1
|
Bonine N, Zanzani V, Van Hemelryk A, Vanneste B, Zwicker C, Thoné T, Roelandt S, Bekaert SL, Koster J, Janoueix-Lerosey I, Thirant C, Van Haver S, Roberts SS, Mus LM, De Wilde B, Van Roy N, Everaert C, Speleman F, Vermeirssen V, Scott CL, De Preter K. NBAtlas: A harmonized single-cell transcriptomic reference atlas of human neuroblastoma tumors. Cell Rep 2024; 43:114804. [PMID: 39368085 DOI: 10.1016/j.celrep.2024.114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
Neuroblastoma, a rare embryonic tumor arising from neural crest development, is responsible for 15% of pediatric cancer-related deaths. Recently, several single-cell transcriptome studies were performed on neuroblastoma patient samples to investigate the cell of origin and tumor heterogeneity. However, these individual studies involved a small number of tumors and cells, limiting the conclusions that could be drawn. To overcome this limitation, we integrated seven single-cell or single-nucleus datasets into a harmonized cell atlas covering 362,991 cells across 61 patients. We use this atlas to decipher the transcriptional landscape of neuroblastoma at single-cell resolution, revealing associations between transcriptomic profiles and clinical outcomes within the tumor compartment. In addition, we characterize the complex immune-cell landscape and uncover considerable heterogeneity among tumor-associated macrophages. Finally, we showcase the utility of our atlas as a resource by expanding it with additional data and using it as a reference for data-driven cell-type annotation.
Collapse
Affiliation(s)
- Noah Bonine
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Vittorio Zanzani
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Ghent University, Ghent, Belgium
| | - Annelies Van Hemelryk
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Bavo Vanneste
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Christian Zwicker
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Tinne Thoné
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Sofie Roelandt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sarah-Lee Bekaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jan Koster
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Isabelle Janoueix-Lerosey
- Inserm U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Cécile Thirant
- Inserm U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Stéphane Van Haver
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen S Roberts
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Liselot M Mus
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bram De Wilde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Nadine Van Roy
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Celine Everaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Vanessa Vermeirssen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Ghent University, Ghent, Belgium
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
2
|
Wu X, Mi T, Jin L, Ren C, Wang J, Zhang Z, Liu J, Wang Z, Guo P, He D. Tumoral EIF4EBP1 regulates the crosstalk between tumor-associated macrophages and tumor cells in MRTK. Eur J Pharmacol 2024; 978:176787. [PMID: 38944176 DOI: 10.1016/j.ejphar.2024.176787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Malignant renal rhabdoid tumor (MRTK) is an aggressive and rare malignancy primarily affecting infants and young children. The intricate interactions within the Tumor Microenvironment (TME) are crucial in shaping MRTK's progression. This study elucidates the significance of tumor-associated macrophages(TAMs) within this milieu and their interplay with eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) in tumor cells, collectively contributing to MRTK's malignant advancement. Through comprehensive analysis of clinical samples and the TARGET database, EIF4EBP1 emerges as a central macrophage-associated gene with robust prognostic implications. Elevated EIF4EBP1 expression correlates with poor prognosis and heightened infiltration of TAMs. Functional validation demonstrates that EIF4EBP1 knockdown in G401 cells significantly attenuates self-proliferation, migration, and invasion. Moreover, EIF4EBP1 regulates macrophage recruitment and M2 polarization through the ERK/P38 MAPK-MIF axis. Notably, M2 macrophages reciprocally foster the malignant behavior of MRTK tumor cells. This study unveils the pivotal role of EIF4EBP1 in propelling MRTK's malignant progression, unraveling a complex regulatory network involving EIF4EBP1 and TAMs. These findings underscore EIF4EBP1 as a promising biomarker and highlight its therapeutic potential in MRTK management.
Collapse
Affiliation(s)
- Xin Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China; Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunan, 650000, China
| | - Tao Mi
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Liming Jin
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Chunnian Ren
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Jinkui Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Jiayan Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Zhaoyin Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Peng Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China.
| |
Collapse
|
3
|
Yang L, Huang K, Cao L, Ma Y, Li S, Zhou J, Zhao Z, Wang S. Molecular profiling of core immune-escape genes highlights TNFAIP3 as an immune-related prognostic biomarker in neuroblastoma. Inflamm Res 2024; 73:1529-1545. [PMID: 39028490 DOI: 10.1007/s00011-024-01914-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most prevalent and deadliest pediatric solid tumor. With of over 50% of high-risk neuroblastoma cases relapse, the imperative for novel drug targets and therapeutic strategies is accentuated. In neuroblastoma, the existence of tumor-associated macrophages (TAMs) correlates with an unfavorable patient prognosis. However, the clinical relevance and prognostic implications of regulatory genes linked to TAMs infiltration in neuroblastoma remain unclear, and further study is required. METHODS We conducted a comprehensive analysis utilizing transcriptome expression profiles from three primary datasets associated with neuroblastoma (GSE45547, GSE49710, TARGET) to identify hub genes implicated in immune evasion within neuroblastoma. Subsequently, we utilized single-cell RNA sequencing analysis on 17 clinical neuroblastoma samples to investigate the expression and distribution of these hub genes, leading to the identification of TNFAIP3. The above three public databases were merged to allowed for the validation of TNFAIP3's molecular functions through GO and KEGG analysis. Furthermore, we assessed TNFAIP3's correlation with immune infiltration and its potential immunotherapeutic impact by multiple algorithms. Our single-cell transcriptome data revealed the role of TNFAIP3 in macrophage polarization. Finally, preliminary experimental verifications to confirm the biological functions of TNFAIP3-mediated TAMs in NB. RESULTS A total of 6 genes related to immune evasion were screened and we found that TNFAIP3 exhibited notably higher expression in macrophages than other immune cell types, based on the scRNA-sequencing data. GO and KEGG analysis showed that low expression of TNFAIP3 significantly correlated with the activation of multiple oncogenic pathways as well as immune-related pathways. Then validation affirmed that individuals within the TNFAIP3 high-expression cohort could potentially derive greater advantages from immunotherapeutic interventions, alongside exhibiting heightened immune responsiveness. Deciphering the pseudotime trajectory of macrophages, we revealed the potential of TNFAIP3 in inducing the polarization of macrophages towards the M1 phenotype. Finally, we confirmed that patients in the TNFAIP3 high expression group might benefit more from immunotherapy or chemotherapy as substantiated by RT-qPCR and immunofluorescence examinations. Moreover, the role of TNFAIP3 in macrophage polarization was validated. Preliminary experiment showed that TNFAIP3-mediated TAMs inhibit the proliferation, migration and invasion capabilities of NB cells. CONCLUSIONS Our results suggest that TNFAIP3 was first identified as a promising biomarker for immunotherapy and potential molecular target in NB. Besides, the presence of TNFAIP3 within TAMs may offer a novel therapeutic strategy for NB.
Collapse
Affiliation(s)
- Linyu Yang
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Huang
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lijian Cao
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Ma
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Suwen Li
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jianwu Zhou
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenzhen Zhao
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Wang
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Mao C, Poimenidou M, Craig BT. Current Knowledge and Perspectives of Immunotherapies for Neuroblastoma. Cancers (Basel) 2024; 16:2865. [PMID: 39199637 PMCID: PMC11353182 DOI: 10.3390/cancers16162865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Neuroblastoma (NBL) cells highly express disialoganglioside GD2, which is restricted and weakly expressed in selected healthy cells, making it a desirable target of immunotherapy. Over the past two decades, application of dinutuximab, an anti-GD2 monoclonal antibody (mAb), has been one of the few new therapies to substantially improve outcomes to current levels. Given the persistent challenge of relapse and therapeutic resistance, there is an urgent need for new effective and tolerable treatment options for high-risk NBL. Recent breakthroughs in immune checkpoint inhibitor (ICI) therapeutics have not translated into high-risk NBL, like many other major pediatric solid tumors. Given the suppressed tumor microenvironment (TME), single ICIs like anti-CTLA4 and anti-PD1 have not demonstrated significant antitumor response rates. Meanwhile, emerging studies are reporting novel advancements in GD2-based therapies, targeted therapies, nanomedicines, and other immunotherapies such as adoptive transfer of natural killer (NK) cells and chimeric antigen receptors (CARs), and these hold interesting promise for the future of high-risk NBL patient care. Herein, we summarize the current state of the art in NBL therapeutic options and highlight the unique challenges posed by NBL that have limited the successful adoption of immune-modifying therapies. Through this review, we aim to direct the field's attention to opportunities that may benefit from a combination immunotherapy strategy.
Collapse
Affiliation(s)
- Chenkai Mao
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Maria Poimenidou
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Brian T. Craig
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| |
Collapse
|
5
|
Su P, Li O, Ke K, Jiang Z, Wu J, Wang Y, Mou Y, Jin W. Targeting tumor‑associated macrophages: Critical players in tumor progression and therapeutic strategies (Review). Int J Oncol 2024; 64:60. [PMID: 38695252 PMCID: PMC11087038 DOI: 10.3892/ijo.2024.5648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Tumor‑associated macrophages (TAMs) are essential components of the tumor microenvironment (TME) and display phenotypic heterogeneity and plasticity associated with the stimulation of bioactive molecules within the TME. TAMs predominantly exhibit tumor‑promoting phenotypes involved in tumor progression, such as tumor angiogenesis, metastasis, immunosuppression and resistance to therapies. In addition, TAMs have the potential to regulate the cytotoxic elimination and phagocytosis of cancer cells and interact with other immune cells to engage in the innate and adaptive immune systems. In this context, targeting TAMs has been a popular area of research in cancer therapy, and a comprehensive understanding of the complex role of TAMs in tumor progression and exploration of macrophage‑based therapeutic approaches are essential for future therapeutics against cancers. The present review provided a comprehensive and updated overview of the function of TAMs in tumor progression, summarized recent advances in TAM‑targeting therapeutic strategies and discussed the obstacles and perspectives of TAM‑targeting therapies for cancers.
Collapse
Affiliation(s)
- Pengfei Su
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Ou Li
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Kun Ke
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Zhichen Jiang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Jianzhang Wu
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Yuanyu Wang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Yiping Mou
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Weiwei Jin
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
6
|
Wu X, Mi T, Jin L, Ren C, Wang J, Zhang Z, Liu J, Wang Z, Guo P, He D. Dual roles of HK3 in regulating the network between tumor cells and tumor-associated macrophages in neuroblastoma. Cancer Immunol Immunother 2024; 73:122. [PMID: 38714539 PMCID: PMC11076449 DOI: 10.1007/s00262-024-03702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/13/2024] [Indexed: 05/10/2024]
Abstract
Neuroblastoma (NB) is the most common and deadliest extracranial solid tumor in children. Targeting tumor-associated macrophages (TAMs) is a strategy for attenuating tumor-promoting states. The crosstalk between cancer cells and TAMs plays a pivotal role in mediating tumor progression in NB. The overexpression of Hexokinase-3 (HK3), a pivotal enzyme in glucose metabolism, has been associated with poor prognosis in NB patients. Furthermore, it correlates with the infiltration of M2-like macrophages within NB tumors, indicating its significant involvement in tumor progression. Therefore, HK3 not only directly regulates the malignant biological behaviors of tumor cells, such as proliferation, migration, and invasion, but also recruits and polarizes M2-like macrophages through the PI3K/AKT-CXCL14 axis in neuroblastoma. The secretion of lactate and histone lactylation alterations within tumor cells accompanies this interaction. Additionally, elevated expression of HK3 in M2-TAMs was found at the same time. Modulating HK3 within M2-TAMs alters the biological behavior of tumor cells, as demonstrated by our in vitro studies. This study highlights the pivotal role of HK3 in the progression of NB malignancy and its intricate regulatory network with M2-TAMs. It establishes HK3 as a promising dual-functional biomarker and therapeutic target in combating neuroblastoma.
Collapse
Affiliation(s)
- Xin Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Tao Mi
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Liming Jin
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Chunnian Ren
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Jinkui Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Jiayan Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Zhaoyin Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Peng Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China.
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China.
| |
Collapse
|
7
|
Kennedy PT, Zannoupa D, Son MH, Dahal LN, Woolley JF. Neuroblastoma: an ongoing cold front for cancer immunotherapy. J Immunother Cancer 2023; 11:e007798. [PMID: 37993280 PMCID: PMC10668262 DOI: 10.1136/jitc-2023-007798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/24/2023] Open
Abstract
Neuroblastoma is the most frequent extracranial childhood tumour but effective treatment with current immunotherapies is challenging due to its immunosuppressive microenvironment. Efforts to date have focused on using immunotherapy to increase tumour immunogenicity and enhance anticancer immune responses, including anti-GD2 antibodies; immune checkpoint inhibitors; drugs which enhance macrophage and natural killer T (NKT) cell function; modulation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway; and engineering neuroblastoma-targeting chimeric-antigen receptor-T cells. Some of these strategies have strong preclinical foundation and are being tested clinically, although none have demonstrated notable success in treating paediatric neuroblastoma to date. Recently, approaches to overcome heterogeneity of neuroblastoma tumours and treatment resistance are being explored. These include rational combination strategies with the aim of achieving synergy, such as dual targeting of GD2 and tumour-associated macrophages or natural killer cells; GD2 and the B7-H3 immune checkpoint; GD2 and enhancer of zeste-2 methyltransferase inhibitors. Such combination strategies provide opportunities to overcome primary resistance to and maximize the benefits of immunotherapy in neuroblastoma.
Collapse
Affiliation(s)
- Paul T Kennedy
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - Demetra Zannoupa
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - Meong Hi Son
- Department of Pediatrics, Samsung Medical Center, Gangnam-gu, Seoul, Korea (the Republic of)
| | - Lekh N Dahal
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - John F Woolley
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| |
Collapse
|
8
|
Mohammadzadeh V, Rahiman N, Cabral H, Quader S, Zirak MR, Taghavizadeh Yazdi ME, Jaafari MR, Alavizadeh SH. Poly-γ-glutamic acid nanoparticles as adjuvant and antigen carrier system for cancer vaccination. J Control Release 2023; 362:278-296. [PMID: 37640110 DOI: 10.1016/j.jconrel.2023.08.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Vaccination is an innovative strategy for cancer treatment by leveraging various components of the patients' immunity to boost an anti-tumor immune response. Rationally designed nanoparticles are well suited to maximize cancer vaccination by the inclusion of immune stimulatory adjuvants. Also, nanoparticles might control the pharmacokinetics and destination of the immune potentiating compounds. Poly-γ-glutamic acid (γ-PGA) based nanoparticles (NPs), which have a natural origin, can be easily taken up by dendritic cells (DCs), which leads to the secretion of cytokines which ameliorates the stimulation capacity of T cells. The intrinsic adjuvant properties and antigen carrier properties of γ-PGA NPs have been the focus of recent investigations as they can modulate the tumor microenvironment, can contribute to systemic anti-tumor immunity and subsequently inhibit tumor growth. This review provides a comprehensive overview on the potential of γ-PGA NPs as antigen carriers and/or adjuvants for anti-cancer vaccination.
Collapse
Affiliation(s)
- Vahideh Mohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sabina Quader
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan
| | - Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Rohila D, Park IH, Pham TV, Jones R, Tapia E, Liu KX, Tamayo P, Yu A, Sharabi AB, Joshi S. Targeting macrophage Syk enhances responses to immune checkpoint blockade and radiotherapy in high-risk neuroblastoma. Front Immunol 2023; 14:1148317. [PMID: 37350973 PMCID: PMC10283071 DOI: 10.3389/fimmu.2023.1148317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/02/2023] [Indexed: 06/24/2023] Open
Abstract
Background Neuroblastoma (NB) is considered an immunologically cold tumor and is usually less responsive to immune checkpoint blockade (ICB). Tumor-associated macrophages (TAMs) are highly infiltrated in NB tumors and promote immune escape and resistance to ICB. Hence therapeutic strategies targeting immunosuppressive TAMs can improve responses to ICB in NB. We recently discovered that spleen tyrosine kinase (Syk) reprograms TAMs toward an immunostimulatory phenotype and enhances T-cell responses in the lung adenocarcinoma model. Here we investigated if Syk is an immune-oncology target in NB and tested whether a novel immunotherapeutic approach utilizing Syk inhibitor together with radiation and ICB could provide a durable anti-tumor immune response in an MYCN amplified murine model of NB. Methods Myeloid Syk KO mice and syngeneic MYCN-amplified cell lines were used to elucidate the effect of myeloid Syk on the NB tumor microenvironment (TME). In addition, the effect of Syk inhibitor, R788, on anti-tumor immunity alone or in combination with anti-PDL1 mAb and radiation was also determined in murine NB models. The underlying mechanism of action of this novel therapeutic combination was also investigated. Results Herein, we report that Syk is a marker of NB-associated macrophages and plays a crucial role in promoting immunosuppression in the NB TME. We found that the blockade of Syk in NB-bearing mice markedly impairs tumor growth. This effect is facilitated by macrophages that become immunogenic in the absence of Syk, skewing the suppressive TME towards immunostimulation and activating anti-tumor immune responses. Moreover, combining FDA-approved Syk inhibitor, R788 (fostamatinib) along with anti-PDL1 mAb provides a synergistic effect leading to complete tumor regression and durable anti-tumor immunity in mice bearing small tumors (50 mm3) but not larger tumors (250 mm3). However, combining radiation to R788 and anti-PDL1 mAb prolongs the survival of mice bearing large NB9464 tumors. Conclusion Collectively, our findings demonstrate the central role of macrophage Syk in NB progression and demonstrate that Syk blockade can "reeducate" TAMs towards immunostimulatory phenotype, leading to enhanced T cell responses. These findings further support the clinical evaluation of fostamatinib alone or with radiation and ICB, as a novel therapeutic intervention in neuroblastoma.
Collapse
Affiliation(s)
- Deepak Rohila
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - In Hwan Park
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Timothy V. Pham
- Office of Cancer Genomics, University of California San Diego, San Diego, CA, United States
| | - Riley Jones
- Department of Radiation Medicine and Applied Sciences, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Elisabette Tapia
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Kevin X. Liu
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA, United States
| | - Pablo Tamayo
- Office of Cancer Genomics, University of California San Diego, San Diego, CA, United States
| | - Alice Yu
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Andrew B. Sharabi
- Department of Radiation Medicine and Applied Sciences, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Shweta Joshi
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
10
|
Avila-Ponce de León U, Vázquez-Jiménez A, Padilla-Longoria P, Resendis-Antonio O. Uncoding the interdependency of tumor microenvironment and macrophage polarization: insights from a continuous network approach. Front Immunol 2023; 14:1150890. [PMID: 37283734 PMCID: PMC10240616 DOI: 10.3389/fimmu.2023.1150890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
The balance between pro- and anti-inflammatory immune system responses is crucial to preventing complex diseases like cancer. Macrophages are essential immune cells that contribute to this balance constrained by the local signaling profile of the tumor microenvironment. To understand how pro- and anti-inflammatory unbalance emerges in cancer, we developed a theoretical analysis of macrophage differentiation that is derived from activated monocytes circulating in the blood. Once recruited to the site of inflammation, monocytes can be polarized based on the specific interleukins and chemokines in the microenvironment. To quantify this process, we used a previous regulatory network reconstructed by our group and transformed Boolean Network attractors of macrophage polarization to an ODE scheme, it enables us to quantify the activation of their genes in a continuous fashion. The transformation was developed using the interaction rules with a fuzzy logic approach. By implementing this approach, we analyzed different aspects that cannot be visualized in the Boolean setting. For example, this approach allows us to explore the dynamic behavior at different concentrations of cytokines and transcription factors in the microenvironment. One important aspect to assess is the evaluation of the transitions between phenotypes, some of them characterized by an abrupt or a gradual transition depending on specific concentrations of exogenous cytokines in the tumor microenvironment. For instance, IL-10 can induce a hybrid state that transits between an M2c and an M2b macrophage. Interferon- γ can induce a hybrid between M1 and M1a macrophage. We further demonstrated the plasticity of macrophages based on a combination of cytokines and the existence of hybrid phenotypes or partial polarization. This mathematical model allows us to unravel the patterns of macrophage differentiation based on the competition of expression of transcriptional factors. Finally, we survey how macrophages may respond to a continuously changing immunological response in a tumor microenvironment.
Collapse
Affiliation(s)
- Ugo Avila-Ponce de León
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de Mexico, Mexico
| | - Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de Mexico, Mexico
| | - Pablo Padilla-Longoria
- Institute for Applied Mathematics (IIMAS), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de Mexico, Mexico
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
11
|
Vitale C, Bottino C, Castriconi R. Monocyte and Macrophage in Neuroblastoma: Blocking Their Pro-Tumoral Functions and Strengthening Their Crosstalk with Natural Killer Cells. Cells 2023; 12:885. [PMID: 36980226 PMCID: PMC10047506 DOI: 10.3390/cells12060885] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Over the past decade, immunotherapy has represented an enormous step forward in the fight against cancer. Immunotherapeutic approaches have increasingly become a fundamental part of the combined therapies currently adopted in the treatment of patients with high-risk (HR) neuroblastoma (NB). An increasing number of studies focus on the understanding of the immune landscape in NB and, since this tumor expresses low or null levels of MHC class I, on the development of new strategies aimed at enhancing innate immunity, especially Natural Killer (NK) cells and macrophages. There is growing evidence that, within the NB tumor microenvironment (TME), tumor-associated macrophages (TAMs), which mainly present an M2-like phenotype, have a crucial role in mediating NB development and immune evasion, and they have been correlated to poor clinical outcomes. Importantly, TAM can also impair the antibody-dependent cellular cytotoxicity (ADCC) mediated by NK cells upon the administration of anti-GD2 monoclonal antibodies (mAbs), the current standard immunotherapy for HR-NB patients. This review deals with the main mechanisms regulating the crosstalk among NB cells and TAMs or other cellular components of the TME, which support tumor development and induce drug resistance. Furthermore, we will address the most recent strategies aimed at limiting the number of pro-tumoral macrophages within the TME, reprogramming the TAMs functional state, thus enhancing NK cell functions. We also prospectively discuss new or unexplored aspects of human macrophage heterogeneity.
Collapse
Affiliation(s)
- Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
12
|
Wang X, Yang J, Bian H, Yang H. Development of A novel ferroptosis-related prognostic signature with multiple significance in paediatric neuroblastoma. Front Pediatr 2023; 11:1067187. [PMID: 36911020 PMCID: PMC9992189 DOI: 10.3389/fped.2023.1067187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Background Ferroptosis is an iron-dependent regulated cell death pathway that plays an essential role in the occurrence and development of tumours. Nonetheless, little is known about the impact of ferroptosis-related genes (FRGs) on neuroblastoma. Methods Transcriptional profiles and clinicopathological data of neuroblastoma were downloaded from the TARGET and GEO datasets. These were used as the training set and the validation set, respectively. Non-negative matrix factorisation was employed to divide patients with neuroblastoma into distinct ferroptosis clusters. The Cox regression model with LASSO was performed based on the FRGs to construct a multigene signature, which was subsequently evaluated in the testing set. Finally, we analysed the differences in the tumour immune microenvironment (TIME) and immunotherapeutic response among the different risk groups. Results The two distinct ferroptosis subtypes were determined and correlated with different clinical outcomes and tumour-infiltrating immune cells (TIICs). A risk model was developed to explore the risk scores of the individual patients. Patients in the low-risk group survived significantly longer than those in the high-risk group and showed a good predictive performance in the testing set. The risk score was significantly linked to clinicopathological traits, and it was confirmed as an independent prognostic indicator for assessing the overall survival. We also found that patients with low-risk scores had a higher infiltration of TIICs and a better immunotherapeutic response. Conclusions This study showed the potential role of FRGs in contributing to the clinical features, prognosis, TIME, and immunotherapy of neuroblastoma cases. Our findings offer a valuable basis for future research in targeting ferroptosis and its TIME and provide novel measures for the prevention and treatment of neuroblastoma.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, Wuhan Children' Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yang
- Department of General Surgery, Wuhan Children' Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongqiang Bian
- Department of General Surgery, Wuhan Children' Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Yang
- Department of General Surgery, Wuhan Children' Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Zheng S, Liang Y, Tan Y, Li L, Liu Q, Liu T, Lu X. Small Tweaks, Major Changes: Post-Translational Modifications That Occur within M2 Macrophages in the Tumor Microenvironment. Cancers (Basel) 2022; 14:5532. [PMID: 36428622 PMCID: PMC9688270 DOI: 10.3390/cancers14225532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The majority of proteins are subjected to post-translational modifications (PTMs), regardless of whether they occur in or after biosynthesis of the protein. Capable of altering the physical and chemical properties and functions of proteins, PTMs are thus crucial. By fostering the proliferation, migration, and invasion of cancer cells with which they communicate in the tumor microenvironment (TME), M2 macrophages have emerged as key cellular players in the TME. Furthermore, growing evidence illustrates that PTMs can occur in M2 macrophages as well, possibly participating in molding the multifaceted characteristics and physiological behaviors in the TME. Hence, there is a need to review the PTMs that have been reported to occur within M2 macrophages. Although there are several reviews available regarding the roles of M2 macrophages, the majority of these reviews overlooked PTMs occurring within M2 macrophages. Considering this, in this review, we provide a review focusing on the advancement of PTMs that have been reported to take place within M2 macrophages, mainly in the TME, to better understand the performance of M2 macrophages in the tumor microenvironment. Incidentally, we also briefly cover the advances in developing inhibitors that target PTMs and the application of artificial intelligence (AI) in the prediction and analysis of PTMs at the end of the review.
Collapse
Affiliation(s)
- Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yan Liang
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi 830017, China
| | - Yiyi Tan
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi 830017, China
| | - Lu Li
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
14
|
Single-cell profiling of peripheral neuroblastic tumors identifies an aggressive transitional state that bridges an adrenergic-mesenchymal trajectory. Cell Rep 2022; 41:111455. [DOI: 10.1016/j.celrep.2022.111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/16/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
|
15
|
Song J, Ni C, Dong X, Sheng C, Qu Y, Zhu L. bub1 as a potential oncogene and a prognostic biomarker for neuroblastoma. Front Oncol 2022; 12:988415. [PMID: 36237324 PMCID: PMC9552328 DOI: 10.3389/fonc.2022.988415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundNeuroblastoma is the most common malignant extracranial tumor for children. Molecular mechanisms underpinning the pathogenesis of this disease are yet to be fully clarified. This study aimed to identify a novel oncogene that could be used as a biomarker informing the prognosis of neuroblastoma, and to predict its biological functions, using bioinformatics and molecular biology tools.MethodsThree data sets from the TARGET, GSE62564, and GSE85047 databases were used for analysis. Survivals of patients with high or low expression of bub1 were compared, using the Kaplan-Meier curve and log-rank test. Immune infiltration was evaluated using ESTIMATE and MCP-counter algorithms. Synthetic small interfering RNAs (siRNAs) were employed to silence bub1 expression in neuroblastoma cell lines SH-SY5Y and SK-N-SH, in order to characterize its biological functions. Gene enrichment analyses of bub1 were carried out, using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses.ResultsExpression of bub1 was found to significantly affect overall survival and event-free survival of patients with neuroblastoma, positively correlate with the expressions of tpx2 and the ASPM gene, and negatively correlate with host immune infiltration. Expression of bub1 was elevated in patients with neuroblastoma. Silencing bub1 expression using siRNAs in SH-SY5Y and SK-N-SH resulted in decreased cell growth (p < 0.05), reduced migration (p < 0.05), and increased apoptosis (p < 0.05). Function analysis of bub1 revealed cancer-promoting effects, probably via regulating several important downstream molecules, including that related to the apoptosis process and epithelial-mesenchymal transition.ConclusionWe identified a potential tumor-promoting gene bub1 for neuroblastoma that could also serve as a prognostic biomarker.
Collapse
Affiliation(s)
- Jingjing Song
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Allergy and Immunology, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chao Ni
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Xubin Dong
- Department of Breast Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenang Sheng
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue Qu
- Wenzhou Medical University-Monash Biomedicine Discovery Institute (BDI) Alliance in Clinical and Experimental Biomedicine, Wenzhou, China
| | - Libin Zhu
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Libin Zhu,
| |
Collapse
|
16
|
Nguyen R, Zhang X, Sun M, Abbas S, Seibert C, Kelly MC, Shern JF, Thiele CJ. Anti-GD2 Antibodies Conjugated to IL15 and IL21 Mediate Potent Antitumor Cytotoxicity against Neuroblastoma. Clin Cancer Res 2022; 28:3785-3796. [PMID: 35802683 PMCID: PMC9444978 DOI: 10.1158/1078-0432.ccr-22-0717] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/18/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Half of the patients with high-risk neuroblastoma who receive GD2-targeted mAb do not achieve long-term remissions. Recently, the antibody hu14.18 has been linked to IL2 (hu14.18-IL2) to enhance its efficacy and shown promising preclinical and clinical activity. We developed two new immunocytokines (IC) by linking two other γc cytokines, IL15 and IL21, to hu14.18. The purpose of this study was to compare hu14.18-IL15 and -IL21 with hu14.18-IL2 in their ability to induce antibody-dependent cell-mediated cytotoxicity (ADCC) against neuroblastoma. EXPERIMENTAL DESIGN We assessed ADCC of hu14.18-IL15 and -IL2 (human cytokines, cross-reactive to mouse) against GD2low and GD2high neuroblastoma cell lines in vitro. T-cell-deficient mice with orthotopic patient-derived xenografts (PDX) and immunocompetent mice with transplantable orthotopic neuroblastoma were used to test all three ICs, including hu14.18-IL21 (murine IL21, not cross-reactive to human). Mechanistic studies were performed using single-cell RNA-sequencing (scRNA-seq). RESULTS hu14.18-IL15 and hu14.18-IL2 mediated equivalent in vitro ADCC by human NK cells. When combined with chemotherapy, all three ICs similarly controlled the growth of PDXs in nude mice with murine NK effector cells. However, hu14.18-IL15 and -IL21 outperformed hu14.18-IL2 in immunocompetent mice with syngeneic neuroblastoma, inducing complete tumor regressions and extending survival. scRNA-seq data revealed an increase in CD8+ T cells and M1 tumor-associated macrophages and decreased regulatory T cells and myeloid-derived suppressor cells in the tumor microenvironment. CONCLUSIONS Hu14.18-IL15 and Hu14.18-IL21 exhibit robust preclinical activity, warranting further consideration for clinical testing in patients with GD2-expressing neuroblastoma.
Collapse
Affiliation(s)
- Rosa Nguyen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Corresponding author: Rosa Nguyen, Pediatric Oncology Branch, 10 Center Drive, Building 10, Room 1W-5816, Bethesda, MD, USA; phone: 443-902-3243; fax: 301-451-7052;
| | - Xiyuan Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ming Sun
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shahroze Abbas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charlie Seibert
- Center for Cancer Research Single Cell Analysis Facility CCR, Cancer Research Technology Program, Frederick National Laboratory, Bethesda, MD, USA
| | - Michael C. Kelly
- Center for Cancer Research Single Cell Analysis Facility CCR, Cancer Research Technology Program, Frederick National Laboratory, Bethesda, MD, USA
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carol J. Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Development of a prognostic model for children with neuroblastoma based on necroptosis-related genes. Front Genet 2022; 13:947000. [PMID: 35991559 PMCID: PMC9389598 DOI: 10.3389/fgene.2022.947000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Neuroblastoma (NBL) is a rare malignant tumor of the peripheral sympathetic nervous system in children with a low overall survival rate. Recent studies have revealed the important role of necroptosis in the occurrence and development of many kinds of tumors. In this study, a prognostic model based on necroptosis-related genes was constructed for NBL. Methods: Expression profiles and clinical information for patients with NBL were downloaded from TARGET. Data for necroptosis-related genes were extracted for Cox regression and lasso regression analyses to evaluate factors associated with prognosis and to construct a prognostic model. Data from the GEO datasets GSE62564 and GSE85047 were used for external verification. Associations between risk scores were calculated, and immune infiltration, drug sensitivity, and mutation analyses were conducted. Functional enrichment analyses of genes in the prognostic model were performed. Results: Six necroptosis-related genes (i.e., CYLD, JAK1, APC, ERH, CNBP, and BAX) were selected to construct a prognostic risk model. The risk score was highly correlated with levels of infiltration of multiple immune cells and sensitivity to common antineoplastic drugs. In addition, the risk score was identified as an independent prognostic factor for patients with NBL. Conclusion: We constructed and validated a prognostic model based on necroptosis-related genes, providing insights into the development and progression of NBL and a basis for improved management. In addition to providing a tool for clinical decision-making, these findings support the importance of necroptosis in NBL and may guide the development of therapeutic strategies targeting this process.
Collapse
|
18
|
Joshi S, Sharabi A. Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. Pharmacol Ther 2022; 235:108114. [DOI: 10.1016/j.pharmthera.2022.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/09/2022]
|
19
|
Gao J, Liang Y, Wang L. Shaping Polarization Of Tumor-Associated Macrophages In Cancer Immunotherapy. Front Immunol 2022; 13:888713. [PMID: 35844605 PMCID: PMC9280632 DOI: 10.3389/fimmu.2022.888713] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/06/2022] [Indexed: 12/11/2022] Open
Abstract
Different stimuli can polarize macrophages into two basic types, M1 and M2. Tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) are composed of heterogeneous subpopulations, which include the M1 anti-tumor and M2 pro-tumor phenotypes. TAMs predominantly play a M2-like tumor-promoting role in the TME and regulate various malignant effects, such as angiogenesis, immune suppression, and tumor metastasis; hence, TAMs have emerged as a hot topic of research in cancer therapy. This review focuses on three main aspects of TAMs. First, we summarize macrophage polarization along with the effects on the TME. Second, recent advances and challenges in cancer treatment and the role of M2-like TAMs in immune checkpoint blockade and CAR-T cell therapy are emphasized. Finally, factors, such as signaling pathways, associated with TAM polarization and potential strategies for targeting TAM repolarization to the M1 pro-inflammatory phenotype for cancer therapy are discussed.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuanzheng Liang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Liang Wang,
| |
Collapse
|
20
|
Huang G, Yang G, Huang W, Liu M, Su Y, Li S. Laparoscopic surgery for stage III neuroblastoma: A case report. Exp Ther Med 2022; 24:524. [PMID: 35837030 PMCID: PMC9257955 DOI: 10.3892/etm.2022.11451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
Laparoscopic surgery for malignant solid tumors is still in the stage of clinical exploration. Neuroblastoma is a common solid tumor in children. The present study discussed significance and feasibility of complete resection of stage III neuroblastoma by laparoscopic surgery and its safety and effectiveness was compared with traditional surgery. For children suffering from neuroblastoma with large tumor volume and vascular invasion, preoperative chemotherapy can be given and minimally invasive laparoscopic surgery can be one option to be considered when the tumor volume is <6 cm. During the operation, the tumor tissue can be removed by segmental resection and the removal of as much tumor tissue as possible is an important factor in improving the prognosis. Laparoscopic minimally invasive surgery is associated with minimal surgical trauma and quick recovery of patients, and children can receive postoperative chemotherapy as early as possible, which is conducive to good recovery. Basically, the prerequisite and requirements for performing this operation are professional laparoscopic skills and an experienced team.
Collapse
Affiliation(s)
- Guizhen Huang
- Department of Pediatric Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Guozhu Yang
- Department of Pediatric Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Wenqian Huang
- Department of Pediatric Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Mingxue Liu
- Department of Pediatric Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Yi Su
- Department of Pediatric Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Suolin Li
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
21
|
Tang XX, Shimada H, Ikegaki N. Macrophage-mediated anti-tumor immunity against high-risk neuroblastoma. Genes Immun 2022; 23:129-140. [PMID: 35525858 PMCID: PMC9232393 DOI: 10.1038/s41435-022-00172-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022]
Abstract
Neuroblastoma is the most common extracranial childhood solid tumor. The majority of high-risk neuroblastoma is resistant/refractory to the current high intensity therapy. Neuroblastoma lacks classical HLA Class I expression and exhibits low mutation burden, allowing neuroblastoma cells to evade CD8+ T cell-mediated immunity. Neuroblastoma cells do not express PD-L1, and tumor-associated macrophages are the predominant PD-L1+ cells in the tumor. In this study, we performed gene expression profiling and survival analyses on large neuroblastoma datasets to address the prognostic effect of PD-L1 gene expression and the possible involvement of the SLAMF7 pathway in the anti-neuroblastoma immunity. High-level expression of PD-L1 was found significantly associated with better outcome of high-risk neuroblastoma patients; two populations of PD-1+ PD-L1+ macrophages could be present in high-risk tumors with PD-1/PD-L1 ratios, ≈1 and >1. Patients with the PD-1/PD-L1 ratio >1 tumor showed inferior survival. High-level co-expression of SLAMF7 and SH2D1B was significantly associated with better survival of the high-risk neuroblastoma patients. Together, this study supports the hypothesis that macrophages are important effector cells in the anti-high-risk neuroblastoma immunity, that PD-1 blockade therapy can be beneficial to the high-risk neuroblastoma subset with the PD-1/PD-L1 expression ratio >1, and that SLAMF7 is a new therapeutic target of high-risk neuroblastoma.
Collapse
Affiliation(s)
- Xao X Tang
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hiroyuki Shimada
- Departments of Pathology and Pediatrics, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Naohiko Ikegaki
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
22
|
Neuroblastoma: Essential genetic pathways and current therapeutic options. Eur J Pharmacol 2022; 926:175030. [DOI: 10.1016/j.ejphar.2022.175030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
|
23
|
Sun J, Park C, Guenthner N, Gurley S, Zhang L, Lubben B, Adebayo O, Bash H, Chen Y, Maksimos M, Muz B, Azab AK. Tumor-associated macrophages in multiple myeloma: advances in biology and therapy. J Immunother Cancer 2022; 10:e003975. [PMID: 35428704 PMCID: PMC9014078 DOI: 10.1136/jitc-2021-003975] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a cancer of plasma cells in the bone marrow (BM) and represents the second most common hematological malignancy in the world. The MM tumor microenvironment (TME) within the BM niche consists of a wide range of elements which play important roles in supporting MM disease progression, survival, proliferation, angiogenesis, as well as drug resistance. Together, the TME fosters an immunosuppressive environment in which immune recognition and response are repressed. Macrophages are a central player in the immune system with diverse functions, and it has been long established that macrophages play a critical role in both inducing direct and indirect immune responses in cancer. Tumor-associated macrophages (TAMs) are a major population of cells in the tumor site. Rather than contributing to the immune response against tumor cells, TAMs in many cancers are found to exhibit protumor properties including supporting chemoresistance, tumor proliferation and survival, angiogenesis, immunosuppression, and metastasis. Targeting TAM represents a novel strategy for cancer immunotherapy, which has potential to indirectly stimulate cytotoxic T cell activation and recruitment, and synergize with checkpoint inhibitors and chemotherapies. In this review, we will provide an updated and comprehensive overview into the current knowledge on the roles of TAMs in MM, as well as the therapeutic targets that are being explored as macrophage-targeted immunotherapy, which may hold key to future therapeutics against MM.
Collapse
Affiliation(s)
- Jennifer Sun
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri, USA
| | - Chaelee Park
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Nicole Guenthner
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Shannon Gurley
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Luna Zhang
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri, USA
| | - Berit Lubben
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Ola Adebayo
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Hannah Bash
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Yixuan Chen
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Mina Maksimos
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Barbara Muz
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Interleukin-15 enhanced the survival of human γδT cells by regulating the expression of Mcl-1 in neuroblastoma. Cell Death Dis 2022; 8:139. [PMID: 35351861 PMCID: PMC8964681 DOI: 10.1038/s41420-022-00942-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor and the treatment efficacy of high-risk NB is unsatisfactory. γδT-cell-based adoptive cell transfer is a promising approach for high-risk NB treatment. Our previous study has revealed that γδT cells in NB patients exhibit a poor proliferation activity and a decreased anti-tumor capacity in vitro. In the present study, we found that IL-15 could effectively enhance the proliferation of NB γδT cells, to a level that remains lower than healthy controls though. In addition, IL-15-fostered NB γδT cells robustly boosted cell survival against apoptosis induced by cytokines depletion. Our data revealed that Mcl-1 was a key anti-apoptotic protein in IL-15-fostered γδT cells during cytokine withdrawal and its expression was regulated via the activation of STAT5 and ERK. In addition, IL-2 and IL-15-fostered γδT cells harbored higher levels of tumoricidal capacity which is also beneficial for γδ T-cell based immune therapy in NB. Understanding the survival control of γδT cells in a sub-optimal cytokine supportive microenvironment will expedite the clinical application of γδT cells for immunotherapy.
Collapse
|
25
|
Liu Q, Wang Z, Jiang Y, Shao F, Ma Y, Zhu M, Luo Q, Bi Y, Cao L, Peng L, Zhou J, Zhao Z, Deng X, He TC, Wang S. Single-cell landscape analysis reveals distinct regression trajectories and novel prognostic biomarkers in primary neuroblastoma. Genes Dis 2022; 9:1624-1638. [PMID: 36157484 PMCID: PMC9485279 DOI: 10.1016/j.gendis.2021.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Neuroblastoma (NB), which is the most common pediatric extracranial solid tumor, varies widely in its clinical presentation and outcome. NB has a unique ability to spontaneously differentiate and regress, suggesting a potential direction for therapeutic intervention. However, the underlying mechanisms of regression remain largely unknown, and more reliable prognostic biomarkers are needed for predicting trajectories for NB. We performed scRNA-seq analysis on 17 NB clinical samples and three peritumoral adrenal tissues. Primary NB displayed varied cell constitution, even among tumors of the same pathological subtype. Copy number variation patterns suggested that neuroendocrine cells represent the malignant cell type. Based on the differential expression of sets of related marker genes, a subgroup of neuroendocrine cells was identified and projected to differentiate into a subcluster of benign fibroblasts with highly expressed CCL2 and ZFP36, supporting a progressive pathway of spontaneous NB regression. We also identified prognostic markers (STMN2, TUBA1A, PAGE5, and ETV1) by evaluating intra-tumoral heterogeneity. Lastly, we determined that ITGB1 in M2-like macrophages was associated with favorable prognosis and may serve as a potential diagnostic marker and therapeutic target. In conclusion, our findings reveal novel mechanisms underlying regression and potential prognostic markers and therapeutic targets of NB.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Zhenni Wang
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Yan Jiang
- Singleron Biotechnologies Co., Ltd, Nanjing, Jiangsu 211800, PR China
| | - Fengling Shao
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Yue Ma
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Mingzhao Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Qing Luo
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Yang Bi
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Lijian Cao
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Liang Peng
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Jianwu Zhou
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Zhenzhen Zhao
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Xiaobin Deng
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Tong-Chuan He
- Molecular and Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Shan Wang
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Corresponding author. Department of Pediatric Surgical Oncology, The Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.
| |
Collapse
|
26
|
Sha Y, Han L, Sun B, Zhao Q. Identification of a Glycosyltransferase Signature for Predicting Prognosis and Immune Microenvironment in Neuroblastoma. Front Cell Dev Biol 2022; 9:769580. [PMID: 35071226 PMCID: PMC8773256 DOI: 10.3389/fcell.2021.769580] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 01/17/2023] Open
Abstract
Neuroblastoma (NB) is one of the most common solid tumors in children. Glycosyltransferases (GTs) play a crucial role in tumor development and immune escape and have been used as prognostic biomarkers in various tumors. However, the biological functions and prognostic significance of GTs in NB remain poorly understood. The expression data from Gene Expression Omnibus (GEO) and Therapeutically Applicable Research to Generate Effective Treatments (TARGET) were collected as training and testing data. Based on a progression status, differentially expressed GTs were identified. We constructed a GTscore through support vector machine, least absolute shrinkage and selection operator, and Cox regression in NB, which included four prognostic GTs and was an independent prognostic risk factor for NB. Patients in the high GTscore group had an older age, MYCN amplification, advanced International Neuroblastoma Staging System stage, and high risk. Samples with high GTscores revealed high disialoganglioside (GD2) and neuron-specific enolase expression levels. In addition, a lack of immune cell infiltration was observed in the high GTscore group. This GTscore was also associated with the expression of chemokines (CCL2, CXCL9, and CXCL10) and immune checkpoint genes (cytotoxic T-lymphocyte–associated protein 4, granzyme H, and granzyme K). A low GTscore was also linked to an enhanced response to anti–PD-1 immunotherapy in melanoma patients, and one type of tumor was also derived from neuroectodermal cells such as NB. In conclusion, the constructed GTscore revealed the relationship between GT expression and the NB outcome, GD2 phenotype, and immune infiltration and provided novel clues for the prediction of prognosis and immunotherapy response in NB.
Collapse
Affiliation(s)
- Yongliang Sha
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Han
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Bei Sun
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Outpatient Office, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
27
|
Szulc-Kielbik I, Kielbik M. Tumor-Associated Macrophages: Reasons to Be Cheerful, Reasons to Be Fearful. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:107-140. [PMID: 35165862 DOI: 10.1007/978-3-030-91311-3_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor microenvironment (TME) is a complex and constantly evolving entity that consists not only of cancer cells, but also of resident host cells and immune-infiltrating cells, among which macrophages are significant components, due to their diversity of functions through which they can influence the immune response against tumor cells. Macrophages present in tumor environment are termed as tumor-associated macrophages (TAMs). They are strongly plastic cells, and depending on the TME stimuli (i.e., cytokines, chemokines), TAMs polarize to antitumoral (M1-like TAMs) or protumoral (M2-like TAMs) phenotype. Both types of TAMs differ in the surface receptors' expression, activation of intracellular signaling pathways, and ability of production and various metabolites release. At the early stage of tumor formation, TAMs are M1-like phenotype, and they are able to eliminate tumor cells, i.e., by reactive oxygen species formation or by presentation of cancer antigens to other effector immune cells. However, during tumor progression, TAMs M2-like phenotype is dominating. They mainly contribute to angiogenesis, stromal remodeling, enhancement of tumor cells migration and invasion, and immunosuppression. This wide variety of TAMs' functions makes them an excellent subject for use in developing antitumor therapies which mainly is based on three strategies: TAMs' elimination, reprograming, or recruitment inhibition.
Collapse
Affiliation(s)
| | - Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| |
Collapse
|
28
|
Kang W, Hu J, Zhao Q, Song F. Identification of an Autophagy-Related Risk Signature Correlates With Immunophenotype and Predicts Immune Checkpoint Blockade Efficacy of Neuroblastoma. Front Cell Dev Biol 2021; 9:731380. [PMID: 34746127 PMCID: PMC8567030 DOI: 10.3389/fcell.2021.731380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022] Open
Abstract
Neuroblastoma is one of the malignant solid tumors with the highest mortality in childhood. Targeted immunotherapy still cannot achieve satisfactory results due to heterogeneity and tolerance. Exploring markers related to prognosis and evaluating the immune microenvironment remain the major obstacles. Herein, we constructed an autophagy-related gene (ATG) risk model by multivariate Cox regression and least absolute shrinkage and selection operator regression, and identified four prognostic ATGs (BIRC5, GRID2, HK2, and RNASEL) in the training cohort, then verified the signature in the internal and external validation cohorts. BIRC5 and HK2 showed higher expression in MYCN amplified cell lines and tumor tissues consistently, whereas GRID2 and RNASEL showed the opposite trends. The correlation between the signature and clinicopathological parameters was further analyzed and showing consistency. A prognostic nomogram using risk score, International Neuroblastoma Staging System stage, age, and MYCN status was built subsequently, and the area under curves, net reclassification improvement, and integrated discrimination improvement showed more satisfactory prognostic predicting performance. The ATG prognostic signature itself can significantly divide patients with neuroblastoma into high- and low-risk groups; differentially expressed genes between the two groups were enriched in autophagy-related behaviors and immune cell reactions in gene set enrichment analysis (false discovery rate q -value < 0.05). Furthermore, we evaluated the relationship of the signature risk score with immune cell infiltration and the cancer-immunity cycle. The low-risk group was characterized by more abundant expression of chemokines and higher immune checkpoints (PDL1, PD1, CTLA-4, and IDO1). The risk score was significantly correlated with the proportions of CD8+ T cells, CD4+ memory resting T cells, follicular helper T cells, memory B cells, plasma cells, and M2 macrophages in tumor tissues. In conclusion, we developed and validated an autophagy-related signature that can accurately predict the prognosis, which might be meaningful to understand the immune microenvironment and guide immune checkpoint blockade.
Collapse
Affiliation(s)
- Wenjuan Kang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiajian Hu
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiang Zhao
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
29
|
Fuertes MB, Domaica CI, Zwirner NW. Leveraging NKG2D Ligands in Immuno-Oncology. Front Immunol 2021; 12:713158. [PMID: 34394116 PMCID: PMC8358801 DOI: 10.3389/fimmu.2021.713158] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) revolutionized the field of immuno-oncology and opened new avenues towards the development of novel assets to achieve durable immune control of cancer. Yet, the presence of tumor immune evasion mechanisms represents a challenge for the development of efficient treatment options. Therefore, combination therapies are taking the center of the stage in immuno-oncology. Such combination therapies should boost anti-tumor immune responses and/or target tumor immune escape mechanisms, especially those created by major players in the tumor microenvironment (TME) such as tumor-associated macrophages (TAM). Natural killer (NK) cells were recently positioned at the forefront of many immunotherapy strategies, and several new approaches are being designed to fully exploit NK cell antitumor potential. One of the most relevant NK cell-activating receptors is NKG2D, a receptor that recognizes 8 different NKG2D ligands (NKG2DL), including MICA and MICB. MICA and MICB are poorly expressed on normal cells but become upregulated on the surface of damaged, transformed or infected cells as a result of post-transcriptional or post-translational mechanisms and intracellular pathways. Their engagement of NKG2D triggers NK cell effector functions. Also, MICA/B are polymorphic and such polymorphism affects functional responses through regulation of their cell-surface expression, intracellular trafficking, shedding of soluble immunosuppressive isoforms, or the affinity of NKG2D interaction. Although immunotherapeutic approaches that target the NKG2D-NKG2DL axis are under investigation, several tumor immune escape mechanisms account for reduced cell surface expression of NKG2DL and contribute to tumor immune escape. Also, NKG2DL polymorphism determines functional NKG2D-dependent responses, thus representing an additional challenge for leveraging NKG2DL in immuno-oncology. In this review, we discuss strategies to boost MICA/B expression and/or inhibit their shedding and propose that combination strategies that target MICA/B with antibodies and strategies aimed at promoting their upregulation on tumor cells or at reprograming TAM into pro-inflammatory macrophages and remodeling of the TME, emerge as frontrunners in immuno-oncology because they may unleash the antitumor effector functions of NK cells and cytotoxic CD8 T cells (CTL). Pursuing several of these pipelines might lead to innovative modalities of immunotherapy for the treatment of a wide range of cancer patients.
Collapse
Affiliation(s)
- Mercedes Beatriz Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carolina Inés Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
30
|
Gunaydin G. CAFs Interacting With TAMs in Tumor Microenvironment to Enhance Tumorigenesis and Immune Evasion. Front Oncol 2021; 11:668349. [PMID: 34336660 PMCID: PMC8317617 DOI: 10.3389/fonc.2021.668349] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer associated fibroblasts (CAFs) and tumor associated macrophages (TAMs) are among the most important and abundant players of the tumor microenvironment. CAFs as well as TAMs are known to play pivotal supportive roles in tumor growth and progression. The number of CAF or TAM cells is mostly correlated with poor prognosis. Both CAFs and TAMs are in a reciprocal communication with the tumor cells in the tumor milieu. In addition to such interactions, CAFs and TAMs are also involved in a dynamic and reciprocal interrelationship with each other. Both CAFs and TAMs are capable of altering each other's functions. Here, the current understanding of the distinct mechanisms about the complex interplay between CAFs and TAMs are summarized. In addition, the consequences of such a mutual relationship especially for tumor progression and tumor immune evasion are highlighted, focusing on the synergistic pleiotropic effects. CAFs and TAMs are crucial components of the tumor microenvironment; thus, they may prove to be potential therapeutic targets. A better understanding of the tri-directional interactions of CAFs, TAMs and cancer cells in terms of tumor progression will pave the way for the identification of novel theranostic cues in order to better target the crucial mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
31
|
Pelosi A, Fiore PF, Di Matteo S, Veneziani I, Caruana I, Ebert S, Munari E, Moretta L, Maggi E, Azzarone B. Pediatric Tumors-Mediated Inhibitory Effect on NK Cells: The Case of Neuroblastoma and Wilms' Tumors. Cancers (Basel) 2021; 13:cancers13102374. [PMID: 34069127 PMCID: PMC8156764 DOI: 10.3390/cancers13102374] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Neuroblastoma (NB) and Wilms’ tumor (WT) are the most common childhood solid extracranial tumors. The current treatments consist of a combination of surgery and chemotherapy or radiotherapy in high-risk patients. Such treatments are responsible for significant adverse events requiring long-term monitoring. Thus, a main challenge in NB and WT treatment is the development of novel therapeutic strategies to eliminate or minimize the adverse effects. The characterization of the immune environment could allow for the identification of new therapeutic targets. Herein, we described the interaction between these tumors and innate immune cells, in particular natural killer cells and monocytes. The detection of the immunosuppressive activity of specific NB and WT tumor cells on natural killer cells and on monocytes could offer novel cellular and molecular targets for an effective immunotherapy of NB and WT. Abstract Natural killer (NK) cells play a key role in the control of cancer development, progression and metastatic dissemination. However, tumor cells develop an array of strategies capable of impairing the activation and function of the immune system, including NK cells. In this context, a major event is represented by the establishment of an immunosuppressive tumor microenvironment (TME) composed of stromal cells, myeloid-derived suppressor cells, tumor-associated macrophages, regulatory T cells and cancer cells themselves. The different immunoregulatory cells infiltrating the TME, through the release of several immunosuppressive molecules or by cell-to-cell interactions, cause an impairment of the recruitment of NK cells and other lymphocytes with effector functions. The different mechanisms by which stromal and tumor cells impair NK cell function have been particularly explored in adult solid tumors and, in less depth, investigated and discussed in a pediatric setting. In this review, we will compare pediatric and adult solid malignancies concerning the respective mechanisms of NK cell inhibition, highlighting novel key data in neuroblastoma and Wilms’ tumor, two of the most frequent pediatric extracranial solid tumors. Indeed, both tumors are characterized by the presence of stromal cells acting through the release of immunosuppressive molecules. In addition, specific tumor cell subsets inhibit NK cell cytotoxic function by cell-to-cell contact mechanisms likely controlled by the transcriptional coactivator TAZ. These findings could lead to a more performant diagnostic approach and to the development of novel immunotherapeutic strategies targeting the identified cellular and molecular targets.
Collapse
Affiliation(s)
- Andrea Pelosi
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
| | - Piera Filomena Fiore
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
| | - Sabina Di Matteo
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
| | - Irene Veneziani
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
| | - Ignazio Caruana
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Children’s Hospital of Würzburg, 97080 Würzburg, Germany; (I.C.); (S.E.)
| | - Stefan Ebert
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Children’s Hospital of Würzburg, 97080 Würzburg, Germany; (I.C.); (S.E.)
| | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Lorenzo Moretta
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
| | - Enrico Maggi
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
- Correspondence: (E.M.); (B.A.)
| | - Bruno Azzarone
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
- Correspondence: (E.M.); (B.A.)
| |
Collapse
|
32
|
Tang XX, Shimada H, Ikegaki N. Clinical Relevance of CD4 Cytotoxic T Cells in High-Risk Neuroblastoma. Front Immunol 2021; 12:650427. [PMID: 33968044 PMCID: PMC8101497 DOI: 10.3389/fimmu.2021.650427] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/16/2021] [Indexed: 01/07/2023] Open
Abstract
Neuroblastoma is the most common extracranial childhood solid tumor. The majority of high-risk neuroblastoma is resistant/refractory to the current high intensity therapy, and the survival of these patients remains poor for the last three decades. To effectively treat these extremely unfavorable neuroblastomas, innovative immunotherapy approaches would be the most promising. In this article, we discuss the identity of tumor-infiltrating effector cells and immunosuppressive cells in high-risk neuroblastoma. Neuroblastoma is unique in that it expresses little or no classical HLA Class I and II. In contrast, high-risk neuroblastomas express the stress-responsive non-classical Class I, HLA-E molecule. HLA-E is the ligand of activating receptors NKG2C/E that are expressed on memory NK cells, CD8+T cells and CD4 CTLs. By examining a comprehensive RNA-seq gene expression dataset, we detected relatively high levels of CD4 expression in high-risk neuroblastoma tissues. The majority of CD4+ cells were CD3+, and thus they were likely tumor-associated CD4+T cells. In addition, high-level of both CD4 and NKG2C/E expression was associated with prolonged survival of the high-risk neuroblastoma patients, but CD8 levels were not, further suggesting that the CD4+ NKG2C/E+ T cells or CD4 CTL conferred cytotoxicity against the neuroblastoma cells. However, this T cell mediated- "protective effect" declined over time, in part due to the progressive formation of immunosuppressive tumor microenvironment. These observations suggest that to improve survival of high-risk neuroblastoma patients, it is essential to gain insights into how to enhance CD4 CTL cytotoxicity and control the immunosuppressive tumor microenvironment during the course of the disease.
Collapse
Affiliation(s)
- Xao X. Tang
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Hiroyuki Shimada
- Departments of Pathology and Pediatrics, School of Medicine, Stanford University, Stanford, CA, United States
| | - Naohiko Ikegaki
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
33
|
Asiry S, Kim G, Filippou PS, Sanchez LR, Entenberg D, Marks DK, Oktay MH, Karagiannis GS. The Cancer Cell Dissemination Machinery as an Immunosuppressive Niche: A New Obstacle Towards the Era of Cancer Immunotherapy. Front Immunol 2021; 12:654877. [PMID: 33927723 PMCID: PMC8076861 DOI: 10.3389/fimmu.2021.654877] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Although cancer immunotherapy has resulted in unpreceded survival benefits to subsets of oncology patients, accumulating evidence from preclinical animal models suggests that the immunosuppressive tumor microenvironment remains a detrimental factor limiting benefit for many patient subgroups. Recent efforts on lymphocyte-mediated immunotherapies are primarily focused on eliminating cancer foci at primary and metastatic sites, but few studies have investigated the impact of these therapies on the highly complex process of cancer cell dissemination. The metastatic cascade involves the directional streaming of invasive/migratory tumor cells toward specialized blood vessel intravasation gateways, called TMEM doorways, to the peripheral circulation. Importantly, this process occurs under the auspices of a specialized tumor microenvironment, herewith referred to as "Dissemination Trajectory", which is supported by an ample array of tumor-associated macrophages (TAMs), skewed towards an M2-like polarization spectrum, and which is also vital for providing microenvironmental cues for cancer cell invasion, migration and stemness. Based on pre-existing evidence from preclinical animal models, this article outlines the hypothesis that dissemination trajectories do not only support the metastatic cascade, but also embody immunosuppressive niches, capable of providing transient and localized immunosubversion cues to the migratory/invasive cancer cell subpopulation while in the act of departing from a primary tumor. So long as these dissemination trajectories function as "immune deserts", the migratory tumor cell subpopulation remains efficient in evading immunological destruction and seeding metastatic sites, despite administration of cancer immunotherapy and/or other cytotoxic treatments. A deeper understanding of the molecular and cellular composition, as well as the signaling circuitries governing the function of these dissemination trajectories will further our overall understanding on TAM-mediated immunosuppression and will be paramount for the development of new therapeutic strategies for the advancement of optimal cancer chemotherapies, immunotherapies, and targeted therapies.
Collapse
Affiliation(s)
- Saeed Asiry
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Gina Kim
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Panagiota S. Filippou
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - Luis Rivera Sanchez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - Douglas K. Marks
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY, United States
| | - Maja H. Oktay
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - George S. Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| |
Collapse
|
34
|
Frosch J, Leontari I, Anderson J. Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment. Cancers (Basel) 2021; 13:1743. [PMID: 33917501 PMCID: PMC8038814 DOI: 10.3390/cancers13071743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Despite multimodal treatment, survival chances for high-risk neuroblastoma patients remain poor. Immunotherapeutic approaches focusing on the activation and/or modification of host immunity for eliminating tumor cells, such as chimeric antigen receptor (CAR) T cells, are currently in development, however clinical trials have failed to reproduce the preclinical results. The tumor microenvironment is emerging as a major contributor to immune suppression and tumor evasion in solid cancers and thus has to be overcome for therapies relying on a functional immune response. Among the cellular components of the neuroblastoma tumor microenvironment, suppressive myeloid cells have been described as key players in inhibition of antitumor immune responses and have been shown to positively correlate with more aggressive disease, resistance to treatments, and overall poor prognosis. This review article summarizes how neuroblastoma-driven inflammation induces suppressive myeloid cells in the tumor microenvironment and how they in turn sustain the tumor niche through suppressor functions, such as nutrient depletion and generation of oxidative stress. Numerous preclinical studies have suggested a range of drug and cellular therapy approaches to overcome myeloid-derived suppression in neuroblastoma that warrant evaluation in future clinical studies.
Collapse
Affiliation(s)
| | | | - John Anderson
- UCL Institute of Child Health, Developmental Biology and Cancer Section, University College London, London WC1N 1EH, UK; (J.F.); (I.L.)
| |
Collapse
|
35
|
Ishfaq M, Pham T, Beaman C, Tamayo P, Yu AL, Joshi S. BTK Inhibition Reverses MDSC-Mediated Immunosuppression and Enhances Response to Anti-PDL1 Therapy in Neuroblastoma. Cancers (Basel) 2021; 13:817. [PMID: 33669187 PMCID: PMC7919651 DOI: 10.3390/cancers13040817] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 01/10/2023] Open
Abstract
MDSCs are immune cells of myeloid lineage that plays a key role in promoting tumor growth. The expansion of MDSCs in tumor-bearing hosts reduces the efficacy of checkpoint inhibitors and CAR-T therapies, and hence strategies that deplete or block the recruitment of MDSCs have shown benefit in improving responses to immunotherapy in various cancers, including NB. Ibrutinib, an irreversible molecular inhibitor of BTK, has been widely studied in B cell malignancies, and recently, this drug is repurposed for the treatment of solid tumors. Herein we report that BTK is highly expressed in both granulocytic and monocytic murine MDSCs isolated from mice bearing NB tumors, and its increased expression correlates with a poor relapse-free survival probability of NB patients. Moreover, in vitro treatment of murine MDSCs with ibrutinib altered NO production, decreased mRNA expression of Ido, Arg, Tgfβ, and displayed defects in T-cell suppression. Consistent with these findings, in vivo inhibition of BTK with ibrutinib resulted in reduced MDSC-mediated immune suppression, increased CD8+ T cell infiltration, decreased tumor growth, and improved response to anti-PDL1 checkpoint inhibitor therapy in a murine model of NB. These results demonstrate that ibrutinib modulates immunosuppressive functions of MDSC and can be used either alone or in combination with immunotherapy for augmenting antitumor immune responses in NB.
Collapse
Affiliation(s)
- Mehreen Ishfaq
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, CA 92093-0815, USA; (M.I.); (C.B.)
| | - Timothy Pham
- Office of Cancer Genomics, University of California, San Diego, CA 92093-0815, USA; (T.P.); (P.T.)
| | - Cooper Beaman
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, CA 92093-0815, USA; (M.I.); (C.B.)
| | - Pablo Tamayo
- Office of Cancer Genomics, University of California, San Diego, CA 92093-0815, USA; (T.P.); (P.T.)
| | - Alice L. Yu
- Department of Pediatrics, University of California, San Diego, CA 92093-0815, USA;
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 131, Taiwan
| | - Shweta Joshi
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, CA 92093-0815, USA; (M.I.); (C.B.)
| |
Collapse
|