1
|
Carulli E, McGarvey M, Chabok M, Panoulas V, Rosser G, Akhtar M, Smith R, Chandra N, Al-Hussaini A, Kabir T, Barker L, Bruno F, Konstantinou K, de Silva R, Hill J, Xu Y, Lane R, Bucciarelli-Ducci C, Luescher T, Dalby M. Transcoronary cooling and dilution for cardioprotection during revascularisation for ST-segment elevation myocardial infarction: design and rationale of the STEMI-Cool study. Am Heart J 2024:S0002-8703(24)00338-7. [PMID: 39742936 DOI: 10.1016/j.ahj.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND ST-segment elevation myocardial infarction (STEMI) is treated with immediate primary percutaneous coronary intervention (pPCI) to restore coronary blood flow in the acutely ischaemic territory, but is associated with reperfusion injury limiting the benefit of the therapy. No treatment has proven effective in reducing reperfusion injury. Transcoronary hypothermia has been tested in clinical studies and is well tolerated, but is generally established after crossing the occlusion with a guidewire therefore after initial reperfusion, which might have contributed to the neutral outcomes. Transcatheter strategies may also offer additional benefit through haemodilution and the resultant controlled reperfusion, but this has not been fully investigated for pPCI. DESIGN STEMI-Cool is a pragmatic, registry-based randomised clinical pilot trial to test the recruitment rate, feasibility, and safety of a simple transcoronary cooling and dilution protocol. Sixty STEMI patients undergoing pPCI will be randomised 1:1 to standard of care or continuous infusion of room temperature saline through the guiding catheter to achieve intracoronary temperature reductions of 6-8°C, commencing before crossing the coronary occlusion with a guidewire. Mechanistic outcome measures will include microvascular resistance, biomarkers of inflammation before infusion and at 24h, and magnetic resonance imaging of myocardial salvage and infarct size. CONCLUSIONS STEMI-Cool will investigate the recruitment rate, feasibility and safety of an innovative and simple cooling and diluting strategy for cardioprotection before and during reperfusion with pPCI, aiming to address limitations faced in other studies. Mechanistic outcome measures will allow insight into inflammatory, microvascular and structural changes induced by transcoronary cooling and dilution.
Collapse
Affiliation(s)
- Ermes Carulli
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK; Doctoral school in Translational Medicine, University of Milan, Milan, Italy.
| | - Michael McGarvey
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Mohssen Chabok
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Vasileios Panoulas
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Gareth Rosser
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Mohammed Akhtar
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Robert Smith
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Navin Chandra
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Abtehale Al-Hussaini
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Tito Kabir
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Laura Barker
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Francesco Bruno
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | | | - Ranil de Silva
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Jonathan Hill
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Rebecca Lane
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Chiara Bucciarelli-Ducci
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK
| | - Thomas Luescher
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK; King's College London, London, UK
| | - Miles Dalby
- Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK; King's College London, London, UK
| |
Collapse
|
2
|
Buja LM. Pathobiology of myocardial and cardiomyocyte injury in ischemic heart disease: Perspective from seventy years of cell injury research. Exp Mol Pathol 2024; 140:104944. [PMID: 39577392 DOI: 10.1016/j.yexmp.2024.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/11/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
This review presents a perspective on the pathobiology of acute myocardial infarction, a major manifestation of ischemic heart disease, and related mechanisms of ischemic and toxic cardiomyocyte injury, based on advances and insights that have accrued over the last seventy years, including my sixty years of involvement in the field as a physician-scientist-pathologist. This analysis is based on integration of my research within the broader context of research in the field. A particular focus has been on direct measurements in cardiomyocytes of electrolyte content by electron probe X-ray microanalysis (EPXMA) and Ca2+ fluxes by fura-2 microspectrofluorometry. These studies established that increased intracellular Ca2+ develops at a transitional stage in the progression of cardiomyocyte injury in association with ATP depletion, other electrolyte alterations, altered cell volume regulation, and altered membrane phospholipid composition. Subsequent increase in total calcium with mitochondrial calcium accumulation can occur. These alterations are characteristic of oncosis, which is an initial pre-lethal state of cell injury with cell swelling due to cell membrane dysfunction in ATP depleted cells; oncosis rapidly progresses to necrosis/necroptosis with physical disruption of the cell membrane, unless the adverse stimulus is rapidly reversed. The observed sequential changes fit a three-stage model of membrane injury leading to irreversible cell injury. The data establish oncosis as the primary mode of cardiomyocyte injury in evolving myocardial infarcts. Oncosis also has been documented to be the typical form of non-ischemic cell injury due to toxins. Cardiomyocytes with less energy impairment have the capability of undergoing apoptosis and autophagic death as well as oncosis, as is seen in pathological remodeling in chronic heart failure. Work is ongoing to apply the insights from experimental studies to better understand and ameliorate myocardial ischemia and reperfusion injury in patients. The perspective and insights in this review are derived from basic principles of pathology, an integrative discipline focused on mechanisms of disease affecting the cell, the organizing unit of living organisms.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, TX, United States of America.
| |
Collapse
|
3
|
Zhang W, Zhang J, Wang Z, Li T, Liu C, Kang X, Cui X, Yang J, Qu H, Duanmu J, Peng Y, Wang K, Jin L, Xie P, Zheng W, Shang H, Liu Y, Tian Z, Liu Z, Jin Y, Li Y, Li N, Zhuo X, Wu Y, Shi X, Ma R, Sun Y, Zhang K, Fang X, Hu X, Dong E, Zhang S, Zhang Y. Extracellular RIPK3 Acts as a Damage-Associated Molecular Pattern to Exaggerate Cardiac Ischemia/Reperfusion Injury. Circulation 2024; 150:1791-1811. [PMID: 39411860 DOI: 10.1161/circulationaha.123.068595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/05/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Cardiac ischemia/reperfusion (I/R) injury has emerged as an important therapeutic target for ischemic heart disease. Currently, there is no effective therapy for reducing cardiac I/R injury. Damage-associated molecular patterns are endogenous molecules released after cellular damage to exaggerate tissue inflammation and injury. RIPK3 (receptor-interacting protein kinase 3), a well-established intracellular mediator of cell necroptosis and inflammation, serves as a circulating biomarker of multiple diseases. However, whether extracellular RIPK3 also exerts biological functions in cardiac I/R injury remains totally unknown. METHODS Patients with acute myocardial infarction receiving percutaneous coronary intervention (PCI) were recruited independently in the discovery cohort (103 patients) and validation cohort (334 patients), and major adverse cardiovascular events were recorded. Plasma samples were collected before and after PCI (6 and 24 h) for RIPK3 concentration measurement. Cultured neonatal rat ventricular myocytes, macrophages and endothelial cells, and in vivo mouse models with myocardial injury induced by I/R (or hypoxia/reoxygenation) were used to investigate the role and mechanisms of extracellular RIPK3. Another cohort including patients with acute myocardial infarction receiving PCI and healthy volunteers was recruited to further explore the mechanisms of extracellular RIPK3. RESULTS In the discovery cohort, elevated plasma RIPK3 levels after PCI are associated with poorer short- and long-term outcomes in patients with acute myocardial infarction, as confirmed in the validation cohort. In both cultured cells and in vivo mouse models, recombinant RIPK3 protein exaggerated myocardial I/R (or hypoxia/reoxygenation) injury, which was alleviated by the RIPK3 antibody. Mechanistically, RIPK3 acted as a damage-associated molecular pattern and bound with RAGE (receptor of advanced glycation end-products), subsequently activating CaMKII (Ca2+/calmodulin-dependent kinase II) to elicit the detrimental effects. The positive correlation between plasma RIPK3 concentrations and CaMKII phosphorylation in human peripheral blood mononuclear cells was confirmed. CONCLUSIONS We identified the positive relationship between plasma RIPK3 concentrations and the risk of major adverse cardiovascular events in patients with acute myocardial infarction receiving PCI. As a damage-associated molecular pattern, extracellular RIPK3 plays a causal role in multiple pathological conditions during cardiac I/R injury through RAGE/CaMKII signaling. These findings expand our understanding of the physiological and pathological roles of RIPK3, and also provide a promising therapeutic target for myocardial I/R injury and the associated complications.
Collapse
Affiliation(s)
- Wenjia Zhang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
| | - Junxia Zhang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Haihe Laboratory of Cell Ecosystem, Beijing (J.Z., E.D.)
| | - Zeyuan Wang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing (Z.W., Z.T., Z.L., Y.J., Y.S., X.H., S.Z.)
| | - Ting Li
- Department of Cardiology, First Affiliated Hospital, Xi'an Jiaotong University, China (T.L., X.Z., Y.W.)
| | - Changyun Liu
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
| | - Xuya Kang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
| | - Xiaomeng Cui
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
| | - Jingli Yang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
| | - Huilin Qu
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
| | - Jiaxin Duanmu
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
| | - Ying Peng
- Department of General Surgery (Y.P), Peking University Third Hospital, Beijing, China
| | - Kai Wang
- Department of Hysiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive III Medicine (K.W.), Peking University, Beijing, China
| | - Li Jin
- State Key Laboratory of Membrane Biology Institute of Molecular Medicine, College of Future Technology (L.J., P.X., W. Zheng, H.S., X.H.), Peking University, Beijing, China
| | - Peng Xie
- State Key Laboratory of Membrane Biology Institute of Molecular Medicine, College of Future Technology (L.J., P.X., W. Zheng, H.S., X.H.), Peking University, Beijing, China
| | - Wen Zheng
- State Key Laboratory of Membrane Biology Institute of Molecular Medicine, College of Future Technology (L.J., P.X., W. Zheng, H.S., X.H.), Peking University, Beijing, China
| | - Haibao Shang
- State Key Laboratory of Membrane Biology Institute of Molecular Medicine, College of Future Technology (L.J., P.X., W. Zheng, H.S., X.H.), Peking University, Beijing, China
| | - Yahan Liu
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
| | - Zhuang Tian
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing (Z.W., Z.T., Z.L., Y.J., Y.S., X.H., S.Z.)
| | - Zhenyu Liu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing (Z.W., Z.T., Z.L., Y.J., Y.S., X.H., S.Z.)
| | - Ye Jin
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing (Z.W., Z.T., Z.L., Y.J., Y.S., X.H., S.Z.)
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China (Y.J.)
| | - Yingjia Li
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
| | - Nan Li
- Research Center of Clinical Epidemiology (N.L.), Peking University Third Hospital, Beijing, China
| | - Xiaozhen Zhuo
- Department of Cardiology, First Affiliated Hospital, Xi'an Jiaotong University, China (T.L., X.Z., Y.W.)
| | - Yue Wu
- Department of Cardiology, First Affiliated Hospital, Xi'an Jiaotong University, China (T.L., X.Z., Y.W.)
| | - Xiaolu Shi
- State Key Laboratory of Membrane Biology Institute of Molecular Medicine, College of Future Technology (L.J., P.X., W. Zheng, H.S., X.H.), Peking University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences (X.S., R.M.)
| | - Runhao Ma
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences (X.S., R.M.)
| | - Yueshen Sun
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing (Z.W., Z.T., Z.L., Y.J., Y.S., X.H., S.Z.)
| | - Kai Zhang
- Department of Anesthesiology and Intensive Care, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (K.Z., X.F.)
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (K.Z., X.F.)
| | - Xiaomin Hu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing (Z.W., Z.T., Z.L., Y.J., Y.S., X.H., S.Z.)
| | - Erdan Dong
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Haihe Laboratory of Cell Ecosystem, Beijing (J.Z., E.D.)
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, China (E.D.)
| | - Shuyang Zhang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing (Z.W., Z.T., Z.L., Y.J., Y.S., X.H., S.Z.)
| | - Yan Zhang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (Y.Z.)
| |
Collapse
|
4
|
Di Nubila A, Dilella G, Simone R, Barbieri SS. Vascular Extracellular Matrix in Atherosclerosis. Int J Mol Sci 2024; 25:12017. [PMID: 39596083 PMCID: PMC11594217 DOI: 10.3390/ijms252212017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The extracellular matrix (ECM) plays a central role in the structural integrity and functionality of the cardiovascular system. Moreover, the ECM is involved in atherosclerotic plaque formation and stability. In fact, ECM remodeling affects plaque stability, cellular migration, and inflammatory responses. Collagens, fibronectin, laminin, elastin, and proteoglycans are crucial proteins during atherosclerosis development. This dynamic remodeling is driven by proteolytic enzymes such as matrix metalloproteinases (MMPs), cathepsins, and serine proteases. Exploring and investigating ECM dynamics is an important step to designing innovative therapeutic strategies targeting ECM remodeling mechanisms, thus offering significant advantages in the management of cardiovascular diseases. This review illustrates the structure and role of vascular ECM, presenting a new perspective on ECM remodeling and its potential as a therapeutic target in atherosclerosis treatments.
Collapse
Affiliation(s)
| | | | | | - Silvia S. Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (A.D.N.); (G.D.); (R.S.)
| |
Collapse
|
5
|
Wei Z, Liu J, Liu H, Jiang A. TRAF3IP3 Blocks Mitophagy to Exacerbate Myocardial Injury Induced by Ischemia-Reperfusion. Cardiovasc Toxicol 2024; 24:1204-1214. [PMID: 39240426 DOI: 10.1007/s12012-024-09916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2024] [Indexed: 09/07/2024]
Abstract
To uncover the possible role of TRAF3IP3 in the progression of myocardial infarction (MI), clarify its role in mitophagy and mitochondrial function, and explore the underlying mechanism. GEO chip analysis, RT-qPCR, and LDH release assay were used to detect the expression of TRAF3IP3 in tissues and cells and its effects on cell damage. Immunostaining and ATP product assays were performed to examine the effects of TRAF3IP3 on mitochondrial function. Co-IP, CHX assays, Immunoblot and Immunostaining assays were conducted to determine the effects of TRAF3IP3 on mitophagy. TRAF3IP3 was highly expressed in IR rats and HR-induced H9C2 cells. TRAF3IP3 knockdown can alleviate H/R-induced H9C2 cell damage. In addition, TRAF3IP3 knockdown can induce mitophagy, thus enhancing mitochondrial function. We further revealed that TRAF3IP3 can promote the degradation of NEDD4 protein. Moreover, TRAF3IP3 knockdown suppressed myocardial injury in I/R rats. TRAF3IP3 blocks mitophagy to exacerbate myocardial injury induced by I/R via mediating NEDD4 expression.
Collapse
Affiliation(s)
- Zhongcheng Wei
- Department of Cardiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, No. 1, Huanghe West Road, Huai'an, 223300, Jiangsu, China.
| | - Juan Liu
- Department of Rheumatology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Hailang Liu
- Department of Cardiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, No. 1, Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Aixia Jiang
- Department of Cardiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, No. 1, Huanghe West Road, Huai'an, 223300, Jiangsu, China
| |
Collapse
|
6
|
Yin W, Chen Y, Wang W, Guo M, Tong L, Zhang M, Wang Z, Yuan H. Macrophage-mediated heart repair and remodeling: A promising therapeutic target for post-myocardial infarction heart failure. J Cell Physiol 2024; 239:e31372. [PMID: 39014935 DOI: 10.1002/jcp.31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
7
|
Xu X, Wu Q, Pei K, Zhang M, Mao C, Zhong X, Huang Y, Dai Y, Yin R, Chen Z, Wang X. Ginsenoside Rg1 reduces cardiac inflammation against myocardial ischemia/reperfusion injury by inhibiting macrophage polarization. J Ginseng Res 2024; 48:570-580. [PMID: 39583164 PMCID: PMC11583468 DOI: 10.1016/j.jgr.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 11/26/2024] Open
Abstract
Background Myocardial ischemia/reperfusion (MI/R) injury is the main cause of death worldwide and poses a significant threat to cardiac health. Ginsenoside Rg1 has been shown to have inhibitory effects on inflammatory activation, oxidative stress, and cardiac injury, suggesting that Rg1 may have therapeutic effects on MI/R injury. However, the mechanism remains to be further studied. Materials and methods Left anterior descending coronary artery ligation was performed in Sprague-Dawley rats to construct an MI/R model in vivo. Organ index, electrocardiogram, infarct size, histopathological changes, and detection of cardiac injury and inflammatory factors in the rats were used to evaluate myocarditis, macrophage polarization, and fibrosis. We also used rat bone marrow-derived macrophages (BMDMs) to further investigate the effects of Rg1 on absent in melanoma 2 (AIM2) activation and macrophage polarization in vitro. Results Administration of Rg1 exhibited dose-dependent cardioprotective effects and effectively reduced MI/R injury. Rg1 significantly attenuated myocardial inflammation and inhibited M1 macrophage polarization during MI/R injury. Furthermore, Rg1 significantly reduced cardiac fibrosis in response to MI/R injury. This anti-fibrotic effect may contribute to the preservation of cardiac structure and function following an ischemic insult. Meanwhile, Rg1 effectively inhibited the activation of the AIM2 inflammasome in vitro, highlighting its potential as a key regulator of inflammatory pathways. Conclusion Our findings elucidate the multifaceted mechanisms underlying Rg1's cardioprotective effects, including its ability to mitigate inflammation, modulate macrophage polarization, and inhibit fibrosis.
Collapse
Affiliation(s)
- Xiaojin Xu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Qing Wu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke Pei
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Shen Chun-ti Nation-Famous Experts Studio for Traditional Chinese Medicine Inheritance,Changzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, China
| | - Meng Zhang
- Shuguang Hospital Affiliated to Shanghai University of Chinese Medicine, Shanghai, China
| | - Chenhan Mao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xinxin Zhong
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunfan Huang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Dai
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Yin
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhaoyang Chen
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xindong Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Martinez CS, Zheng A, Xiao Q. Mitochondrial Reactive Oxygen Species Dysregulation in Heart Failure with Preserved Ejection Fraction: A Fraction of the Whole. Antioxidants (Basel) 2024; 13:1330. [PMID: 39594472 PMCID: PMC11591317 DOI: 10.3390/antiox13111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifarious syndrome, accounting for over half of heart failure (HF) patients receiving clinical treatment. The prevalence of HFpEF is rapidly increasing in the coming decades as the global population ages. It is becoming clearer that HFpEF has a lot of different causes, which makes it challenging to find effective treatments. Currently, there are no proven treatments for people with deteriorating HF or HFpEF. Although the pathophysiologic foundations of HFpEF are complex, excessive reactive oxygen species (ROS) generation and increased oxidative stress caused by mitochondrial dysfunction seem to play a critical role in the pathogenesis of HFpEF. Emerging evidence from animal models and human myocardial tissues from failed hearts shows that mitochondrial aberrations cause a marked increase in mitochondrial ROS (mtROS) production and oxidative stress. Furthermore, studies have reported that common HF medications like beta blockers, angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and mineralocorticoid receptor antagonists indirectly reduce the production of mtROS. Despite the harmful effects of ROS on cardiac remodeling, maintaining mitochondrial homeostasis and cardiac functions requires small amounts of ROS. In this review, we will provide an overview and discussion of the recent findings on mtROS production, its threshold for imbalance, and the subsequent dysfunction that leads to related cardiac and systemic phenotypes in the context of HFpEF. We will also focus on newly discovered cellular and molecular mechanisms underlying ROS dysregulation, current therapeutic options, and future perspectives for treating HFpEF by targeting mtROS and the associated signal molecules.
Collapse
Affiliation(s)
| | | | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (C.S.M.); (A.Z.)
| |
Collapse
|
9
|
Chambon M, Koenig A. NK Cells: Not Just Followers But Also Initiators of Chronic Vascular Rejection. Transpl Int 2024; 37:13318. [PMID: 39479216 PMCID: PMC11521863 DOI: 10.3389/ti.2024.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
Chronic graft rejection represents a significant threat to long-term graft survival. Early diagnosis, understanding of the immunological mechanisms and appropriate therapeutic management are essential to improve graft survival and quality of life for transplant patients. Knowing which immune cells are responsible for chronic vascular rejection would allow us to provide effective and appropriate treatment for these patients. It is now widely accepted that natural killer (NK) cells play an important role in chronic vascular rejection. They can either initiate chronic vascular rejection by recognizing missing self on the graft or be recruited by donor-specific antibodies to destroy the graft during antibody-mediated rejection. Whatever the mechanisms of activation of NK cells, they need to be primed to become fully activated and damaging to the graft. A better understanding of the signaling pathways involved in NK cell priming and activation would pave the way for the development of new therapeutic strategies to cure chronic vascular rejection. This review examines the critical role of NK cells in the complex context of chronic vascular rejection.
Collapse
Affiliation(s)
- Mathilde Chambon
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Alice Koenig
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
- Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
10
|
Ahrazoglu T, Kluczny JI, Kleimann P, Irschfeld LM, Nienhaus FT, Bönner F, Gerdes N, Temme S. Design of a Robust Flow Cytometric Approach for Phenotypical and Functional Analysis of Human Monocyte Subsets in Health and Disease. Biomolecules 2024; 14:1251. [PMID: 39456184 PMCID: PMC11506830 DOI: 10.3390/biom14101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Human monocytes can be subdivided into phenotypically and functionally different classical, intermediate and non-classical monocytes according to the cell surface expression of CD14 and CD16. A precise identification and characterisation of monocyte subsets is necessary to unravel their role in inflammatory diseases. Here, we compared three different flow cytometric strategies (A-C) and found that strategy C, which included staining against CD11b, HLA-DR, CD14 and CD16, followed by several gating steps, most reliably identified monocyte subtypes in blood samples from healthy volunteers and from patients with stable coronary heart disease (CHD) or ST-elevation myocardial infarction (STEMI). Additionally, we established a fixation and permeabilisation protocol to enable the analysis of intracellular markers. We investigated the phagocytosis of lipid nanoparticles, the uptake of 2-NBD-glucose and the intracellular levels of CD74 and HLA-DM. This revealed that classical and intermediate monocytes from patients with STEMI showed the highest uptake of 2-NBD-glucose, whereas classical and intermediate monocytes from patients with CHD took up the largest amounts of lipid nanoparticles. Interestingly, intermediate monocytes had the highest expression level of HLA-DM. Taken together, we present a robust flow cytometric approach for the identification and functional characterisation of monocyte subtypes in healthy humans and patients with diseases.
Collapse
Affiliation(s)
- Talia Ahrazoglu
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (T.A.); (J.I.K.)
| | - Jennifer Isabel Kluczny
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (T.A.); (J.I.K.)
| | - Patricia Kleimann
- Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Lisa-Marie Irschfeld
- Department of Radiation Oncology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Fabian Theodor Nienhaus
- Department of Cardiology, Pulmonology and Vascular Medicine, Faculty of Medicine, University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (F.T.N.); (F.B.); (N.G.)
| | - Florian Bönner
- Department of Cardiology, Pulmonology and Vascular Medicine, Faculty of Medicine, University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (F.T.N.); (F.B.); (N.G.)
| | - Norbert Gerdes
- Department of Cardiology, Pulmonology and Vascular Medicine, Faculty of Medicine, University Hospital, Heinrich-Heine University, 40225 Düsseldorf, Germany; (F.T.N.); (F.B.); (N.G.)
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Sebastian Temme
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (T.A.); (J.I.K.)
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Jiang ZH, Wang JS, Wang JL, Zheng JF, Li XL, Yang ZC, Xu MQ, Zhang YL, Wang Y. Hydrogen attenuates ischaemia-reperfusion injury in skeletal muscles post-limb replantation by activating the NRF2/HO-1 signalling pathway to reduce BAX expression. Heliyon 2024; 10:e37018. [PMID: 39309900 PMCID: PMC11414507 DOI: 10.1016/j.heliyon.2024.e37018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/18/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Background Ischaemia-reperfusion injury (IRI) is a critical complication post-limb replantation. The oxidative stress and cellular apoptosis due to IRI considerably hinder the healing process. This study aimed to investigate the modulatory effects of pre-perfusion with hydrogen-rich heparin sodium on the nuclear factor erythroid 2-related factor 2 (NRF2)/haeme oxygenase-1 (HO-1) pathway and its potential mechanisms in mitigating skeletal muscle IRI post-limb replantation. Methods Forty healthy Sprague-Dawley rats (250-300 g) were classified into five groups (n = 8 each): normal control, IRI + heparin sodium pre-perfusion (heparin group), IRI + hydrogen-rich heparin sodium pre-perfusion (hydrogen-rich heparin group), IRI + hydrogen-rich heparin sodium pre-perfusion + NRF2 inhibitor (hydrogen-rich heparin + all-trans retinoic acid [ATRA] group), and IRI + heparin sodium pre-perfusion + NRF2 inhibitor (heparin + ATRA group). The activation of the NRF2/HO-1 pathway in skeletal muscle IRI was evaluated based on HO-1 expression using western blotting and immunofluorescence. Furthermore, haematoxylin and eosin staining and transmission electron microscopy were employed to determine the histopathological characteristics. Additionally, superoxide dismutase and malondialdehyde levels in skeletal muscle tissue were measured to assess antioxidant capacity and the degree of oxidative stress damage. Tissue hypoxia was assessed based on hypoxia-inducible factor 1-alpha expression, whereas apoptosis markers BCL-2-associated X protein (BAX) and Caspase-3 in skeletal muscle tissues were analysed using western blotting with terminal deoxynucleotidyl transferase dUTP nick end labelling staining to quantify cell apoptosis. Results Compared with the control group, the heparin group exhibited significant pathological changes, including inflammatory infiltration and cellular hypertrophy, with increased apoptosis and oxidative stress. Notably, NRF2 suppression aggravated these effects. However, hydrogen-rich heparin sodium prominently activated the NRF2/HO-1 pathway, enhancing antioxidant defence and reducing BAX/Caspase-3-mediated apoptosis, thereby mitigating IRI-induced damage. The use of an NRF2 inhibitor to inhibit NRF2 excitation by hydrogen-rich heparin sodium notably weakened NRF2 activation and the antioxidant response, resulting in a substantial increase in cellular apoptosis. Conclusion Pre-perfusion with hydrogen-rich heparin sodium markedly diminishes the BAX/Caspase-3-mediated apoptotic pathway in skeletal muscle tissues with IRI through the excitation of the NRF2/HO-1 pathway.
Collapse
Affiliation(s)
- zi-hao Jiang
- Department of Emergency, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - jun-sheng Wang
- Department of Emergency, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - jin-ling Wang
- Department of Emergency and Critical Care Center, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - jiang-fan Zheng
- Department of Emergency, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - xiao-ling Li
- Department of Emergency, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - zhi-cheng Yang
- Department of Emergency, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - meng-qiu Xu
- Department of Emergency, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - yong-li Zhang
- Department of Emergency, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - yu Wang
- Department of Emergency, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
12
|
Giannino G, Nocera L, Andolfatto M, Braia V, Giacobbe F, Bruno F, Saglietto A, Angelini F, De Filippo O, D'Ascenzo F, De Ferrari GM, Dusi V. Vagal nerve stimulation in myocardial ischemia/reperfusion injury: from bench to bedside. Bioelectron Med 2024; 10:22. [PMID: 39267134 PMCID: PMC11395864 DOI: 10.1186/s42234-024-00153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024] Open
Abstract
The identification of acute cardioprotective strategies against myocardial ischemia/reperfusion (I/R) injury that can be applied in the catheterization room is currently an unmet clinical need and several interventions evaluated in the past at the pre-clinical level have failed in translation. Autonomic imbalance, sustained by an abnormal afferent signalling, is a key component of I/R injury. Accordingly, there is a strong rationale for neuromodulation strategies, aimed at reducing sympathetic activity and/or increasing vagal tone, in this setting. In this review we focus on cervical vagal nerve stimulation (cVNS) and on transcutaneous auricular vagus nerve stimulation (taVNS); the latest has the potential to overcome several of the issues of invasive cVNS, including the possibility of being used in an acute setting, while retaining its beneficial effects. First, we discuss the pathophysiology of I/R injury, that is mostly a consequence of the overproduction of reactive oxygen species. Second, we describe the functional anatomy of the parasympathetic branch of the autonomic nervous system and the most relevant principles of bioelectronic medicine applied to electrical vagal modulation, with a particular focus on taVNS. Then, we provide a detailed and comprehensive summary of the most relevant pre-clinical studies of invasive and non-invasive VNS that support its strong cardioprotective effect whenever there is an acute or chronic cardiac injury and specifically in the setting of myocardial I/R injury. The potential benefit in the emerging field of post cardiac arrest syndrome (PCAS) is also mentioned. Indeed, electrical cVNS has a strong anti-adrenergic, anti-inflammatory, antioxidants, anti-apoptotic and pro-angiogenic effect; most of the involved molecular pathways were already directly confirmed to take place at the cardiac level for taVNS. Pre-clinical data clearly show that the sooner VNS is applied, the better the outcome, with the possibility of a marked infarct size reduction and almost complete left ventricular reverse remodelling when VNS is applied immediately before and during reperfusion. Finally, we describe in detail the limited but very promising clinical experience of taVNS in I/R injury available so far.
Collapse
Affiliation(s)
- Giuseppe Giannino
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Lorenzo Nocera
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Maria Andolfatto
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Valentina Braia
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Federico Giacobbe
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Francesco Bruno
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Andrea Saglietto
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Filippo Angelini
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Ovidio De Filippo
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Fabrizio D'Ascenzo
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Gaetano Maria De Ferrari
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Veronica Dusi
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy.
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy.
| |
Collapse
|
13
|
Xiao W, Zhu Z, Yu Z, Pan Y, Xue Q, Zhou Y, Shi J. A composite patch loaded with 2-Deoxy Glucose facilitates cardiac recovery after myocardial infarction via attenuating local inflammatory response. Sci Rep 2024; 14:20368. [PMID: 39223206 PMCID: PMC11369268 DOI: 10.1038/s41598-024-71473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Local inflammatory microenvironment in the early stage of myocardial infarction (MI) severely impaired cardiac recovery post-MI. Macrophages play a pivotal role in this process. A classical glycolytic inhibitor, 2-Deoxy-Glucose (2-DG), has been found to regulate the excessive pro-inflammatory macrophage polarization in the infarcted myocardium. This study investigated the effect of 2-DG-loaded chitosan/gelatin composite patch on the infarct microenvironment post-MI and its impact on cardiac repair. The results showed that the 2-DG patch significantly inhibited the expression of inflammatory cytokines, alleviated reactive oxygen species (ROS) accumulation, repressed the proinflammatory polarization of macrophages, attenuated local inflammatory microenvironment in the ischemic hearts, as well as improved cardiac function, reduced scar size, and promoted angiogenesis post-MI. In terms of mechanism, 2-DG exerts anti-inflammatory effects through inhibiting the NF-κB signaling pathway and reducing the assembly and activation of the NLRP3 inflammasome. These findings suggest that 2-DG composite patch may represent a promising therapeutic strategy for cardiac repair after MI.
Collapse
Affiliation(s)
- Weizhang Xiao
- Department of Cardiothoracic Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, China.
| | - Zhen Zhu
- Department of Cardiothoracic Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, China
| | - Zhiming Yu
- Department of Cardiothoracic Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, China
| | - Yue Pan
- Department of Cardiothoracic Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, China
| | - Qun Xue
- Department of Cardiothoracic Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiahai Shi
- Department of Cardiothoracic Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
14
|
Han D, Wang F, Shen D. Nanomedicines as Guardians of the Heart: Unleashing the Power of Antioxidants to Alleviate Myocardial Ischemic Injury. Theranostics 2024; 14:5336-5370. [PMID: 39267789 PMCID: PMC11388064 DOI: 10.7150/thno.99961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Ischemic heart disease (IHD) is increasingly recognized as a significant cardiovascular disease with a growing global incidence. Interventions targeting the oxidative microenvironment have long been pivotal in therapeutic strategies. However, many antioxidant drugs face limitations due to pharmacokinetic and delivery challenges, such as short half-life, poor stability, low bioavailability, and significant side effects. Fortunately, nanotherapies exhibit considerable potential in addressing IHD. Nanomedicines offer advantages such as passive/active targeting, prolonged circulation time, enhanced bioavailability, and diverse carrier options. This comprehensive review explores the advancements in nanomedicines for mitigating IHD through oxidative stress regulation, providing an extensive overview for researchers in the field of antioxidant nanomedicines. By inspiring further research, this study aims to accelerate the development of novel therapies for myocardial injury.
Collapse
Affiliation(s)
- Dongjian Han
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Fuhang Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Deliang Shen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| |
Collapse
|
15
|
Krishnan A, Elde S, Ruaengsri C, Guenthart BA, Zhu Y, Fawad M, Lee A, Currie M, Ma MR, Hiesinger W, Shudo Y, MacArthur JW, Woo YJ. Survival, function, and immune profiling after beating heart transplantation. J Thorac Cardiovasc Surg 2024:S0022-5223(24)00681-0. [PMID: 39111693 DOI: 10.1016/j.jtcvs.2024.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE Ex vivo normothermic perfusion of cardiac allografts has expanded the donor pool for heart transplant. Using a beating heart implantation method avoids the second cardioplegic arrest and subsequent ischemia-reperfusion injury typically associated with ex vivo heart perfusion. We sought to describe our institutional experience with beating heart transplantation. METHODS This was a single-institution retrospective study of adult patients who underwent heart transplantation using ex vivo heart perfusion (EVHP) and a beating heart implantation technique between October 2022 and March 2024. Primary outcomes of interest included survival, initiation of mechanical circulatory support, and rejection. A subanalysis of our institutional series of nonbeating deceased after circulatory death (DCD) heart transplantations was performed as well. RESULTS Twenty-four patients underwent isolated heart transplantation with the use of ex vivo heart perfusion and beating heart implantation between October 2022 and March 2024; 21 (87.5%) received hearts from DCD donors, and 3 (12.5%) received hearts from deceased after brain death (DBD) donors. The median duration of follow-up was 192 days (interquartile range [IQR], 124-253.5 days), and 23 out of 24 patients (95.8%) were alive at last follow-up. No patients required initiation of mechanical circulatory support. The majority of patients had pathologic grade 0 rejection at the time of biopsy (n = 16; 66.7%), and the median cell-free DNA percent was 0.04% (IQR, 0.04%-0.09%). The rate of mechanical circulatory support initiation in the 22-patient nonbeating DCD heart transplant cohort was significantly higher, at 36.4% (P < .005). CONCLUSIONS A beating heart implantation technique can be used for transplantation of DCD and DBD hearts on EVHP and is associated with excellent survival and low levels of rejection.
Collapse
Affiliation(s)
- Aravind Krishnan
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Stefan Elde
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Chawannuch Ruaengsri
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Brandon A Guenthart
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Moeed Fawad
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Anson Lee
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Maria Currie
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Michael R Ma
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - John Ward MacArthur
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif; Department of Bioengineering, Stanford University School of Engineering, Stanford, Calif.
| |
Collapse
|
16
|
Artimovič P, Špaková I, Macejková E, Pribulová T, Rabajdová M, Mareková M, Zavacká M. The ability of microRNAs to regulate the immune response in ischemia/reperfusion inflammatory pathways. Genes Immun 2024; 25:277-296. [PMID: 38909168 PMCID: PMC11327111 DOI: 10.1038/s41435-024-00283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
MicroRNAs play a crucial role in regulating the immune responses induced by ischemia/reperfusion injury. Through their ability to modulate gene expression, microRNAs adjust immune responses by targeting specific genes and signaling pathways. This review focuses on the impact of microRNAs on the inflammatory pathways triggered during ischemia/reperfusion injury and highlights their ability to modulate inflammation, playing a critical role in the pathophysiology of ischemia/reperfusion injury. Dysregulated expression of microRNAs contributes to the pathogenesis of ischemia/reperfusion injury, therefore targeting specific microRNAs offers an opportunity to restore immune homeostasis and improve patient outcomes. Understanding the complex network of immunoregulatory microRNAs could provide novel therapeutic interventions aimed at attenuating excessive inflammation and preserving tissue integrity.
Collapse
Affiliation(s)
- Peter Artimovič
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Ema Macejková
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Timea Pribulová
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Martina Zavacká
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia.
| |
Collapse
|
17
|
Lu X, Xu Z, Shu F, Wang Y, Han Y, Yang X, Shi P, Fan C, Wang L, Yu F, Sun Q, Cheng F, Chen H. Reactive Oxygen Species Responsive Multifunctional Fusion Extracellular Nanovesicles: Prospective Treatments for Acute Heart Transplant Rejection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406758. [PMID: 38949397 DOI: 10.1002/adma.202406758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Heart transplantation offers life-saving treatment for patients with end-stage heart failure; however, ischemia-reperfusion injury (IRI) and subsequent immune responses remain significant challenges. Current therapies primarily target adaptive immunity, with limited options available for addressing IRI and innate immune activation. Although plant-derived vesicle-like nanoparticles show promise in managing diseases, their application in organ transplantation complications is unexplored. Here, this work develops a novel reactive oxygen species (ROS)-responsive multifunctional fusion extracellular nanovesicles carrying rapamycin (FNVs@RAPA) to address early IRI and Ly6C+Ly6G- inflammatory macrophage-mediated rejection in heart transplantation. The FNVs comprise Exocarpium Citri grandis-derived extracellular nanovesicles with anti-inflammatory and antioxidant properties, and mesenchymal stem cell membrane-derived nanovesicles expressing calreticulin with macrophage-targeting ability. A novel ROS-responsive bio-orthogonal chemistry approach facilitates the active targeting delivery of FNVs@RAPA to the heart graft site, effectively alleviating IRI and promoting the polarization of Ly6C+Ly6G- inflammatory macrophages toward an anti-inflammatory phenotype. Hence, FNVs@RAPA represents a promising therapeutic approach for mitigating early transplantation complications and immune rejection. The fusion-targeted delivery strategy offers superior heart graft site enrichment and macrophage-specific targeting, promising improved transplant outcomes.
Collapse
Affiliation(s)
- Xingyu Lu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Fan Shu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yidan Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuhang Han
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinrui Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Peilin Shi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Chuanqiang Fan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Linglu Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Fei Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qipeng Sun
- Department of Kidney Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
18
|
Janssen J, Chirico N, Ainsworth MJ, Cedillo-Servin G, Viola M, Dokter I, Vermonden T, Doevendans PA, Serra M, Voets IK, Malda J, Castilho M, van Laake LW, Sluijter JPG, Sampaio-Pinto V, van Mil A. Hypothermic and cryogenic preservation of cardiac tissue-engineered constructs. Biomater Sci 2024; 12:3866-3881. [PMID: 38910521 PMCID: PMC11265564 DOI: 10.1039/d3bm01908j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Cardiac tissue engineering (cTE) has already advanced towards the first clinical trials, investigating safety and feasibility of cTE construct transplantation in failing hearts. However, the lack of well-established preservation methods poses a hindrance to further scalability, commercialization, and transportation, thereby reducing their clinical implementation. In this study, hypothermic preservation (4 °C) and two methods for cryopreservation (i.e., a slow and fast cooling approach to -196 °C and -150 °C, respectively) were investigated as potential solutions to extend the cTE construct implantation window. The cTE model used consisted of human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts embedded in a natural-derived hydrogel and supported by a polymeric melt electrowritten hexagonal scaffold. Constructs, composed of cardiomyocytes of different maturity, were preserved for three days, using several commercially available preservation protocols and solutions. Cardiomyocyte viability, function (beat rate and calcium handling), and metabolic activity were investigated after rewarming. Our observations show that cardiomyocytes' age did not influence post-rewarming viability, however, it influenced construct function. Hypothermic preservation with HypoThermosol® ensured cardiomyocyte viability and function. Furthermore, fast freezing outperformed slow freezing, but both viability and function were severely reduced after rewarming. In conclusion, whereas long-term preservation remains a challenge, hypothermic preservation with HypoThermosol® represents a promising solution for cTE construct short-term preservation and potential transportation, aiding in off-the-shelf availability, ultimately increasing their clinical applicability.
Collapse
Affiliation(s)
- Jasmijn Janssen
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands.
| | - Nino Chirico
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands.
| | - Madison J Ainsworth
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Gerardo Cedillo-Servin
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Martina Viola
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| | - Inge Dokter
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands.
| | - Tina Vermonden
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| | - Pieter A Doevendans
- Netherlands Heart Institute (NLHI), Utrecht, 3511 EP, The Netherlands
- Centraal Militair Hospitaal (CMH), Utrecht, 3584 EZ, The Netherlands
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ilja K Voets
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry & Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, PO box 513, The Netherlands
| | - Jos Malda
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
- Department of Equine Sciences, Faculty of Veterinary Sciences, Utrecht University, Yalelaan 1, Utrecht, 3584 CL, The Netherlands
| | - Miguel Castilho
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AE, The Netherlands
| | - Linda W van Laake
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands.
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands.
| | - Vasco Sampaio-Pinto
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands.
| | - Alain van Mil
- Department of Cardiology, Experimental Cardiology Laboratory, Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands.
| |
Collapse
|
19
|
Zuo B, Fan X, Xu D, Zhao L, Zhang B, Li X. Deciphering the mitochondria-inflammation axis: Insights and therapeutic strategies for heart failure. Int Immunopharmacol 2024; 139:112697. [PMID: 39024750 DOI: 10.1016/j.intimp.2024.112697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Heart failure (HF) is a clinical syndrome resulting from left ventricular systolic and diastolic dysfunction, leading to significant morbidity and mortality worldwide. Despite improvements in medical treatment, the prognosis of HF patients remains unsatisfactory, with high rehospitalization rates and substantial economic burdens. The heart, a high-energy-consuming organ, relies heavily on ATP production through oxidative phosphorylation in mitochondria. Mitochondrial dysfunction, characterized by impaired energy production, oxidative stress, and disrupted calcium homeostasis, plays a crucial role in HF pathogenesis. Additionally, inflammation contributes significantly to HF progression, with elevated levels of circulating inflammatory cytokines observed in patients. The interplay between mitochondrial dysfunction and inflammation involves shared risk factors, signaling pathways, and potential therapeutic targets. This review comprehensively explores the mechanisms linking mitochondrial dysfunction and inflammation in HF, including the roles of mitochondrial reactive oxygen species (ROS), calcium dysregulation, and mitochondrial DNA (mtDNA) release in triggering inflammatory responses. Understanding these complex interactions offers insights into novel therapeutic approaches for improving mitochondrial function and relieving oxidative stress and inflammation. Targeted interventions that address the mitochondria-inflammation axis hold promise for enhancing cardiac function and outcomes in HF patients.
Collapse
Affiliation(s)
- Baile Zuo
- Molecular Immunology and Immunotherapy Laboratory, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiu Fan
- Department of Blood Transfusion, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Dawei Xu
- Department of Blood Transfusion, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Liping Zhao
- Department of Pathology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Bi Zhang
- Department of Blood Transfusion, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China.
| | - Xiaoyan Li
- Department of Blood Transfusion, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China; Department of Clinical Laboratory, Heping Branch, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China.
| |
Collapse
|
20
|
Valantine HA, Khush KK. Toward Equitable Heart Transplant Outcomes: Interrupting Danger Signals to Define New Therapeutic Strategies. JACC. HEART FAILURE 2024; 12:1293-1299. [PMID: 38960523 DOI: 10.1016/j.jchf.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/11/2024] [Accepted: 04/23/2024] [Indexed: 07/05/2024]
Affiliation(s)
| | - Kiran K Khush
- Department Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
21
|
He X, Huang S, Yu C, Chen Y, Zhu H, Li J, Chen S. Mst1/Hippo signaling pathway drives isoproterenol-induced inflammatory heart remodeling. Int J Med Sci 2024; 21:1718-1729. [PMID: 39006833 PMCID: PMC11241096 DOI: 10.7150/ijms.95850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Isoproterenol (ISO) administration is a well-established model for inducing myocardial injury, replicating key features of human myocardial infarction (MI). The ensuing inflammatory response plays a pivotal role in the progression of adverse cardiac remodeling, characterized by myocardial dysfunction, fibrosis, and hypertrophy. The Mst1/Hippo signaling pathway, a critical regulator of cellular processes, has emerged as a potential therapeutic target in cardiovascular diseases. This study investigates the role of Mst1 in ISO-induced myocardial injury and explores its underlying mechanisms. Our findings demonstrate that Mst1 ablation in cardiomyocytes attenuates ISO-induced cardiac dysfunction, preserving cardiomyocyte viability and function. Mechanistically, Mst1 deletion inhibits cardiomyocyte apoptosis, oxidative stress, and calcium overload, key contributors to myocardial injury. Furthermore, Mst1 ablation mitigates endoplasmic reticulum (ER) stress and mitochondrial fission, both of which are implicated in ISO-mediated cardiac damage. Additionally, Mst1 plays a crucial role in modulating the inflammatory response following ISO treatment, as its deletion suppresses pro-inflammatory cytokine expression and neutrophil infiltration. To further investigate the molecular mechanisms underlying ISO-induced myocardial injury, we conducted a bioinformatics analysis using the GSE207581 dataset. GO and KEGG pathway enrichment analyses revealed significant enrichment of genes associated with DNA damage response, DNA repair, protein ubiquitination, chromatin organization, autophagy, cell cycle, mTOR signaling, FoxO signaling, ubiquitin-mediated proteolysis, and nucleocytoplasmic transport. These findings underscore the significance of Mst1 in ISO-induced myocardial injury and highlight its potential as a therapeutic target for mitigating adverse cardiac remodeling. Further investigation into the intricate mechanisms of Mst1 signaling may pave the way for novel therapeutic interventions for myocardial infarction and heart failure.
Collapse
Affiliation(s)
- Xiuling He
- Department of Cardiology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, 100048, China
| | - Shuai Huang
- Department of Cardio-Thoracic Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, 510630, Guangzhou, China
| | - Chijia Yu
- Department of Clinical Laboratory Medicine, The First Medical Centre, Medical School of Chinese PLA, Beijing, China
| | - Ye Chen
- Department of Cardiology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Hang Zhu
- Department of Cardiology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, 100048, China
| | - Jianwei Li
- Department of Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan 528403, China
| | - Shanshan Chen
- Department of Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan 528403, China
| |
Collapse
|
22
|
Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 2024; 134:1718-1751. [PMID: 38843294 PMCID: PMC11164543 DOI: 10.1161/circresaha.124.323658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine at the University of Freiburg, Freiburg, Germany
| | - Stefan Frantz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
23
|
Holt M, Lin J, Cicka M, Wong A, Epelman S, Lavine KJ. Dissecting and Visualizing the Functional Diversity of Cardiac Macrophages. Circ Res 2024; 134:1791-1807. [PMID: 38843293 DOI: 10.1161/circresaha.124.323817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Cardiac macrophages represent a functionally diverse population of cells involved in cardiac homeostasis, repair, and remodeling. With recent advancements in single-cell technologies, it is possible to elucidate specific macrophage subsets based on transcriptional signatures and cell surface protein expression to gain a deep understanding of macrophage diversity in the heart. The use of fate-mapping technologies and parabiosis studies have provided insight into the ontogeny and dynamics of macrophages identifying subsets derived from embryonic and adult definitive hematopoietic progenitors that include tissue-resident and bone marrow monocyte-derived macrophages, respectively. Within the heart, these subsets have distinct tissue niches and functional roles in the setting of homeostasis and disease, with cardiac resident macrophages representing a protective cell population while bone marrow monocyte-derived cardiac macrophages have a context-dependent effect, triggering both proinflammatory tissue injury, but also promoting reparative functions. With the increased understanding of the clinical relevance of cardiac macrophage subsets, there has been an increasing need to detect and measure cardiac macrophage compositions in living animals and patients. New molecular tracers compatible with positron emission tomography/computerized tomography and positron emission tomography/ magnetic resonance imaging have enabled investigators to noninvasively and serially visualize cardiac macrophage subsets within the heart to define associations with disease and measure treatment responses. Today, advancements within this thriving field are poised to fuel an era of clinical translation.
Collapse
Affiliation(s)
- Megan Holt
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine (M.H., M.C., K.J.L.)
| | - Julia Lin
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (J.L., A.W., S.E.)
- Department of Immunology, University of Toronto, ON, Canada (J.L., A.W., S.E.)
| | - Markus Cicka
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine (M.H., M.C., K.J.L.)
| | - Anthony Wong
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (J.L., A.W., S.E.)
- Department of Immunology, University of Toronto, ON, Canada (J.L., A.W., S.E.)
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (J.L., A.W., S.E.)
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, Canada (S.E.)
- Department of Immunology, University of Toronto, ON, Canada (J.L., A.W., S.E.)
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada (S.E.)
| | - Kory J Lavine
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine (M.H., M.C., K.J.L.)
| |
Collapse
|
24
|
Sharma J, Bhargava P, Mishra P, Bhatia J, Arya DS. Molecular mechanisms of flavonoids in myocardial ischemia reperfusion injury: Evidence from in-vitro and in-vivo studies. Vascul Pharmacol 2024; 155:107378. [PMID: 38729253 DOI: 10.1016/j.vph.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVES Flavonoids are polyphenolic compounds found in a wide range of foods, including fruits, vegetables, tea plants, and other natural products. They have been mainly classified as flavanols, flavonols, flavones, isoflavones, flavanones, and flavanonols. In this comprehensive review, we will discuss preclinical pieces of evidence on the potential of flavonoids for the prevention/treatment of myocardial ischemia-reperfusion (IR) injury. KEY FINDINGS In-vitro and in-vivo studies have shown that flavonoids play an important role in preventing ischemic heart disease (IHD). They possess strong anti-oxidant, anti-inflammatory, anti-bacterial, anti-thrombotic, anti-apoptotic, and anti-carcinogenic activities. In addition, at a molecular level, flavonoids also modulate various pathways like MAPK, NFκB etc. to confer beneficial effects. SUMMARY The current review of flavonoids in myocardial ischemia-reperfusion injury furnishes updated information that could drive future research. The in-vitro and in-vivo experiments have demonstrated various favourable pharmacological properties of flavonoids. This review provides valuable information to conduct clinical studies, validating the safety aspects of flavonoids in the clinical domain.
Collapse
Affiliation(s)
- Jatin Sharma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Poorva Bhargava
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Prashant Mishra
- Armed Forces Medical College, Pune, Maharashtra 411040, India
| | - Jagriti Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
25
|
Yang K, Gao R, Chen H, Hu J, Zhang P, Wei X, Shi J, Chen Y, Zhang L, Chen J, Lyu Y, Dong Z, Wei W, Hu K, Guo Y, Ge J, Sun A. Myocardial reperfusion injury exacerbation due to ALDH2 deficiency is mediated by neutrophil extracellular traps and prevented by leukotriene C4 inhibition. Eur Heart J 2024; 45:1662-1680. [PMID: 38666340 PMCID: PMC11089336 DOI: 10.1093/eurheartj/ehae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 02/18/2024] [Accepted: 03/19/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND AND AIMS The Glu504Lys polymorphism in the aldehyde dehydrogenase 2 (ALDH2) gene is closely associated with myocardial ischaemia/reperfusion injury (I/RI). The effects of ALDH2 on neutrophil extracellular trap (NET) formation (i.e. NETosis) during I/RI remain unknown. This study aimed to investigate the role of ALDH2 in NETosis in the pathogenesis of myocardial I/RI. METHODS The mouse model of myocardial I/RI was constructed on wild-type, ALDH2 knockout, peptidylarginine deiminase 4 (Pad4) knockout, and ALDH2/PAD4 double knockout mice. Overall, 308 ST-elevation myocardial infarction patients after primary percutaneous coronary intervention were enrolled in the study. RESULTS Enhanced NETosis was observed in human neutrophils carrying the ALDH2 genetic mutation and ischaemic myocardium of ALDH2 knockout mice compared with controls. PAD4 knockout or treatment with NETosis-targeting drugs (GSK484, DNase1) substantially attenuated the extent of myocardial damage, particularly in ALDH2 knockout. Mechanistically, ALDH2 deficiency increased damage-associated molecular pattern release and susceptibility to NET-induced damage during myocardial I/RI. ALDH2 deficiency induced NOX2-dependent NETosis via upregulating the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/leukotriene C4 (LTC4) pathway. The Food and Drug Administration-approved LTC4 receptor antagonist pranlukast ameliorated I/RI by inhibiting NETosis in both wild-type and ALDH2 knockout mice. Serum myeloperoxidase-DNA complex and LTC4 levels exhibited the predictive effect on adverse left ventricular remodelling at 6 months after primary percutaneous coronary intervention in ST-elevation myocardial infarction patients. CONCLUSIONS ALDH2 deficiency exacerbates myocardial I/RI by promoting NETosis via the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/LTC4/NOX2 pathway. This study hints at the role of NETosis in the pathogenesis of myocardial I/RI, and pranlukast might be a potential therapeutic option for attenuating I/RI, particularly in individuals with the ALDH2 mutation.
Collapse
Affiliation(s)
- Kun Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Rifeng Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Department of Cardiology, The Fifth People’s Hospital of Shanghai, Fudan University, 128 Ruili Road, Shanghai 200240, China
- Department of Cardiac Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Hanchuan Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Jingjing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310006, China
| | - Peng Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Department of Cardiology, Minhang Hospital affiliated to Fudan University, 170 Xinsong Road, Shanghai 201100, China
| | - Xiang Wei
- Department of Cardiology, The Fifth People’s Hospital of Shanghai, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Jiaran Shi
- Department of Cardiology, Lihuili Hospital Facilitated to Ningbo University, 57 Xingning Road, Ningbo 315040, China
| | - Yinyin Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Department of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Liwei Zhang
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, 134 Dongjie Road, Fuzhou 350001, China
| | - Juntao Chen
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yang Lyu
- Department of Cardiology, The Fifth People’s Hospital of Shanghai, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Wei Wei
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Yansong Guo
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, 134 Dongjie Road, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, 134 Dongjie Road, Fuzhou 350001, China
- Fujian Heart Failure Center Alliance, 134 Dongjie Road, Fuzhou 350001, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, 180 Fenglin Road, Shanghai 200032, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| |
Collapse
|
26
|
Chang NP, DaPrano EM, Lindman M, Estevez I, Chou TW, Evans WR, Nissenbaum M, McCourt M, Alzate D, Atkins C, Kusnecov AW, Huda R, Daniels BP. Neuronal DAMPs exacerbate neurodegeneration via astrocytic RIPK3 signaling. JCI Insight 2024; 9:e177002. [PMID: 38713518 PMCID: PMC11382884 DOI: 10.1172/jci.insight.177002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
Astrocyte activation is a common feature of neurodegenerative diseases. However, the ways in which dying neurons influence the activity of astrocytes is poorly understood. Receptor interacting protein kinase-3 (RIPK3) signaling has recently been described as a key regulator of neuroinflammation, but whether this kinase mediates astrocytic responsiveness to neuronal death has not yet been studied. Here, we used the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model of Parkinson's disease to show that activation of astrocytic RIPK3 drives dopaminergic cell death and axon damage. Transcriptomic profiling revealed that astrocytic RIPK3 promoted gene expression associated with neuroinflammation and movement disorders, and this coincided with significant engagement of damage-associated molecular pattern signaling. In mechanistic experiments, we showed that factors released from dying neurons signaled through receptor for advanced glycation endproducts to induce astrocytic RIPK3 signaling, which conferred inflammatory and neurotoxic functional activity. These findings highlight a mechanism of neuron-glia crosstalk in which neuronal death perpetuates further neurodegeneration by engaging inflammatory astrocyte activation via RIPK3.
Collapse
Affiliation(s)
| | | | | | | | | | - Wesley R Evans
- Department of Cell Biology and Neuroscience
- W. M. Keck Center for Collaborative Neuroscience, and
| | | | | | | | | | | | - Rafiq Huda
- Department of Cell Biology and Neuroscience
- W. M. Keck Center for Collaborative Neuroscience, and
| | | |
Collapse
|
27
|
Olsen MB, Kong XY, Louwe MC, Lauritzen KH, Schanke Y, Kaasbøll OJ, Attramadal H, Øgaard J, Holm S, Aukrust P, Ryan L, Espevik T, Yurchenko M, Halvorsen B. SLAMF1-derived peptide exhibits cardio protection after permanent left anterior descending artery ligation in mice. Front Immunol 2024; 15:1383505. [PMID: 38686379 PMCID: PMC11056545 DOI: 10.3389/fimmu.2024.1383505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
Acute myocardial infarction (MI) results in tissue damage to affected areas of the myocardium. The initial inflammatory response is the most damaging for residual cardiac function, while at later stages inflammation is a prerequisite for proper healing and scar formation. Balancing the extent and duration of inflammation during various stages after MI is thus pivotal for preserving cardiac function. Recently, a signaling lymphocytic activation molecule 1 (SLAMF1)-derived peptide (P7) was shown to reduce the secretion of inflammatory cytokines and protected against acute lipopolysaccharide-induced death in mice. In the present study, we experimentally induced MI by permanent ligation of the left anterior descending artery (LAD) in mice and explored the beneficial effect of immediately administering P7, with the aim of dampening the initial inflammatory phase without compromising the healing and remodeling phase. Blood samples taken 9 h post-LAD surgery and P7 administration dampened the secretion of inflammatory cytokines, but this dampening effect of P7 was diminished after 3 days. Echocardiography revealed less deterioration of cardiac contraction in mice receiving P7. In line with this, less myocardial damage was observed histologically in P7-treated mice. In conclusion, the administration of a SLAMF1-derived peptide (P7) immediately after induction of MI reduces the initial myocardial inflammation, reduces infarct expansion, and leads to less deterioration of cardiac contraction.
Collapse
Affiliation(s)
- Maria Belland Olsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Xiang Yi Kong
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Mieke C. Louwe
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Knut H. Lauritzen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ylva Schanke
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ole Jørgen Kaasbøll
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Håvard Attramadal
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jonas Øgaard
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Liv Ryan
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Infectious Diseases, Clinic of Medicine, St. Olav’s Hospital HF, Trondheim University Hospital, Trondheim, Norway
| | - Maria Yurchenko
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Infectious Diseases, Clinic of Medicine, St. Olav’s Hospital HF, Trondheim University Hospital, Trondheim, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
28
|
Hoque MM, Gbadegoye JO, Hassan FO, Raafat A, Lebeche D. Cardiac fibrogenesis: an immuno-metabolic perspective. Front Physiol 2024; 15:1336551. [PMID: 38577624 PMCID: PMC10993884 DOI: 10.3389/fphys.2024.1336551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Cardiac fibrosis is a major and complex pathophysiological process that ultimately culminates in cardiac dysfunction and heart failure. This phenomenon includes not only the replacement of the damaged tissue by a fibrotic scar produced by activated fibroblasts/myofibroblasts but also a spatiotemporal alteration of the structural, biochemical, and biomechanical parameters in the ventricular wall, eliciting a reactive remodeling process. Though mechanical stress, post-infarct homeostatic imbalances, and neurohormonal activation are classically attributed to cardiac fibrosis, emerging evidence that supports the roles of immune system modulation, inflammation, and metabolic dysregulation in the initiation and progression of cardiac fibrogenesis has been reported. Adaptive changes, immune cell phenoconversions, and metabolic shifts in the cardiac nonmyocyte population provide initial protection, but persistent altered metabolic demand eventually contributes to adverse remodeling of the heart. Altered energy metabolism, mitochondrial dysfunction, various immune cells, immune mediators, and cross-talks between the immune cells and cardiomyocytes play crucial roles in orchestrating the transdifferentiation of fibroblasts and ensuing fibrotic remodeling of the heart. Manipulation of the metabolic plasticity, fibroblast-myofibroblast transition, and modulation of the immune response may hold promise for favorably modulating the fibrotic response following different cardiovascular pathological processes. Although the immunologic and metabolic perspectives of fibrosis in the heart are being reported in the literature, they lack a comprehensive sketch bridging these two arenas and illustrating the synchrony between them. This review aims to provide a comprehensive overview of the intricate relationship between different cardiac immune cells and metabolic pathways as well as summarizes the current understanding of the involvement of immune-metabolic pathways in cardiac fibrosis and attempts to identify some of the previously unaddressed questions that require further investigation. Moreover, the potential therapeutic strategies and emerging pharmacological interventions, including immune and metabolic modulators, that show promise in preventing or attenuating cardiac fibrosis and restoring cardiac function will be discussed.
Collapse
Affiliation(s)
- Md Monirul Hoque
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joy Olaoluwa Gbadegoye
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fasilat Oluwakemi Hassan
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amr Raafat
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Djamel Lebeche
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
- Medicine-Cardiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
- Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
29
|
Kothari P, Kiwakyou LM, Guenthart BA, Vanneman M. Beating Heart Transplants-Overview and Implications for Anesthesiologists. J Cardiothorac Vasc Anesth 2024; 38:610-615. [PMID: 38228423 DOI: 10.1053/j.jvca.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
As the demand for heart allografts for transplantation continues to rise, ex vivo organ perfusion strategies are playing an increasingly important role in the preservation of organs from donation after circulatory death and extended-criteria donors. One such method uses the Organ Care System (TransMedics, Andover, MA). Traditionally, this technique of preservation requires 2 periods of warm ischemia and subsequent cardioplegic arrest. In a novel surgical technique pioneered at the authors' institution, heart allograft implantation no longer requires a second cardioplegic arrest. This article discusses the surgical approach for this procedure, the advantages and disadvantages of this approach, and analogs to current clinical practice to theorize what impact this may have on cardiac transplantation volumes in the future.
Collapse
Affiliation(s)
- Perin Kothari
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA.
| | - Larissa Miyachi Kiwakyou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA
| | - Brandon A Guenthart
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA
| | - Matthew Vanneman
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
30
|
Tona F, Civieri G, Vadori M, Masiero G, Iop L, Marra MP, Perin V, Cuciz E, Cecere A, Bernava G, Tansella D, Naumova N, Grewal S, Cozzi E, Iliceto S. Association of Angiotensin II Receptor Type 1 and Endothelin-1 Receptor Type A Agonistic Autoantibodies With Adverse Remodeling and Cardiovascular Events After Acute Myocardial Infarction. J Am Heart Assoc 2024; 13:e032672. [PMID: 38348777 PMCID: PMC11010093 DOI: 10.1161/jaha.123.032672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/27/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND The left ventricular remodeling (LVR) process has limited the effectiveness of therapies after myocardial infarction. The relationship between autoantibodies activating AT1R-AAs (angiotensin II receptor type 1-AAs) and ETAR-AAs (autoantibodies activating endothelin-1 receptor type A) with myocardial infarction has been described. Among patients with ST-segment-elevation myocardial infarction, we investigated the relationship between these autoantibodies with LVR and subsequent major adverse cardiac events. METHODS AND RESULTS In this prospective observational study, we included 131 patients with ST-segment-elevation myocardial infarction (61±11 years of age, 112 men) treated with primary percutaneous coronary intervention. Within 48 hours of admission, 2-dimensional transthoracic echocardiography was performed, and blood samples were obtained. The seropositive threshold for AT1R-AAs and ETAR-AAs was >10 U/mL. Patients were followed up at 6 months, when repeat transthoracic echocardiography was performed. The primary end points were LVR, defined as a 20% increase in left ventricular end-diastolic volume index, and major adverse cardiac event occurrence at follow-up, defined as cardiac death, nonfatal re-myocardial infarction, and hospitalization for heart failure. Forty-one (31%) patients experienced LVR. The prevalence of AT1R-AAs and ETAR-AAs seropositivity was higher in patients with versus without LVR (39% versus 11%, P<0.001 and 37% versus 12%, P=0.001, respectively). In multivariable analysis, AT1R-AAs seropositivity was significantly associated with LVR (odds ratio [OR], 4.66; P=0.002) and represented a risk factor for subsequent major adverse cardiac events (OR, 19.6; P=0.002). CONCLUSIONS AT1R-AAs and ETAR-AAs are associated with LVR in patients with ST-segment-elevation myocardial infarction. AT1R-AAs are also significantly associated with recurrent major adverse cardiac events. These initial observations may set the stage for a better pathophysiological understanding of the mechanisms contributing to LVR and ST-segment-elevation myocardial infarction prognosis.
Collapse
Affiliation(s)
- Francesco Tona
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Giovanni Civieri
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Marta Vadori
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Giulia Masiero
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Laura Iop
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Valentina Perin
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Elisa Cuciz
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Annagrazia Cecere
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Giacomo Bernava
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Donatella Tansella
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Nataliia Naumova
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | | | - Emanuele Cozzi
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Sabino Iliceto
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| |
Collapse
|
31
|
Kumphune S, Seenak P, Paiyabhrom N, Songjang W, Pankhong P, Jumroon N, Thaisakun S, Phaonakrop N, Roytrakul S, Malakul W, Jiraviriyakul A, Nernpermpisooth N. Cardiac endothelial ischemia/reperfusion injury-derived protein damage-associated molecular patterns disrupt the integrity of the endothelial barrier. Heliyon 2024; 10:e24600. [PMID: 38312663 PMCID: PMC10835233 DOI: 10.1016/j.heliyon.2024.e24600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Human cardiac microvascular endothelial cells (HCMECs) are sensitive to ischemia and vulnerable to damage during reperfusion. The release of damage-associated molecular patterns (DAMPs) during reperfusion induces additional tissue damage. The current study aimed to identify early protein DAMPs in human cardiac microvascular endothelial cells subjected to ischemia-reperfusion injury (IRI) using a proteomic approach and their effect on endothelial cell injury. HCMECs were subjected to 60 min of simulated ischemia and 6 h of reperfusion, which can cause lethal damage. DAMPs in the culture media were subjected to liquid chromatography-tandem mass spectrometry proteomic analysis. The cells were treated with endothelial IRI-derived DAMP medium for 24 h. Endothelial injury was assessed by measuring lactate dehydrogenase activity, morphological features, and the expression of endothelial cadherin, nitric oxide synthase (eNOS), and caveolin-1. The top two upregulated proteins, DNAJ homolog subfamily B member 11 and pyrroline-5-carboxylate reductase 2, are promising and sensitive predictors of cardiac microvascular endothelial damage. HCMECs expose to endothelial IRI-derived DAMP, the lactate dehydrogenase activity was significantly increased compared with the control group (10.15 ± 1.03 vs 17.67 ± 1.19, respectively). Following treatment with endothelial IRI-derived DAMPs, actin-filament dysregulation, and downregulation of vascular endothelial cadherin, caveolin-1, and eNOS expressions were observed, along with cell death. In conclusion, the early protein DAMPs released during cardiac microvascular endothelial IRI could serve as novel candidate biomarkers for acute myocardial IRI. Distinct features of impaired plasma membrane integrity can help identify therapeutic targets to mitigate the detrimental consequences mediated of endothelial IRI-derived DAMPs.
Collapse
Affiliation(s)
- Sarawut Kumphune
- Biomedical Engineering and Innovation Research Centre, Chiang Mai University, Muang, Chiang Mai, 50200, Thailand
- Biomedical Engineering Institute, Chiang Mai University, Muang, Chiang Mai, 50200, Thailand
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Porrnthanate Seenak
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Nitchawat Paiyabhrom
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Worawat Songjang
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Panyupa Pankhong
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Noppadon Jumroon
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Siriwan Thaisakun
- National Centre for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Narumon Phaonakrop
- National Centre for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- National Centre for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Wachirawadee Malakul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Arunya Jiraviriyakul
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Nitirut Nernpermpisooth
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
32
|
Krishnan A, Guenthart BA, Ruaengsri C, Elde S, Zhu Y, MacArthur JW, Woo YJ. Beating Heart Transplantation: How to Do It. INNOVATIONS-TECHNOLOGY AND TECHNIQUES IN CARDIOTHORACIC AND VASCULAR SURGERY 2024; 19:88-91. [PMID: 38258625 DOI: 10.1177/15569845231220678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Heart transplantation utilizing deceased after circulatory death (DCD) donors has expanded the donor pool through the use of ex vivo normothermic perfusion. Compared with brain death donation, the conventional method of performing DCD heart transplantation includes an additional period of warm and cold ischemia. We have developed a beating heart implantation technique that obliviates the need for a second cardioplegic arrest and the associated reperfusion injury. We hypothesize this reproducible method may improve short-term and long-term outcomes to mirror results seen in brain death donors and provide details on how to perform beating heart transplantation.
Collapse
Affiliation(s)
- Aravind Krishnan
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, CA, USA
| | - Brandon A Guenthart
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, CA, USA
| | - Chawannuch Ruaengsri
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, CA, USA
| | - Stefan Elde
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, CA, USA
- Department of Bioengineering, Stanford University School of Engineering, CA, USA
| | - John Ward MacArthur
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, CA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, CA, USA
- Department of Bioengineering, Stanford University School of Engineering, CA, USA
| |
Collapse
|
33
|
Lukić I, Mihić D, Varžić SC, Relatić KS, Zibar L, Loinjak D, Ćurić ŽB, Klobučar L, Maričić L. Septic Cardiomyopathy. Rev Cardiovasc Med 2024; 25:23. [PMID: 39077653 PMCID: PMC11262393 DOI: 10.31083/j.rcm2501023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 07/31/2024] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis-induced myocardial dysfunction represents reversible myocardial dysfunction which ultimately results in left ventricular dilatation or both, with consequent loss of contractility. Studies on septic cardiomyopathy report a wide range of prevalence ranging from 10% to 70%. Myocardial damage occurs as a result of weakened myocardial circulation, direct myocardial depression, and mitochondrial dysfunction. Mitochondrial dysfunction is the leading problem in the development of septic cardiomyopathy and includes oxidative phosphorylation, production of reactive oxygen radicals, reprogramming of energy metabolism, and mitophagy. Echocardiography provides several possibilities for the diagnosis of septic cardiomyopathy. Systolic and diastolic dysfunction of left ventricular is present in 50-60% of patients with sepsis. Right ventricular dysfunction is present in 50-55% of cases, while isolated right ventricular dysfunction is present in 47% of cases. Left ventricle (LV) diastolic dysfunction is very common in septic shock, and it represents an early biomarker, it has prognostic significance. Right ventricular dysfunction associated with sepsis patients with worse early prognosis. Global longitudinal stress and magnetic resonance imaging (MRI) of the heart are sufficiently sensitive methods, but at the same time MRI of the heart is difficult to access in intensive care units, especially when dealing with critically ill patients. Previous research has identified two biomarkers as a result of the integrated mitochondrial response to stress, and these are fibroblast growth factor-21 (FGF-21) and growth differentiation factor-15 (GDF-15). Both of the mentioned biomarkers can be easily quantified in serum or plasma, but they are difficult to be specific in patients with multiple comorbidities. Mitochondrial dysfunction is also associated with reduced levels of miRNA (microRNA), some research showed significance of miRNA in sepsis-induced myocardial dysfunction, but further research is needed to determine the clinical significance of these molecules in septic cardiomyopathy. Therapeutic options in the treatment of septic cardiomyopathy are not specific, and include the optimization of hemodynamic parameters and the use of antibiotic thera-pies with targeted action. Future research aims to find mechanisms of targeted action on the initial mechanisms of the development of septic cardiomyopathy.
Collapse
Affiliation(s)
- Ivana Lukić
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Heart and Vascular Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Damir Mihić
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Pulmology and Intensive Care Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Silvija Canecki Varžić
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Endocrinology, University Hospital Centre Hospital Osijek, 31000 Osijek, Croatia
| | - Kristina Selthofer Relatić
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Heart and Vascular Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Lada Zibar
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Nephrology, University Hospital Merkur, Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Loinjak
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Pulmology and Intensive Care Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Željka Breškić Ćurić
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Internal Medicine, General Hospital Vinkovci, 32100 Vinkovci, Croatia
| | - Lucija Klobučar
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Heart and Vascular Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Lana Maričić
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Heart and Vascular Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
| |
Collapse
|
34
|
Hammond ME, Zollinger C, Vidic A, Snow GL, Stehlik J, Alharethi RA, Kfoury AG, Drakos S, Hammond MEH. Donor Age, Sex, and Cause of Death and Their Relationship to Heart Transplant Recipient Cardiac Death. J Clin Med 2023; 12:7629. [PMID: 38137698 PMCID: PMC10744178 DOI: 10.3390/jcm12247629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Recent studies indicate that donor innate immune responses participate in initiating and accelerating innate responses and allorecognition in the recipient. These immune responses negatively affect recipient outcomes and predispose recipients to cardiovascular death (CV death). We hypothesized that a donor cause of death (COD) associated with higher levels of innate immune response would predispose recipients to more adverse outcomes post-transplant, including CV death. METHODS We performed a single-institution retrospective analysis comparing donor characteristics and COD to recipient adverse cardiovascular outcomes. We analyzed the medical records of local adult donors (age 18-64) in a database of donors where adequate data was available. Donor age was available on 706 donors; donor sex was available on 730 donors. We linked donor characteristics (age and sex) and COD to recipient CV death. The data were analyzed using logistic regression, the log-rank test of differences, and Tukey contrast. RESULTS Donor age, female sex, and COD of intracranial hemorrhage were significantly associated with a higher incidence of recipient CV death. CONCLUSIONS In this single institution study, we found that recipients with hearts from donors over 40 years, donors who were female, or donors who died with a COD of intracranial hemorrhage had a higher frequency of CV death. Donor monitoring and potential treatment of innate immune activation may decrease subsequent recipient innate responses and allorecognition stimulated by donor-derived inflammatory signaling, which leads to adverse outcomes.
Collapse
Affiliation(s)
- Margo E. Hammond
- Department of Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Charles Zollinger
- Intermountain Donor Services, 6065 S Fashion Blvd, Murray, UT 84107, USA;
| | - Andrija Vidic
- Department of Cardiology, University of Kansas Hospital, 4000 Cambridge St., Kansas City, KS 66160, USA;
| | - Gregory L. Snow
- Department of Statistics, Brigham Young University, Provo, UT 84602, USA;
| | - Joseph Stehlik
- Department of Cardiology, University of Utah Hospital, 50 N Medical Drive, Salt Lake City, UT 84132, USA; (J.S.); (S.D.)
| | - Rami A. Alharethi
- Cardiac Transplant Program, Intermountain Medical Center, 5252 S Intermountain Drive, Salt Lake City, UT 84157, USA; (R.A.A.); (A.G.K.)
| | - Abdallah G. Kfoury
- Cardiac Transplant Program, Intermountain Medical Center, 5252 S Intermountain Drive, Salt Lake City, UT 84157, USA; (R.A.A.); (A.G.K.)
| | - Stavros Drakos
- Department of Cardiology, University of Utah Hospital, 50 N Medical Drive, Salt Lake City, UT 84132, USA; (J.S.); (S.D.)
| | - M Elizabeth H. Hammond
- Department of Cardiology, University of Utah Hospital, 50 N Medical Drive, Salt Lake City, UT 84132, USA; (J.S.); (S.D.)
- Cardiac Transplant Program, Intermountain Medical Center, 5252 S Intermountain Drive, Salt Lake City, UT 84157, USA; (R.A.A.); (A.G.K.)
| |
Collapse
|
35
|
Luan Y, Luan Y, Jiao Y, Liu H, Huang Z, Feng Q, Pei J, Yang Y, Ren K. Broadening Horizons: Exploring mtDAMPs as a Mechanism and Potential Intervention Target in Cardiovascular Diseases. Aging Dis 2023; 15:2395-2416. [PMID: 38270118 PMCID: PMC11567272 DOI: 10.14336/ad.2023.1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
Cardiovascular diseases (CVDs) have been recognized as the leading cause of premature mortality and morbidity worldwide despite significant advances in therapeutics. Inflammation is a key factor in CVD progression. Once stress stimulates cells, they release cellular compartments known as damage-associated molecular patterns (DAMPs). Mitochondria can release mitochondrial DAMPs (mtDAMPs) to initiate an immune response when stimulated with cellular stress. Investigating the molecular mechanisms underlying the DAMPs that regulate CVD progression is crucial for improving CVDs. Herein, we discuss the composition and mechanism of DAMPs, the significance of mtDAMPs in cellular inflammation, the presence of mtDAMPs in different types of cells, and the main signaling pathways associated with mtDAMPs. Based on this, we determined the role of DAMPs in CVDs and the effects of mtDAMP intervention on CVD progression. By offering a fresh perspective and comprehensive insights into the molecular mechanisms of DAMPs, this review seeks to provide important theoretical foundations for developing drugs targeting CVDs.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ying Luan
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
| | - Yuxue Jiao
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.
| | - Zhen Huang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.
| | - Qi Feng
- Department ofIntegrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jinyan Pei
- Quality Management Department, The Third People’s Hospital of Henan Provine, Zhengzhou, China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
36
|
Zhang W, Dong E, Zhang J, Zhang Y. CaMKII, 'jack of all trades' in inflammation during cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2023; 184:48-60. [PMID: 37813179 DOI: 10.1016/j.yjmcc.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
Myocardial infarction and revascularization cause cardiac ischemia/reperfusion (I/R) injury featuring cardiomyocyte death and inflammation. The Ca2+/calmodulin dependent protein kinase II (CaMKII) family are serine/ threonine protein kinases that are involved in I/R injury. CaMKII exists in four different isoforms, α, β, γ, and δ. In the heart, CaMKII-δ is the predominant isoform,with multiple splicing variants, such as δB, δC and δ9. During I/R, elevated intracellular Ca2+ concentrations and reactive oxygen species activate CaMKII. In this review, we summarized the regulation and function of CaMKII in multiple cell types including cardiomyocytes, endothelial cells, and macrophages during I/R. We conclude that CaMKII mediates inflammation in the microenvironment of the myocardium, resulting in cell dysfunction, elevated inflammation, and cell death. However, different CaMKII-δ variants exhibit distinct or even opposite functions. Therefore, reagents/approaches that selectively target specific CaMKII isoforms and variants are needed for evaluating and counteracting the exact role of CaMKII in I/R injury and developing effective treatments against I/R injury.
Collapse
Affiliation(s)
- Wenjia Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Erdan Dong
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China
| | - Junxia Zhang
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China.
| | - Yan Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
37
|
Francisco J, Del Re DP. Inflammation in Myocardial Ischemia/Reperfusion Injury: Underlying Mechanisms and Therapeutic Potential. Antioxidants (Basel) 2023; 12:1944. [PMID: 38001797 PMCID: PMC10669026 DOI: 10.3390/antiox12111944] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myocardial infarction (MI) occurs when blood flow to the myocardium is restricted, leading to cardiac damage and massive loss of viable cardiomyocytes. Timely restoration of coronary flow is considered the gold standard treatment for MI patients and limits infarct size; however, this intervention, known as reperfusion, initiates a complex pathological process that somewhat paradoxically also contributes to cardiac injury. Despite being a sterile environment, ischemia/reperfusion (I/R) injury triggers inflammation, which contributes to infarct expansion and subsequent cardiac remodeling and wound healing. The immune response is comprised of subsets of both myeloid and lymphoid-derived cells that act in concert to modulate the pathogenesis and resolution of I/R injury. Multiple mechanisms, including altered metabolic status, regulate immune cell activation and function in the setting of acute MI, yet our understanding remains incomplete. While numerous studies demonstrated cardiac benefit following strategies that target inflammation in preclinical models, therapeutic attempts to mitigate I/R injury in patients were less successful. Therefore, further investigation leveraging emerging technologies is needed to better characterize this intricate inflammatory response and elucidate its influence on cardiac injury and the progression to heart failure.
Collapse
Affiliation(s)
| | - Dominic P. Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
38
|
Ichihara G, Katsumata Y, Sugiura Y, Matsuoka Y, Maeda R, Endo J, Anzai A, Shirakawa K, Moriyama H, Kitakata H, Hiraide T, Goto S, Ko S, Iwasawa Y, Sugai K, Daigo K, Goto S, Sato K, Yamada KI, Suematsu M, Ieda M, Sano M. MRP1-Dependent Extracellular Release of Glutathione Induces Cardiomyocyte Ferroptosis After Ischemia-Reperfusion. Circ Res 2023; 133:861-876. [PMID: 37818671 DOI: 10.1161/circresaha.123.323517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND The membrane components of cardiomyocytes are rich in polyunsaturated fatty acids, which are easily oxidized. Thus, an efficient glutathione-based lipid redox system is essential for maintaining cellular functions. However, the relationship between disruption of the redox system during ischemia-reperfusion (IR), oxidized lipid production, and consequent cell death (ferroptosis) remains unclear. We investigated the mechanisms underlying the disruption of the glutathione-mediated reduction system related to ferroptosis during IR and developed intervention strategies to suppress ferroptosis. METHODS In vivo fluctuations of both intra- and extracellular metabolite levels during IR were explored via microdialysis and tissue metabolome analysis. Oxidized phosphatidylcholines were assessed using liquid chromatography high-resolution mass spectrometry. The areas at risk following IR were assessed using triphenyl-tetrazolium chloride/Evans blue stain. RESULTS Metabolomic analysis combined with microdialysis revealed a significant release of glutathione from the ischemic region into extracellular spaces during ischemia and after reperfusion. The release of glutathione into extracellular spaces and a concomitant decrease in intracellular glutathione concentrations were also observed during anoxia-reperfusion in an in vitro cardiomyocyte model. This extracellular glutathione release was prevented by chemical inhibition or genetic suppression of glutathione transporters, mainly MRP1 (multidrug resistance protein 1). Treatment with MRP1 inhibitor reduced the intracellular reactive oxygen species levels and lipid peroxidation, thereby inhibiting cell death. Subsequent in vivo evaluation of endogenously oxidized phospholipids following IR demonstrated the involvement of ferroptosis, as levels of multiple oxidized phosphatidylcholines were significantly elevated in the ischemic region 12 hours after reperfusion. Inhibition of the MRP1 transporter also alleviated intracellular glutathione depletion in vivo and significantly reduced the generation of oxidized phosphatidylcholines. Administration of MRP1 inhibitors significantly attenuated infarct size after IR injury. CONCLUSIONS Glutathione was released continuously during IR, primarily in an MRP1-dependent manner, and induced ferroptosis. Suppression of glutathione release attenuated ferroptosis and reduced myocardial infarct size following IR.
Collapse
Affiliation(s)
- Genki Ichihara
- Department of Cardiology (G.I., Y.K., J.E., A.A., K. Shirakawa, H.M., H.K., T.H., Shinichi Goto, S.K., Y.I., K. Sugai, K.D., M.I., M. Sano), Keio University School of Medicine, Tokyo, Japan
| | - Yoshinori Katsumata
- Department of Cardiology (G.I., Y.K., J.E., A.A., K. Shirakawa, H.M., H.K., T.H., Shinichi Goto, S.K., Y.I., K. Sugai, K.D., M.I., M. Sano), Keio University School of Medicine, Tokyo, Japan
- Institute for Integrated Sports Medicine (Y.K., K. Sato), Keio University School of Medicine, Tokyo, Japan
| | - Yuki Sugiura
- Department of Biochemistry (Y.S., M. Suematsu), Keio University School of Medicine, Tokyo, Japan
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology (CCII), Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.S., Y.M., R.M.)
| | - Yuta Matsuoka
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology (CCII), Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.S., Y.M., R.M.)
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Kyushu, Japan (Y.M., K.Y.)
| | - Rae Maeda
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology (CCII), Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.S., Y.M., R.M.)
| | - Jin Endo
- Department of Cardiology (G.I., Y.K., J.E., A.A., K. Shirakawa, H.M., H.K., T.H., Shinichi Goto, S.K., Y.I., K. Sugai, K.D., M.I., M. Sano), Keio University School of Medicine, Tokyo, Japan
| | - Atsushi Anzai
- Department of Cardiology (G.I., Y.K., J.E., A.A., K. Shirakawa, H.M., H.K., T.H., Shinichi Goto, S.K., Y.I., K. Sugai, K.D., M.I., M. Sano), Keio University School of Medicine, Tokyo, Japan
| | - Kohsuke Shirakawa
- Department of Cardiology (G.I., Y.K., J.E., A.A., K. Shirakawa, H.M., H.K., T.H., Shinichi Goto, S.K., Y.I., K. Sugai, K.D., M.I., M. Sano), Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Moriyama
- Department of Cardiology (G.I., Y.K., J.E., A.A., K. Shirakawa, H.M., H.K., T.H., Shinichi Goto, S.K., Y.I., K. Sugai, K.D., M.I., M. Sano), Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Kitakata
- Department of Cardiology (G.I., Y.K., J.E., A.A., K. Shirakawa, H.M., H.K., T.H., Shinichi Goto, S.K., Y.I., K. Sugai, K.D., M.I., M. Sano), Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Hiraide
- Department of Cardiology (G.I., Y.K., J.E., A.A., K. Shirakawa, H.M., H.K., T.H., Shinichi Goto, S.K., Y.I., K. Sugai, K.D., M.I., M. Sano), Keio University School of Medicine, Tokyo, Japan
| | - Shinichi Goto
- Department of Cardiology (G.I., Y.K., J.E., A.A., K. Shirakawa, H.M., H.K., T.H., Shinichi Goto, S.K., Y.I., K. Sugai, K.D., M.I., M. Sano), Keio University School of Medicine, Tokyo, Japan
- Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan (Shinichi Goto)
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, MA, USA (Shinichi Goto)
| | - Seien Ko
- Department of Cardiology (G.I., Y.K., J.E., A.A., K. Shirakawa, H.M., H.K., T.H., Shinichi Goto, S.K., Y.I., K. Sugai, K.D., M.I., M. Sano), Keio University School of Medicine, Tokyo, Japan
| | - Yuji Iwasawa
- Department of Cardiology (G.I., Y.K., J.E., A.A., K. Shirakawa, H.M., H.K., T.H., Shinichi Goto, S.K., Y.I., K. Sugai, K.D., M.I., M. Sano), Keio University School of Medicine, Tokyo, Japan
| | - Kazuhisa Sugai
- Department of Cardiology (G.I., Y.K., J.E., A.A., K. Shirakawa, H.M., H.K., T.H., Shinichi Goto, S.K., Y.I., K. Sugai, K.D., M.I., M. Sano), Keio University School of Medicine, Tokyo, Japan
| | - Kyohei Daigo
- Department of Cardiology (G.I., Y.K., J.E., A.A., K. Shirakawa, H.M., H.K., T.H., Shinichi Goto, S.K., Y.I., K. Sugai, K.D., M.I., M. Sano), Keio University School of Medicine, Tokyo, Japan
| | - Shinya Goto
- Department of Medicine (Cardiology), Tokai University School of Medicine, Kanagawa, Japan (Shinya Goto)
| | - Kazuki Sato
- Institute for Integrated Sports Medicine (Y.K., K. Sato), Keio University School of Medicine, Tokyo, Japan
| | - Ken-Ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Kyushu, Japan (Y.M., K.Y.)
| | - Makoto Suematsu
- Department of Biochemistry (Y.S., M. Suematsu), Keio University School of Medicine, Tokyo, Japan
- Central Institute for Experimental Medicine and Life Science, Kanagawa, Japan (M. Suematsu)
| | - Masaki Ieda
- Department of Cardiology (G.I., Y.K., J.E., A.A., K. Shirakawa, H.M., H.K., T.H., Shinichi Goto, S.K., Y.I., K. Sugai, K.D., M.I., M. Sano), Keio University School of Medicine, Tokyo, Japan
| | - Motoaki Sano
- Department of Cardiology (G.I., Y.K., J.E., A.A., K. Shirakawa, H.M., H.K., T.H., Shinichi Goto, S.K., Y.I., K. Sugai, K.D., M.I., M. Sano), Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
39
|
Chang C, Cai RP, Su YM, Wu Q, Su Q. Mesenchymal Stem Cell-Derived Exosomal Noncoding RNAs as Alternative Treatments for Myocardial Ischemia-Reperfusion Injury: Current Status and Future Perspectives. J Cardiovasc Transl Res 2023; 16:1085-1098. [PMID: 37286924 PMCID: PMC10246878 DOI: 10.1007/s12265-023-10401-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Abstract
Ischemic cardiomyopathy is treated mainly with thrombolytic drugs, percutaneous coronary intervention, and coronary artery bypass grafting to recanalize blocked vessels. Myocardial ischemia-reperfusion injury (MIRI) is an unavoidable complication of obstructive revascularization. Compared with those of myocardial ischemic injury, few effective therapeutic options are available for MIRI treatment. The pathophysiological mechanisms of MIRI involve the inflammatory response, the immune response, oxidative stress, apoptosis, intracellular Ca2+ overload, and cardiomyocyte energy metabolism. These mechanisms exacerbate MIRI. Mesenchymal stem cell-derived exosomes (MSC-EXOs) can alleviate MIRI through these mechanisms and, to some extent, prevent the limitations caused by direct MSC administration. Therefore, using MSC-EXOs instead of MSCs to treat MIRI is a potentially beneficial cell-free treatment strategy. In this review, we describe the mechanism of action of MSC-EXO-derived noncoding RNAs in the treatment of MIRI and discuss the advantages and limitations of this strategy, as well as possible future research directions.
Collapse
Affiliation(s)
- Chen Chang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541000, China
| | - Ru-Ping Cai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Ying-Man Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541000, China
| | - Qiang Wu
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China.
- Journal of Geriatric Cardiology Editorial Office, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541000, China.
| |
Collapse
|
40
|
Tona F, Vadori M, Civieri G, Masiero G, Iop L, Antonelli G, Perazzolo Marra M, Bianco F, Cecere A, Lorenzoni G, Naumova N, Bernava G, Basso D, Plebani M, Cozzi E, Iliceto S. Association of autoantibodies targeting endothelin type-A receptors with no-reflow in ST-elevation myocardial infarction. Atherosclerosis 2023; 378:117179. [PMID: 37422357 DOI: 10.1016/j.atherosclerosis.2023.06.970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND AND AIMS No-reflow (NR), where the coronary artery is patent after treatment of ST-elevation myocardial infarction (STEMI) but tissue perfusion is not restored, is associated with worse outcomes. We aimed to investigate the relationship between autoantibodies activating endothelin-1 receptor type A (ETAR-AAs) and NR after primary percutaneous coronary intervention (PPCI) in STEMI. METHODS We studied 50 patients (age 59 ± 11 years, 40 males) with STEMI who underwent PPCI within 6 h after the onset of symptoms. Blood samples were obtained from all patients within 12 h following PPCI for ETAR-AA level measurement. The seropositive threshold was provided by the manufacturer (>10 U/ml). NR was assessed by cardiac magnetic resonance imaging (MVO, microvascular obstruction). As a control group, 40 healthy subjects matched for age and sex were recruited from the general population. RESULTS MVO was observed in 24 patients (48%). The prevalence of MVO was higher in patients with ETAR-AAs seropositivity (72% vs. 38%, p = 0.03). ETAR-AAs were higher in patients with MVO (8.9 U/mL (interquartile range [IQR] 6.8-16.2 U/mL) vs. 5.7 U/mL [IQR 4.3-7.7 U/mL], p = 0.003). ETAR-AAs seropositivity was independently associated with MVO (OR 3.2, 95% CI 1.3-7.1; p = 0.03). We identified ≥6.74 U/mL as the best cut-off for prediction of MVO (sensitivity 79%; specificity 65%; NPV 71%; PPV 74%; accuracy 72%). CONCLUSIONS The ETAR-AAs seropositivity is associated with NR in STEMI patients. These findings may open up new options in the management of myocardial infarction even if confirmation in a larger trial is needed.
Collapse
Affiliation(s)
- Francesco Tona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy.
| | - Marta Vadori
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Giovanni Civieri
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Giulia Masiero
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Laura Iop
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | | | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Federica Bianco
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Annagrazia Cecere
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Giulia Lorenzoni
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Natalia Naumova
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Giacomo Bernava
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Daniela Basso
- Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Mario Plebani
- Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Emanuele Cozzi
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Sabino Iliceto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| |
Collapse
|
41
|
Kaffka Genaamd Dengler SE, Mishra M, van Tuijl S, de Jager SCA, Sluijter JPG, Doevendans PA, van der Kaaij NP. Cold Oxygenated Machine Perfusion Improves Functional Survival of Slaughterhouse Porcine Hearts. ASAIO J 2023; 69:774-781. [PMID: 37146423 DOI: 10.1097/mat.0000000000001955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
The aim of our study was to explore the effect of cold oxygenated machine perfusion in slaughterhouse porcine hearts on functional myocardial survival compared to static cold storage (SCS). Seventeen hearts were harvested from Dutch Landrace Hybrid pigs, which were sacrificed for human consumption and randomly assigned to the 4 hours SCS group (N = 10) or the 4 hours cold oxygenated machine perfusion group (N = 7). Hearts were perfused with a homemade Heart Solution with a perfusion pressure of 20-25 mm Hg to achieve a coronary flow between 100 and 200 ml/minute. After 4 hours of preservation, all hearts were functionally assessed during 4 hours on a normothermic, oxygenated diluted whole blood (1:2) loaded heart model. Survival was defined by a cardiac output above 3 L with a mean aortic pressure above 60 mm Hg. Survival was significantly better in the cold oxygenated machine perfusion group, where 100% of the hearts reached the 4 hours end-point, as compared with 30% in the SCS group ( p = 0.006). Interestingly, warm ischemic time was inversely related to survival in the SCS group with a correlation coefficient of -0.754 ( p = 0.012). Cold oxygenated machine perfusion improves survival of the slaughterhouse porcine heart.
Collapse
Affiliation(s)
| | - Mudit Mishra
- From the Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory Health Research Center, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | | | - Saskia C A de Jager
- Laboratory of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory Health Research Center, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory Health Research Center, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Niels P van der Kaaij
- From the Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
42
|
Chang NP, DaPrano EM, Evans WR, Nissenbaum M, McCourt M, Alzate D, Lindman M, Chou TW, Atkins C, Kusnecov AW, Huda R, Daniels BP. Neuronal DAMPs exacerbate neurodegeneration via astrocytic RIPK3 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550097. [PMID: 37546744 PMCID: PMC10401942 DOI: 10.1101/2023.07.21.550097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Astrocyte activation is a common feature of neurodegenerative diseases. However, the ways in which dying neurons influence the activity of astrocytes is poorly understood. RIPK3 signaling has recently been described as a key regulator of neuroinflammation, but whether this kinase mediates astrocytic responsiveness to neuronal death has not yet been studied. Here, we used the MPTP model of Parkinson's disease to show that activation of astrocytic RIPK3 drives dopaminergic cell death and axon damage. Transcriptomic profiling revealed that astrocytic RIPK3 promoted gene expression associated with neuroinflammation and movement disorders, and this coincided with significant engagement of DAMP signaling. Using human cell culture systems, we show that factors released from dying neurons signal through RAGE to induce RIPK3-dependent astrocyte activation. These findings highlight a mechanism of neuron-glia crosstalk in which neuronal death perpetuates further neurodegeneration by engaging inflammatory astrocyte activation via RIPK3.
Collapse
Affiliation(s)
- Nydia P. Chang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Evan M. DaPrano
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Wesley R. Evans
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Micheal McCourt
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Diego Alzate
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Marissa Lindman
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Tsui-Wen Chou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Colm Atkins
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Rafiq Huda
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian P. Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
43
|
Soni SS, D'Elia AM, Rodell CB. Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Deliv Transl Res 2023; 13:1983-2014. [PMID: 36763330 PMCID: PMC9913034 DOI: 10.1007/s13346-023-01290-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
Ischemic heart failure (IHF) is a leading cause of morbidity and mortality worldwide, for which heart transplantation remains the only definitive treatment. IHF manifests from myocardial infarction (MI) that initiates tissue remodeling processes, mediated by mechanical changes in the tissue (loss of contractility, softening of the myocardium) that are interdependent with cellular mechanisms (cardiomyocyte death, inflammatory response). The early remodeling phase is characterized by robust inflammation that is necessary for tissue debridement and the initiation of repair processes. While later transition toward an immunoregenerative function is desirable, functional reorientation from an inflammatory to reparatory environment is often lacking, trapping the heart in a chronically inflamed state that perpetuates cardiomyocyte death, ventricular dilatation, excess fibrosis, and progressive IHF. Therapies can redirect the immune microenvironment, including biotherapeutic and biomaterial-based approaches. In this review, we outline these existing approaches, with a particular focus on the immunomodulatory effects of therapeutics (small molecule drugs, biomolecules, and cell or cell-derived products). Cardioprotective strategies, often focusing on immunosuppression, have shown promise in pre-clinical and clinical trials. However, immunoregenerative therapies are emerging that often benefit from exacerbating early inflammation. Biomaterials can be used to enhance these therapies as a result of their intrinsic immunomodulatory properties, parallel mechanisms of action (e.g., mechanical restraint), or by enabling cell or tissue-targeted delivery. We further discuss translatability and the continued progress of technologies and procedures that contribute to the bench-to-bedside development of these critically needed treatments.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
44
|
Oh GC, Choi YJ, Park BW, Ban K, Park HJ. Are There Hopeful Therapeutic Strategies to Regenerate the Infarcted Hearts? Korean Circ J 2023; 53:367-386. [PMID: 37271744 DOI: 10.4070/kcj.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 06/06/2023] Open
Abstract
Ischemic heart disease remains the primary cause of morbidity and mortality worldwide. Despite significant advancements in pharmacological and revascularization techniques in the late 20th century, heart failure prevalence after myocardial infarction has gradually increased over the last 2 decades. After ischemic injury, pathological remodeling results in cardiomyocytes (CMs) loss and fibrosis, which leads to impaired heart function. Unfortunately, there are no clinical therapies to regenerate CMs to date, and the adult heart's limited turnover rate of CMs hinders its ability to self-regenerate. In this review, we present novel therapeutic strategies to regenerate injured myocardium, including (1) reconstruction of cardiac niche microenvironment, (2) recruitment of functional CMs by promoting their proliferation or differentiation, and (3) organizing 3-dimensional tissue construct beyond the CMs. Additionally, we highlight recent mechanistic insights that govern these strategies and identify current challenges in translating these approaches to human patients.
Collapse
Affiliation(s)
- Gyu-Chul Oh
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Bong-Woo Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| | - Hun-Jun Park
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
45
|
Schary Y, Rotem I, Caller T, Lewis N, Shaihov-Teper O, Brzezinski RY, Lendengolts D, Raanani E, Sternik L, Naftali-Shani N, Leor J. CRISPR-Cas9 editing of TLR4 to improve the outcome of cardiac cell therapy. Sci Rep 2023; 13:4481. [PMID: 36934130 PMCID: PMC10024743 DOI: 10.1038/s41598-023-31286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/09/2023] [Indexed: 03/20/2023] Open
Abstract
Inflammation and fibrosis limit the reparative properties of human mesenchymal stromal cells (hMSCs). We hypothesized that disrupting the toll-like receptor 4 (TLR4) gene would switch hMSCs toward a reparative phenotype and improve the outcome of cell therapy for infarct repair. We developed and optimized an improved electroporation protocol for CRISPR-Cas9 gene editing. This protocol achieved a 68% success rate when applied to isolated hMSCs from the heart and epicardial fat of patients with ischemic heart disease. While cell editing lowered TLR4 expression in hMSCs, it did not affect classical markers of hMSCs, proliferation, and migration rate. Protein mass spectrometry analysis revealed that edited cells secreted fewer proteins involved in inflammation. Analysis of biological processes revealed that TLR4 editing reduced processes linked to inflammation and extracellular organization. Furthermore, edited cells expressed less NF-ƙB and secreted lower amounts of extracellular vesicles and pro-inflammatory and pro-fibrotic cytokines than unedited hMSCs. Cell therapy with both edited and unedited hMSCs improved survival, left ventricular remodeling, and cardiac function after myocardial infarction (MI) in mice. Postmortem histologic analysis revealed clusters of edited cells that survived in the scar tissue 28 days after MI. Morphometric analysis showed that implantation of edited cells increased the area of myocardial islands in the scar tissue, reduced the occurrence of transmural scar, increased scar thickness, and decreased expansion index. We show, for the first time, that CRISPR-Cas9-based disruption of the TLR4-gene reduces pro-inflammatory polarization of hMSCs and improves infarct healing and remodeling in mice. Our results provide a new approach to improving the outcomes of cell therapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Yeshai Schary
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Itai Rotem
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Tal Caller
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Nir Lewis
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Olga Shaihov-Teper
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Rafael Y Brzezinski
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Daria Lendengolts
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Ehud Raanani
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
- Department of Cardiac Surgery, Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leonid Sternik
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
- Department of Cardiac Surgery, Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nili Naftali-Shani
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Jonathan Leor
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel.
| |
Collapse
|
46
|
Li Q, Lan P. Activation of immune signals during organ transplantation. Signal Transduct Target Ther 2023; 8:110. [PMID: 36906586 PMCID: PMC10008588 DOI: 10.1038/s41392-023-01377-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The activation of host's innate and adaptive immune systems can lead to acute and chronic graft rejection, which seriously impacts graft survival. Thus, it is particularly significant to clarify the immune signals, which are critical to the initiation and maintenance of rejection generated after transplantation. The initiation of response to graft is dependent on sensing of danger and stranger molecules. The ischemia and reperfusion of grafts lead to cell stress or death, followed by releasing a variety of damage-associated molecular patterns (DAMPs), which are recognized by pattern recognition receptors (PRRs) of host immune cells to activate intracellular immune signals and induce sterile inflammation. In addition to DAMPs, the graft exposed to 'non-self' antigens (stranger molecules) are recognized by the host immune system, stimulating a more intense immune response and further aggravating the graft damage. The polymorphism of MHC genes between different individuals is the key for host or donor immune cells to identify heterologous 'non-self' components in allogeneic and xenogeneic organ transplantation. The recognition of 'non-self' antigen by immune cells mediates the activation of immune signals between donor and host, resulting in adaptive memory immunity and innate trained immunity to the graft, which poses a challenge to the long-term survival of the graft. This review focuses on innate and adaptive immune cells receptor recognition of damage-associated molecular patterns, alloantigens and xenoantigens, which is described as danger model and stranger model. In this review, we also discuss the innate trained immunity in organ transplantation.
Collapse
Affiliation(s)
- Qingwen Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
47
|
Lugrin J, Parapanov R, Milano G, Cavin S, Debonneville A, Krueger T, Liaudet L. The systemic deletion of interleukin-1α reduces myocardial inflammation and attenuates ventricular remodeling in murine myocardial infarction. Sci Rep 2023; 13:4006. [PMID: 36899010 PMCID: PMC10006084 DOI: 10.1038/s41598-023-30662-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Myocardial inflammation following myocardial infarction (MI) is crucial for proper myocardial healing, yet, dysregulated inflammation may promote adverse ventricular remodeling and heart failure. IL-1 signaling contributes to these processes, as shown by dampened inflammation by inhibition of IL-1β or the IL-1 receptor. In contrast, the potential role of IL-1α in these mechanisms has received much less attention. Previously described as a myocardial-derived alarmin, IL-1α may also act as a systemically released inflammatory cytokine. We therefore investigated the effect of IL-1α deficiency on post-MI inflammation and ventricular remodeling in a murine model of permanent coronary occlusion. In the first week post-MI, global IL-1α deficiency (IL-1α KO mice) led to decreased myocardial expression of IL-6, MCP-1, VCAM-1, hypertrophic and pro-fibrotic genes, and reduced infiltration with inflammatory monocytes. These early changes were associated with an attenuation of delayed left ventricle (LV) remodeling and systolic dysfunction after extensive MI. In contrast to systemic Il1a-KO, conditional cardiomyocyte deletion of Il1a (CmIl1a-KO) did not reduce delayed LV remodeling and systolic dysfunction. In conclusion, systemic Il1a-KO, but not Cml1a-KO, protects against adverse cardiac remodeling after MI due to permanent coronary occlusion. Hence, anti-IL-1α therapies could be useful to attenuate the detrimental consequences of post-MI myocardial inflammation.
Collapse
Affiliation(s)
- J Lugrin
- Service of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Service of Thoracic Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Laboratoire de Chirurgie Thoracique, Centre des Laboratoires d'Epalinges, Chemin des Boveresses 155, 1066, Epalinges, Switzerland.
| | - R Parapanov
- Service of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Thoracic Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - G Milano
- Department Coeur-Vaisseaux, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - S Cavin
- Service of Thoracic Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A Debonneville
- Service of Thoracic Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - T Krueger
- Service of Thoracic Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - L Liaudet
- Service of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
48
|
Chang Z, Li H. KLF9 deficiency protects the heart from inflammatory injury triggered by myocardial infarction. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:177-185. [PMID: 36815257 PMCID: PMC9968950 DOI: 10.4196/kjpp.2023.27.2.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 12/26/2022] [Indexed: 02/24/2023]
Abstract
The excessive inflammatory response induced by myocardial infarction exacerbates heart injury and leads to the development of heart failure. Recent studies have confirmed the involvement of multiple transcription factors in the modulation of cardiovascular disease processes. However, the role of KLF9 in the inflammatory response induced by cardiovascular diseases including myocardial infarction remains unclear. Here, we found that the expression of KLF9 significantly increased during myocardial infarction. Besides, we also detected high expression of KLF9 in infiltrated macrophages after myocardial infarction. Our functional studies revealed that KLF9 deficiency prevented cardiac function and adverse cardiac remodeling. Furthermore, the downregulation of KLF9 inhibited the activation of NF-κB and MAPK signaling, leading to the suppression of inflammatory responses of macrophages triggered by myocardial infarction. Mechanistically, KLF9 was directly bound to the TLR2 promoter to enhance its expression, subsequently promoting the activation of inflammation-related signaling pathways. Our results suggested that KLF9 is a pro-inflammatory transcription factor in macrophages and targeting KLF9 may be a novel therapeutic strategy for ischemic heart disease.
Collapse
Affiliation(s)
- Zhihong Chang
- Department of Cardiology, Heji Hospital of Changzhi Medical College, Changzhi 046011, China
| | - Hongkun Li
- Department of Cardiology, Heji Hospital of Changzhi Medical College, Changzhi 046011, China,Correspondence Hongkun Li, E-mail:
| |
Collapse
|
49
|
Galeone A, Grano M, Brunetti G. Tumor Necrosis Factor Family Members and Myocardial Ischemia-Reperfusion Injury: State of the Art and Therapeutic Implications. Int J Mol Sci 2023; 24:4606. [PMID: 36902036 PMCID: PMC10003149 DOI: 10.3390/ijms24054606] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Ischemic heart disease is the principal cause of death worldwide and clinically manifests as myocardial infarction (MI), stable angina, and ischemic cardiomyopathy. Myocardial infarction is defined as an irreversible injury due to severe and prolonged myocardial ischemia inducing myocardial cell death. Revascularization is helpful in reducing loss of contractile myocardium and improving clinical outcome. Reperfusion rescues myocardium from cell death but also induces an additional injury called ischemia-reperfusion injury. Multiple mechanisms are involved in ischemia-reperfusion injury, such as oxidative stress, intracellular calcium overload, apoptosis, necroptosis, pyroptosis, and inflammation. Various members of the tumor necrosis factor family play a key role in myocardial ischemia-reperfusion injury. In this article, the role of TNFα, CD95L/CD95, TRAIL, and the RANK/RANKL/OPG axis in the regulation of myocardial tissue damage is reviewed together with their potential use as a therapeutic target.
Collapse
Affiliation(s)
- Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
50
|
Okada S, Yasudo H, Ohnishi Y, Matsuguma C, Fukano R, Motonaga T, Waniishi T, Hasegawa S. Interleukin-33/ST2 Axis as Potential Biomarker and Therapeutic Target in Kawasaki Disease. Inflammation 2023; 46:480-490. [PMID: 36208354 DOI: 10.1007/s10753-022-01753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/27/2022]
Abstract
Kawasaki disease (KD) is an acute, self-limiting, febrile systemic vasculitis of unknown cause associated with the development of coronary artery lesions (CALs) during childhood. Damage-associated molecular patterns (DAMPs) from cell death and oxidative stress have been shown to be involved in the development of KD vasculitis. Interleukin (IL)-33 is released from damaged endothelial cells and acts as a DAMP. We studied whether IL-33 and its receptor (ST2) might be involved in KD pathogenesis. Serum levels of soluble ST2 (sST2) in KD patients were measured before their first therapy. Furthermore, we investigated the impact of IL-33 on human coronary artery endothelial cells (HCAECs). Serum levels of sST2 were significantly higher in KD patients with CALs than in those with normal coronary arteries. In vitro, IL-33 upregulated the expression of ST2L and increased production of sST2, IL-6, IL-8, and monocyte chemoattractant protein-1 in HCAECs in a time- and concentration-dependent manner. Moreover, IL-33 induced significantly greater production of IL-6 and IL-8 in HCAECs compared to the condition stimulated with isoconcentration of tumor necrosis factor-α. The results of the present study suggest that the IL-33/ST2 axis might be involved in the development of KD vasculitis. The IL-33/ST2 axis may be a therapeutic target for the treatment of KD.
Collapse
Affiliation(s)
- Seigo Okada
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Hiroki Yasudo
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yuji Ohnishi
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Chie Matsuguma
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Reiji Fukano
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Takahiro Motonaga
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Takako Waniishi
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shunji Hasegawa
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|