency, S.S. Filippo e Nicola Hospital, 67051 Avezzano, Italy;
| | - Giulia Pignataro
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Stefania Gemma
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Andrea Piccioni
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Domitilla Picozzi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| |
Collapse
|
23
|
Leu SW, Chu CM, Chung CJ, Huang CY, Wang CH, Li LF, Wu HP. Cell death of alveolar lymphocytes and monocytes is negatively correlated with driving pressure and mechanical power in patients with acute respiratory distress syndrome. Eur J Med Res 2024; 29:16. [PMID: 38173040 PMCID: PMC10763296 DOI: 10.1186/s40001-023-01607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/10/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Pathogenesis of acute respiratory distress syndrome (ARDS) involves immune cell death and removal from the injured lungs. ARDS severity is related to lung compliance. However, the correlation between the respiratory mechanics and alveolar immune cell death in patients with ARDS remains unclear. METHODS Twenty-four patients with respiratory failure and ARDS were enrolled in the intensive care unit between November 2019 and November 2021. Neutrophil extracellular traps (NETs) and cell death of lymphocytes and monocytes in bronchoalveolar lavage fluid were detected on days 1 and 8. RESULTS Lung compliance was positively correlated with the cell death percentage of alveolar CD4/CD8 lymphocytes and monocytes on day 8 (Pearson's correlation coefficient (r) = 0.554, p = 0.005; r = 0.422, p = 0.040; r = 0.569, p = 0.004, respectively). There was no association between lung compliance and the percentage of alveolar NETs on days 1 and 8. The cell death percentages of alveolar CD4/CD8 lymphocytes and monocytes were negatively correlated with driving pressure (DP) on days 1 (r = - 0.440, p = 0.032; r = - 0.613, p = 0.001; r = -0.557, p = 0.005, respectively) and 8 (r = - 0.459, p = 0.024; r = - 0.407, p = 0.048; r = - 0.607, p = 0.002, respectively). The cell death percentages of alveolar CD4/CD8 lymphocytes and monocytes were also negatively correlated with mechanical power (MP) on days 1 (r = - 0.558, p = 0.005; r = - 0.593, p = 0.002; r = - 0.571, p = 0.004, respectively) and 8 (r = - 0.539, p = 0.007; r = - 0.338, p = 0.107; r = - 0.649, p < 0.001, respectively). The percentage of alveolar NETs on days 1 and 8 was not associated with DP or MP. CONCLUSION Patients with higher cell death rates of alveolar CD4/CD8 lymphocytes and monocytes exhibited lower DP and MP. Patients with less cell death of alveolar CD4/CD8 lymphocytes and monocytes required more DP or MP to maintain adequate ventilation.
Collapse
Affiliation(s)
- Shaw-Woei Leu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chien-Min Chu
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung. 222, Maijin Rd., Anle Chiu, Keelung, 20401, Taiwan
| | - Chia-Jung Chung
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung. 222, Maijin Rd., Anle Chiu, Keelung, 20401, Taiwan
| | - Chih-Yu Huang
- College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung. 222, Maijin Rd., Anle Chiu, Keelung, 20401, Taiwan
| | - Chao-Hung Wang
- College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Heart Failure Research Center, Division of Cardiology, Chang Gung Memorial Hospital, Keelung, 20401, Taiwan
| | - Li-Fu Li
- College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung. 222, Maijin Rd., Anle Chiu, Keelung, 20401, Taiwan
| | - Huang-Pin Wu
- College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung. 222, Maijin Rd., Anle Chiu, Keelung, 20401, Taiwan.
| |
Collapse
|
24
|
Feng X, Zhu S, Shen Y, Zhu H, Yan M, Cai G, Ning G. Multi-organ spatiotemporal information aware model for sepsis mortality prediction. Artif Intell Med 2024; 147:102746. [PMID: 38184353 DOI: 10.1016/j.artmed.2023.102746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Sepsis is a syndrome involving multi-organ dysfunction, and the mortality in sepsis patients correlates with the number of lesioned organs. Precise prognosis models play a pivotal role in enabling healthcare practitioners to administer timely and accurate interventions for sepsis, thereby augmenting patient outcomes. Nevertheless, the majority of available models consider the overall physiological attributes of patients, overlooking the asynchronous spatiotemporal interactions among multiple organ systems. These constraints hinder a full application of such models, particularly when dealing with limited clinical data. To surmount these challenges, a comprehensive model, denoted as recurrent Graph Attention Network-multi Gated Recurrent Unit (rGAT-mGRU), was proposed. Taking into account the intricate spatiotemporal interactions among multiple organ systems, the model predicted in-hospital mortality of sepsis using data collected within the 48-hour period post-diagnosis. MATERIAL AND METHODS Multiple parallel GRU sub-models were formulated to investigate the temporal physiological variations of single organ systems. Meanwhile, a GAT structure featuring a memory unit was constructed to capture spatiotemporal connections among multi-organ systems. Additionally, an attention-injection mechanism was employed to govern the data flowing within the network pertaining to multi-organ systems. The proposed model underwent training and testing using a dataset of 10,181 sepsis cases extracted from the Medical Information Mart for Intensive Care III (MIMIC-III) database. To evaluate the model's superiority, it was compared with the existing common baseline models. Furthermore, ablation experiments were designed to elucidate the rationale and robustness of the proposed model. RESULTS Compared with the baseline models for predicting mortality of sepsis, the rGAT-mGRU model demonstrated the largest area under the receiver operating characteristic curve (AUROC) of 0.8777 ± 0.0039 and the maximum area under the precision-recall curve (AUPRC) of 0.5818 ± 0.0071, with sensitivity of 0.8358 ± 0.0302 and specificity of 0.7727 ± 0.0229, respectively. The proposed model was capable of delineating the varying contribution of the involved organ systems at distinct moments, as specifically illustrated by the attention weights. Furthermore, it exhibited consistent performance even in the face of limited clinical data. CONCLUSION The rGAT-mGRU model has the potential to indicate sepsis prognosis by extracting the dynamic spatiotemporal interplay information inherent in multi-organ systems during critical diseases, thereby providing clinicians with auxiliary decision-making support.
Collapse
Affiliation(s)
- Xue Feng
- Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Siyi Zhu
- Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yanfei Shen
- Intensive Care Unit, Zhejiang Hospital, Hangzhou 310013, China
| | - Huaiping Zhu
- Department of Mathematics and Statistics, York University, Toronto M3J1P3, Canada
| | - Molei Yan
- Intensive Care Unit, Zhejiang Hospital, Hangzhou 310013, China
| | - Guolong Cai
- Intensive Care Unit, Zhejiang Hospital, Hangzhou 310013, China.
| | - Gangmin Ning
- Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou 311121, China.
| |
Collapse
|
25
|
Zhang X, Yang L, Cui L, Li H, Wang X. A new method for predicting SIRS after percutaneous transhepatic gallbladder drainage. Sci Rep 2023; 13:21523. [PMID: 38057383 PMCID: PMC10700562 DOI: 10.1038/s41598-023-48908-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/18/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023] Open
Abstract
The occurrence of systemic inflammatory response after percutaneous transhepatic gallbladder drainage brings great risks to patients and is one of the challenges faced by clinicians. Therefore, it is of great significance to find a suitable prediction method for clinicians to intervene early and reduce the transformation of serious complications. Easy-to-obtain and objectively measured clinical features were screened, and logistic regression was used to construct a prediction model. The predictive ability of the model was evaluated by using the receiver operating characteristic curve and the decision curve in the validation set and the training set, respectively. Nine clinical features (CRP, Fever, DBIL, Obstruction, Bile properties, PCT, Length, Width, and Volume factor) were used to construct the prediction model, and the validation results showed that the prediction model had good performance in the training set (AUC = 0.83) and the validation set (AUC = 0.81). The decision curve also showed that the predictive ability of the model incorporating nine clinical features is better than that of a single clinical feature. The model we constructed can accurately predict the occurrence of SIRS, which can guide clinicians to take treatment measures and avoid the deterioration of complications.
Collapse
Affiliation(s)
- Xuanfeng Zhang
- Center of Hepatobiliary Pancreatic Disease, XuZhou Central Hospital, No.199 Jiefang South Road, Xuzhou, Jiangsu, People's Republic of China
| | - Lulu Yang
- Department of Radiology, XuZhou Central Hospital, Xuzhou, Jiangsu, People's Republic of China
| | - Long Cui
- Center of Hepatobiliary Pancreatic Disease, XuZhou Central Hospital, No.199 Jiefang South Road, Xuzhou, Jiangsu, People's Republic of China
| | - Huansong Li
- Center of Hepatobiliary Pancreatic Disease, XuZhou Central Hospital, No.199 Jiefang South Road, Xuzhou, Jiangsu, People's Republic of China.
| | - Xiaochuan Wang
- Center of Hepatobiliary Pancreatic Disease, XuZhou Central Hospital, No.199 Jiefang South Road, Xuzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Bai R, Pei J, Pei S, Cong X, Chun J, Wang F, Chen X. LPA 2 Alleviates Septic Acute Lung Injury via Protective Endothelial Barrier Function Through Activation of PLC-PKC-FAK. J Inflamm Res 2023; 16:5095-5109. [PMID: 38026263 PMCID: PMC10640838 DOI: 10.2147/jir.s419578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Increased endothelial permeability of pulmonary vessels is a primary pathological characteristic of septic acute lung injury (ALI). Previously, elevated lysophosphatidic acid (LPA) levels and LPA2 (an LPA receptor) expression have been found in the peripheral blood and lungs of septic mice, respectively. However, the specific role of LPA2 in septic ALI remains unclear. Methods A lipopolysaccharide (LPS)-induced model of sepsis was established in wild-type (WT) and global LPA2 knockout (Lpar2-/-) mice. We examined mortality, lung injury, assessed endothelial permeability through Evans blue dye (EBD) assay in vivo, and transendothelial electrical resistance (TEER) of mouse lung microvascular endothelial cells (MLMECs) in vitro. Enzyme-linked immunosorbent assay (ELISA), histopathological, immunofluorescence, immunohistochemistry, and Western blot were employed to investigate the role of LPA2 in septic ALI. Results Lpar2 deficiency increased vascular endothelial permeability, impaired lung injury, and increased mortality. Histological examination revealed aggravated inflammation, edema, hemorrhage and alveolar septal thickening in the lungs of septic Lpar2-/- mice. In vitro, loss of Lpar2 resulted in increased permeability of MLMECs. Pharmacological activation of LPA2 by the agonist DBIBB led to significantly reduced inflammation, edema and hemorrhage, as well as increased expression of the vascular endothelial tight junction (TJ) protein zonula occludens-1 (ZO-1) and claudin-5, as well as the adheren junction (AJ) protein VE-cadherin. Moreover, DBIBB treatment was found to alleviate mortality by protecting against vascular endothelial permeability. Mechanistically, we demonstrated that vascular endothelial permeability was alleviated through LPA-LPA2 signaling via the PLC-PKC-FAK pathway. Conclusion These data provide a novel mechanism of endothelial barrier protection via PLC-PKC-FAK pathway and suggest that LPA2 may contribute to the therapeutic effects of septic ALI.
Collapse
Affiliation(s)
- Ruifeng Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jianqiu Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Shengqiang Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiangfeng Cong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jerold Chun
- Neuroscience Drug Discovery, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Fang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Diagnostic Laboratory Service, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Clinical Laboratory, Fuwai Yunnan Cardiovascular Hospital, Kunming, People’s Republic of China
| | - Xi Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Diagnostic Laboratory Service, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
27
|
Briassoulis G, Briassoulis P, Ilia S, Miliaraki M, Briassouli E. The Anti-Oxidative, Anti-Inflammatory, Anti-Apoptotic, and Anti-Necroptotic Role of Zinc in COVID-19 and Sepsis. Antioxidants (Basel) 2023; 12:1942. [PMID: 38001795 PMCID: PMC10669546 DOI: 10.3390/antiox12111942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Zinc is a structural component of proteins, functions as a catalytic co-factor in DNA synthesis and transcription of hundreds of enzymes, and has a regulatory role in protein-DNA interactions of zinc-finger proteins. For many years, zinc has been acknowledged for its anti-oxidative and anti-inflammatory functions. Furthermore, zinc is a potent inhibitor of caspases-3, -7, and -8, modulating the caspase-controlled apoptosis and necroptosis. In recent years, the immunomodulatory role of zinc in sepsis and COVID-19 has been investigated. Both sepsis and COVID-19 are related to various regulated cell death (RCD) pathways, including apoptosis and necroptosis. Lack of zinc may have a negative effect on many immune functions, such as oxidative burst, cytokine production, chemotaxis, degranulation, phagocytosis, and RCD. While plasma zinc concentrations decline swiftly during both sepsis and COVID-19, this reduction is primarily attributed to a redistribution process associated with the inflammatory response. In this response, hepatic metallothionein production increases in reaction to cytokine release, which is linked to inflammation, and this protein effectively captures and stores zinc in the liver. Multiple regulatory mechanisms come into play, influencing the uptake of zinc, the binding of zinc to blood albumin and red blood cells, as well as the buffering and modulation of cytosolic zinc levels. Decreased zinc levels are associated with increasing severity of organ dysfunction, prolonged hospital stay and increased mortality in septic and COVID-19 patients. Results of recent studies focusing on these topics are summarized and discussed in this narrative review. Existing evidence currently does not support pharmacological zinc supplementation in patients with sepsis or COVID-19. Complementation and repletion should follow current guidelines for micronutrients in critically ill patients. Further research investigating the pharmacological mechanism of zinc in programmed cell death caused by invasive infections and its therapeutic potential in sepsis and COVID-19 could be worthwhile.
Collapse
Affiliation(s)
- George Briassoulis
- Postgraduate Program “Emergency and Intensive Care in Children, Adolescents, and Young Adults”, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Panagiotis Briassoulis
- Second Department of Anesthesiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Stavroula Ilia
- Postgraduate Program “Emergency and Intensive Care in Children, Adolescents, and Young Adults”, School of Medicine, University of Crete, 71003 Heraklion, Greece;
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece;
| | - Marianna Miliaraki
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece;
| | - Efrossini Briassouli
- Infectious Diseases Department “MAKKA”, First Department of Paediatrics, “Aghia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
28
|
Li Z, Qiao O, Wang Y, Li N, Gong Y. Potential therapeutic targets for trauma management. Trends Pharmacol Sci 2023; 44:S0165-6147(23)00234-1. [PMID: 39492319 DOI: 10.1016/j.tips.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2024]
Abstract
Despite advances in medical treatments for severe trauma, it remains a critical condition associated with high mortality. During trauma, the release of endogenous damage-associated molecular patterns (DAMPs) can induce immune dysfunction, leading to sepsis or multiple organ dysfunction syndrome (MODS). Vaccines based on specific pathogen antigens and pathogen-associated molecular patterns (PAMPs) contribute largely to the prevention of communicable diseases through the induction of adaptive immune responses. Vaccines developed based on autologous molecules may also promote recovery from non-communicable diseases (NCDs) by eliciting appropriate immune responses, as recent clinical trials indicate. Developing new vaccines targeting DAMPs may be an effective pre-protective measure for trauma management. We describe the role of DAMPs in post-traumatic immune dysfunction and discuss the potential of harnessing them for trauma vaccine development as well as the risks and challenges.
Collapse
Affiliation(s)
- Zizheng Li
- Institute of Disaster and Emergency Medicine, Medical School, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Ou Qiao
- Institute of Disaster and Emergency Medicine, Medical School, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Yuru Wang
- Institute of Disaster and Emergency Medicine, Medical School, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China; Thinking Biomed (Beijing) Co., Ltd, Beijing Economic and Technological Development Zone, Beijing, 100176, China
| | - Ning Li
- Institute of Disaster and Emergency Medicine, Medical School, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China.
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical School, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China.
| |
Collapse
|
29
|
You G, Zhao X, Liu J, Yao K, Yi X, Chen H, Wei X, Huang Y, Yang X, Lei Y, Lin Z, He Y, Fan M, An Y, Lu T, Lv H, Sui X, Yi H. Machine learning-based identification of CYBB and FCAR as potential neutrophil extracellular trap-related treatment targets in sepsis. Front Immunol 2023; 14:1253833. [PMID: 37901228 PMCID: PMC10613076 DOI: 10.3389/fimmu.2023.1253833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Objective Sepsis related injury has gradually become the main cause of death in non-cardiac patients in intensive care units, but the underlying pathological and physiological mechanisms remain unclear. The Third International Consensus Definitions for Sepsis and Septic Shock (SEPSIS-3) definition emphasized organ dysfunction caused by infection. Neutrophil extracellular traps (NETs) can cause inflammation and have key roles in sepsis organ failure; however, the role of NETs-related genes in sepsis is unknown. Here, we sought to identify key NETs-related genes associate with sepsis. Methods Datasets GSE65682 and GSE145227, including data from 770 patients with sepsis and 54 healthy controls, were downloaded from the GEO database and split into training and validation sets. Differentially expressed genes (DEGs) were identified and weighted gene co-expression network analysis (WGCNA) performed. A machine learning approach was applied to identify key genes, which were used to construct functional networks. Key genes associated with diagnosis and survival of sepsis were screened out. Finally, mouse and human blood samples were collected for RT-qPCR verification and flow cytometry analysis. Multiple organs injury, apoptosis and NETs expression were measured to evaluated effects of sulforaphane (SFN). Results Analysis of the obtained DEGs and WGCNA screened a total of 3396 genes in 3 modules, and intersection of the results of both analyses with 69 NETs-related genes, screened out seven genes (S100A12, SLC22A4, FCAR, CYBB, PADI4, DNASE1, MMP9) using machine learning algorithms. Of these, CYBB and FCAR were independent predictors of poor survival in patients with sepsis. Administration of SFN significantly alleviated murine lung NETs expression and injury, accompanied by whole blood CYBB mRNA level. Conclusion CYBB and FCAR may be reliable biomarkers of survival in patients with sepsis, as well as potential targets for sepsis treatment. SFN significantly alleviated NETs-related organs injury, suggesting the therapeutic potential by targeting CYBB in the future.
Collapse
Affiliation(s)
- GuoHua You
- Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - XueGang Zhao
- Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - JianRong Liu
- Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kang Yao
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - XiaoMeng Yi
- Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - HaiTian Chen
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - XuXia Wei
- Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - YiNong Huang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - XingYe Yang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - YunGuo Lei
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - ZhiPeng Lin
- Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - YuFeng He
- Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - MingMing Fan
- Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - YuLing An
- Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - TongYu Lu
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - HaiJin Lv
- Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin Sui
- Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - HuiMin Yi
- Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Buys W, Bick A, Madel RJ, Westendorf AM, Buer J, Herbstreit F, Kirschning CJ, Peters J. Substantial heterogeneity of inflammatory cytokine production and its inhibition by a triple cocktail of toll-like receptor blockers in early sepsis. Front Immunol 2023; 14:1277033. [PMID: 37869001 PMCID: PMC10588698 DOI: 10.3389/fimmu.2023.1277033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Early sepsis is a life-threatening immune dysregulation believed to feature a "cytokine storm" due to activation of pattern recognition receptors by pathogen and danger associated molecular patterns. However, treatments with single toll-like receptor (TLR) blockers have shown no clinical benefit. We speculated that sepsis patients at the time of diagnosis are heterogeneous in relation to their cytokine production and its potential inhibition by a triple cocktail of TLR blockers. Accordingly, we analyzed inflammatory cytokine production in whole blood assays from early sepsis patients and determined the effects of triple TLR-blockade. Methods Whole blood of 51 intensive care patients sampled within 24h of meeting Sepsis-3 criteria was incubated for 6h without or with specific TLR2, 4, and 7/8 stimuli or suspensions of heat-killed S. aureus or E. coli bacteria as pan-TLR challenges, and also with a combination of monoclonal antibodies against TLR2 and 4 and chloroquine (endosomal TLR inhibition), subsequent to dose optimization. Concentrations of tumor necrosis factor (TNF), Interleukin(IL)-6, IL-8, IL-10, IL-1α and IL-1β were measured (multiplex ELISA) before and after incubation. Samples from 11 sex and age-matched healthy volunteers served as controls and for dose-finding studies. Results Only a fraction of sepsis patient samples revealed ongoing cytokine production ex vivo despite sampling within 24 h of first meeting Sepsis-3 criteria. In dose finding studies, inhibition of TLR2, 4 and endosomal TLRs reliably suppressed cytokine production to specific TLR agonists and added bacteria. However, inflammatory cytokine production ex vivo was only suppressed in the high cytokine producing samples but not in the majority. The suppressive response to TLR-blockade correlated both with intraassay inflammatory cytokine production (r=0.29-0.68; p<0.0001-0.04) and cytokine baseline concentrations (r=0.55; p<0.0001). Discussion Upon meeting Sepsis-3 criteria for less than 24 h, a mere quarter of patient samples exhibits a strong inflammatory phenotype, as characterized by increased baseline inflammatory cytokine concentrations and a stark TLR-dependent increase upon further ex vivo incubation. Thus, early sepsis patient cohorts as defined by Sepsis-3 criteria are very heterogeneous in regard to inflammation. Accordingly, proper ex vivo assays may be useful in septic individuals before embarking on immunomodulatory treatments.
Collapse
Affiliation(s)
| | - Alexandra Bick
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | | | - Astrid M. Westendorf
- Institut für Medizinische Mikrobiologie, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Jan Buer
- Institut für Medizinische Mikrobiologie, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Frank Herbstreit
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Carsten J. Kirschning
- Institut für Medizinische Mikrobiologie, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
31
|
Mytych JS, Pan Z, Lopez-Davis C, Redinger N, Lawrence C, Ziegler J, Popescu NI, James JA, Farris AD. Peptidoglycan from Bacillus anthracis Inhibits Human Macrophage Efferocytosis in Part by Reducing Cell Surface Expression of MERTK and TIM-3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.535001. [PMID: 37066181 PMCID: PMC10103956 DOI: 10.1101/2023.03.30.535001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/17/2023]
Abstract
Bacillus anthracis peptidoglycan (PGN) is a major component of the bacterial cell wall and a key pathogen-associated molecular pattern (PAMP) contributing to anthrax pathology, including organ dysfunction and coagulopathy. Increases in apoptotic lymphocytes are a late-stage feature of anthrax and sepsis, suggesting there is a defect in apoptotic clearance. Here, we tested the hypothesis that B. anthracis PGN inhibits the capacity of human monocyte-derived macrophages (MΦ) to efferocytose apoptotic cells. Exposure of CD163+CD206+ MΦ to PGN for 24h impaired efferocytosis in a manner dependent on human serum opsonins but independent of complement component C3. PGN treatment reduced cell surface expression of the pro-efferocytic signaling receptors MERTK, TYRO3, AXL, integrin αVβ5, CD36 and TIM-3, whereas TIM-1, αVβ3, CD300b, CD300f, STABILIN-1 and STABILIN-2 were unaffected. ADAM17 is a major membrane-bound protease implicated in mediating efferocytotic receptor cleavage. We found multiple ADAM17-mediated substrates increased in PGN-treated supernatant suggesting involvement of membrane-bound proteases. ADAM17 inhibitors TAPI-0 and Marimastat prevented TNF release, indicating effective protease inhibition, and modestly increased cell-surface levels of MerTK and TIM-3 but only partially restored efferocytic capacity by PGN-treated MΦ. We conclude that human serum factors are required for optimal recognition of PGN by human MΦ and that B. anthracis PGN inhibits efferocytosis in part by reducing cell surface expression of MERTK and TIM-3.
Collapse
Affiliation(s)
- Joshua S Mytych
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 1100 N Lindsay Avenue, Oklahoma City, OK 73104, USA
| | - Zijian Pan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Charmaine Lopez-Davis
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Nancy Redinger
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Christina Lawrence
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Jadith Ziegler
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Narcis I. Popescu
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - A. Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 1100 N Lindsay Avenue, Oklahoma City, OK 73104, USA
| |
Collapse
|
32
|
Sikora JP, Karawani J, Sobczak J. Neutrophils and the Systemic Inflammatory Response Syndrome (SIRS). Int J Mol Sci 2023; 24:13469. [PMID: 37686271 PMCID: PMC10488036 DOI: 10.3390/ijms241713469] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
We are not entirely able to understand, assess, and modulate the functioning of the immune system in clinical situations that lead to a systemic inflammatory response. In the search for diagnostic and treatment strategies (which are still far from perfect), it became very important to study the pathogenesis and participation of endogenous inflammation mediators. This study attempts to more precisely establish the role of neutrophils in individual phenomena occurring during an inflammatory and anti-inflammatory reaction, taking into account their cidal, immunoregulatory, and reparative abilities. Pro- and anticoagulatory properties of endothelium in systemic inflammatory response syndrome (SIRS) are emphasised, along with the resulting clinical implications (the application of immunotherapy using mesenchymal stem/stromal cells (MSCs) or IL-6 antagonists in sepsis and COVID-19 treatment, among others). Special attention is paid to reactive oxygen species (ROS), produced by neutrophils activated during "respiratory burst" in the course of SIRS; the protective and pathogenic role of these endogenous mediators is highlighted. Moreover, clinically useful biomarkers of SIRS (neutrophil extracellular traps, cell-free DNA, DAMP, TREMs, NGAL, miRNA, selected cytokines, ROS, and recognised markers of endothelial damage from the group of adhesins by means of immunohistochemical techniques) related to the neutrophils are presented, and their role in the diagnosing and forecasting of sepsis, burn disease, and COVID-19 is emphasised. Finally, examples of immunomodulation of sepsis and antioxidative thermal injury therapy are presented.
Collapse
Affiliation(s)
- Janusz P. Sikora
- Department of Paediatric Emergency Medicine, 2nd Chair of Paediatrics, Central Clinical Hospital, Medical University of Łódź, ul. Sporna 36/50, 91-738 Łódź, Poland;
| | - Jakub Karawani
- Faculty of Medicine, Lazarski University, ul. Świeradowska 43, 02-662 Warsaw, Poland;
| | - Jarosław Sobczak
- Department of Paediatric Emergency Medicine, 2nd Chair of Paediatrics, Central Clinical Hospital, Medical University of Łódź, ul. Sporna 36/50, 91-738 Łódź, Poland;
- Department of Management and Logistics in Healthcare, Medical University of Łódź, ul. Lindleya 6, 90-131 Łódź, Poland
| |
Collapse
|
33
|
Hsiao YC, Shen PY, Wong LT, Chan MC, Chao WC. The Association Between Absolute Lymphocyte Count and Long-Term Mortality in Critically Ill Medical Patients: Propensity Score-Based Analyses. Int J Gen Med 2023; 16:3665-3675. [PMID: 37637708 PMCID: PMC10460208 DOI: 10.2147/ijgm.s424724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023] Open
Abstract
Objective Absolute lymphocyte count (ALC) has been implicated with short-term outcomes in a number of diseases, and we aimed to investigate the association between week-one ALC and long-term mortality in patients who were admitted to the medical intensive care units (ICUs). Methods We enrolled patients who were admitted to the medical ICUs at the Taichung Veterans General Hospital, a referral centre located in central Taiwan, between 2015 and 2020 to conduct this retrospective cohort study. The outcome of interest was long-term all-cause mortality, and hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated to determine the association. Furthermore, we employed propensity score-matching (PSM) and weighting techniques, consisting of inverse probability of treatment weighting (IPTW) and covariate balancing propensity score (CBPS), to confirm the association between ALC and mortality. Results A total of 5722 critically ill patients were enrolled, and the one-year mortality was 44.8%. The non-survivor group had a lower ALC (1549, 1027-2388 vs 1948, 1373-2743 counts/μL, p<0.01) compared with those in the survivor group. Cox regression showed that low ALC was independently associated with mortality (adjHR 1.091, 95% CI 1.050-1.134). Propensity score-based analyses demonstrated the robust association, with adjHRs in the original, PSM, IPTW, and CBPS populations of 1.327 (95% CI 1.224-1.438), 1.301 (95% CI 1.188-1.424), 1.292 (95% CI 1.186-1.407), and 1.297 (95% CI 1.191-1.412), respectively. Sensitivity analyses further showed that the association between low ALC and mortality existed in a dose-response manner. Conclusion We found that low ALC was associated with long-term mortality in critically ill patients; further studies are warranted to validate and translate these findings into clinical utility.
Collapse
Affiliation(s)
- Yi-Chun Hsiao
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Pei-Yi Shen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Li-Ting Wong
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ming-Cheng Chan
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Cheng Chao
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Big Data Center, Chung Hsing University, Taichung, Taiwan
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan
| |
Collapse
|
34
|
Li J, Xuan R, Wu W, Zhang H, Zhao J, Zhang S. Geldanamycin ameliorates multiple organ dysfunction and microthrombosis in septic mice by inhibiting the formation of the neutrophil extracellular network by activating heat shock factor 1 HSF1. Clin Exp Pharmacol Physiol 2023; 50:698-707. [PMID: 37308449 DOI: 10.1111/1440-1681.13798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/17/2022] [Revised: 02/13/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023]
Abstract
Sepsis and septic shock are common critical illnesses in the intensive care unit with a high mortality rate. Geldanamycin (GA) has a broad spectrum of antibacterial and antiviral activity and has inhibitory effects on various viruses. However, whether GA affects sepsis due to infections remains unknown. In this study, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen and creatinine in serum; neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 in the urine, cytokines (tumour necrosis factor alpha, interleukin-1β and interleukin-6) in the bronchoalveolar lavage fluid and myeloperoxidase in the lung tissues were measured using enzyme-linked immunosorbent assay kits. Pathological injury was measured by hematoxylin and eosin staining and neutrophils were measured by flow cytometry analysis; related expressions were analysed by qPCR, western blot and immunofluorescence assay. The results showed that GA significantly ameliorated cecum ligation and puncture (CLP)-triggered liver, kidney and lung injury in septic mice. In addition, we found that GA dose-dependently inhibited microthrombosis and alleviated coagulopathy in septic mice. Further molecular mechanism analysis suggests that GA may act through upregulation of heat shock factor 1 and tissue-type plasminogen activator. In conclusion, our study elucidated the protective effects of GA in a mouse model established using CLP, and the results reveal that GA may be a promising agent for sepsis.
Collapse
Affiliation(s)
- Jing Li
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruijing Xuan
- Department of Experimental Zoology, Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Weidong Wu
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Hailong Zhang
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Zhao
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Shan Zhang
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
35
|
Harada T, Shimomura Y, Nishida O, Maeda M, Kato Y, Nakamura T, Kuriyama N, Komura H. Effects of recombinant human soluble thrombomodulin on neutrophil extracellular traps in the kidney of a mouse model of endotoxin shock. FUJITA MEDICAL JOURNAL 2023; 9:225-230. [PMID: 37554943 PMCID: PMC10405902 DOI: 10.20407/fmj.2022-026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/07/2022] [Accepted: 09/12/2022] [Indexed: 08/10/2023]
Abstract
OBJECTIVES Sepsis is a life-threatening condition characterized by multi-organ dysfunction due to host immune system dysregulation in response to an infection. During sepsis, neutrophils release neutrophil extracellular traps (NETs) as part of the innate immune response. However, excessive NETs play a critical role in the development of organ failure during sepsis. Although recombinant human soluble thrombomodulin (rTM) can inhibit NET formation in the lungs and liver of a mouse model of endotoxin shock, its effects on the kidneys are unclear. METHODS The specific effects of NETs and rTM on the renal cortex and renal medulla were examined in a mouse model of endotoxin shock generated by intraperitoneal (i.p.) injection of lipopolysaccharide (LPS), followed by i.p. injection of rTM or an identical volume of saline 1 h later. RESULTS LPS injection increased serum creatinine, blood urea nitrogen, and histone H3 levels. However, rTM administration significantly decreased histone H3 and citrullinated histone H3 (citH3) levels. Immunohistochemical analysis revealed no significant changes in citH3 quantity in the renal cortex of any group. However, in the renal medulla, the increase in citH3 induced by LPS was abolished in the LPS+rTM group. CONCLUSIONS Our findings demonstrate that rTM can suppress NETs in the renal medulla of mice with endotoxin-induced acute kidney injury.
Collapse
Affiliation(s)
- Tatsuhiko Harada
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Yasuyo Shimomura
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Munenori Maeda
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Yu Kato
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Tomoyuki Nakamura
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Naohide Kuriyama
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Hidefumi Komura
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
36
|
Liu S, Duan C, Xie J, Zhang J, Luo X, Wang Q, Liang X, Zhao X, Zhuang R, Zhao W, Yin W. Peripheral immune cell death in sepsis based on bulk RNA and single-cell RNA sequencing. Heliyon 2023; 9:e17764. [PMID: 37455967 PMCID: PMC10339024 DOI: 10.1016/j.heliyon.2023.e17764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Background Immune cell activation in early sepsis is beneficial to clear pathogens, but immune cell exhaustion during the inflammatory response induces immunosuppression in sepsis. Here, we studied the relationship between immune cell survival status and the prognosis of sepsis patients. Methods Sepsis patients admitted to our hospital with a diagnosis time of less than 24 h were recruited. RNA sequencing technologies were used to study functional alterations in various immune cells in peripheral blood mononuclear cells (PBMCs) from sepsis patients. Flow cytometry and electron microscopy were performed to study cell apoptosis and morphological alterations. Results A total of 68 sepsis patients with complete data were enrolled and divided into survival (45 patients) and death (23 patients) groups according to their prognosis. Patients in the death group had significantly increased lactic acid levels compared with those in the survival group, but there was no significant difference in other physiological and coagulation functional indicators between the two groups. Bulk RNA sequencing showed that cell death-related pathways and biomarkers were highly enriched and activated in the PBMCs of the death group than that in the survival group. Signs of mitochondrial damage, autophagosomes, cell surface damage and cell surface pore forming were also more pronounced in PBMCs from the death group under electron microscopy. Further single-cell RNA sequencing revealed that cell death occurred mainly in myeloid cells rather than lymphocytes at the early stage of sepsis; cell death patterns of destructive necrosis and pyroptosis were predominant in neutrophils, and apoptosis, autophagy and ferroptosis with less damage to the surroundings were predominant in monocytes. Conclusion Cell death mainly occurs in monocytes and neutrophils in the PBMCs of sepsis at the early stage. The study provides a perspective for the immunotherapy of early sepsis targeting immune cell death.
Collapse
Affiliation(s)
- Shanshou Liu
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chujun Duan
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiangang Xie
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinxin Zhang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xu Luo
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qianmei Wang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoli Liang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaojun Zhao
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Wei Zhao
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
37
|
Shi FL, Yuan LS, Wong TS, Li Q, Li YP, Xu R, You YP, Yuan T, Zhang HR, Shi ZJ, Zha QB, Hu B, He XH, Ouyang DY. Dimethyl fumarate inhibits necroptosis and alleviates systemic inflammatory response syndrome by blocking the RIPK1-RIPK3-MLKL axis. Pharmacol Res 2023; 189:106697. [PMID: 36796462 DOI: 10.1016/j.phrs.2023.106697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/21/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Necroptosis has been implicated in various inflammatory diseases including tumor-necrosis factor-α (TNF-α)-induced systemic inflammatory response syndrome (SIRS). Dimethyl fumarate (DMF), a first-line drug for treating relapsing-remitting multiple sclerosis (RRMS), has been shown to be effective against various inflammatory diseases. However, it is still unclear whether DMF can inhibit necroptosis and confer protection against SIRS. In this study, we found that DMF significantly inhibited necroptotic cell death in macrophages induced by different necroptotic stimulations. Both the autophosphorylation of receptor-interacting serine/threonine kinase 1 (RIPK1) and RIPK3 and the downstream phosphorylation and oligomerization of MLKL were robustly suppressed by DMF. Accompanying the suppression of necroptotic signaling, DMF blocked the mitochondrial reverse electron transport (RET) induced by necroptotic stimulation, which was associated with its electrophilic property. Several well-known anti-RET reagents also markedly inhibited the activation of the RIPK1-RIPK3-MLKL axis accompanied by decreased necrotic cell death, indicating a critical role of RET in necroptotic signaling. DMF and other anti-RET reagents suppressed the ubiquitination of RIPK1 and RIPK3, and they attenuated the formation of necrosome. Moreover, oral administration of DMF significantly alleviated the severity of TNF-α-induced SIRS in mice. Consistent with this, DMF mitigated TNF-α-induced cecal, uterine, and lung damage accompanied by diminished RIPK3-MLKL signaling. Collectively, DMF represents a new necroptosis inhibitor that suppresses the RIPK1-RIPK3-MLKL axis through blocking mitochondrial RET. Our study highlights DMF's potential therapeutic applications for treating SIRS-associated diseases.
Collapse
Affiliation(s)
- Fu-Li Shi
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Sha Yuan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tak-Sui Wong
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Qing Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ya-Ping Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Rong Xu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Ping You
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tao Yuan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Rui Zhang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Qing-Bing Zha
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
| | - Bo Hu
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China.
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
38
|
Di Virgilio F, Vultaggio-Poma V, Falzoni S, Giuliani AL. Extracellular ATP: A powerful inflammatory mediator in the central nervous system. Neuropharmacology 2023; 224:109333. [PMID: 36400278 DOI: 10.1016/j.neuropharm.2022.109333] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Nucleotides play a crucial role in extracellular signaling across species boundaries. All the three kingdoms of life (Bacteria, Archea and Eukariota) are responsive to extracellular ATP (eATP) and many release this and other nucleotides. Thus, eATP fulfills different functions, many related to danger-sensing or avoidance reactions. Basically all living organisms have evolved sensors for eATP and other nucleotides with very different affinity and selectivity, thus conferring a remarkable plasticity to this signaling system. Likewise, different intracellular transduction systems were associated during evolution to different receptors for eATP. In mammalian evolution, control of intracellular ATP (iATP) and eATP homeostasis has been closely intertwined with that of Ca2+, whether in the extracellular milieu or in the cytoplasm, establishing an inverse reciprocal relationship, i.e. high extracellular Ca2+ levels are associated to negligible eATP, while low intracellular Ca2+ levels are associated to high eATP concentrations. This inverse relationship is crucial for the messenger functions of both molecules. Extracellular ATP is sensed by specific plasma membrane receptors of widely different affinity named P2 receptors (P2Rs) of which 17 subtypes are known. This confers a remarkable plasticity to P2R signaling. The central nervous system (CNS) is a privileged site for purinergic signaling as all brain cell types express P2Rs. Accruing evidence suggests that eATP, in addition to participating in synaptic transmission, also plays a crucial homeostatic role by fine tuning microglia, astroglia and oligodendroglia responses. Drugs modulating the eATP concentration in the CNS are likely to be the new frontier in the therapy of neuroinflammation. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy.
| | | | - Simonetta Falzoni
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy
| | - Anna Lisa Giuliani
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
39
|
Lower Circulating Cell-Free Mitochondrial DNA Is Associated with Heart Failure in Type 2 Diabetes Mellitus Patients. CARDIOGENETICS 2023. [DOI: 10.3390/cardiogenetics13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/11/2023] Open
Abstract
Cell-free nuclear (cf-nDNA) and mitochondrial (cf-mDNA) DNA are released from damaged cells in type 2 diabetes mellitus (T2DM) patients, contributing to adverse cardiac remodeling, vascular dysfunction, and inflammation. The purpose of this study was to correlate the presence and type of cf-DNAs with HF in T2DM patients. A total of 612 T2DM patients were prescreened by using a local database, and 240 patients (120 non-HF and 120 HF individuals) were ultimately selected. The collection of medical information, including both echocardiography and Doppler imagery, as well as the assessment of biochemistry parameters and the circulating biomarkers, were performed at baseline. The N-terminal brain natriuretic pro-peptide (NT-proBNP) and cf-nDNA/cf-mtDNA levels were measured via an ELISA kit and real-time quantitative PCR tests, respectively. We found that HF patients possessed significantly higher levels of cf-nDNA (9.9 ± 2.5 μmol/L vs. 5.4 ± 2.7 μmol/L; p = 0.04) and lower cf-mtDNA (15.7 ± 3.3 μmol/L vs. 30.4 ± 4.8 μmol/L; p = 0.001) than those without HF. The multivariate log regression showed that the discriminative potency of cf-nDNA >7.6 μmol/L (OR = 1.07; 95% CI = 1.03–1.12; p = 0.01) was higher that the NT-proBNP (odds ratio [OR] = 1.10; 95% confidence interval [CI] = 1.04–1.19; p = 0.001) for HF. In conclusion, we independently established that elevated levels of cf-nDNA, originating from NT-proBNP, were associated with HF in T2DM patients.
Collapse
|
40
|
Tu X, Huang H, Xu S, Li C, Luo S. Single-cell transcriptomics reveals immune infiltrate in sepsis. Front Pharmacol 2023; 14:1133145. [PMID: 37113759 PMCID: PMC10126435 DOI: 10.3389/fphar.2023.1133145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 04/29/2023] Open
Abstract
Immune cells and immune microenvironment play important in the evolution of sepsis. This study aimed to explore hub genes related to the abundance of immune cell infiltration in sepsis. The GEOquery package is used to download and organize data from the GEO database. A total of 61 differentially expressed genes (DEGs) between sepsis samples and normal samples were obtained through the 'limma' package. T cells, natural killer (NK) cells, monocytes, megakaryocytes, dendritic cells (DCs), and B cells formed six distinct clusters on the t-distributed stochastic neighbor embedding (t-SNE) plot generated using the Seurat R package. Gene set enrichment analysis (GSEA) enrichment analysis showed that sepsis samples and normal samples were related to Neutrophil Degranulation, Modulators of Tcr Signaling and T Cell Activation, IL 17 Pathway, T Cell Receptor Signaling Pathway, Ctl Pathway, Immunoregulatory Interactions Between a Lymphoid and A Non-Lymphoid Cell. GO analysis and KEGG analysis of immune-related genes showed that the intersection genes were mainly associated with Immune-related signaling pathways. Seven hub genes (CD28, CD3D, CD2, CD4, IL7R, LCK, and CD3E) were screened using Maximal Clique Centrality, Maximum neighborhood component, and Density of Maximum Neighborhood Component algorithms. The lower expression of the six hub genes (CD28, CD3D, CD4, IL7R, LCK, and CD3E) was observed in sepsis samples. We observed the significant difference of several immune cell between sepsis samples and control samples. Finally, we carried out in vivo animal experiments, including Western blotting, flow cytometry, Elisa, and qPCR assays to detect the concentration and the expression of several immune factors.
Collapse
Affiliation(s)
- Xusheng Tu
- Department of Emergency Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - He Huang
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shilei Xu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Caifei Li
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Caifei Li, ; Shaoning Luo,
| | - Shaoning Luo
- Department of Emergency Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Caifei Li, ; Shaoning Luo,
| |
Collapse
|
41
|
Cheng Y, Xu L, Wang J, Cao X, Chen D, Zhang P, Yang L, Qin L. Analysis of bulk RNA-seq data from sepsis patients reveals sepsis-associated lncRNAs and targeted cell death-related genes contributing to immune microenvironment regulation. Front Immunol 2023; 14:1026086. [PMID: 36817490 PMCID: PMC9932711 DOI: 10.3389/fimmu.2023.1026086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Background Sepsis is a life-threatening organ dysfunction syndrome that leads to the massive death of immune cells. Long non-coding RNAs (lncRNAs) have been reported to exert key regulatory roles in cells. However, it is unclear how lncRNAs regulate the survival of immune cells in the occurrence and development of sepsis. Methods In this study, we used blood whole transcriptome sequencing data (RNA-seq) from normal controls (Hlty) and patients with uncomplicated infection (Inf1 P), sepsis (Seps P), and septic shock (Shock P), to investigate the fraction changes of immune cell types, expression pattern of cell death-related genes, as well as differentially expressed lncRNAs. Association network among these factors was constructed to screen out essential immune cell types, lncRNAs and their potential targets. Finally, the expression of lncRNAs and cell death genes in sepsis patients were validated by qRT-PCR. Results In this study, we found fifteen immune cell types showed significant fraction difference between Hlty and three patient groups. The expression pattern of cell death-related genes was also dysregulated in Hlty compared with patient groups. Co-expression network analysis identified a key turquoise module that was associated with the fraction changes of immune cells. We then identified differentially expressed lncRNAs and their potential targets that were tightly associated with the immune cell dysregulation in sepsis. Seven lncRNAs, including LINC00861, LINC01278, RARA-AS1, RP11-156P1.3, RP11-264B17.3, RP11-284N8.3 and XLOC_011309, as well as their co-expressed cell death genes, were finally identified, and we validated two lncRNAs (LINC00861 and LINC01278) and four mRNA targets using qRT-PCR in sepsis samples. Conclusion The global analysis of cell death-related genes in the occurrence and development of sepsis was carried out for the first time, and its expression regulation mode was displayed. The expression pattern of sepsis-associated lncRNAs were analyzed and identified, and the lncRNAs were significantly related to the change of immune cell proportion. We highlight the important roles of lncRNAs and their potential targets in the regulation of immune cell fraction changes during sepsis progression. The identified lncRNAs and their target genes may become new biomarkers and therapeutic targets of sepsis.
Collapse
Affiliation(s)
- Yanwei Cheng
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Lijun Xu
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Jiaoyang Wang
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Xue Cao
- Department of Rheumatology and Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Dong Chen
- Wuhan Ruixing Biotechnology Co., Ltd, Wuhan, China
| | - Peirong Zhang
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Lei Yang
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Lijie Qin
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
42
|
Chen M, Su W, Chen F, Lai T, Liu Y, Yu D. Mechanisms underlying the therapeutic effects of 4-octyl itaconate in treating sepsis based on network pharmacology and molecular docking. Front Genet 2022; 13:1056405. [PMID: 36406124 PMCID: PMC9671214 DOI: 10.3389/fgene.2022.1056405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 09/08/2024] Open
Abstract
Objective: Through network pharmacology and molecular docking technology, the hub genes, biological functions, and signaling pathways of 4-Octyl itaconate (4-OI) against sepsis were revealed. Methods: Pathological targets of sepsis were screened using GeneCards and GEO databases. Similarly, the pharmacological targets of 4-OI were obtained through Swiss TargetPrediction (STP), Similarity ensemble approach (SEA), and TargetNet databases. Then, all the potential targets of 4-OI anti-sepsis were screened by the online platform Draw Venn diagram, and the hub genes were screened by Cytoscape software. The identified hub genes were analyzed by GO and KEGG enrichment analysis, protein interaction (PPI) network, and molecular and docking technology to verify the reliability of hub gene prediction, further confirming the target and mechanism of 4-OI in the treatment of sepsis. Results: After the target screening of 4-OI and sepsis, 264 pharmacological targets, 1953 pathological targets, and 72 genes related to 4-OI anti-sepsis were obtained, and eight hub genes were screened, namely MMP9, MMP2, SIRT1, PPARA, PTPRC, NOS3, TLR2, and HSP90AA1. The enrichment analysis results indicated that 4-OI might be involved in regulating inflammatory imbalance, immunosuppression, and oxidative stress in developing sepsis. 4-OI protects multiple organ dysfunction in sepsis by acting on hub genes, and MMP9 is a reliable gene for the prognosis and diagnosis of sepsis. The molecular docking results showed that 4-OI binds well to the hub target of sepsis. Conclusion: 4-OI plays an antiseptic role by regulating MMP9, MMP2, SIRT1, PPARA, PTPRC, NOS3, TLR2 and HSP90AA1. These Hub genes may provide new insights into follow-up research on the target of sepsis treatment.
Collapse
Affiliation(s)
- Maolin Chen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Wenxing Su
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Fangling Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Tianlun Lai
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yilun Liu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Daojiang Yu
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
43
|
Comprehensive characterization of costimulatory molecule gene for diagnosis, prognosis and recognition of immune microenvironment features in sepsis. Clin Immunol 2022; 245:109179. [DOI: 10.1016/j.clim.2022.109179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2022] [Revised: 10/06/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
|
44
|
Chen Z, Zeng L, Liu G, Ou Y, Lu C, Yang B, Zuo L. Construction of Autophagy-Related Gene Classifier for Early Diagnosis, Prognosis and Predicting Immune Microenvironment Features in Sepsis by Machine Learning Algorithms. J Inflamm Res 2022; 15:6165-6186. [PMID: 36386585 PMCID: PMC9653048 DOI: 10.2147/jir.s386714] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Background The immune system plays a fundamental role in the pathophysiology of sepsis, and autophagy and autophagy-related molecules are crucial in innate and adaptive immune responses; however, the potential roles of autophagy-related genes (ARGs) in sepsis are not comprehensively understood. Methods A systematic search was conducted in ArrayExpress and Gene Expression Omnibus (GEO) cohorts from July 2005 to May 2022. Machine learning approaches, including modified Lasso penalized regression, support vector machine, and artificial neural network, were applied to identify hub ARGs, thereby developing a prediction model termed ARG classifier. Diagnostic and prognostic performance of the model was comprehensively analyzed using multi-transcriptome data. Subsequently, we systematically correlated the ARG classifier/hub ARGs with immunological characteristics of multiple aspects, including immune cell infiltration, immune and molecular pathways, cytokine levels, and immune-related genes. Further, we collected clinical specimens to preliminarily investigate ARG expression levels and to assess the diagnostic performance of ARG classifier. Results A total of ten GEO and three ArrayExpress datasets were included in this study. Based on machine learning algorithms, eight key ARGs (ATG4C, BAX, BIRC5, ERBB2, FKBP1B, HIF1A, NCKAP1, and NFKB1) were integrated to establish ARG classifier. The model exhibited excellent diagnostic values (AUC > 0.85) in multiple datasets and multiple points in time and superiorly distinguished sepsis from other critical illnesses. ARG classifier showed significant correlations with clinical characteristics or endotypes and performed better in predicting mortality (AUC = 0.70) than other clinical characteristics. Additionally, the identified hub ARGs were significantly associated with immune cell infiltration (B, T, NK, dendritic, T regulatory, and myeloid-derived suppressor cells), immune and molecular pathways (inflammation-promoting pathways, HLA, cytolytic activity, apoptosis, type-II IFN response, complement and coagulation cascades), levels of several cytokines (PDGFRB, IL-10, IFNG, and TNF), which indicated that ARG classifier/hub ARGs adequately reflected the immune microenvironment during sepsis. Finally, using clinical specimens, the expression levels of key ARGs in patients with sepsis were found to differ significantly from those of control patients, and ARG classifier exhibited superior diagnostic performance, compared to procalcitonin and C-reactive protein. Conclusion Collectively, a diagnostic and prognostic model (ARG classifier) based on eight ARGs was developed which may assist clinicians in diagnosis of sepsis and recognizing patient at high risk to guide personalized treatment. Additionally, the ARG classifier effectively reflected the immune microenvironment diversity of sepsis and may facilitate personalized counseling for specific therapy.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Intensive Care Unit, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong Province, 528308, People’s Republic of China
- Correspondence: Zhen Chen; Liuer Zuo, Department of Intensive care Unit, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong Province, 528308, People’s Republic of China, Email ;
| | - Liming Zeng
- Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong Province, 528308, People’s Republic of China
| | - Genglong Liu
- Department of Pathology, Guangzhou Medical University, Guangzhou, Guangdong Province, 511495, People’s Republic of China
- Baishideng Publishing Group Inc, Pleasanton, CA, 94566, USA
| | - Yangpeng Ou
- Department of Oncology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, Guangdong Province, 516000, People’s Republic of China
| | - Chuangang Lu
- Department of Thoracic Surgery, Sanya Central Hospital, Sanya, Hainan Province, 572000, People’s Republic of China
| | - Ben Yang
- Department of Burn Surgery, Huizhou Municipal Central Hospital, Huizhou, Guangdong Province, 516000, People’s Republic of China
| | - Liuer Zuo
- Department of Intensive Care Unit, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong Province, 528308, People’s Republic of China
- Correspondence: Zhen Chen; Liuer Zuo, Department of Intensive care Unit, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong Province, 528308, People’s Republic of China, Email ;
| |
Collapse
|
45
|
Yao H, Cao G, Liu Z, Zhao Y, Yan Z, Wang S, Wang Y, Guo Z, Wang Y. Inhibition of Netosis with PAD Inhibitor Attenuates Endotoxin Shock Induced Systemic Inflammation. Int J Mol Sci 2022; 23:13264. [PMID: 36362052 PMCID: PMC9655899 DOI: 10.3390/ijms232113264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 07/24/2023] Open
Abstract
Neutrophils play a pivotal role in innate immunity by releasing neutrophils extracellular traps (NETs). Excessive NETs are detrimental to the local tissue and further exacerbate inflammation. Protein arginine deiminases (PAD) mediate histone citrullination and NET formation that, in turn, exacerbate endotoxin shock damages. In this study, we further investigated the molecular mechanism underlying PAD and NETs in endotoxic stress in mice. The control group mice were injected with solvent, the LPS endotoxic shock group mice were intraperitoneally injected with LPS at 35 mg/kg only, while the LPS and PAD inhibitor YW3-56 treatment group mice were injected with YW3-56 at 10 mg/kg prior to the LPS injection. YW3-56 significantly prolonged the survival time of the LPS-treated mice. NETs, cfDNA, and inflammatory factors were detected by ELISA in serum, paitoneal cavity, and lung at 24 h after LPS administration. Lung injuries were detected by immunostaining, and lung tissue transcriptomes were analyzed by RNA-seq at 24 h after LPS administration. We found that YW3-56 altered neutrophil tissue homeostasis, inhibited NET formation, and significantly decreased cytokines (IL-6, TNFα and IL-1β) levels, cytokines gene expression, and lung tissue injury. In summary, NET formation inhibition offers a new avenue to manage inflammatory damages under endotoxic stress.
Collapse
|
46
|
Ishay SY, Abu-Tailakh M, Raichel L, Hershenhoren TF, Matsa M, Lev-Ran O, Gideon S, Douvdevani A. A prospective cohort study of dynamic cell-free DNA elevation during cardiac surgery with cardiopulmonary bypass. PLoS One 2022; 17:e0276443. [PMID: 36301964 PMCID: PMC9612555 DOI: 10.1371/journal.pone.0276443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
Cardiac surgery and cardiopulmonary bypass (CPB) are associated with a systemic inflammatory reaction that occasionally induces a life-threatening organ dysfunction caused by the dysregulated host response to the damage-associated molecular patterns (DAMPs). In severe inflammation, cell-free DNA (cfDNA) and histones are released by inflammatory cells and damaged tissue and act as DAMPs. We sought to characterize the changes in circulating cell-free DNA (cfDNA) levels during CPB. Primary outcomes were renal failure, ventilation time (>18 hr), length of stay (LOS) in the intensive care unit (ICU) (>48hr), hospital LOS (>15 days), and death. We looked for associations with blood tests and comparison to standard scores. In a prospective cohort study, we enrolled 71 patients undergoing non-emergent coronary artery bypass grafting. Blood was drawn at baseline, 20 and 40 minutes on CPB, after cross-clamp removal, and 30 minutes after chest closure. cfDNA was measured by our fast fluorescent method. Baseline cfDNA levels [796 (656–1063) ng/ml] increased during surgery, peaked after cross-clamp removal [2403 (1981–3357) ng/ml] and returned to baseline at recovery. The difference in cfDNA from 20 to 40 minutes on CPB (ΔcfDNA 40–20) inversely correlated with peripheral vascular disease (PVD), longer ventilation time, and longer ICU and hospital length of stay (LOS). Receiver operating characteristic (ROC) curve of ΔcfDNA 40–20 for long ICU-LOS (>48hr) was with an area under the curve (AUC) of 0.738 (p = 0.022). ROC AUC of ΔcfDNA 40–20 to long Hospital LOS (>15 days) was 0.787 (p = 0.006). Correction for time on CPB in a multivariate logistic regression model improved ROC-AUC to 0.854 (p = 0.003) and suggests that ΔcfDNA 40–20 is an independent risk factor. To conclude, of measured parameters, including STS and Euroscore, the predictive power of ΔcfDNA 40–20 was the highest. Thus, measurement of ΔcfDNA 40–20 may enable early monitoring of patients at higher risk. Further studies on the mechanism behind the negative association of ΔcfDNA 40–20 with PVD and outcomes are warranted.
Collapse
Affiliation(s)
- Shlomo Yaron Ishay
- Soroka University Medical Center and Faculty of Health Sciences, Department of Cardiothoracic Surgery, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Muhammad Abu-Tailakh
- Soroka University Medical Center and Faculty of Health Sciences, Nursing Research Unit, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Lior Raichel
- Soroka University Medical Center and Faculty of Health Sciences, Department of Cardiothoracic Surgery, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tal F. Hershenhoren
- Soroka University Medical Center and Faculty of Health Sciences, Department of Cardiothoracic Surgery, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Menahem Matsa
- Soroka University Medical Center and Faculty of Health Sciences, Department of Cardiothoracic Surgery, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Oren Lev-Ran
- Soroka University Medical Center and Faculty of Health Sciences, Department of Cardiothoracic Surgery, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Sahar Gideon
- Soroka University Medical Center and Faculty of Health Sciences, Department of Cardiothoracic Surgery, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Amos Douvdevani
- Soroka University Medical Center and Faculty of Health Sciences, Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
47
|
辛 美, 吴 敬, 王 小, 韩 蕾. [Changes in the disease spectrum in the pediatric intensive care units within 2 years before and after the outbreak of coronavirus disease 2019]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:1098-1103. [PMID: 36305109 PMCID: PMC9627991 DOI: 10.7499/j.issn.1008-8830.2205074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Academic Contribution Register] [Received: 05/15/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES To investigate the changes in the disease spectrum among hospitalized children in the pediatric intensive care units (PICU) within 2 years before and after the outbreak of coronavirus disease 2019 (COVID-19). METHODS The related data on disease diagnosis were collected from all children who were hospitalized in the PICU of Affiliated Hospital of Jining Medical College from January 2018 to December 2019 (pre-COVID-19 group) and from January 2020 to December 2021 (post-COVID-19 group). A statistical analysis was performed for the disease spectrum of the two groups. RESULTS There were 2 368 children in the pre-COVID-19 group and 1 653 children in the post-COVID-19 group. The number of children in the post-COVID-19 group was reduced by 30.19% compared with that in the pre-COVID-19 group. There was a significant difference in age composition between the two groups (P<0.05). The top 10 diseases in the pre-COVID-19 group by number of cases were respiratory diseases, neurological diseases, sepsis, critical illness, circulatory system diseases, severe neurosurgical diseases, digestive system diseases, unintentional injuries, endocrine system diseases, and tumors. The top 10 diseases in the post-COVID-19 group by number of cases were respiratory diseases, neurological diseases, sepsis, circulatory system diseases, unintentional injuries, endocrine system diseases, severe neurosurgical diseases, acute abdomen, trauma surgical diseases, and digestive system diseases. The proportions of respiratory diseases, critical illness and severe neurosurgical diseases in the post-COVID-19 group were lower than those in the pre-COVID-19 group (P<0.05), while the proportions of unintentional injuries, acute abdomen, endocrine system diseases, trauma surgical diseases and sepsis were higher than those in the pre-COVID-19 group (P<0.05). CONCLUSIONS COVID-19 epidemic has led to a significant reduction in the number of children admitted to the PICU, and there are significant changes in the disease spectrum within 2 years before and after the outbreak of COVID-19. Relevant prevention and control measures taken during the COVID-19 epidemic can reduce the incidence of respiratory diseases, neurological diseases, and other critical illness in children, but it is necessary to strengthen the prevention of unintentional injuries and chronic disease management during the epidemic.
Collapse
|
48
|
Choi H, Yoo H, Lee JY, Park J, Jeon K. Plasma Mitochondrial DNA and Necroptosis as Prognostic Indicators in Critically Ill Patients with Sepsis. Biomedicines 2022; 10:biomedicines10102386. [PMID: 36289650 PMCID: PMC9598411 DOI: 10.3390/biomedicines10102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial DNA (mtDNA) has been identified as a biomarker for predicting sepsis mortality. Although preclinical studies suggested that necroptosis could explain the mechanistic link of mtDNA in sepsis, this is not yet evident in patients with sepsis. This study evaluated the association between mtDNA and essential necroptosis mediators in prospectively enrolled patients with sepsis. Plasma mtDNA copy number was measured using quantitative PCR assay and necroptosis mediators, including receptor-interacting protein kinase-3 (RIPK3), mixed lineage domain-like pseudokinase (MLKL), and high-mobility group box 1 (HMGB1), were measured by ELISA. Receiver operating characteristic (ROC) analysis was conducted to evaluate the predictive ability of mtDNA copy number as a predictor of hospital mortality. Among the 142 patients with sepsis, the mtDNA copy number was significantly higher in non-survivors than in survivors (median, 4040 copies/µL vs. 2585 copies/µL; p < 0.001), and the area under the ROC curve was 0.73 (95% CI, 0.64−0.82) for the relationship between mtDNA and hospital mortality. Furthermore, the correlation between mtDNA copy number and each necroptosis mediator was excellent (p < 0.001 for all): RIPK3 (r = 0.803), MLKL (r = 0.897), and HMGB1 (r = 0.603). The plasma mtDNA copy number was highly correlated with essential necroptosis mediators, suggesting that mtDNA propagates necroptosis and increases sepsis mortality.
Collapse
Affiliation(s)
- Hayoung Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Korea
| | - Hongseok Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Jin Young Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Junseon Park
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkawan University, Seoul 06351, Korea
- Correspondence: ; Tel.: +82-2-3410-3429; Fax: +82-2-3410-6956
| |
Collapse
|
49
|
Cheng X, Liu D, Ren X, Nie Y, Zhao Y, Chen R, Wang H. The β-catenin/CBP signaling axis participates in sepsis-induced inflammatory lung injury. Exp Biol Med (Maywood) 2022; 247:1548-1557. [PMID: 35665630 PMCID: PMC9554161 DOI: 10.1177/15353702221097316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
Sepsis-induced inflammatory lung injury is a key factor causing failure of the lungs and other organs, as well as death, during sepsis. In the present study, a caecal ligation and puncture (CLP)-induced sepsis model was established to investigate the effect of β-catenin on sepsis-induced inflammatory lung injury and the corresponding underlying mechanisms. C57BL/6 mice were randomly divided into five groups, namely, the sham, CLP, β-catenin knockout (KO) + CLP, XAV-939 + CLP, and ICG-001 + CLP groups; the XAV-939 + CLP and ICG-001 + CLP groups were separately subjected to intraperitoneal injections of the β-catenin inhibitors XAV-939 and ICG-001 for 1 week preoperatively and 2 days postoperatively, respectively. Forty-eight hours after CLP, we measured β-catenin expression in lung tissues and evaluated mouse mortality, histopathological characteristics of hematoxylin and eosin (H&E)-stained lung tissues, serum cytokine (tumor necrosis factor [TNF]-α, interleukin [IL]-10, and IL-1β) levels, lung myeloperoxidase (MPO) activity, and the number of apoptotic cells in the lung tissues. Our results indicated that both the inhibition of β-catenin expression and blockage of β-catenin/CREB-binding protein (CBP) interactions by ICG-001 effectively decreased mouse mortality, alleviated pathological lung injury, and reduced the serum TNF-α, IL-10, and IL-1β levels, in addition to reducing the lung MPO activity and the number of apoptotic cells in lung tissues of the sepsis model mice. Therefore, it can be deduced that the β-catenin/CBP signaling axis participates in regulating sepsis-induced inflammatory lung injury.
Collapse
Affiliation(s)
- Xia Cheng
- Department of Pathology, Fourth Medical Center, General Hospital of Chinese People’s Liberation Army, Jinzhou Medical University, Beijing 100048, China
| | - Dandan Liu
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Xinxin Ren
- Department of Clinical Laboratory, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - You Nie
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yibing Zhao
- Department of Oncology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Ruyu Chen
- Department of Pathology, Fourth Medical Center, General Hospital of Chinese People’s Liberation Army, Jinzhou Medical University, Beijing 100048, China
| | - Hongwei Wang
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China,Hongwei Wang.
| |
Collapse
|
50
|
Ko CN, Zang S, Zhou Y, Zhong Z, Yang C. Nanocarriers for effective delivery: modulation of innate immunity for the management of infections and the associated complications. J Nanobiotechnology 2022; 20:380. [PMID: 35986268 PMCID: PMC9388998 DOI: 10.1186/s12951-022-01582-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of defense against invading pathogens. Innate immune cells can recognize invading pathogens through recognizing pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). The recognition of PAMPs by PRRs triggers immune defense mechanisms and the secretion of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. However, sustained and overwhelming activation of immune system may disrupt immune homeostasis and contribute to inflammatory disorders. Immunomodulators targeting PRRs may be beneficial to treat infectious diseases and their associated complications. However, therapeutic performances of immunomodulators can be negatively affected by (1) high immune-mediated toxicity, (2) poor solubility and (3) bioactivity loss after long circulation. Recently, nanocarriers have emerged as a very promising tool to overcome these obstacles owning to their unique properties such as sustained circulation, desired bio-distribution, and preferred pharmacokinetic and pharmacodynamic profiles. In this review, we aim to provide an up-to-date overview on the strategies and applications of nanocarrier-assisted innate immune modulation for the management of infections and their associated complications. We first summarize examples of important innate immune modulators. The types of nanomaterials available for drug delivery, as well as their applications for the delivery of immunomodulatory drugs and vaccine adjuvants are also discussed.
Collapse
|