1
|
Sadri M, Shafaghat Z, Roozbehani M, Hoseinzadeh A, Mohammadi F, Arab FL, Minaeian S, Fard SR, Faraji F. Effects of Probiotics on Liver Diseases: Current In Vitro and In Vivo Studies. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10431-z. [PMID: 39739162 DOI: 10.1007/s12602-024-10431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
Various types of liver or hepatic diseases cause the death of about 2 million people worldwide every year, of which 1 million die from the complications of cirrhosis and another million from hepatocellular carcinoma and viral hepatitis. Currently, the second most common solid organ transplant is the liver, and the current rate represents less than 10% of global transplant requests. Hence, finding new approaches to treat and prevent liver diseases is essential. In liver diseases, the interaction between the liver, gut, and immune system is crucial, and probiotics positively affect the human microbiota. Probiotics are a non-toxic and biosafe alternative to synthetic chemical compounds. Health promotion by lowering cholesterol levels, stimulating host immunity, the natural gut microbiota, and other functions are some of the activities of probiotics, and their metabolites, including bacteriocins, can exert antimicrobial effects against a broad range of pathogenic bacteria. The present review discusses the available data on the results of preclinical and clinical studies on the effects of probiotic administration on different types of liver diseases.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Hoseinzadeh
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Mohammadi
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Soheil Rahmani Fard
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Jeyaraman N, Jeyaraman M, Mariappan T, Muthu S, Ramasubramanian S, Sharma S, Santos GS, da Fonseca LF, Lana JF. Insights of gut-liver axis in hepatic diseases: Mechanisms, clinical implications, and therapeutic potentials. World J Gastrointest Pharmacol Ther 2024; 15:98146. [PMID: 39534519 PMCID: PMC11551618 DOI: 10.4292/wjgpt.v15.i6.98146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
With the rising prevalence of chronic liver diseases worldwide, there exists a need to diversify our artillery to incorporate a plethora of diagnostic and therapeutic methods to combat this disease. Currently, the most common causes of liver disease are non-alcoholic fatty liver disease, hepatitis, and alcoholic liver disease. Some of these chronic diseases have the potential to transform into hepatocellular carcinoma with advancing fibrosis. In this review, we analyse the relationship between the gut and liver and their significance in liver disease. This two-way relationship has interesting effects on each other in liver diseases. The gut microbiota, through its metabolites, influences the metabolism in numerous ways. Careful manipulation of its composition can lead to the discovery of numerous therapeutic potentials that can be applied in the treatment of various liver diseases. Numerous cohort studies with a pan-omics approach are required to understand the association between the gut microbiome and hepatic disease progression through which we can identify effective ways to deal with this issue.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Tejaswin Mariappan
- Department of Community Medicine, Government Stanley Medical College and Hospital, Chennai 600001, Tamil Nadu, India
| | - Sathish Muthu
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College, Karur 639004, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Shilpa Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| |
Collapse
|
3
|
Meng Z, Yang Y. Advances in the Treatment of Autoimmune Hepatitis. J Clin Transl Hepatol 2024; 12:878-885. [PMID: 39440223 PMCID: PMC11491506 DOI: 10.14218/jcth.2024.00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic, progressive inflammatory liver disease caused by autoimmune reactions, with an unknown etiology. If left untreated, it can progress to cirrhosis, liver failure, or even death. While most patients respond well to first-line treatments, a significant number experience poor responses or intolerance, requiring the use of second- or third-line therapies. Ongoing research into the pathogenesis of AIH is leading to the development of novel therapeutic approaches. This review summarized recent advancements in the treatment of AIH both domestically and internationally.
Collapse
Affiliation(s)
- Zelu Meng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Kanmani P, Villena J, Lim SK, Song EJ, Nam YD, Kim H. Immunobiotic Bacteria Attenuate Hepatic Fibrosis through the Modulation of Gut Microbiota and the Activation of Aryl-Hydrocarbon Receptors Pathway in Non-Alcoholic Steatohepatitis Mice. Mol Nutr Food Res 2024; 68:e2400227. [PMID: 39031898 DOI: 10.1002/mnfr.202400227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Indexed: 07/22/2024]
Abstract
SCOPE Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease worldwide that can progress to liver fibrosis (LF). Probiotics have beneficial roles in reducing intestinal inflammation and gut-associated diseases, but their effects and mechanisms beyond the gut in attenuating the progression of LF are remained unclear. METHODS AND RESULTS In a mouse model of NASH/LF induced by a methionine-choline deficient (MCD) diet, immunobiotics are administered to investigate their therapeutic effects. Results show that the MCD diet leads to liver inflammation, steatosis, and fibrosis, which are alleviated by immunobiotics. Immunobiotics reduces serum endotoxin and inflammatory markers while increasing regulatory cytokines and liver weight. They also suppress Th17 cells, known for producing inflammatory cytokines. Furthermore, immunobiotics mitigate collagen deposition and fibrogenic signaling in the liver, while restoring gut-barrier integrity and microbiota composition. Additionally, immunobiotics enhance the activation of the aryl hydrocarbon receptor (AhR) pathway in both colonic and liver tissues. CONCLUSIONS Overall, these results demonstrate a novel insight into the mechanisms through which immunobiotic administration improves the gut health which in turn increases the AhR pathway and inhibits HSCs activation and fibrosis progression beyond the gut in the liver tissue of NASH/LF mice.
Collapse
Affiliation(s)
- Paulraj Kanmani
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea
- Department of Anesthesiology, University of Illinois, Chicago, IL, 60612, USA
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, 4000, Argentina
| | - Soo-Kyoung Lim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea
| | - Eun-Ji Song
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun 245, Wanju-gun, 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, 55365, Republic of Korea
| | - Young-Do Nam
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun 245, Wanju-gun, 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, 55365, Republic of Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea
| |
Collapse
|
5
|
Song J, Dai J, Chen X, Ding F, Ding Y, Ma L, Zhang L. Bifidobacterium mitigates autoimmune hepatitis by regulating IL-33-induced Treg/Th17 imbalance via the TLR2/4 signaling pathway. Histol Histopathol 2024; 39:623-632. [PMID: 37916940 DOI: 10.14670/hh-18-669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The present work aims to evaluate the efficacy of Live Combined Bifidobacterium, Lactobacillus and Enterococcus Capsules (LCBLECs), a probiotic drug containing Bifidobacterium, in the treatment of autoimmune hepatitis (AIH). In this study, a mouse model of experimental autoimmune hepatitis (EAH) was established to investigate the effects of LCBLECs on AIH. The results showed that LCBLECs improved dysbiosis of gut microbiota, reduced liver injury, restored liver function, and maintained Treg/Th17 balance in EAH mice. In addition, LCBLECs restored Treg/Th17 balance in EAH mice by downregulating IL-33 production. Besides, LCBLECs also suppress IL-33 upregulation in EAH mice by inhibiting the TLR2/4 signaling pathway. Furthermore, LCBLECs also mitigated dysbiosis of gut microbiota and enhanced the efficacy of conventional treatment for AIH patients. To sum up, our findings revealed that LCBLECs exerted therapeutic effects on EAH mice by improving Treg/Th17 imbalance in an IL-33-dependent manner via the TLR2/4 signaling pathway and relieved the clinical symptoms of AIH patients, indicating Bifidobacterium supplementation with LCBLECs might be a potential adjuvant therapy for AIH treatment.
Collapse
Affiliation(s)
- Jianguo Song
- Department of Gastroenterology, The Fifth People's Hospital of Xinjiang Uygur Autonomous Region, Xin Jiang, China
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Juan Dai
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xueping Chen
- Department of Gastroenterology, The People's Hospital of Wuqia, Xinjiang, China
| | - Fei Ding
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yanbo Ding
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Liang Ma
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Gastroenterology, The Fifth People's Hospital of Xinjiang Uygur Autonomous Region, Xin Jiang, China.
| | - Liwen Zhang
- Department of Pediatrics, the Second People's Hospital of Changzhou, Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
6
|
Sibanda T, Marole TA, Thomashoff UL, Thantsha MS, Buys EM. Bifidobacterium species viability in dairy-based probiotic foods: challenges and innovative approaches for accurate viability determination and monitoring of probiotic functionality. Front Microbiol 2024; 15:1327010. [PMID: 38371928 PMCID: PMC10869629 DOI: 10.3389/fmicb.2024.1327010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Bifidobacterium species are essential members of a healthy human gut microbiota. Their presence in the gut is associated with numerous health outcomes such as protection against gastrointestinal tract infections, inflammation, and metabolic diseases. Regular intake of Bifidobacterium in foods is a sustainable way of maintaining the health benefits associated with its use as a probiotic. Owing to their global acceptance, fermented dairy products (particularly yogurt) are considered the ideal probiotic carrier foods. As envisioned in the definition of probiotics as "live organisms," the therapeutic functionalities of Bifidobacterium spp. depend on maintaining their viability in the foods up to the point of consumption. However, sustaining Bifidobacterium spp. viability during the manufacture and shelf-life of fermented dairy products remains challenging. Hence, this paper discusses the significance of viability as a prerequisite for Bifidobacterium spp. probiotic functionality. The paper focuses on the stress factors that influence Bifidobacterium spp. viability during the manufacture and shelf life of yogurt as an archetypical fermented dairy product that is widely accepted as a delivery vehicle for probiotics. It further expounds the Bifidobacterium spp. physiological and genetic stress response mechanisms as well as the methods for viability retention in yogurt, such as microencapsulation, use of oxygen scavenging lactic acid bacterial strains, and stress-protective agents. The report also explores the topic of viability determination as a critical factor in probiotic quality assurance, wherein, the limitations of culture-based enumeration methods, the challenges of species and strain resolution in the presence of lactic acid bacterial starter and probiotic species are discussed. Finally, new developments and potential applications of next-generation viability determination methods such as flow cytometry, propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR), next-generation sequencing, and single-cell Raman spectroscopy (SCRS) methods are examined.
Collapse
Affiliation(s)
- Thulani Sibanda
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo, Zimbabwe
- Department of Biology, National of University of Lesotho, Maseru, Lesotho
| | - Tlaleo Azael Marole
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Mapitsi S. Thantsha
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Elna M. Buys
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Yuming Z, Ruqi T, Gershwin ME, Xiong M. Autoimmune Hepatitis: Pathophysiology. Clin Liver Dis 2024; 28:15-35. [PMID: 37945156 DOI: 10.1016/j.cld.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Genome-wide association analyses suggest that HLA genes including HLA-DRB*0301, HLA-DRB*0401, and HLA-B*3501 as well as non-HLA genes including CD28/CTLA4/ICOS and SYNPR increased AIH susceptibility. The destruction of hepatocytes is the result of the imbalance between proinflammatory cells and immunosuppressive cells, especially the imbalance between Tregs and Th17 cells. The microbiome in patients with AIH is decreased in diversity with a specific decline in Bifidobacterium and enrichment in Veillonella and Faecalibacterium. Recent evidence has demonstrated the pathogenic role of E. gallinarum and L.reuteri in inducing autoimmunity in the liver.
Collapse
Affiliation(s)
- Zhou Yuming
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Tang Ruqi
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Merrill Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA.
| | - Ma Xiong
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China; Institute of Aging & Tissue Regeneration, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Zeng X, Liu MH, Xiong Y, Zheng LX, Guo KE, Zhao HM, Yin YT, Liu DY, Zhou BG. Pien Tze Huang alleviates Concanavalin A-induced autoimmune hepatitis by regulating intestinal microbiota and memory regulatory T cells. World J Gastroenterol 2023; 29:5988-6016. [PMID: 38130997 PMCID: PMC10731150 DOI: 10.3748/wjg.v29.i45.5988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Traditional Chinese medicine has used the drug Pien Tze Huang (PTH), a classic prescription, to treat autoimmune hepatitis (AIH). However, the precise mode of action is still unknown. AIM To investigate the mechanism of PTH in an AIH mouse model by determining the changes in gut microbiota structure and memory regulatory T (mTreg) cells functional levels. METHODS Following induction of the AIH mouse model induced by Concanavalin A (Con A), prophylactic administration of PTH was given for 10 d. The levels of mTreg cells were measured by flow cytometry, and intestinal microbiota was analyzed by 16S rRNA analysis, while western blotting was used to identify activation of the toll-like receptor (TLR)2, TLR4/nuclear factor-κB (NF-κB), and CXCL16/CXCR6 signaling pathways. RESULTS In the liver of mice with AIH, PTH relieved the pathological damage and reduced the numbers of T helper type 17 cells and interferon-γ, tumor necrosis factor-alpha, interleukin (IL)-1β, IL-2, IL-6, and IL-21 expression. Simultaneously, PTH stimulated the abundance of helpful bacteria, promoted activation of the TLR2 signal, which may enhance Treg/mTreg cells quantity to produce IL-10, and suppressed activation of the TLR4/NF-κB and CXCL16/CXCR6 signaling pathways. CONCLUSION PTH regulates intestinal microbiota balance and restores mTreg cells to alleviate experimental AIH, which is closely related to the TLR/CXCL16/CXCR6/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Miao-Hua Liu
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Yi Xiong
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Lin-Xin Zheng
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Kai-En Guo
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Hai-Mei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Yu-Ting Yin
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Duan-Yong Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Bu-Gao Zhou
- Office of Academic Research, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| |
Collapse
|
9
|
Li L, Kang Y. The Gut Microbiome and Autoimmune Hepatitis: Implications for Early Diagnostic Biomarkers and Novel Therapies. Mol Nutr Food Res 2023; 67:e2300043. [PMID: 37350378 DOI: 10.1002/mnfr.202300043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/14/2023] [Indexed: 06/24/2023]
Abstract
Autoimmune hepatitis (AIH) is a serious chronic liver disease that may last for decades and eventually develop into cirrhosis and liver failure. In recent years, people have paid more attention to the microbiome-gut-liver axis, which provides guidance for all to explore the role of microbiome in the occurrence and development of liver diseases. In this review, the possible mechanism of intestinal microbes promoting the occurrence of AIH, mainly expounding the key ways such as bacterial ecological imbalance, intestinal leakage, and molecular simulation between microbes and autoantigens is summarized. In addition, this paper also discusses that intestinal microbiome has great potential as a biomarker for early diagnosis of AIH, and intestinal microbiome is also a candidate target for prevention and treatment of AIH. Finally, the study summarizes and prospects the targeted therapy of intestinal microorganisms to prevent the occurrence and development of AIH.
Collapse
Affiliation(s)
- Liping Li
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| |
Collapse
|
10
|
Son SJ, Han AR, Sung MJ, Hong SM, Lee SH. Hermetia illucens Fermented with Lactobacillus plantarum KCCM12757P Alleviates Dextran Sodium Sulfate-Induced Colitis in Mice. Antioxidants (Basel) 2023; 12:1822. [PMID: 37891901 PMCID: PMC10604763 DOI: 10.3390/antiox12101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) can severely affect humans and animals and is difficult to treat. Black soldier fly (Hermetia illucens; Hi) larvae (BSFL) are a sustainable source of protein. However, no studies exist on the antioxidant and anti-inflammatory functions of BSFL or fermented BSFL with respect to IBD. In this study, riboflavin-producing Lactobacillus plantarum KCCM12757P was isolated from a fish farm tank, and in conjunction with hot water-extracted Hi (HeHi) (termed HeHi_Lp), was used to determine optimal fermentation conditions to increase vitamin B2 concentration. This in vivo study investigated the therapeutic effects and mechanistic role of HeHi_Lp in chronic colitis-induced murine models. Histological changes, inflammatory cytokine levels, and intestinal barrier function were explored. Gut microbial communities and gene expression in the nuclear factor (NF)-κB signaling pathway were also studied. HeHi_Lp remarkably reduced the disease activity index, inflammatory cytokine (inducible nitric oxide synthase, cyclooxygenase 2, tumor necrosis factor α, interleukin (IL-6 and IL-1β) levels, and increased body weight and colon length. HeHi_Lp administration significantly raised zonula occludens 1, occludin and claudin 1 and improved the composition of the gut microbiota and beneficial intestinal bacteria. These results suggest that HeHi_Lp can be used as a dietary supplement in pet food to alleviate colitis.
Collapse
Affiliation(s)
- Seok Jun Son
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| | - Ah-Ram Han
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| | - Mi Jeong Sung
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| | - Sun Mee Hong
- Department of Technology Development, Marine Industry Research Institute for East Sea Rim, Jukbyeon, Uljin-gun 36315, Gyeongsangbuk-do, Republic of Korea;
| | - Sang-Hee Lee
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| |
Collapse
|
11
|
Zhang W, Mackay CR, Gershwin ME. Immunomodulatory Effects of Microbiota-Derived Short-Chain Fatty Acids in Autoimmune Liver Diseases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1629-1639. [PMID: 37186939 PMCID: PMC10188201 DOI: 10.4049/jimmunol.2300016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 05/17/2023]
Abstract
Nonpathogenic commensal microbiota and their metabolites and components are essential to maintain a tolerogenic environment and promote beneficial health effects. The metabolic environment critically impacts the outcome of immune responses and likely impacts autoimmune and allergic responses. Short-chain fatty acids (SCFAs) are the main metabolites produced by microbial fermentation in the gut. Given the high concentration of SCFAs in the gut and portal vein and their broad immune regulatory functions, SCFAs significantly influence immune tolerance and gut-liver immunity. Alterations of SCFA-producing bacteria and SCFAs have been identified in a multitude of inflammatory diseases. These data have particular significance in primary biliary cholangitis, primary sclerosing cholangitis, and autoimmune hepatitis because of the close proximity of the liver to the gut. In this focused review, we provide an update on the immunologic consequences of SCFA-producing microbiota and in particular on three dominant SCFAs in autoimmune liver diseases.
Collapse
Affiliation(s)
- Weici Zhang
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Charles R. Mackay
- Department of Microbiology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| |
Collapse
|
12
|
Czaja AJ. Incorporating the Molecular Mimicry of Environmental Antigens into the Causality of Autoimmune Hepatitis. Dig Dis Sci 2023:10.1007/s10620-023-07967-5. [PMID: 37160542 PMCID: PMC10169207 DOI: 10.1007/s10620-023-07967-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Molecular mimicry between foreign and self-antigens has been implicated as a cause of autoimmune hepatitis in experimental models and cross-reacting antibodies in patients. This review describes the experimental and clinical evidence for molecular mimicry as a cause of autoimmune hepatitis, indicates the limitations and uncertainties of this premise, and encourages investigations that assess diverse environmental antigens as sources of disease-relevant molecular mimics. Pertinent articles were identified in PubMed using multiple search phrases. Several pathogens have linear or conformational epitopes that mimic the self-antigens of autoimmune hepatitis. The occurrence of an acute immune-mediated hepatitis after vaccination for severe acute respiratory syndrome (SARS)-associated coronavirus 2 (SARS-CoV-2) has suggested that vaccine-induced peptides may mimic disease-relevant tissue antigens. The intestinal microbiome is an under-evaluated source of gut-derived antigens that could also engage in molecular mimicry. Chaperone molecules may enhance the pathogenicity of molecular mimics, and they warrant investigation. Molecular mimics of immune dominant epitopes within cytochrome P450 IID6, the autoantigen most closely associated with autoimmune hepatitis, should be sought in diverse environmental antigens and assessed for pathogenicity. Avoidance strategies, dietary adjustments, vaccine improvement, and targeted manipulation of the intestinal microbiota may emerge as therapeutic possibilities. In conclusion, molecular mimicry may be a missing causality of autoimmune hepatitis. Molecular mimics of key immune dominant epitopes of disease-specific antigens must be sought in diverse environmental antigens. The ubiquity of molecular mimicry compels rigorous assessments of peptide mimics for immunogenicity and pathogenicity in experimental models. Molecular mimicry may complement epigenetic modifications as causative mechanisms of autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
13
|
Kang Y, Kuang X, Yan H, Ren P, Yang X, Liu H, Liu Q, Yang H, Kang X, Shen X, Tong M, Li L, Wang X, Guo L, Ma J, Zhang F, Fan W. A Novel Synbiotic Alleviates Autoimmune Hepatitis by Modulating the Gut Microbiota-Liver Axis and Inhibiting the Hepatic TLR4/NF-κB/NLRP3 Signaling Pathway. mSystems 2023; 8:e0112722. [PMID: 36794950 PMCID: PMC10134874 DOI: 10.1128/msystems.01127-22] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a liver disease characterized by chronic liver inflammation. The intestinal barrier and microbiome play critical roles in AIH progression. AIH treatment remains challenging because first-line drugs have limited efficacy and many side effects. Thus, there is growing interest in developing synbiotic therapies. This study investigated the effects of a novel synbiotic in an AIH mouse model. We found that this synbiotic (Syn) ameliorated liver injury and improved liver function by reducing hepatic inflammation and pyroptosis. The Syn reversed gut dysbiosis, as indicated by an increase in beneficial bacteria (e.g., Rikenella and Alistipes) and a decrease in potentially harmful bacteria (e.g., Escherichia-Shigella) and lipopolysaccharide (LPS)-bearing Gram-negative bacterial levels. The Syn maintained intestinal barrier integrity, reduced LPS, and inhibited the TLR4/NF-κB and NLRP3/Caspase-1 signaling pathway. In addition, microbiome phenotype prediction by BugBase and bacterial functional potential prediction using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed that Syn improved gut microbiota function involving inflammatory injury, metabolism, immune response, and pathopoiesia. Furthermore, the new Syn was as effective as prednisone against AIH. Therefore, this novel Syn could be a candidate drug for alleviating AIH through its anti-inflammatory and antipyroptosis properties that relieve endothelial dysfunction and gut dysbiosis. IMPORTANCE Synbiotics can ameliorate liver injury and improve liver function by reducing hepatic inflammation and pyroptosis. Our data indicate that our new Syn not only reverses gut dysbiosis by increasing beneficial bacteria and decreasing lipopolysaccharide (LPS)-bearing Gram-negative bacteria but also maintains intestinal barrier integrity. Thus, its mechanism might be associated with modulating gut microbiota composition and intestinal barrier function by inhibiting the TLR4/NF-κB/NLRP3/pyroptosis signaling pathway in the liver. This Syn is as effective as prednisone in treating AIH without side effects. Based on these findings, this novel Syn represents a potential therapeutic agent for AIH in clinical practice.
Collapse
Affiliation(s)
- Yongbo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyu Kuang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huan Yan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Peng Ren
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaodan Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haixia Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qingqing Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hao Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xing Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaorong Shen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingwei Tong
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lin Li
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaohui Wang
- Laboratory of Morphology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Linzhi Guo
- Laboratory of Morphology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jieqiong Ma
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fan Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiping Fan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
14
|
Autoimmune Hepatitis and Fibrosis. J Clin Med 2023; 12:jcm12051979. [PMID: 36902767 PMCID: PMC10004701 DOI: 10.3390/jcm12051979] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic immune-inflammatory disease of the liver, generally considered a rare condition. The clinical manifestation is extremely varied and can range from paucisymptomatic forms to severe hepatitis. Chronic liver damage causes activation of hepatic and inflammatory cells leading to inflammation and oxidative stress through the production of mediators. This results in increased collagen production and extracellular matrix deposition leading to fibrosis and even cirrhosis. The gold standard for the diagnosis of fibrosis is liver biopsy; however, there are serum biomarkers, scoring systems, and radiological methods useful for diagnosis and staging. The goal of AIH treatment is to suppress fibrotic and inflammatory activities in the liver to prevent disease progression and achieve complete remission. Therapy involves the use of classic steroidal anti-inflammatory drugs and immunosuppressants, but in recent years scientific research has focused on several new alternative drugs for AIH that will be discussed in the review.
Collapse
|
15
|
Hov JR, Karlsen TH. The microbiota and the gut-liver axis in primary sclerosing cholangitis. Nat Rev Gastroenterol Hepatol 2023; 20:135-154. [PMID: 36352157 DOI: 10.1038/s41575-022-00690-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/11/2022]
Abstract
Primary sclerosing cholangitis (PSC) offers unique opportunities to explore the gut-liver axis owing to the close association between liver disease and colonic inflammation. It is well established that the gut microbiota in people with PSC differs from that of healthy individuals, but details of the microbial factors that demarcate PSC from inflammatory bowel disease (IBD) without PSC are poorly understood. In this Review, we aim to provide an overview of the latest literature on the gut microbiome in PSC and PSC with IBD, critically examining hypotheses on how microorganisms could contribute to the pathogenesis of PSC. A particular emphasis will be put on pathogenic features of the gut microbiota that might explain the occurrence of bile duct inflammation and liver disease in the context of IBD, and we postulate the potential existence of a specific yet unknown factor related to the gut-liver axis as causative in PSC. Available data are scrutinized in the perspective of therapeutic approaches related to the gut-liver axis.
Collapse
Affiliation(s)
- Johannes R Hov
- Norwegian PSC Research Center and Section of gastroenterology and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tom H Karlsen
- Norwegian PSC Research Center and Section of gastroenterology and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
16
|
Abstract
Autoimmune liver diseases (AILD) are a group of immune-mediated liver inflammatory diseases with three major forms including autoimmune hepatitis (AIH), primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Interaction of both genetic and environmental factors leads to the breakdown of self-tolerance, hence resulting in hyper-responsive of autoantibodies and aggressive autoreactive immune cells. Genetic studies have identified dozens of risk loci associated with initiation and development of AILD. However, the role of exogenous factors remains unclear. Recently, both infectious and inflammatory diseases have been associated with microbiota, which colonizes multiple mucosal surfaces and participates in human physiological process and function in immune system, particularly influencing liver, and biliary system via gut-liver axis. Emerging evidence on the role of gut microbiota has expanded our knowledge of AILD in both pathogenesis and potential therapeutic targets, along with putative diagnosis biomarkers. Herein we review the relationship between host and gut microbiota, discuss their potential roles in disease onset and progression, and summarize the compositional and functional alterations of the microbiota in AILD. We also highlighted the microbiota-based therapeutics such as antibiotics and fecal microbiota transplantation (FMT).
Collapse
Affiliation(s)
- Qiwei Qian
- School of Medicine, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei He
- School of Medicine, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruqi Tang
- School of Medicine, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiong Ma
- School of Medicine, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China -
| |
Collapse
|
17
|
Jing N, Liu F, Wang R, Zhang Y, Yang J, Hou Y, Zhang H, Xie Y, Liu H, Ge S, Jin J. Both live and heat-killed Bifidobacterium animalis J-12 alleviated oral ulcers in LVG golden Syrian hamsters by gavage by directly intervening in the intestinal flora structure. Food Funct 2023; 14:2045-2058. [PMID: 36723265 DOI: 10.1039/d2fo03751c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Live and heat-killed Bifidobacterium has been proven to have anti-inflammatory and antioxidant effects. In this study, we evaluated the effects of live and heat-killed Bifidobacterium animalis J-12 (J-12) on the oral ulceration of LVG golden Syrian hamsters after buccal membrane injection with methyl viologen dichloride. Results showed that interleukin-1β, glutathione, and malondialdehyde in serum were downregulated by the gavage of live and heat-killed J-12 bacteria. The J-12 live and heat-killed bacteria can reduce the expression of matrix metalloproteinase-9 by reducing the expression of nuclear factor kappa-B, thus reducing the expression of anti-inflammatory factors lipoxin A4 and prostaglandin E2. Reducing the expression of caspase-3 and adenosine diphosphate ribose polymerase resulted in a reduction of ulcer tissue DNA damage. In addition, regulating the structure of the intestinal flora prevented the process of oral ulcer formation. This study shows that J-12 can reduce the risk of oral ulcer formation while also having a positive effect on inhibiting existing oral ulcer growth.
Collapse
Affiliation(s)
- Nanqing Jing
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Fudong Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China.,Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100190, China
| | - Yan Zhang
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Jianjun Yang
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yubing Hou
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Hongxing Zhang
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Yuanhong Xie
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Hui Liu
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Shaoyang Ge
- BEIJING HEYIYUAN BIOTECHNOLOGY Co, Ltd., Beijing 100088, China
| | - Junhua Jin
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| |
Collapse
|
18
|
A Novel Symbiotic Formulation Reduces Obesity and Concomitant Metabolic Syndrome in Rats by Raising the Relative Abundance of Blautia. Nutrients 2023; 15:nu15040956. [PMID: 36839314 PMCID: PMC9960556 DOI: 10.3390/nu15040956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Obesity is regarded as an abnormal or excessive buildup of fat that may be bad for health and is influenced by a combination of intestinal flora, genetic background, physical activity level and environment. Symbiotic supplementation may be a realistic and easy therapy for the reversal of obesity and associated metabolic problems. In this study, we chose two Bifidobacterium species, three Lactobacilli species and four prebiotics to make a new symbiotic formulation. High or low doses of the symbiotic were administered to rats, and biochemical indicators were recorded to assess the biological effects in a high-fat-diet-induced rat model. The underlying mechanisms were explored by integrating 16S rRNA sequencing with an extensively targeted metabolome. High-dose symbiotic supplementation was effective in reducing obesity and concomitant metabolic syndrome. The high-dose symbiotic also significantly increased the abundance of Blautia, which was negatively correlated with taurocholic acid and the main differential metabolites involved in amino acid and bile acid metabolism. While the low-dose symbiotic had some therapeutic effects, they were not as strong as those at the high dose, demonstrating that the effects were dose-dependent. Overall, our novel symbiotic combination improved plasma glucose and lipid levels, shrunk adipocyte size, restored liver function, increased the abundance of Blautia and adjusted bile acid and amino acid metabolism.
Collapse
|
19
|
Lin H, Lin J, Pan T, Li T, Jiang H, Fang Y, Wang Y, Wu F, Huang J, Zhang H, Chen D, Chen Y. Polymeric immunoglobulin receptor deficiency exacerbates autoimmune hepatitis by inducing intestinal dysbiosis and barrier dysfunction. Cell Death Dis 2023; 14:68. [PMID: 36709322 PMCID: PMC9884241 DOI: 10.1038/s41419-023-05589-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/29/2023]
Abstract
Autoimmune hepatitis (AIH) is an immune-mediated inflammatory liver disease with unclear pathogenesis. The gut microbiota and intestinal barrier play an essential role in AIH. Polymeric immunoglobulin receptor (pIgR) is a central component of mucosal immunity. Herein, we aimed to test the hypothesis that pIgR plays a pivotal role in maintaining gut microbiota homeostasis and gut barrier integrity in an AIH mouse model. The expression of intestinal pIgR shows the variation tendency of falling after rising with the aggravation of experimental AIH (EAH). The deletion of Pigr exacerbates liver damage in EAH. Furthermore, we identified a distinct microbiota profile of Pigr-deficient EAH mice, with a significant increased aboundance in the Oscillospiraceae family, particularly the Anaeromassilibacillus genus. Such a situation occurs because the loss of Pigr inhibits MEK/ERK, a key signal pathway whereby pIgR transports immunoglobulin A (IgA), resulting in reduced IgA secretion, which leads to the destruction of intestinal epithelial tight junction proteins and intestinal flora disturbance. Increased intestinal leakage causes increased translocation of bacteria to the liver, thus aggravating liver inflammation in EAH. Treatment with the Lactobacillus rhamnosus GG supernatant reverses liver damage in EAH mice but loses its protective effect without pIgR. Our study identifies that intestinal pIgR is a critical regulator of the adaptive response to S100-induced alterations in gut flora and the gut barrier function, which closely correlates with liver injury. Intestinal upregulation of pIgR could be a novel approach for treating AIH.
Collapse
Affiliation(s)
- Hongwei Lin
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Jing Lin
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Tongtong Pan
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Ting Li
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Huimian Jiang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Yan Fang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Yuxin Wang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Faling Wu
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Jia Huang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Huadong Zhang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Dazhi Chen
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China.
- Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China.
| | - Yongping Chen
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China.
- Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China.
| |
Collapse
|
20
|
Zhou Z, Pan X, Li L. Crosstalk between liver macrophages and gut microbiota: An important component of inflammation-associated liver diseases. Front Cell Dev Biol 2022; 10:1070208. [PMID: 36483677 PMCID: PMC9723159 DOI: 10.3389/fcell.2022.1070208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 08/30/2023] Open
Abstract
Hepatic macrophages have been recognized as primary sensors and responders in liver inflammation. By processing host or exogenous biochemical signals, including microbial components and metabolites, through the gut-liver axis, hepatic macrophages can both trigger or regulate inflammatory responses. Crosstalk between hepatic macrophages and gut microbiota is an important component of liver inflammation and related liver diseases, such as acute liver injury (ALI), alcoholic liver disease (ALD), and nonalcoholic fatty liver disease (NAFLD). This review summarizes recent advances in knowledge related to the crosstalk between hepatic macrophages and gut microbiota, including the therapeutic potential of targeting hepatic macrophages as a component of gut microecology in inflammation-associated liver diseases.
Collapse
Affiliation(s)
| | | | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Niu X, Zhang N, Li S, Li N, Wang R, Zhang Q, He J, Sun E, Kang X, Zhan J. Bifidobacterium animalis subsp. lactis MN-Gup protects mice against gut microbiota-related obesity and endotoxemia induced by a high fat diet. Front Nutr 2022; 9:992947. [PMID: 36407506 PMCID: PMC9667045 DOI: 10.3389/fnut.2022.992947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/17/2022] [Indexed: 08/22/2024] Open
Abstract
Obesity has become a public health concern due to its global prevalence and high risk of complications such as endotoxemia. Given the important role of gut microbiota in obesity, probiotics targeting gut microbiota have been developed and applied to alleviate obesity. However, most studies focused on the effects of probiotics on pre-existing obesity, and the preventive effects of probiotics against obesity were rarely studied. This study aimed to investigate the preventive effects of Bifidobacterium animalis subsp. lactis MN-Gup (MN-Gup) and fermented milk containing MN-Gup against high fat diet (HFD)-induced obesity and endotoxemia in C57BL/6J mice. The results showed that MN-Gup, especially the high dose of MN-Gup (1 × 1010CFU/kg b.w.), could significantly protect mice against HFD-induced body weight gain, increased fat percentage, dyslipidemia, and increased lipopolysaccharides (LPS). Fermented milk containing MN-Gup had better preventive effects on fat percentage and dyslipidemia than fermented milk without MN-Gup, but its overall performance was less effective than MN-Gup. Furthermore, MN-Gup and fermented milk containing MN-Gup could alter HFD-affected gut microbiota and regulate obesity- or endotoxemia-correlated bacteria, which may contribute to the prevention of obesity and endotoxemia. This study revealed that MN-Gup could reduce obesity and endotoxemia under HFD, thereby providing a potential application of MN-Gup in preventing obesity.
Collapse
Affiliation(s)
- Xiaokang Niu
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Nana Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Shusen Li
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing, China
| | - Ning Li
- R&D Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Qi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jingjing He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Erna Sun
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing, China
| | - Xiaohong Kang
- R&D Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot, China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Role of Intestinal Microbes in Chronic Liver Diseases. Int J Mol Sci 2022; 23:ijms232012661. [PMID: 36293518 PMCID: PMC9603943 DOI: 10.3390/ijms232012661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
With the recent availability and upgrading of many emerging intestinal microbes sequencing technologies, our research on intestinal microbes is changing rapidly. A variety of investigations have found that intestinal microbes are essential for immune system regulation and energy metabolism homeostasis, which impacts many critical organs. The liver is the first organ to be traversed by the intestinal portal vein, and there is a strong bidirectional link between the liver and intestine. Many intestinal factors, such as intestinal microbes, bacterial composition, and intestinal bacterial metabolites, are deeply involved in liver homeostasis. Intestinal microbial dysbiosis and increased intestinal permeability are associated with the pathogenesis of many chronic liver diseases, such as alcoholic fatty liver disease (AFLD), non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), chronic hepatitis B (CHB), chronic hepatitis C (CHC), autoimmune liver disease (AIH) and the development of hepatocellular carcinoma (HCC). Intestinal permeability and dysbacteriosis often lead to Lipopolysaccharide (LPS) and metabolites entering in serum. Then, Toll-like receptors activation in the liver induces the exposure of the intestine and liver to many small molecules with pro-inflammatory properties. And all of these eventually result in various liver diseases. In this paper, we have discussed the current evidence on the role of various intestinal microbes in different chronic liver diseases. As well as potential new therapeutic approaches are proposed in this review, such as antibiotics, probiotics, and prebiotics, which may have an improvement in liver diseases.
Collapse
|
23
|
Wang Z, Yang L, Tang H, Zhang K, Chen Q, Liu C, Guo Y, Li M, Guo Z, Li B. In vivo evidence of the prevents DSS-induced colitis of Lactiplantibacillus plantarum L15. Front Microbiol 2022; 13:1028919. [PMID: 36274719 PMCID: PMC9583153 DOI: 10.3389/fmicb.2022.1028919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Ulcerative colitis (UC) is challenging to treat and severely impacts patients and families. A previous study reported immunomodulatory and reduction of pro-inflammatory properties for the Lactiplantibacillus plantarum L15. This study aimed to analyze the preventive properties and mechanistic actions in an in vivo colitis model. The histopathological alteration, inflammation cytokines, and intestinal barrier function were analyzed. Subsequently, the cecal gut microbiota contents and products from different groups were detected. Finally, gene expressions related to the NF-κB signaling process were evaluated. L. plantarum L15 significantly decreased disease activity index (DAI), myeloperoxidase activity (MPO), pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) level, and increased weight change, colon length, and production of inflammation-suppressing cytokines. Furthermore, this strain supplementation substantially increased ZO-1, Occludin, and Claudin-1, and MUC2 mRNA expression levels with a corresponding decrease in serum lipopolysaccharide and D-lactic acid contents. In addition, L. plantarum L15 improved gut microbiota composition and increased short-chain fatty acid (SCFAs) in the colon content, which significantly reduced the transfer of NF-κB p65 to the nucleus. Our findings provide a theoretical basis for L. plantarum L15 as a preventive candidate for UC.
Collapse
Affiliation(s)
- Zengbo Wang
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Liu Yang
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Hongwei Tang
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Kangyong Zhang
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qingxue Chen
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Caihua Liu
- Food College, Northeast Agricultural University, Harbin, China
| | - Yanan Guo
- Food College, Northeast Agricultural University, Harbin, China
| | - Minghao Li
- Food College, Northeast Agricultural University, Harbin, China
| | - Zengwang Guo
- Food College, Northeast Agricultural University, Harbin, China
- *Correspondence: Zengwang Guo, ; Bailiang Li,
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- *Correspondence: Zengwang Guo, ; Bailiang Li,
| |
Collapse
|
24
|
Intestinal homeostasis in autoimmune liver diseases. Chin Med J (Engl) 2022; 135:1642-1652. [PMID: 36193976 PMCID: PMC9509077 DOI: 10.1097/cm9.0000000000002291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Intestinal homeostasis depends on complex interactions between the gut microbiota and host immune system. Emerging evidence indicates that the intestinal microbiota is a key player in autoimmune liver disease (AILD). Autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and IgG4-related sclerosing cholangitis have been linked to gut dysbiosis. Diverse mechanisms contribute to disturbances in intestinal homeostasis in AILD. Bacterial translocation and molecular mimicry can lead to hepatic inflammation and immune activation. Additionally, the gut and liver are continuously exposed to microbial metabolic products, mediating variable effects on liver immune pathologies. Importantly, microbiota-specific or associated immune responses, either hepatic or systemic, are abnormal in AILD. Comprehensive knowledge about host-microbiota interactions, included but not limited to this review, facilitates novel clinical practice from a microbiome-based perspective. However, many challenges and controversies remain in the microbiota field of AILD, and there is an urgent need for future investigations.
Collapse
|
25
|
Wang L, Cao ZM, Zhang LL, Li JM, Lv WL. The Role of Gut Microbiota in Some Liver Diseases: From an Immunological Perspective. Front Immunol 2022; 13:923599. [PMID: 35911738 PMCID: PMC9326173 DOI: 10.3389/fimmu.2022.923599] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota is a microecosystem composed of various microorganisms. It plays an important role in human metabolism, and its metabolites affect different tissues and organs. Intestinal flora maintains the intestinal mucosal barrier and interacts with the immune system. The liver is closely linked to the intestine by the gut-liver axis. As the first organ that comes into contact with blood from the intestine, the liver will be deeply influenced by the gut microbiota and its metabolites, and the intestinal leakage and the imbalance of the flora are the trigger of the pathological reaction of the liver. In this paper, we discuss the role of gut microbiota and its metabolites in the pathogenesis and development of autoimmune liver diseases((including autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis), metabolic liver disease such as non-alcoholic fatty liver disease, cirrhosisits and its complications, and liver cancer from the perspective of immune mechanism. And the recent progress in the treatment of these diseases was reviewed from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Li Wang
- *Correspondence: Li Wang, ; Zheng-Min Cao, ; Juan-mei Li, ; Wen-liang Lv,
| | - Zheng-Min Cao
- *Correspondence: Li Wang, ; Zheng-Min Cao, ; Juan-mei Li, ; Wen-liang Lv,
| | | | - Juan-mei Li
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-liang Lv
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Cheng Z, Yang L, Chu H. The Gut Microbiota: A Novel Player in Autoimmune Hepatitis. Front Cell Infect Microbiol 2022; 12:947382. [PMID: 35899041 PMCID: PMC9310656 DOI: 10.3389/fcimb.2022.947382] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic immune-mediated liver disease distributed globally in all ethnicities with increasing prevalence. If left untreated, the disease will lead to cirrhosis, liver failure, or death. The intestinal microbiota is a complex ecosystem located in the human intestine, which extensively affects the human physiological and pathological processes. With more and more in-depth understandings of intestinal microbiota, a substantial body of studies have verified that the intestinal microbiota plays a crucial role in a variety of digestive system diseases, including alcohol-associated liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). However, only a few studies have paid attention to evaluate the relationship between AIH and the intestinal microbiota. While AIH pathogenesis is not fully elucidated yet, some studies have indicated that intestinal microbiota putatively made significant contributions to the occurrence and the development of AIH by triggering several specific signaling pathways, altering the metabolism of intestinal microbiota, as well as modulating the immune response in the intestine and liver. By collecting the latest related literatures, this review summarized the increasing trend of the aerobic bacteria abundance in both AIH patients and AIH mice models. Moreover, the combination of specific bacteria species was found distinct to AIH patients, which could be a promising tool for diagnosing AIH. In addition, there were alterations of luminal metabolites and immune responses, including decreased short-chain fatty acids (SCFAs), increased pathogen associated molecular patterns (PAMPs), imbalanced regulatory T (Treg)/Th17 cells, follicular regulatory T (TFR)/follicular helper T (TFH) cells, and activated natural killer T (NKT) cells. These alterations participate in the onset and the progression of AIH via multiple mechanisms. Therefore, some therapeutic methods based on restoration of intestinal microbiota composition, including probiotics and fecal microbiota transplantation (FMT), as well as targeted intestinal microbiota-associated signaling pathways, confer novel insights into the treatment for AIH patients.
Collapse
Affiliation(s)
| | - Ling Yang
- *Correspondence: Huikuan Chu, ; Ling Yang, ;
| | - Huikuan Chu
- *Correspondence: Huikuan Chu, ; Ling Yang, ;
| |
Collapse
|
27
|
Manzoor R, Ahmed W, Afify N, Memon M, Yasin M, Memon H, Rustom M, Al Akeel M, Alhajri N. Trust Your Gut: The Association of Gut Microbiota and Liver Disease. Microorganisms 2022; 10:1045. [PMID: 35630487 PMCID: PMC9146349 DOI: 10.3390/microorganisms10051045] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota composition is important for nutrient metabolism, mucosal barrier function, immunomodulation, and defense against pathogens. Alterations in the gut microbiome can disturb the gut ecosystem. These changes may lead to the loss of beneficial bacteria or an increase in potentially pathogenic bacteria. Furthermore, these have been shown to contribute to the pathophysiology of gastrointestinal and extra-intestinal diseases. Pathologies of the liver, such as non-alcoholic liver disease, alcoholic liver disease, cirrhosis, hepatocellular carcinoma, autoimmune hepatitis, viral hepatitis, and primary sclerosing cholangitis have all been linked to changes in the gut microbiome composition. There is substantial evidence that links gut dysbiosis to the progression and complications of these pathologies. This review article aimed to describe the changes seen in the gut microbiome in liver diseases and the association between gut dysbiosis and liver disease, and finally, explore treatment options that may improve gut dysbiosis in patients with liver disease.
Collapse
Affiliation(s)
- Ridda Manzoor
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Weshah Ahmed
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Nariman Afify
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Mashal Memon
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Maryam Yasin
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Hamda Memon
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Mohammad Rustom
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.M.); (W.A.); (N.A.); (M.M.); (M.Y.); (H.M.); (M.R.)
| | - Mohannad Al Akeel
- Division of Family Medicine, Department of Health, Abu Dhabi P.O. Box 5674, United Arab Emirates;
| | - Noora Alhajri
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 11001, United Arab Emirates
| |
Collapse
|
28
|
The intestinal and biliary microbiome in autoimmune liver disease-current evidence and concepts. Semin Immunopathol 2022; 44:485-507. [PMID: 35536431 PMCID: PMC9088151 DOI: 10.1007/s00281-022-00936-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/03/2022] [Indexed: 02/07/2023]
Abstract
Autoimmune liver diseases are a group of immune-mediated liver diseases with three distinct entities, including autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. The interplay of genetic and environmental factors leads to the breakdown of self-tolerance, resulting in hyper-responsiveness, and auto-aggressive immune activation. Emerging evidence links autoimmune liver diseases with alterations of the commensal microbiome configuration and aberrant immune system activation by microbial signals, mainly via the gut-liver axis. Thus, the microbiome is a new frontier to deepen the pathogenetic understanding, uncover biomarkers, and inspire innovative treatments. Herein, we review the current evidence on the role of the microbiome in autoimmune liver diseases from both clinical and basic research. We highlight recent achievements and also bottlenecks and limitations. Moreover, we give an outlook on future developments and potential for clinical applications.
Collapse
|
29
|
Zheng Y, Ran Y, Zhang H, Wang B, Zhou L. The Microbiome in Autoimmune Liver Diseases: Metagenomic and Metabolomic Changes. Front Physiol 2021; 12:715852. [PMID: 34690796 PMCID: PMC8531204 DOI: 10.3389/fphys.2021.715852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies have identified the critical role of microbiota in the pathophysiology of autoimmune liver diseases (AILDs), including autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC). Metagenomic studies reveal significant decrease of gut bacterial diversity in AILDs. Although profiles of metagenomic vary widely, Veillonella is commonly enriched in AIH, PBC, and PSC. Apart from gut microbiome, the oral and bile microbiome seem to be associated with these diseases as well. The functional analysis of metagenomics suggests that metabolic pathways changed in the gut microbiome of the patients. Microbial metabolites, including short-chain fatty acids (SCFAs) and microbial bile acid metabolites, have been shown to modulate innate immunity, adaptive immunity, and inflammation. Taken together, the evidence of host–microbiome interactions and in-depth mechanistic studies needs further accumulation, which will offer more possibilities to clarify the mechanisms of AILDs and provide potential molecular targets for the prevention and treatment in the future.
Collapse
Affiliation(s)
- Yanping Zheng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Ran
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongxia Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gastroenterology and Hepatology, Hotan People's Hospital, Xinjiang, China
| |
Collapse
|
30
|
Maslennikov R, Ivashkin V, Efremova I, Poluektova E, Shirokova E. Probiotics in hepatology: An update. World J Hepatol 2021; 13:1154-1166. [PMID: 34630882 PMCID: PMC8473492 DOI: 10.4254/wjh.v13.i9.1154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
The gut–liver axis plays an important role in the pathogenesis of various liver diseases. Probiotics are living bacteria that may be used to correct disorders of this axis. Notable progress has been made in the study of probiotic drugs for the treatment of various liver diseases in the last decade. It has been proven that probiotics are useful for hepatic encephalopathy, but their effects on other symptoms and syndromes of cirrhosis are poorly studied. Their effectiveness in the treatment of metabolic associated fatty liver disease has been shown both in experimental models and in clinical trials, but their effect on the prognosis of this disease has not been described. The beneficial effects of probiotics in alcoholic liver disease have been shown in many experimental studies, but there are very few clinical trials to support these findings. The effects of probiotics on the course of other liver diseases are either poorly studied (such as primary sclerosing cholangitis, chronic hepatitis B and C, and autoimmune hepatitis) or not studied at all (such as primary biliary cholangitis, hepatitis A and E, Wilson's disease, hemochromatosis, storage diseases, and vascular liver diseases). Thus, despite the progress in the study of probiotics in hepatology over the past decade, there are many unexplored and unclear questions surrounding this topic.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
- Department of Internal Medicine, Consultative and Diagnostic Center of the Moscow City Health Department, Moscow 107564, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Elena Shirokova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| |
Collapse
|
31
|
Wu J, Bortolanza M, Zhai G, Shang A, Ling Z, Jiang B, Shen X, Yao Y, Yu J, Li L, Cao H. Gut microbiota dysbiosis associated with plasma levels of Interferon-γ and viral load in patients with acute hepatitis E infection. J Med Virol 2021; 94:692-702. [PMID: 34549810 DOI: 10.1002/jmv.27356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
Few studies have focused on the effect of hepatitis E virus (HEV) infection on gut microbiota. To explore the relationship between changes in gut microbiota and inflammatory factors and viral load, we conducted a comparative study of 33 patients with acute hepatitis E (AHE) patients and 25 healthy controls (HCs) using high-throughput 16S ribosomal ribonucleic acid gene sequencing. Shannon and Simpson's indices showed no significant differences in bacterial diversity between the AHE and HCs groups. Proteobacteria, Gammaproteobacteria, and Enterobacteriaceae were most abundant in the AHE group, which contributed to the difference between the gut microbiota of the AHE and HCs groups, and the same difference between the HEV-RNA-positive and HEV-RNA-negative groups. Functional prediction analysis showed that ribosome, purine metabolism, and two-component system were the top three pathways. Compared with the AHE group with normal interferon (IFN)-γ, Proteobacteria, Gammaproteobacteria, Xanthomonadaceae, and Enterobacteriaceae were more abundant in the high-IFN-γ group. The abundance of Gammaproteobacteria was positively correlated with the level of serum alanine transaminase and total bilirubin. The abundance of Gammaproteobacteria could discriminate AHE patients from HCs, and could better predict the severity of AHE patients. We believe that our findings will contribute toward a novel treatment strategy for AHE.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Mariza Bortolanza
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Guanghua Zhai
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Anquan Shang
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Jiang
- Department of Laboratory Medicine, The Central Blood Station of Yancheng City, Yancheng, China
| | - Xiaochen Shen
- Department of Health Examination Center, The First People's Hospital of Yancheng City, Yancheng, China
| | - Yiwen Yao
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, Hangzhou, China
| |
Collapse
|
32
|
Fan JH, Liu GF, Lv XD, Zeng RZ, Zhan LL, Lv XP. Pathogenesis of autoimmune hepatitis. World J Hepatol 2021; 13:879-886. [PMID: 34552694 PMCID: PMC8422914 DOI: 10.4254/wjh.v13.i8.879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/15/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic progressive liver disease whose etiology and pathogenesis are not yet clear. It is currently believed that the occurrence of AIH is closely related to genetic susceptibility and immune abnormalities, and other factors such as environment, viral infection and drugs that may cause immune dysfunction. This article reviews the pathogenesis of AIH and describes the latest research results in the past 5 years.
Collapse
Affiliation(s)
- Jun-Hua Fan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Geng-Feng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Dan Lv
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Rui-Zhi Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ling-Ling Zhan
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Ping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
33
|
Miao Z, Lai Y, Zhao Y, Chen L, Zhou J, Li C, Wang Y. Protective Property of Scutellarin Against Liver Injury Induced by Carbon Tetrachloride in Mice. Front Pharmacol 2021; 12:710692. [PMID: 34421606 PMCID: PMC8374867 DOI: 10.3389/fphar.2021.710692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Liver injury is a clinical disorder caused by toxins, drugs, and alcohol stimulation without effective therapeutic approaches thus far. Scutellarin (SCU), isolated from the edible herb Erigeron breviscapus (Vant.) Hand. -Mazz. showed potential hepatoprotective effects, but the mechanisms remain unknown. In this study, transcriptomics combined with nontargeted metabolomics and 16S rRNA amplicon sequencing were performed to elucidate the functional mechanisms of SCU in carbon tetrachloride (CCl4)–induced liver injury in mice. The results showed that SCU exerted potential hepatoprotective effects against CCl4-induced liver injury by repressing CYP2E1 and IκBα/NF-κB signaling pathways, modulating the gut microbiota (especially enriching Lactobacillus), and regulating the endogenous metabolites involved in lipid metabolism and bile acid homeostasis. SCU originates from a functional food that appears to be a promising agent to guard against liver injury.
Collapse
Affiliation(s)
- Zhimin Miao
- College of Pharmacy, Dali University, Dali, China
| | - Yong Lai
- College of Pharmacy, Dali University, Dali, China
| | | | - Lingmin Chen
- College of Pharmacy, Dali University, Dali, China
| | - Jianeng Zhou
- College of Pharmacy, Dali University, Dali, China
| | - Chunyan Li
- College of Pharmacy, Dali University, Dali, China
| | - Yan Wang
- College of Pharmacy, Dali University, Dali, China
| |
Collapse
|
34
|
Chen T, Li R, Chen P. Gut Microbiota and Chemical-Induced Acute Liver Injury. Front Physiol 2021; 12:688780. [PMID: 34122150 PMCID: PMC8187901 DOI: 10.3389/fphys.2021.688780] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Drug overdose or chemical exposures are the main causes of acute liver injury (ALI). Severe liver injury can develop into liver failure that is an important cause of liver-related mortality in intensive care units in most countries. Pharmacological studies have utilized a variety of comprehensive chemical induction models that recapitulate the natural pathogenesis of acute liver injury. Their mechanism is always based on redox imbalance-induced direct hepatotoxicity and massive hepatocyte cell death, which can trigger immune cell activation and recruitment to the liver. However, the pathogenesis of these models has not been fully stated. Many studies showed that gut microbiota plays a crucial role in chemical-induced liver injury. Hepatotoxicity is likely induced by imbalanced microbiota homeostasis, gut mucosal barrier damage, systemic immune activation, microbial-associated molecular patterns, and bacterial metabolites. Meanwhile, many preclinical studies have shown that supplementation with probiotics can improve chemical-induced liver injury. In this review, we highlight the pathogenesis of gut microorganisms in chemical-induced acute liver injury animal models and explore the protective mechanism of exogenous microbial supplements on acute liver injury.
Collapse
Affiliation(s)
- Tao Chen
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China.,Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Zhang H, Liu M, Zhong W, Zheng Y, Li Y, Guo L, Zhang Y, Ran Y, Zhao J, Zhou L, Wang B. Leaky Gut Driven by Dysbiosis Augments Activation and Accumulation of Liver Macrophages via RIP3 Signaling Pathway in Autoimmune Hepatitis. Front Immunol 2021; 12:624360. [PMID: 33841405 PMCID: PMC8027109 DOI: 10.3389/fimmu.2021.624360] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
The gut–liver axis has been increasingly recognized as a major autoimmunity modulator. However, the implications of intestinal barrier in the pathogenesis of autoimmune hepatitis (AIH) remain elusive. Here, we investigated the functional role of gut barrier and intestinal microbiota for hepatic innate immune response in AIH patients and murine models. In this study, we found that AIH patients displayed increased intestinal permeability and pronounced RIP3 activation of liver macrophages. In mice models, intestinal barrier dysfunction increased intestinal bacterial translocation, thus amplifying the hepatic RIP3-mediated innate immune response. Furthermore, GSK872 dampened RIP3 activation and ameliorated the activation and accumulation of liver macrophages in vitro and in vivo experiments. Strikingly, broad-spectrum antibiotic ablation significantly alleviated RIP3 activation and liver injury, highlighting the causal role of intestinal microbiota for disease progression. Our results provided a potentially novel mechanism of immune tolerance breakage in the liver via the gut-liver axis. In addition, we also explored the therapeutic and research potentials of regulating the intestinal microbiota for the therapy of AIH.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Man Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yanping Zheng
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yanni Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Liping Guo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yujie Zhang
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Ying Ran
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Department of Gastroenterology and Hepatology, People's Hospital of Hetian District, Hetian, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|