1
|
Prokopcova A, Baloun J, Bubova K, Gregova M, Forejtova S, Horinkova J, Husakova M, Mintalova K, Cervenak V, Tomcik M, Vencovsky J, Pavelka K, Senolt L. Deciphering miRNA signatures in axial spondyloarthritis: The link between miRNA-1-3p and pro-inflammatory cytokines. Heliyon 2024; 10:e38250. [PMID: 39398012 PMCID: PMC11467529 DOI: 10.1016/j.heliyon.2024.e38250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that affects the spine and sacroiliac joints. Early detection of axSpA is crucial to slow disease progression and maintain remission or low disease activity. However, current biomarkers are insufficient for diagnosing axSpA or distinguishing between its radiographic (r-axSpA) and non-radiographic (nr-axSpA) subsets. To address this, we conducted a study using miRNA profiling with massive parallel sequencing (MPS) and SmartChip qRT-PCR validation. The goal was to identify differentially expressed miRNAs in axSpA patients, specifically those subdiagnosed with nr-axSpA or r-axSpA. Disease activity was measured using C-reactive protein (CRP) and the Ankylosing Spondylitis Disease Activity Score (ASDAS). Radiographic assessments of the cervical and lumbar spine were performed at baseline and after two years. Out of the initial 432 miRNAs, 90 met the selection criteria, and 45 were validated out of which miR-1-3p was upregulated, whereas miR-1248 and miR-1246 were downregulated in axSpA patients. The expression of miR-1-3p correlated with interleukin (IL)-17 and tumour necrosis factor (TNF) levels, indicating its significant role in axSpA pathogenesis. Although specific miRNAs distinguishing disease subtypes or correlating with disease activity or spinal changes were not found, the study identified three dysregulated miRNAs in axSpA patients, with miR-1-3p linked to IL-17 and TNF, underscoring its pathogenetic significance. These findings could help improve the early detection and treatment of axSpA.
Collapse
Affiliation(s)
- Aneta Prokopcova
- Institute of Rheumatology, Na Slupi 450/4, 128 00, Prague, Czech Republic
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08, Prague, Czech Republic
| | - Jiri Baloun
- Institute of Rheumatology, Na Slupi 450/4, 128 00, Prague, Czech Republic
| | - Kristyna Bubova
- Institute of Rheumatology, Na Slupi 450/4, 128 00, Prague, Czech Republic
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08, Prague, Czech Republic
| | - Monika Gregova
- Institute of Rheumatology, Na Slupi 450/4, 128 00, Prague, Czech Republic
| | - Sarka Forejtova
- Institute of Rheumatology, Na Slupi 450/4, 128 00, Prague, Czech Republic
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08, Prague, Czech Republic
| | - Jana Horinkova
- Institute of Rheumatology, Na Slupi 450/4, 128 00, Prague, Czech Republic
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08, Prague, Czech Republic
| | - Marketa Husakova
- Institute of Rheumatology, Na Slupi 450/4, 128 00, Prague, Czech Republic
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08, Prague, Czech Republic
| | - Katerina Mintalova
- Institute of Rheumatology, Na Slupi 450/4, 128 00, Prague, Czech Republic
| | - Vladimir Cervenak
- Department of Medical Imaging, St Anne's University Hospital and Faculty of Medicine, Masaryk University, Pekarska 664/53, 602 00, Brno, Czech Republic
| | - Michal Tomcik
- Institute of Rheumatology, Na Slupi 450/4, 128 00, Prague, Czech Republic
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08, Prague, Czech Republic
| | - Jiri Vencovsky
- Institute of Rheumatology, Na Slupi 450/4, 128 00, Prague, Czech Republic
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08, Prague, Czech Republic
| | - Karel Pavelka
- Institute of Rheumatology, Na Slupi 450/4, 128 00, Prague, Czech Republic
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08, Prague, Czech Republic
| | - Ladislav Senolt
- Institute of Rheumatology, Na Slupi 450/4, 128 00, Prague, Czech Republic
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08, Prague, Czech Republic
| |
Collapse
|
2
|
Kaur P, Prabhahar A, Pal D, Nada R, Kohli HS, Kumar V, Ramachandran R. IL-23/IL-17 in a Paradoxical Association with Primary Membranous Nephropathy. Inflammation 2024; 47:1536-1544. [PMID: 38393549 DOI: 10.1007/s10753-024-01992-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/20/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Primary membranous nephropathy (PMN), an autoimmune disease, is the most common cause of nephrotic syndrome in middle-aged non-diabetic adults. PMN pathophysiology includes Th1/Th2 paradigm. The IL-23/IL-17 pathway is implicated in autoimmune kidney disorders, but no study has examined its relationship with PMN. In several unrelated studies, PMN patients reported to have paradoxical IL-17 levels. This manuscript describes the best possible association of IL-23/IL-17 axis with PMN. Biopsy-proven PMN patients and age, gender-matched healthy controls were enrolled. Serum-PLA2R (Euroimmune, Germany), IL-23 and IL-17 (R&D; USA), was measured using ELISA along with biochemical parameters. Appropriate statistical tools were used for analysis. One hundred eighty-nine PMN patients (mean age 41.70 ± 12.53 years) and 100 controls (mean age 43.92 ± 10.93 years) were identified. One hundred forty were PLA2R-related. PMN patients had median proteinuria, serum albumin, and creatinine of 6.12 (3.875, 9.23) g/day, 2.32 (1.96, 2.9) g/dl, and 0.89 (0.7, 1.1) mg/dl, respectively. IL-17, but not IL-23, was significantly increased in PMN patients compared to controls (IL-17, median: 12.07 pg/ml (9.75, 24.56) vs median: 9.75 pg/ml (8.23, 17.03) p = 0.0002); (IL23, median: 6.04 pg/ml (4.22, 10.82) vs median: 5.46 pg/ml (3.34, 9.96) p = 0.142). IL-17 and IL-23 correlated significantly (p 0.05) in PMN patients, and similar trend was seen when grouped into PLA2R-related and -unrelated groups. The levels of IL-23 (p = 0.057) and IL-17 (p = 0.004) were high in MN patients that did not respond to the treatment. The current finding may indicate or suggest the involvement of IL-23/IL-17 PMN pathogenesis. A comprehensive investigation is needed to evaluate IL-23/IL-17 axis with renal infiltrating immune cells, and external stimuli.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Nephrology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Arun Prabhahar
- Department of Nephrology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Deeksha Pal
- Department of Nephrology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Harbir Singh Kohli
- Department of Nephrology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vinod Kumar
- Department of Dermatology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Raja Ramachandran
- Department of Nephrology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
3
|
Kyriakidi M, Vetsika EK, Fragoulis GE, Tektonidou M, Sfikakis PP. Identification and Clinical Correlation of Circulating MAIT, γδ T, ILC3, and Pre-Inflammatory Mesenchymal Cells in Patients with Rheumatoid Arthritis and Spondyloarthritis. Mediterr J Rheumatol 2024; 35:312-315. [PMID: 39211026 PMCID: PMC11350411 DOI: 10.31138/mjr.251022.iac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/04/2022] [Indexed: 09/04/2024] Open
Abstract
Inflammatory rheumatic diseases (IRDs), such as rheumatoid arthritis (RA) and spondyloarthropathy (SpA), comprise a heterogeneous group of immune-mediated disorders, characterised by the presence of localised and/or systemic inflammation. The limited knowledge of the pathogenesis and the complex mechanisms involved in the induction and maintenance of inflammation in IRDs have impeded the development of reliable biomarkers and the discovery of new therapeutic targets. Although the involvement of heterogeneous cell populations in the pathogenesis of IRDs has been recognised, the characterisation of these cellular subsets in the peripheral blood of patients has not been studied yet. Mass cytometry, allowing the simultaneous detection of more than 120 different parameters in single-cell resolution, will enable the identification of circulating cell subpopulations that might play a pivotal role in IRDs pathophysiology and their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Maria Kyriakidi
- Centre of New Biotechnologies and Precision Medicine (CNBPM) School of Medicine, National and Kapodistrian University of Athens, Athens
| | - Eleni-Kyriaki Vetsika
- Centre of New Biotechnologies and Precision Medicine (CNBPM) School of Medicine, National and Kapodistrian University of Athens, Athens
| | - Georgios E. Fragoulis
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens, “Laiko” General Hospital, Athens
| | - Maria Tektonidou
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens, “Laiko” General Hospital, Athens
| | - Petros P. Sfikakis
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens, “Laiko” General Hospital, Athens
| |
Collapse
|
4
|
Mauro D, Forte G, Poddubnyy D, Ciccia F. The Role of Early Treatment in the Management of Axial Spondyloarthritis: Challenges and Opportunities. Rheumatol Ther 2024; 11:19-34. [PMID: 38108992 PMCID: PMC10796311 DOI: 10.1007/s40744-023-00627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Axial spondyloarthritis (axSpA) is a chronic, inflammatory rheumatic disease that primarily affects the axial skeleton, often inflicting severe pain, diminished mobility, and a compromised quality of life. The advent of Assessment of SpondyloArthritis international Society (ASAS) classification criteria for spondyloarthritis (SpA) have enabled the classification of patients with axSpA in the non-radiographic stage but poorly perform if mistakenly used for diagnostic purposes. Despite notable progress in early diagnosis facilitated by referral strategies and extensive magnetic resonance imaging (MRI) utilization, diagnostic delays persist as a concerning issue. This underscores the urgency to narrow the diagnostic gap and highlights the critical role of early diagnosis in mitigating the long-term structural damage associated with this condition. Research into the impact of non-steroidal anti-inflammatory drugs (NSAIDs) and biologic disease-modifying antirheumatic drugs (bDMARDs) on inflammatory symptoms and radiographic progression has been extensive. A compelling body of evidence suggests that early intervention leads to superior disease outcomes. However, most of these studies have centered on patients with established diseases rather than those in the early stages. Consequently, findings from studies on early pharmacological intervention remain inconclusive, and the potential for modifying the disease trajectory is still debatable. Without precise data from clinical trials, insights from basic science regarding the pathogenic mechanisms might point toward potential targets that warrant early intervention in the disease process. This review underscores the urgency of early diagnosis and intervention in axSpA, highlighting ongoing research gaps and the need for further exploration to improve patient outcomes.
Collapse
Affiliation(s)
- Daniele Mauro
- Department of Precision Medicine, Division of Rheumatology, Università della Campania L. Vanvitelli, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Giulio Forte
- Department of Precision Medicine, Division of Rheumatology, Università della Campania L. Vanvitelli, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Epidemiology Unit, German Rheumatism Research Centre, Berlin, Germany
| | - Francesco Ciccia
- Department of Precision Medicine, Division of Rheumatology, Università della Campania L. Vanvitelli, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
5
|
Man SL, Dong P, Liu W, Li HC, Zhang L, Ji XJ, Hu LD, Song H. Results of flow cytometric detection of gamma-deltaT cells in peripheral blood of patients with ankylosing spondylitis: a pilot study. Physiol Res 2023; 72:819-832. [PMID: 38215067 PMCID: PMC10805258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/30/2023] [Indexed: 01/14/2024] Open
Abstract
Previous studies have suggested that gamma-delta T cells play an important role in the pathogenesis of ankylosing spondylitis (AS). In this pilot study, the peripheral blood mononuclear cells (PBMCs) of patients with ankylosing spondylitis (AS) and healthy volunteers were stained and analyzed by flow cytometry to distinguish gamma-delta T cells and its subtypes, and then to report the distribution of gamma-delta T cells and iyts subtypes and their correlation with ankylosing spondylitis. A total of 17 patients with active AS and 10 age- and gender- matched healthy volunteers were enrolled in this study, and their peripheral blood were drawn to collect mononuclear cells (PBMCs). Flow cytometry was used to analyze gamma-delta T cell subpopulations by measuring the surface and intracellular expressions of phenotypic markers. Serum levels of inflammatory and bone turnover markers were measured, and their correlations with subpopulations of gamma-delta T cells were evaluated. In patients with AS, the Vdelta2 fractions within gamma-delta T cells and CD3+ T cells decreased significantly, in particular, the proportions of CD27+ Vdelta2 T cells, CD86+CD80+ Vdelta1 T cells, and IL17A-secreting and TNFalpha-secreting Vdelta1 T cells within the parental cells decreased significantly. gamma-delta T cells/PBMCs, Vdelta2 cells/gamma-delta T cells, and Vdelta2 cells/CD3+ T cells were negatively correlated with CRP, whereas Vdelta1 cells/CD3+ T cells were negatively correlated with ESR. Vdelta1 cells/gamma-delta T cells were positively correlated with CRP, gamma-deltaT cells/PBMCs were positively correlated with beta-CTx, CD69+CD25+ and IL-17A-secreting Vdelta1 cells were positively correlated with TP1NP, and CD69+CD25+ Vdelta1 and Vdelta2 cells were positively correlated with osteocalcin. Decreases in peripheral Vdelta2, CD27+ Vdelta2, CD86+CD80+ Vdelta1, and IL17A or TNFalpha-secreting Vdelta1 T cells are associated with AS. The correlations between gamma-delta T cell subpopulations and CRP and the CD69+CD25+ subpopulation with TP1NP or osteocalcin suggest that an imbalance in peripheral gamma-delta T cell subpopulations contributes to the pathogenesis of AS.
Collapse
Affiliation(s)
- Si-Liang Man
- Department of Rheumatology, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Xicheng District, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Sisto M, Lisi S. Targeting Interleukin-17 as a Novel Treatment Option for Fibrotic Diseases. J Clin Med 2023; 13:164. [PMID: 38202170 PMCID: PMC10780256 DOI: 10.3390/jcm13010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Fibrosis is the end result of persistent inflammatory responses induced by a variety of stimuli, including chronic infections, autoimmune reactions, and tissue injury. Fibrotic diseases affect all vital organs and are characterized by a high rate of morbidity and mortality in the developed world. Until recently, there were no approved antifibrotic therapies. In recent years, high levels of interleukin-17 (IL-17) have been associated with chronic inflammatory diseases with fibrotic complications that culminate in organ failure. In this review, we provide an update on the role of IL-17 in fibrotic diseases, with particular attention to the most recent lines of research in the therapeutic field represented by the epigenetic mechanisms that control IL-17 levels in fibrosis. A better knowledge of the IL-17 signaling pathway implications in fibrosis could design new strategies for therapeutic benefits.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | | |
Collapse
|
7
|
Venerito V, Del Vescovo S, Lopalco G, Proft F. Beyond the horizon: Innovations and future directions in axial-spondyloarthritis. Arch Rheumatol 2023; 38:491-511. [PMID: 38125058 PMCID: PMC10728740 DOI: 10.46497/archrheumatol.2023.10580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease of the spine and sacroiliac joints. This review discusses recent advances across multiple scientific fields that promise to transform axSpA management. Traditionally, axSpA was considered an immune-mediated disease driven by human leukocyte antigen B27 (HLA-B27), interleukin (IL)-23/IL-17 signaling, biomechanics, and dysbiosis. Diagnosis relies on clinical features, laboratory tests, and imaging, particularly magnetic resonance imaging (MRI) nowadays. Management includes exercise, lifestyle changes, non-steroidal anti-inflammatory drugs and if this is not sufficient to achieve disease control also biological and targeted-synthetic disease modifying anti-rheumatic drugs. Beyond long-recognized genetic risks like HLA-B27, high-throughput sequencing has revealed intricate gene-environment interactions influencing dysbiosis, immune dysfunction, and aberrant bone remodeling. Elucidating these mechanisms promises screening approaches to enable early intervention. Advanced imaging is revolutionizing the assessment of axSpA's hallmark: sacroiliac bone-marrow edema indicating inflammation. Novel magnetic resonance imaging (MRI) techniques sensitively quantify disease activity, while machine learning automates complex analysis to improve diagnostic accuracy and monitoring. Hybrid imaging like synthetic MRI/computed tomography (CT) visualizes structural damage with new clarity. Meanwhile, microbiome analysis has uncovered gut ecosystem alterations that may initiate joint inflammation through HLA-B27 misfolding or immune subversion. Correcting dysbiosis represents an enticing treatment target. Moving forward, emerging techniques must augment patient care. Incorporating patient perspectives will be key to ensure innovations like genetics, microbiome, and imaging biomarkers translate into improved mobility, reduced pain, and increased quality of life. By integrating cutting-edge, multidisciplinary science with patients' lived experience, researchers can unlock the full potential of new technologies to deliver transformative outcomes. The future is bright for precision diagnosis, tightly controlled treatment, and even prevention of axSpA.
Collapse
Affiliation(s)
- Vincenzo Venerito
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, Bari, Italy
| | - Sergio Del Vescovo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, Bari, Italy
| | - Giuseppe Lopalco
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, Bari, Italy
| | - Fabian Proft
- Department of Gastroenterology, Infectiology and Rheumatology (including Nutrition Medicine), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
8
|
Rosine N, Fogel O, Koturan S, Rogge L, Bianchi E, Miceli-Richard C. T cells in the pathogenesis of axial spondyloarthritis. Joint Bone Spine 2023; 90:105619. [PMID: 37487956 DOI: 10.1016/j.jbspin.2023.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Axial spondyloarthritis (axSpA) is the prototype of the spondyloarthritis spectrum. The involvement of T cells in its pathogenesis has long been suspected on the basis of the association with the major histocompatibility complex I molecule HLA-B27 and the pivotal role of interleukin 17 in the inflammatory mechanisms associated with the disease. Moreover, the presence of unconventional or "innate-like" T cells within the axial enthesis suggests an important role for these cells in the pathophysiology of the disease. In this review, we describe the characteristics and the interleukin 17 secretion capacity of the T-cell subsets identified in axSpA. We discuss the genetic and epigenetic mechanisms that support the alteration of T-cell functions and promote their activation in axSpA. We also discuss recent data on T cells that could explain the extra-articular manifestations of the SpA spectrum.
Collapse
Affiliation(s)
- Nicolas Rosine
- Service de rhumatologie, université Angers, CHU d'Angers, Paris, France.
| | - Olivier Fogel
- Department of Rheumatology, EULAR Center of Excellence, hôpital Cochin, Assistance publique-Hôpitaux de Paris, Paris University, Paris, France
| | - Surya Koturan
- Faculty of Medicine, MRC London Institute of Medical Science, Institute of Clinical Sciences, Imperial College, W12 0NN London, United Kingdom
| | - Lars Rogge
- Immunoregulation Unit, Institut Pasteur, université Paris Cité, 75015 Paris, France
| | - Elisabetta Bianchi
- Immunoregulation Unit, Institut Pasteur, université Paris Cité, 75015 Paris, France
| | - Corinne Miceli-Richard
- Department of Rheumatology, EULAR Center of Excellence, hôpital Cochin, Assistance publique-Hôpitaux de Paris, Paris University, Paris, France
| |
Collapse
|
9
|
Navarro-Compán V, Puig L, Vidal S, Ramírez J, Llamas-Velasco M, Fernández-Carballido C, Almodóvar R, Pinto JA, Galíndez-Aguirregoikoa E, Zarco P, Joven B, Gratacós J, Juanola X, Blanco R, Arias-Santiago S, Sanz Sanz J, Queiro R, Cañete JD. The paradigm of IL-23-independent production of IL-17F and IL-17A and their role in chronic inflammatory diseases. Front Immunol 2023; 14:1191782. [PMID: 37600764 PMCID: PMC10437113 DOI: 10.3389/fimmu.2023.1191782] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/05/2023] [Indexed: 08/22/2023] Open
Abstract
Interleukin-17 family (IL-17s) comprises six structurally related members (IL-17A to IL-17F); sequence homology is highest between IL-17A and IL-17F, displaying certain overlapping functions. In general, IL-17A and IL-17F play important roles in chronic inflammation and autoimmunity, controlling bacterial and fungal infections, and signaling mainly through activation of the nuclear factor-kappa B (NF-κB) pathway. The role of IL-17A and IL-17F has been established in chronic immune-mediated inflammatory diseases (IMIDs), such as psoriasis (PsO), psoriatic arthritis (PsA), axial spondylarthritis (axSpA), hidradenitis suppurativa (HS), inflammatory bowel disease (IBD), multiple sclerosis (MS), and asthma. CD4+ helper T cells (Th17) activated by IL-23 are well-studied sources of IL-17A and IL-17F. However, other cellular subtypes can also produce IL-17A and IL-17F, including gamma delta (γδ) T cells, alpha beta (αβ) T cells, type 3 innate lymphoid cells (ILC3), natural killer T cells (NKT), or mucosal associated invariant T cells (MAIT). Interestingly, the production of IL-17A and IL-17F by innate and innate-like lymphocytes can take place in an IL-23 independent manner in addition to IL-23 classical pathway. This would explain the limitations of the inhibition of IL-23 in the treatment of patients with certain rheumatic immune-mediated conditions such as axSpA. Despite their coincident functions, IL-17A and IL-17F contribute independently to chronic tissue inflammation having somehow non-redundant roles. Although IL-17A has been more widely studied, both IL-17A and IL-17F are overexpressed in PsO, PsA, axSpA and HS. Therefore, dual inhibition of IL-17A and IL-17F could provide better outcomes than IL-23 or IL-17A blockade.
Collapse
Affiliation(s)
| | - Luis Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Silvia Vidal
- Immunology-Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Julio Ramírez
- Arthritis Unit, Department of Rheumatology, Hospital Clínic and Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mar Llamas-Velasco
- Department of Dermatology, Hospital Universitario La Princesa, Madrid, Spain
| | | | - Raquel Almodóvar
- Department of Rheumatology, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - José Antonio Pinto
- Department of Rheumatology, Complejo Hospitalario Universitario de A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | | | - Pedro Zarco
- Department of Rheumatology, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Beatriz Joven
- Department of Rheumatology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jordi Gratacós
- Department of Rheumatology, Medicine Department Autonomus University of Barcelona (UAB), I3PT, University Hospital Parc Taulí Sabadell, Barcelona, Spain
| | - Xavier Juanola
- Department of Rheumatology, University Hospital Bellvitge, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Ricardo Blanco
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Salvador Arias-Santiago
- Department of Dermatology, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Dermatology, Facultad de Medicina, Universidad de Granada, Spain
| | - Jesús Sanz Sanz
- Department of Rheumatology, Hospital Universitario Puerta del Hierro Majadahonda, Madrid, Spain
| | - Rubén Queiro
- Department of Rheumatology, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Juan D. Cañete
- Arthritis Unit, Department of Rheumatology, Hospital Clínic and Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
10
|
Mauro D, Gandolfo S, Tirri E, Schett G, Maksymowych WP, Ciccia F. The bone marrow side of axial spondyloarthritis. Nat Rev Rheumatol 2023:10.1038/s41584-023-00986-6. [PMID: 37407716 DOI: 10.1038/s41584-023-00986-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
Spondyloarthritis (SpA) is characterized by the infiltration of innate and adaptive immune cells into entheses and bone marrow. Molecular, cellular and imaging evidence demonstrates the presence of bone marrow inflammation, a hallmark of SpA. In the spine and the peripheral joints, bone marrow is critically involved in the pathogenesis of SpA. Evidence suggests that bone marrow inflammation is associated with enthesitis and that there are roles for mechano-inflammation and intestinal inflammation in bone marrow involvement in SpA. Specific cell types (including mesenchymal stem cells, innate lymphoid cells and γδ T cells) and mediators (Toll-like receptors and cytokines such as TNF, IL-17A, IL-22, IL-23, GM-CSF and TGFβ) are involved in these processes. Using this evidence to demonstrate a bone marrow rather than an entheseal origin for SpA could change our understanding of the disease pathogenesis and the relevant therapeutic approach.
Collapse
Affiliation(s)
- Daniele Mauro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Saviana Gandolfo
- Unit of Rheumatology, San Giovanni Bosco Hospital, Naples, Italy
| | - Enrico Tirri
- Unit of Rheumatology, San Giovanni Bosco Hospital, Naples, Italy
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander University (FAU) Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Francesco Ciccia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
11
|
Sánchez-Rodríguez G, Puig L. Pathogenic Role of IL-17 and Therapeutic Targeting of IL-17F in Psoriatic Arthritis and Spondyloarthropathies. Int J Mol Sci 2023; 24:10305. [PMID: 37373452 DOI: 10.3390/ijms241210305] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The interleukin 17 (IL-17) family, a subset of cytokines consisting of IL-17A-F, plays crucial roles in host defence against microbial organisms and the development of inflammatory diseases, including psoriasis (PsO), axial spondyloarthritis (axSpA), and psoriatic arthritis (PsA). IL-17A is the signature cytokine produced by T helper 17 (Th17) cells and is considered the most biologically active form. The pathogenetic involvement of IL-17A in these conditions has been confirmed, and its blockade with biological agents has provided a highly effective therapeutical approach. IL-17F is also overexpressed in the skin and synovial tissues of patients with these diseases, and recent studies suggest its involvement in promoting inflammation and tissue damage in axSpA and PsA. The simultaneous targeting of IL-17A and IL-17F by dual inhibitors and bispecific antibodies may improve the management of Pso, PsA, and axSpA, as demonstrated in the pivotal studies of dual specific antibodies such as bimekizumab. The present review focuses on the role of IL-17F and its therapeutic blockade in axSpA and PsA.
Collapse
Affiliation(s)
- Guillermo Sánchez-Rodríguez
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Carrer de Sant Quintí, 89, 08041 Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Carrer de Sant Quintí, 89, 08041 Barcelona, Spain
| |
Collapse
|
12
|
Del Vescovo S, Venerito V, Iannone C, Lopalco G. Uncovering the Underworld of Axial Spondyloarthritis. Int J Mol Sci 2023; 24:6463. [PMID: 37047435 PMCID: PMC10095023 DOI: 10.3390/ijms24076463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Axial spondyloarthritis (axial-SpA) is a multifactorial disease characterized by inflammation in sacroiliac joints and spine, bone reabsorption, and aberrant bone deposition, which may lead to ankylosis. Disease pathogenesis depends on genetic, immunological, mechanical, and bioenvironmental factors. HLA-B27 represents the most important genetic factor, although the disease may also develop in its absence. This MHC class I molecule has been deeply studied from a molecular point of view. Different theories, including the arthritogenic peptide, the unfolded protein response, and HLA-B27 homodimers formation, have been proposed to explain its role. From an immunological point of view, a complex interplay between the innate and adaptive immune system is involved in disease onset. Unlike other systemic autoimmune diseases, the innate immune system in axial-SpA has a crucial role marked by abnormal activity of innate immune cells, including γδ T cells, type 3 innate lymphoid cells, neutrophils, and mucosal-associated invariant T cells, at tissue-specific sites prone to the disease. On the other hand, a T cell adaptive response would seem involved in axial-SpA pathogenesis as emphasized by several studies focusing on TCR low clonal heterogeneity and clonal expansions as well as an interindividual sharing of CD4/8 T cell receptors. As a result of this immune dysregulation, several proinflammatory molecules are produced following the activation of tangled intracellular pathways involved in pathomechanisms of axial-SpA. This review aims to expand the current understanding of axial-SpA pathogenesis, pointing out novel molecular mechanisms leading to disease development and to further investigate potential therapeutic targets.
Collapse
Affiliation(s)
- Sergio Del Vescovo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Vincenzo Venerito
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Claudia Iannone
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milan, Italy
| | - Giuseppe Lopalco
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| |
Collapse
|
13
|
Harrison SR, Marzo-Ortega H. Have Therapeutics Enhanced Our Knowledge of Axial Spondyloarthritis? Curr Rheumatol Rep 2023; 25:56-67. [PMID: 36652160 PMCID: PMC9958165 DOI: 10.1007/s11926-023-01097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW An overview of how the treatment landscape of axial spondyloarthritis (axSpA) has shaped our understanding of the disease. RECENT FINDINGS Prior to the millennium, non-steroidal anti-inflammatory drugs (NSAIDs) were the only treatment for axSpA, yet only 30% of patients responded and many developed side effects. In 2003, the first biological disease-modifying drug (bDMARD) was licensed for axSpA which substantially improved outcomes in comparison to NSAIDs. In 2022, there are now several bDMARDs for axSpA; however, they too are not universally efficacious in treating axial inflammation and may have deleterious effects on extramusculoskeletal manifestations. Nevertheless, successful or not, each bDMARD gives invaluable insight into axSpA immunobiology. This review discusses how much we have learned from the use of bDMARDs in axSpA, how this has redefined our understanding of the disease, and how we might use this knowledge to develop new and better treatments for axSpA in the future.
Collapse
Affiliation(s)
- S R Harrison
- The University of Leeds, Leeds Institute for Rheumatic and Musculoskeletal Medicine (LIRMM), NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals Trust, Leeds, UK
- The University of Leeds, Leeds Institute of Cardiovascular and Metabolic Medicine, the LIGHT building, Clarendon Way, Leeds, UK
| | - H Marzo-Ortega
- The University of Leeds, Leeds Institute for Rheumatic and Musculoskeletal Medicine (LIRMM), NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals Trust, Leeds, UK.
| |
Collapse
|
14
|
Phenotypic heterogeneity in psoriatic arthritis: towards tissue pathology-based therapy. Nat Rev Rheumatol 2023; 19:153-165. [PMID: 36596924 DOI: 10.1038/s41584-022-00874-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 01/04/2023]
Abstract
Psoriatic arthritis (PsA) is a heterogeneous disease involving multiple potential tissue domains. Most outcome measures used so far in randomized clinical trials do not sufficiently reflect this domain heterogeneity. The concept that pathogenetic mechanisms might vary across tissues within a single disease, underpinning such phenotype diversity, could explain tissue-distinct levels of response to different therapies. In this Review, we discuss the tissue, cellular and molecular mechanisms that drive clinical heterogeneity in PsA phenotypes, and detail existing tissue-based research, including data generated using sophisticated interrogative technologies with single-cell precision. Finally, we discuss how these elements support the need for tissue-based therapy in PsA in the context of existing and new therapeutic modes of action, and the implications for future PsA trial outcomes and design.
Collapse
|
15
|
Fatica M, D'Antonio A, Novelli L, Triggianese P, Conigliaro P, Greco E, Bergamini A, Perricone C, Chimenti MS. How Has Molecular Biology Enhanced Our Undertaking of axSpA and Its Management. Curr Rheumatol Rep 2023; 25:12-33. [PMID: 36308677 PMCID: PMC9825525 DOI: 10.1007/s11926-022-01092-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE This review aims at investigating pathophysiological mechanisms in spondyloarthritis (SpA). Analysis of genetic factors, immunological pathways, and abnormalities of bone metabolism lay the foundations for a better understanding of development of the axial clinical manifestations in patients, allowing physician to choose the most appropriate therapeutic strategy in a more targeted manner. RECENT FINDINGS In addition to the contribution of MHC system, findings emerged about the role of non-HLA genes (as ERAP1 and 2, whose inhibition could represent a new therapeutic approach) and of epigenetic mechanisms that regulate the expression of genes involved in SpA pathogenesis. Increasing evidence of bone metabolism abnormalities secondary to the activation of immunological pathways suggests the development of various bone anomalies that are present in axSpA patients. SpA are a group of inflammatory diseases with a multifactorial origin, whose pathogenesis is linked to the genetic predisposition, the action of environmental risk factors, and the activation of immune response. It is now well known how bone metabolism leads to long-term structural damage via increased bone turnover, bone loss and osteoporosis, osteitis, erosions, osteosclerosis, and osteoproliferation. These effects can exist in the same patient over time or even simultaneously. Evidence suggests a cross relationship among innate immunity, autoimmunity, and bone remodeling in SpA, making treatment approach a challenge for rheumatologists. Specifically, treatment targets are consistently increasing as new drugs are upcoming. Both biological and targeted synthetic drugs are promising in terms of their efficacy and safety profile in patients affected by SpA.
Collapse
Affiliation(s)
- Mauro Fatica
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Arianna D'Antonio
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lucia Novelli
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Elisabetta Greco
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alberto Bergamini
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
16
|
Tam HKJ, Robinson PC, Nash P. Inhibiting IL-17A and IL-17F in Rheumatic Disease: Therapeutics Help to Elucidate Disease Mechanisms. Curr Rheumatol Rep 2022; 24:310-320. [PMID: 35861937 PMCID: PMC9470681 DOI: 10.1007/s11926-022-01084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE OF REVIEW Psoriatic arthritis and ankylosing spondylitis belong to a family of rheumatological diseases that lead to painful joint inflammation that impacts on patient function and quality of life. Recent studies have shown that the pro-inflammatory cytokine IL-17 is involved in the inflammatory joint changes in spondyloarthritides. We will review the pathophysiology of IL-17 and review the biological therapies targeting IL-17. RECENT FINDINGS IL-17 is produced and released from T cells and is dependent on multiple upstream cytokines, which include IL-23. There are six members of the IL-17 family that are secreted from multiple populations of T cells. The initial biologic medications have been developed against IL-17A, which is the best-studied member of this family. These medications appear to be effective in controlling joint inflammation, improving patient quality of life, and are generally well tolerated. More recently, medications have been developed that target both IL-17A and IL-17F. In addition, brodalumab, an antibody targeting the IL-17 receptor, has had a resurgence after initial concerns for an increased risk of suicide. IL-17 is an inflammatory cytokine that is critical in the pathobiology of axial spondyloarthritides. Recent biological therapies targeting IL-17A are effective and well tolerated in patients with axial spondyloarthritis. Specific targeting of the Il-17A/F heterodimer is also effective and provides another viable option in the clinician's armamentarium.
Collapse
Affiliation(s)
| | - Philip C. Robinson
- The University of Queensland, Herston, QLD 4006 Australia
- Department of Rheumatology, Royal Brisbane & Women’s Hospital, Herston, QLD Australia
| | - Peter Nash
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD Australia
| |
Collapse
|
17
|
Lefferts AR, Norman E, Claypool DJ, Kantheti U, Kuhn KA. Cytokine competent gut-joint migratory T Cells contribute to inflammation in the joint. Front Immunol 2022; 13:932393. [PMID: 36159826 PMCID: PMC9489919 DOI: 10.3389/fimmu.2022.932393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 02/01/2023] Open
Abstract
Although studies have identified the presence of gut-associated cells in the enthesis of joints affected by spondylarthritis (SpA), a direct link through cellular transit between the gut and joint has yet to be formally demonstrated. Using KikGR transgenic mice to label in situ and track cellular trafficking from the distal colon to the joint under inflammatory conditions of both the gut and joint, we demonstrate bona-fide gut-joint trafficking of T cells from the colon epithelium, also called intraepithelial lymphocytes (IELs), to distal sites including joint enthesis, the pathogenic site of SpA. Similar to patients with SpA, colon IELs from the TNFΔARE/+ mouse model of inflammatory bowel disease and SpA display heightened TNF production upon stimulation. Using ex vivo stimulation of photo-labeled gut-joint trafficked T cells from the popliteal lymph nodes of KikGR and KikGR TNFΔARE/+ we saw that the CD4+ photo-labeled population was highly enriched for IL-17 competence in healthy as well as arthritic mice, however in the TNFΔARE/+ mice these cells were additionally enriched for TNF. Using transfer of magnetically isolated IELs from TNF+/+ and TNFΔARE/+ donors into Rag1 -/- hosts, we confirmed that IELs can exacerbate inflammatory processes in the joint. Finally, we blocked IEL recruitment to the colon epithelium using broad spectrum antibiotics in TNFΔARE/+ mice. Antibiotic-treated mice had reduced gut-joint IEL migration, contained fewer Il-17A and TNF competent CD4+ T cells, and lessened joint pathology compared to untreated littermate controls. Together these results demonstrate that pro-inflammatory colon-derived IELs can exacerbate inflammatory responses in the joint through systemic trafficking, and that interference with this process through gut-targeted approaches has therapeutic potential in SpA.
Collapse
|
18
|
Zhang H, Jiang HL, Dai SM. No Significant Effects of IL-23 on Initiating and Perpetuating the Axial Spondyloarthritis: The Reasons for the Failure of IL-23 Inhibitors. Front Immunol 2022; 13:818413. [PMID: 35222393 PMCID: PMC8868936 DOI: 10.3389/fimmu.2022.818413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Axial spondyloarthritis (axSpA) is comprised of ankylosing spondylitis (AS) and non-radiographic axSpA. In recent years, the involvement of the interleukin (IL)-23/IL-17 axis in the pathophysiology of axSpA has been widely proposed. Since IL-23 is an upstream activating cytokine of IL-17, theoretically targeting IL-23 should be effective in axSpA, especially after the success of the treatment with IL-17 blockers in the disorder. Unfortunately, IL-23 blockade did not show meaningful efficacy in clinical trials of AS. In this review, we analyzed the possible causes of the failure of IL-23 blockers in AS: 1) the available data from an animal model is not able to support that IL-23 is involved in a preclinical rather than clinical phase of axSpA; 2) Th17 cells are not principal inflammatory cells in the pathogenesis of axSpA; 3) IL-17 may be produced independently of IL-23 in several immune cell types other than Th17 cells in axSpA; 4) no solid evidence supports IL-23 as a pathogenic factor to induce enthesitis and bone formation. Taken together, IL-23 is not a principal proinflammatory cytokine in the pathogenesis of axSpA.
Collapse
Affiliation(s)
| | | | - Sheng-Ming Dai
- Department of Rheumatology & Immunology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
19
|
Shen J, Yang L, You K, Chen T, Su Z, Cui Z, Wang M, Zhang W, Liu B, Zhou K, Lu H. Indole-3-Acetic Acid Alters Intestinal Microbiota and Alleviates Ankylosing Spondylitis in Mice. Front Immunol 2022; 13:762580. [PMID: 35185872 PMCID: PMC8854167 DOI: 10.3389/fimmu.2022.762580] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
Ankylosing spondylitis (AS) is a systemic, chronic, and inflammatory autoimmune disease associated with the disorder of intestinal microbiota. Unfortunately, effective therapies for AS are lacking. Recent evidence has indicated that indole-3-acetic acid (IAA), an important microbial tryptophan metabolite, can modulate intestinal homeostasis and suppress inflammatory responses. However, reports have not examined the in vivo protective effects of IAA against AS. In this study, we investigated the protective effects and underlying mechanisms through which IAA acts against AS. We constructed a proteoglycan (PG)-induced AS mouse model and administered IAA (50 mg/kg body weight) by intraperitoneal injection daily for 4 weeks. The effects of IAA on AS mice were evaluated by examining disease severity, intestinal barrier function, aryl hydrocarbon receptor (AhR) pathway, T-helper 17 (Th17)/T regulatory (Treg) balance, and inflammatory cytokine levels. The intestinal microbiota compositions were profiled through whole-genome sequencing. We observed that IAA decreased the incidence and severity of AS in mice, inhibited the production of pro-inflammatory cytokines (tumor necrosis factor α [TNF-α], interleukin [IL]-6, IL-17A, and IL-23), promoted the production of the anti-inflammatory cytokine IL-10, and reduced the ratios of pro-/anti- inflammatory cytokines. IAA ameliorated pathological changes in the ileum and improved intestinal mucosal barrier function. IAA also activated the AhR pathway, upregulated the transcription factor forehead box protein P3 (FoxP3) and increased Treg cells, and downregulated the transcription factors retinoic acid receptor–related orphan receptor gamma t (RORγt) and signal transducer and activator of transcription 3 (STAT3) and decreased Th17 cells. Furthermore, IAA altered the composition of the intestinal microbiota composition by increasing Bacteroides and decreasing Proteobacteria and Firmicutes, in addition to increasing the abundances of Bifidobacterium pseudolongum and Mucispirillum schaedleri. In conclusion, IAA exerted several protective effects against PG-induced AS in mice, which was mediated by the restoration of balance among the intestinal microbial community, activating the AhR pathway, and inhibiting inflammation. IAA might represent a novel therapeutic approach for AS.
Collapse
Affiliation(s)
- Jun Shen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Lianjun Yang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Ke You
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Tao Chen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhihai Su
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhifei Cui
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Min Wang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Weicong Zhang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Bin Liu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, First Affiliated Hospital (Shenzhen People’s Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Hai Lu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- *Correspondence: Hai Lu,
| |
Collapse
|
20
|
Martínez-Ramos S, Rafael-Vidal C, Pego-Reigosa JM, García S. Monocytes and Macrophages in Spondyloarthritis: Functional Roles and Effects of Current Therapies. Cells 2022; 11:cells11030515. [PMID: 35159323 PMCID: PMC8834543 DOI: 10.3390/cells11030515] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Spondyloarthritis (SpA) is a family of chronic inflammatory diseases, being the most prevalent ankylosing spondylitis (AS) and psoriatic arthritis (PsA). These diseases share genetic, clinical and immunological features, such as the implication of human leukocyte antigen (HLA) class I molecule 27 (HLA-B27), the inflammation of peripheral, spine and sacroiliac joints and the presence of extra-articular manifestations (psoriasis, anterior uveitis, enthesitis and inflammatory bowel disease). Monocytes and macrophages are essential cells of the innate immune system and are the first line of defence against external agents. In rheumatic diseases including SpA, the frequency and phenotypic and functional characteristics of both cell types are deregulated and are involved in the pathogenesis of these diseases. In fact, monocytes and macrophages play key roles in the inflammatory processes characteristics of SpA. The aim of this review is analysing the characteristics and functional roles of monocytes and macrophages in these diseases, as well as the impact of different current therapies on these cell types.
Collapse
Affiliation(s)
- Sara Martínez-Ramos
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
| | - Carlos Rafael-Vidal
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
| | - José M. Pego-Reigosa
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
| | - Samuel García
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
- Correspondence: ; Tel.: +34-986-217-463
| |
Collapse
|
21
|
Berzosa M, Nemeskalova A, Zúñiga-Ripa A, Salvador-Bescós M, Larrañeta E, Donnelly RF, Gamazo C, Irache JM. Immune Response after Skin Delivery of a Recombinant Heat-Labile Enterotoxin B Subunit of Enterotoxigenic Escherichia coli in Mice. Pharmaceutics 2022; 14:pharmaceutics14020239. [PMID: 35213971 PMCID: PMC8875158 DOI: 10.3390/pharmaceutics14020239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infections have been identified as a major cause of acute diarrhoea in children in developing countries, associated with substantial morbidity and mortality rates. Additionally, ETEC remains the most common cause of acute diarrhea of international travellers to endemic areas. The heat-labile toxin (LT) is a major virulence factor of ETEC, with a significant correlation between the presence of antibodies against LT and protection in infected patients. In the present work, we constructed a recombinant LTB unit (rLTB) and studied the capacity of this toxoid incorporated in microneedles (rLTB-MN) to induce a specific immune response in mice. MN were prepared from aqueous blends of the polymer Gantrez AN® [poly (methyl vinyl ether-co-maleic anhydride)], which is not cytotoxic and has been shown to possess immunoadjuvant properties. The mechanical and dissolution properties of rLTB-MNs were evaluated in an in vitro Parafilm M® model and in mice and pig skin ex vivo models. The needle insertion ranged between 378 µm and 504 µm in Parafilm layers, and MNs fully dissolved within 15 min of application inside porcine skin. Moreover, female and male BALB/c mice were immunized through ear skin with one single dose of 5 μg·rLTB in MNs, eliciting significant fecal anti-LT IgA antibodies, higher in female than in male mice. Moreover, we observed an enhanced production of IL-17A by spleen cells in the immunized female mice, indicating a mucosal non-inflammatory and neutralizing mediated response. Further experiments will now be required to validate the protective capacity of this new rLTB-MN formulation against this deadly non-vaccine-preventable disease.
Collapse
Affiliation(s)
- Melibea Berzosa
- Department of Microbiology and Parasitology, Institute of Tropical Health, IDISNA, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.Z.-R.); (M.S.-B.)
| | - Alzbeta Nemeskalova
- Department of Microbiology and Parasitology, Institute of Tropical Health, IDISNA, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.Z.-R.); (M.S.-B.)
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Amaia Zúñiga-Ripa
- Department of Microbiology and Parasitology, Institute of Tropical Health, IDISNA, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.Z.-R.); (M.S.-B.)
| | - Miriam Salvador-Bescós
- Department of Microbiology and Parasitology, Institute of Tropical Health, IDISNA, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.Z.-R.); (M.S.-B.)
| | - Eneko Larrañeta
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (E.L.); (R.F.D.)
| | - Ryan F. Donnelly
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (E.L.); (R.F.D.)
| | - Carlos Gamazo
- Department of Microbiology and Parasitology, Institute of Tropical Health, IDISNA, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.Z.-R.); (M.S.-B.)
- Correspondence: (C.G.); (J.M.I.)
| | - Juan M. Irache
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, 31008 Pamplona, Spain
- Correspondence: (C.G.); (J.M.I.)
| |
Collapse
|
22
|
Skougaard M, Ditlev SB, Stisen ZR, Coates LC, Ellegaard K, Kristensen LE. Four emerging immune cellular blood phenotypes associated with disease duration and activity established in Psoriatic Arthritis. Arthritis Res Ther 2022; 24:262. [PMID: 36447253 PMCID: PMC9706839 DOI: 10.1186/s13075-022-02956-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Psoriatic Arthritis (PsA) is an immune-mediated disease with heterogenous symptoms indicating differences in the underlying immunopathogenesis. The primary objective of the study explored the dynamic mechanisms and interplay between immune cell subtypes constituting the immune response driving PsA to evaluate possible differences in immune cellular phenotypes, and secondary examined associations between emerging immune cellular phenotypes and disease outcomes. METHODS Peripheral blood was collected from 70 PsA patients. Frequencies of nine immune cell subtypes were determined by multicolor flow cytometry. The interplay between immune cells were examined with principal component analysis (PCA) to establish immune cellular phenotypes. Disease characteristics, Disease Activity in Psoriatic Arthritis (DAPSA) and Psoriasis Area Severity Index (PASI) were retrieved to examine associations to individual cellular phenotypes. RESULTS Four components were identified using PCA resembling four immune cellular phenotypes. Component 1, explaining 25.6% of the variance with contribution from T-helper 17 cells (Th17), memory T regulatory cells (mTregs), dendritic cells and monocytes, was associated with longer disease duration and higher DAPSA. Component 2, driven by Th1, naïve Tregs and mTregs, was associated with shorter disease duration. Component 3 was driven by both Th1, Th17 and CD8+ T cells, while component 4 was characterized by a reverse correlation between CD8+ T cells and natural killer cells. CONCLUSION Four immune cellular phenotypes of PsA were suggested at baseline demonstrating complex immune cellular mechanisms in PsA implying the possibility of improving PsA patient stratification based on both clinical and immune cellular phenotypes.
Collapse
Affiliation(s)
- Marie Skougaard
- grid.512917.9The Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark ,grid.154185.c0000 0004 0512 597XDepartment of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark ,grid.512917.9Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Sisse B. Ditlev
- grid.512917.9Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Zara R. Stisen
- grid.512917.9The Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| | - Laura C. Coates
- grid.4991.50000 0004 1936 8948Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Karen Ellegaard
- grid.512917.9The Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| | - Lars Erik Kristensen
- grid.512917.9The Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| |
Collapse
|
23
|
The gut-enthesis axis and the pathogenesis of Spondyloarthritis. Semin Immunol 2021; 58:101607. [PMID: 35850909 DOI: 10.1016/j.smim.2022.101607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/15/2022] [Accepted: 05/29/2022] [Indexed: 12/14/2022]
Abstract
Subclinical inflammation is associated with Spondylarthritis (SpA). SpA patients show features of dysbiosis, altered gut barrier function, and local expansion of innate and innate-like cells involved in type 3 immune response. The recirculation of intestinal primed immune cells into the bloodstream and, in some cases, in the joints and the inflamed bone marrow of SpA patients gave the basis of the gut-joint axis theory. In the light of the critical role of enthesis in the pathogenesis of SpA and the identification of mucosal-derived immune cells residing into the normal human enthesis, a gut-enthesis axis is also likely to exist. This work reviews the current knowledge on enthesis-associated innate immune cells' primary involvement in enthesitis development, questions their origin, and critically discusses the clues supporting the existence of a gut-enthesis axis contributing to SpA development.
Collapse
|
24
|
Using secukinumab in a patient with endplate inflammation complicated by hepatitis B virus infection. Chin Med J (Engl) 2021; 134:2644-2646. [PMID: 34653080 PMCID: PMC8577669 DOI: 10.1097/cm9.0000000000001801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
25
|
Mitrovic S, Hassold N, Kamissoko A, Rosine N, Mathian A, Mercy G, Pertuiset E, Nocturne G, Fautrel B, Koné-Paut I. Adult-onset Still's disease or systemic-onset juvenile idiopathic arthritis and spondyloarthritis: overlapping syndrome or phenotype shift? Rheumatology (Oxford) 2021; 61:2535-2547. [PMID: 34559214 DOI: 10.1093/rheumatology/keab726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/16/2021] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Systemic-onset juvenile idiopathic arthritis (SJIA) and adult-onset Still's disease (AOSD) are the same sporadic systemic auto-inflammatory disease. Spondyloarthritis (SpA) is a group of inflammatory non-autoimmune disorders. We report the observations of eight patients with SJIA/AOSD who also presented features of SpA during their disease evolution and estimate the prevalence of SpA in SJIA/AOSD. METHODS This was a retrospective national survey of the departments of paediatric and adult rheumatology and internal medicine. To be included, SJIA patients had to fulfil the ILAR criteria, AOSD patients the Yamaguchi or Fautrel criteria, and all patients the ASAS classification criteria for axial or peripheral SpA, ESSG criteria for spondyloarthropathy or CASPAR criteria for psoriatic arthritis. The data were collected with a standardized form. RESULTS Eight patients (five adults) were identified in one paediatric and two adult departments. In all but one patient, SpA manifestations occurred several years after SJIA/AOSD onset (mean delay 6.2 ± 3.8 years). Two patients had peripheral and three axial SpA, and four later exhibited psoriatic arthritis and one SAPHO syndrome. The prevalence of SpA in an adult cohort of 76 patients with AOSD was 6.58% (95% CI [2.17-14.69]), greater than the prevalence of SpA in the French general population (0.3%, 95%CI [0.17-0.46]). The prevalence of SpA in an SJIA cohort of 30 patients was 10% (95%CI [2.11-26.53]), more than that reported in the general population of industrialized countries, estimated at 0.016% to 0.15%. CONCLUSION Whilst the temporal disassociation between SpA and AOSD in most cases might suggest a coincidental finding, our work raises the possibility of an SpA AOSD spectrum overlap that needs further study.
Collapse
Affiliation(s)
- Stéphane Mitrovic
- Service de Rhumatologie, Hôpital Pitié-Salpêtrière, Paris, FranceSorbonne Université - APHP.,Centre d'Etude et de Référence sur les Maladies AutoInflammatoires et les Amyloses (CEREMAIA), FAI2R network, Paris, France.,Département de Médecine Interne, Unité de Rhumatologie, Institut Mutualiste Montsouris, Paris, France
| | - Nolan Hassold
- Center for Immunology of Viral Infections and Autoimmune Diseases, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, Université Paris Saclay, INSERM, Paris, France.,Service de Rhumatologie, Hôpital de Bicêtre, APHP, université de Paris sud-Saclay, Le Kremlin-Bicêtre, France.,Service de rhumatologie pédiatrique, and CEREMAIA, Hôpital de Bicêtre, APHP, université de Paris sud-Saclay, Le Kremlin-Bicêtre, France
| | - Aly Kamissoko
- Service de Rhumatologie, Hôpital Pitié-Salpêtrière, Paris, FranceSorbonne Université - APHP.,Service de Rhumatologie, Hôpital National Ignace Deen, Conakry, Guinée
| | - Nicolas Rosine
- Service de Rhumatologie, Hôpital Pitié-Salpêtrière, Paris, FranceSorbonne Université - APHP
| | - Alexis Mathian
- Service de Médecine Interne 2, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
| | - Guillaume Mercy
- Service de Radiologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Edouard Pertuiset
- Centre hospitalier René Dubos, Service de rhumatologie, Pontoise, France
| | - Gaëtane Nocturne
- Center for Immunology of Viral Infections and Autoimmune Diseases, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, Université Paris Saclay, INSERM, Paris, France.,Service de Rhumatologie, Hôpital de Bicêtre, APHP, université de Paris sud-Saclay, Le Kremlin-Bicêtre, France
| | - Bruno Fautrel
- Service de Rhumatologie, Hôpital Pitié-Salpêtrière, Paris, FranceSorbonne Université - APHP.,Centre d'Etude et de Référence sur les Maladies AutoInflammatoires et les Amyloses (CEREMAIA), FAI2R network, Paris, France.,Institut d'Epidémiologie, et de Santé Publique Pierre Louis, UMR S 1136, Equipe PEPITES, Paris, France
| | - Isabelle Koné-Paut
- Centre d'Etude et de Référence sur les Maladies AutoInflammatoires et les Amyloses (CEREMAIA), FAI2R network, Paris, France.,Service de rhumatologie pédiatrique, and CEREMAIA, Hôpital de Bicêtre, APHP, université de Paris sud-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
26
|
Mitrovic S, Fautrel B. Clinical Phenotypes of Adult-Onset Still's Disease: New Insights from Pathophysiology and Literature Findings. J Clin Med 2021; 10:jcm10122633. [PMID: 34203779 PMCID: PMC8232697 DOI: 10.3390/jcm10122633] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 01/02/2023] Open
Abstract
Adult-onset Still's disease (AOSD) is a non-familial, polygenic systemic autoinflammatory disorder. It is traditionally characterized by four cardinal manifestations-spiking fever, an evanescent salmon-pink maculopapular rash, arthralgia or arthritis and a white-blood-cell count (WBC) ≥ 10,000/mm3, mainly neutrophilic polymorphonuclear cells (PMNs)-but many other manifestations and complications can be associated, making clinical expression very heterogeneous and diagnosis sometimes difficult. The AOSD course can be diverse and is currently impossible to predict. Several clinical phenotypes have been described, either on the basis of the evolution of symptoms over time (monocyclic, polycyclic and chronic evolution) or according to dominant clinical evolution (systemic and arthritis subtypes). However, these patterns are mainly based on case series and not on robust epidemiological studies. Furthermore, they have mainly been established a long time ago, before the era of the biological treatments. Thus, based on our personal experience and on recent advances in the understanding of disease pathogenesis, it appears interesting to reshuffle AOSD phenotypes, emphasizing the continuum between AOSD profiles and other systemic autoinflammatory disorders, eventually proposing a research agenda.
Collapse
Affiliation(s)
- Stéphane Mitrovic
- Service de Rhumatologie, Hôpital Pitié-Salpêtrière, Sorbonne Université—APHP, 75013 Paris, France;
- Centre d’Etude et de Référence sur les Maladies AutoInflammatoires et les Amyloses (CEREMAIA), FAI2R Network, 75013 Paris, France
- Département de Médecine Interne, Institut Mutualiste Montsouris, 75014 Paris, France
| | - Bruno Fautrel
- Service de Rhumatologie, Hôpital Pitié-Salpêtrière, Sorbonne Université—APHP, 75013 Paris, France;
- Centre d’Etude et de Référence sur les Maladies AutoInflammatoires et les Amyloses (CEREMAIA), FAI2R Network, 75013 Paris, France
- Institut d’Epidémiologie et de Santé Publique Pierre Louis, UMR S 1136, Equipe PEPITES, 75013 Paris, France
- Correspondence:
| |
Collapse
|