1
|
Kaur U, Krishna DVV, Reddy J, Reddy NTS, Dehade A, Chakrabarti SS, Yadav DP. Late-Onset Inflammatory Bowel Disease and Flares In Adenoviral and Inactivated Coronavirus Vaccine Recipients. Am J Ther 2024:00045391-990000000-00252. [PMID: 39670515 DOI: 10.1097/mjt.0000000000001856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Affiliation(s)
- Upinder Kaur
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | - Jaideep Reddy
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | - Amol Dehade
- Departments of Pharmacology, Varanasi, Uttar Pradesh, India
| | | | - Dawesh Prakash Yadav
- Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
2
|
Cyr P, Fader LD, Burch JD, Pike KA, Sietsema DV, Boily MO, Ciblat S, Sgarioto N, Skeldon AM, Gaudreault S, Le Gros P, Dumais V, McKay DJJ, Abraham NS, Seliniotakis R, Beveridge RE. Discovery of Potent and Orally Bioavailable Pyrimidine Amide cGAS Inhibitors via Structure-Guided Hybridization. ACS Med Chem Lett 2024; 15:2201-2209. [PMID: 39691514 PMCID: PMC11647726 DOI: 10.1021/acsmedchemlett.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Using a high-throughput screening (HTS) approach, a new GTP-site binding pyridine-carboxylate series of cGAS inhibitors was discovered. The biochemical potency of this new pyridine carboxylate series was improved 166-fold from the original hit to double-digit nanomolar levels using structure-based design insights, but the series was found to suffer from low permeability and low bioavailability. A structure-based hybridization of the metal-binding motifs of the pyridine carboxylate series and our previously disclosed tetrahydrocarboline GTP-site ligand 23 identified pyrimidine amide compound 36. Compound 36 is potent against both human and mouse cGAS isoforms and has a favorable pharmacokinetic (PK) profile in mice. Additionally, compound 36 displayed a dose-dependent reduction in cGAMP production in a ConA pharmacodynamic mouse model of acute liver injury, demonstrating potential utility as an in vivo tool compound for further investigation of the cGAS pathway.
Collapse
Affiliation(s)
- Patrick Cyr
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Lee D. Fader
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Jason D. Burch
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Kelly A. Pike
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Daniel V. Sietsema
- Ventus
Therapeutics, 100 Beaver
St, Suite 201, Waltham, Massachusetts 02453, United States
| | - Marc-Olivier Boily
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Stéphane Ciblat
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Nicolas Sgarioto
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | | | - Samuel Gaudreault
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Philippe Le Gros
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Valérie Dumais
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Daniel J. J. McKay
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Nathan S. Abraham
- Ventus
Therapeutics, 100 Beaver
St, Suite 201, Waltham, Massachusetts 02453, United States
| | - Ria Seliniotakis
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| | - Ramsay E. Beveridge
- Ventus
Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada
| |
Collapse
|
3
|
Tolbert E, Dacus D, Pollina R, Wallace NA. Cutaneous human papillomavirus E6 impairs the cGAS-STING pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.625575. [PMID: 39677810 PMCID: PMC11642751 DOI: 10.1101/2024.11.29.625575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Beta genus human papillomaviruses (β-HPVs) are ubiquitous double stranded DNA (dsDNA) viruses that may promote skin cancers by destabilizing the host genome. Supporting this, expression of the E6 gene from a β-HPV (β-HPV 8 E6) results in increased micronuclei that should induce an innate immune response that eliminates these cells. Yet, β-HPV 8 E6 promotes rather than restricts proliferation. We hypothesize that β-HPV 8 E6 accomplishes this by attenuating the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, an innate immune pathway that becomes activated in response to cytosolic micronuclear dsDNA. Here, we show that in response to stimulation by transfection of pLVX-GFP plasmid, β-HPV 8 E6 reduced the magnitude and intensity of cGAS-STING pathway activation in immunoblot experiments. These data also demonstrate that impairment of the cGAS-STING pathway is strongest downstream of STING phosphorylation. Further, RNA-sequencing suggests that β-HPV 8 E6 downregulates other innate immune pathways. We also show that cGAS is recruited to micronuclei induced by β-HPV 8 E6. These data suggest a mechanism by which β-HPV 8 E6 facilitates proliferation of cells destabilized by micronuclei and support the hypothesis that the prevalence of β-HPV infections is in part due to the impairment of the cGAS-STING innate immune response.
Collapse
Affiliation(s)
- Emily Tolbert
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Dalton Dacus
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Rose Pollina
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Nicholas A Wallace
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
4
|
Béchon N, Tal N, Stokar-Avihail A, Savidor A, Kupervaser M, Melamed S, Amitai G, Sorek R. Diversification of molecular pattern recognition in bacterial NLR-like proteins. Nat Commun 2024; 15:9860. [PMID: 39543107 PMCID: PMC11564622 DOI: 10.1038/s41467-024-54214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Antiviral STANDs (Avs) are bacterial anti-phage proteins evolutionarily related to immune pattern recognition receptors of the NLR family. Type 2 Avs proteins (Avs2) were suggested to recognize the phage large terminase subunit as a signature of phage infection. Here, we show that Avs2 from Klebsiella pneumoniae (KpAvs2) can recognize several different phage proteins as signature for infection. While KpAvs2 recognizes the large terminase subunit of Seuratvirus phages, we find that to protect against Dhillonvirus phages, KpAvs2 recognizes a different phage protein named KpAvs2-stimulating protein 1 (Ksap1). KpAvs2 directly binds Ksap1 to become activated, and phages mutated in Ksap1 escape KpAvs2 defense despite encoding an intact terminase. We further show that KpAvs2 protects against a third group of phages by recognizing another protein, Ksap2. Our results exemplify the evolutionary diversification of molecular pattern recognition in bacterial Avs2, and show that a single pattern recognition receptor evolved to recognize different phage-encoded proteins.
Collapse
Affiliation(s)
- Nathalie Béchon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nitzan Tal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Kupervaser
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Phan J, Chen B, Zhao Z, Allies G, Iannaccone A, Paul A, Cansiz F, Spina A, Leven AS, Gellhaus A, Schadendorf D, Kimmig R, Mettlen M, Tasdogan A, Morrison SJ. Retrotransposons are co-opted to activate hematopoietic stem cells and erythropoiesis. Science 2024; 386:eado6836. [PMID: 39446896 PMCID: PMC11709122 DOI: 10.1126/science.ado6836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/21/2024] [Accepted: 08/30/2024] [Indexed: 10/26/2024]
Abstract
Hematopoietic stem cells (HSCs) and erythropoiesis are activated during pregnancy and after bleeding by the derepression of retrotransposons, including endogenous retroviruses and long interspersed nuclear elements. Retrotransposon transcription activates the innate immune sensors cyclic guanosine 3',5'-monophosphate-adenosine 5'-monophosphate synthase (cGAS) and stimulator of interferon (IFN) genes (STING), which induce IFN and IFN-regulated genes in HSCs, increasing HSC division and erythropoiesis. Inhibition of reverse transcriptase or deficiency for cGAS or STING had little or no effect on hematopoiesis in nonpregnant mice but depleted HSCs and erythroid progenitors in pregnant mice, reducing red blood cell counts. Retrotransposons and IFN-regulated genes were also induced in mouse HSCs after serial bleeding and, in human HSCs, during pregnancy. Reverse transcriptase inhibitor use was associated with anemia in pregnant but not in nonpregnant people, suggesting conservation of these mechanisms from mice to humans.
Collapse
Affiliation(s)
- Julia Phan
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Brandon Chen
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Gabriele Allies
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Antonella Iannaccone
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Animesh Paul
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Feyza Cansiz
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Alberto Spina
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Anna-Sophia Leven
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center; Dallas, Texas 75235-9039
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium; Essen, & National Center for Tumor Diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Campus Essen, Essen, Germany
| | - Sean J. Morrison
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| |
Collapse
|
6
|
Luo L, Xue P, Chen X, Gan P, Li X, Yu K, Zhang Y. Possible toxification mechanisms of acute and chronic pentachlorophenol to Montipora digitata: Limitation of energy supply and immunotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175069. [PMID: 39079632 DOI: 10.1016/j.scitotenv.2024.175069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Pentachlorophenol (PCP) is widely found in coastal environments and has various adverse effects, and its potential impact on coral reef ecosystems concerning. The scleractinian coral Montipora digitata was used for PCP stress experiments in this study. Phenotypes, physiological indicators, microbial diversity analysis and RNA sequencing were used to investigate the mechanisms underlying the responses of corals to acute and chronic PCP exposure. After 96 h of acute exposure, coral bleaching occurred at 1000 μg/LPCP and there was a significant decrease in Symbiodiniaceae density, Fv/Fm, and chlorophyll a content. Exposure to different concentrations of PCP significantly increased the content of malondialdehyde (MDA), leading to oxidative stress in corals. Chronic PCP exposure resulted in bleaching at 60 days, with the Fv/Fm significantly reduced to 0.461. Microbial diversity analysis revealed an increase in the abundance of potential pathogens, such as Vibrio, during acute PCP exposure and the emergence of the degrading bacterium Delftia during chronic PCP exposure. Transcriptional analysis showed that PCP exposure caused abnormal carbohydrate and amino acid metabolism in zooxanthella, which affected energy supply, induced immune responses, and disrupted symbiotic relationships. Corals respond to injury by boosting the expression of genes associated with signal transduction and immune response. Additionally, the expression of genes associated with environmental adaptation increased with chronic PCP exposure, which is consistent with the results of the microbial diversity analysis. These results indicate that PCP exposure might affect the balance of coral- zooxanthellae symbiosis in the stony coral M. digitata, impairing coral health and leading to bleaching.
Collapse
Affiliation(s)
- Lan Luo
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Pengfei Xue
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xuan Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Pin Gan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xiaoli Li
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yuanyuan Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
7
|
Stojanovic L, Abbotts R, Tripathi K, Coon CM, Rajendran S, Farid EA, Hostetter G, Guarnieri JW, Wallace DC, Liu S, Wan J, Calendo G, Marker R, Gohari Z, Inayatullah MMA, Tiwari VK, Kader T, Santagata S, Drapkin R, Kommoss S, Pfisterer J, Konecny GE, Coopergard R, Issa JP, Winterhoff BJN, Topper MJ, Sandusky GE, Miller KD, Baylin SB, Nephew KP, Rassool FV. ZNFX1 is a Novel Master Regulator in Epigenetically-induced Pathogen Mimicry and Inflammasome Signaling in Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.618659. [PMID: 39484607 PMCID: PMC11526927 DOI: 10.1101/2024.10.18.618659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
DNA methyltransferase and poly(ADP-ribose) polymerase inhibitors (DNMTis, PARPis) induce a stimulator of interferon (IFN) genes (STING)-dependent pathogen mimicry response (PMR) in ovarian (OC) and other cancers. We now show that combining DNMTis and PARPis upregulates expression of a little-studied nucleic-acid sensor, NFX1-type zinc finger-containing 1 protein (ZNFX1). We demonstrate that ZNFX1 is a novel master regulator for PMR induction in mitochondria, serving as a gateway for STING-dependent PMR. In patient OC databases, high ZNFX1 expression levels correlate with advanced stage disease. ZNFX1 expression alone significantly correlates with an increase in overall survival in a phase 3 trial for therapy-resistant OC patients receiving bevacizumab in combination with chemotherapy. In correlative RNA-seq data, inflammasome signaling through ZNFX1 correlates with abnormal vasculogenesis. ZNFX1 controls PMR signaling through the mitochondria and may serve as a biomarker to facilitate offering personalized therapy in OC patients, highlighting the strong translational significance of our findings.
Collapse
Affiliation(s)
- Lora Stojanovic
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rachel Abbotts
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kaushlendra Tripathi
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Collin M. Coon
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA
| | - Saranya Rajendran
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA
| | - Elnaz Abbasi Farid
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA
| | | | - Joseph W. Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine Indianapolis, IN 46202, USA
| | | | - Rebecca Marker
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zahra Gohari
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | - Tanjina Kader
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Stefan Kommoss
- Diakonie-Klinikum Schwäbisch Hall, Germany, Institute for Health Informatics
- Kliniken Essen-Mitte, Gynäkologie und Gynäkologische Onkologie, Germany
| | | | | | - Ryan Coopergard
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Boris J. N. Winterhoff
- Department of Obstetrics, Gynecology and Women’s Health (OBGYN), Division of Gynecologic Oncology, University of Minnesota, MN 55812-3011, USA
| | - Michael J. Topper
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - George E. Sandusky
- Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Kathy D. Miller
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stephen B. Baylin
- Diakonie-Klinikum Schwäbisch Hall, Germany, Institute for Health Informatics
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Kenneth P. Nephew
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Feyruz V. Rassool
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Esteller M, Dawson MA, Kadoch C, Rassool FV, Jones PA, Baylin SB. The Epigenetic Hallmarks of Cancer. Cancer Discov 2024; 14:1783-1809. [PMID: 39363741 DOI: 10.1158/2159-8290.cd-24-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 10/05/2024]
Abstract
Cancer is a complex disease in which several molecular and cellular pathways converge to foster the tumoral phenotype. Notably, in the latest iteration of the cancer hallmarks, "nonmutational epigenetic reprogramming" was newly added. However, epigenetics, much like genetics, is a broad scientific area that deserves further attention due to its multiple roles in cancer initiation, progression, and adaptive nature. Herein, we present a detailed examination of the epigenetic hallmarks affected in human cancer, elucidating the pathways and genes involved, and dissecting the disrupted landscapes for DNA methylation, histone modifications, and chromatin architecture that define the disease. Significance: Cancer is a disease characterized by constant evolution, spanning from its initial premalignant stages to the advanced invasive and disseminated stages. It is a pathology that is able to adapt and survive amidst hostile cellular microenvironments and diverse treatments implemented by medical professionals. The more fixed setup of the genetic structure cannot fully provide transformed cells with the tools to survive but the rapid and plastic nature of epigenetic changes is ready for the task. This review summarizes the epigenetic hallmarks that define the ecological success of cancer cells in our bodies.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Feyruz V Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Stephen B Baylin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
9
|
Kwak H, Lee E, Karki R. DNA sensors in metabolic and cardiovascular diseases: Molecular mechanisms and therapeutic prospects. Immunol Rev 2024. [PMID: 39158380 DOI: 10.1111/imr.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
DNA sensors generally initiate innate immune responses through the production of type I interferons. While extensively studied for host defense against invading pathogens, emerging evidence highlights the involvement of DNA sensors in metabolic and cardiovascular diseases. Elevated levels of modified, damaged, or ectopically localized self-DNA and non-self-DNA have been observed in patients and animal models with obesity, diabetes, fatty liver disease, and cardiovascular disease. The accumulation of cytosolic DNA aberrantly activates DNA signaling pathways, driving the pathological progression of these disorders. This review highlights the roles of specific DNA sensors, such as cyclic AMP-GMP synthase and stimulator of interferon genes (cGAS-STING), absent in melanoma 2 (AIM2), toll-like receptor 9 (TLR9), interferon gamma-inducible protein 16 (IFI16), DNA-dependent protein kinase (DNA-PK), and DEAD-box helicase 41 (DDX41) in various metabolic disorders. We explore how DNA signaling pathways in both immune and non-immune cells contribute to the development of these diseases. Furthermore, we discuss the intricate interplay between metabolic stress and immune responses, offering insights into potential therapeutic targets for managing metabolic and cardiovascular disorders. Understanding the mechanisms of DNA sensor signaling in these contexts provides a foundation for developing novel interventions aimed at mitigating the impact of these pervasive health issues.
Collapse
Affiliation(s)
- Hyosang Kwak
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul, South Korea
| | - Ein Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul, South Korea
- Nexus Institute of Research and Innovation (NIRI), Kathmandu, Nepal
| |
Collapse
|
10
|
Nayak BN, Palanisamy P, Venkataraman S, Subbiah M. A time series transcriptome profiling of host cell responses to Newcastle disease virus infection. Arch Virol 2024; 169:175. [PMID: 39117748 DOI: 10.1007/s00705-024-06100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024]
Abstract
Newcastle disease virus (NDV), an avian paramyxovirus, causes major economic losses in the poultry industry worldwide. NDV strains are classified as avirulent, moderately virulent, or virulent according to the severity of the disease they cause. In order to gain a deeper understanding of the molecular mechanisms of virus-host interactions, we conducted Illumina HiSeq-based RNA-Seq analysis on chicken embryo fibroblast (DF1) cells during the first 24 hours of infection with NDV strain Komarov. Comparative analysis of uninfected DF1 cells versus NDV-infected DF1 cells at 6, 12, and 24 h postinfection identified 462, 459, and 410 differentially expressed genes, respectively. The findings revealed an increase in the expression of genes linked to the MAPK signalling pathway in the initial stages of NDV infection. This overexpression potentially aids viral multiplication while hindering pathogen detection and subsequent immune responses from the host. Our findings provide initial insights into the early responses of DF1 cells to NDV infection.
Collapse
Affiliation(s)
- B Nagaraj Nayak
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate studies, Regional Centre for Biotechnology, New Delhi, India
| | | | | | - Madhuri Subbiah
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India.
- Adjunct Faculty, Regional Centre for Biotechnology, New Delhi, India.
| |
Collapse
|
11
|
Mills EL, Avila YI, Beasock D, Radwan Y, Suptela SR, Marriott I, Afonin KA, Johnson MB. Immunostimulatory nucleic acid nanoparticles (NANPs) augment protective osteoblast and osteoclast type I interferon responses to Staphylococcus aureus. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 60:102762. [PMID: 38866196 PMCID: PMC11297679 DOI: 10.1016/j.nano.2024.102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Recalcitrant staphylococcal osteomyelitis may be due, in part, to the ability of Staphylococcus aureus to invade bone cells. However, osteoclasts and osteoblasts are now recognized to shape host responses to bacterial infection and we have recently described their ability to produce IFN-β following S. aureus infection and limit intracellular bacterial survival/propagation. Here, we have investigated the ability of novel, rationally designed, nucleic acid nanoparticles (NANPs) to induce the production of immune mediators, including IFN-β, following introduction into bone cells. We demonstrate the successful delivery of representative NANPs into osteoblasts and osteoclasts via endosomal trafficking when complexed with lipid-based carriers. Their delivery was found to differentially induce immune responses according to their composition and architecture via discrete cytosolic pattern recognition receptors. Finally, the utility of this nanoparticle technology was supported by the demonstration that immunostimulatory NANPs augment IFN-β production by S. aureus infected bone cells and reduce intracellular bacterial burden.
Collapse
Affiliation(s)
- Erin L Mills
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA, 28223.
| | - Yelixza I Avila
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA, 28223.
| | - Damian Beasock
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA, 28223
| | - Yasmine Radwan
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA, 28223.
| | - Samantha R Suptela
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA, 28223.
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA, 28223.
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA, 28223.
| | - M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA, 28223.
| |
Collapse
|
12
|
Yuan M, Peng L, Huang D, Gavin A, Luan F, Tran J, Feng Z, Zhu X, Matteson J, Wilson IA, Nemazee D. Structural and mechanistic insights into disease-associated endolysosomal exonucleases PLD3 and PLD4. Structure 2024; 32:766-779.e7. [PMID: 38537643 PMCID: PMC11162324 DOI: 10.1016/j.str.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 04/09/2024]
Abstract
Endolysosomal exonucleases PLD3 and PLD4 (phospholipases D3 and D4) are associated with autoinflammatory and autoimmune diseases. We report structures of these enzymes, and the molecular basis of their catalysis. The structures reveal an intra-chain dimer topology forming a basic active site at the interface. Like other PLD superfamily members, PLD3 and PLD4 carry HxKxxxxD/E motifs and participate in phosphodiester-bond cleavage. The enzymes digest ssDNA and ssRNA in a 5'-to-3' manner and are blocked by 5'-phosphorylation. We captured structures in apo, intermediate, and product states and revealed a "link-and-release" two-step catalysis. We also unexpectedly demonstrated phosphatase activity via a covalent 3-phosphohistidine intermediate. PLD4 contains an extra hydrophobic clamp that stabilizes substrate and could affect oligonucleotide substrate preference and product release. Biochemical and structural analysis of disease-associated mutants of PLD3/4 demonstrated reduced enzyme activity or thermostability and the possible basis for disease association. Furthermore, these findings provide insight into therapeutic design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda Gavin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fangkun Luan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jenny Tran
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ziqi Feng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeanne Matteson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Nikmanesh N, Hosseini S, Mirbagheri F, Asadsangabi K, Fattahi MR, Safarpour AR, Abarghooee EF, Moravej A, Shamsdin SA, Akrami H, Saghi SA, Nikmanesh Y. Knowledge on Human Papillomavirus Infections, Cancer Biology, Immune Interactions, Vaccination Coverage and Common Treatments: A Comprehensive Review. Viral Immunol 2024; 37:221-239. [PMID: 38841885 DOI: 10.1089/vim.2023.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Human papillomavirus (HPV) is a circular, double-stranded DNA virus and recognized as the most prevalent sexually transmitted infectious agent worldwide. The HPV life cycle encompasses three primary stages. First, the virus infiltrates the basal cells of the stratified epidermis. Second, there is a low-level expression of viral genes and preservation of the viral genome in the basal layer. Lastly, productive replication of HPV occurs in differentiated cells. An effective immune response, involving various immune cells, including innate immunity, keratinocytes, dendritic cells, and natural killer T cells, is instrumental in clearing HPV infection and thwarting the development of HPV-associated tumors. Vaccines have demonstrated their efficacy in preventing genital warts, high-grade precancerous lesions, and cancers in females. In males, the vaccines can also aid in preventing genital warts, anal precancerous lesions, and cancer. This comprehensive review aims to provide a thorough and detailed exploration of HPV infections, delving into its genetic characteristics, life cycle, pathogenesis, and the role of high-risk and low-risk HPV strains. In addition, this review seeks to elucidate the intricate immune interactions that govern HPV infections, spanning from innate immunity to adaptive immune responses, as well as examining the evasion mechanisms used by the virus. Furthermore, the article discusses the current landscape of HPV vaccines and common treatments, contributing to a holistic understanding of HPV and its associated diseases.
Collapse
Affiliation(s)
- Nika Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - SeyedehZahra Hosseini
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | | | - Kimiya Asadsangabi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Fattahi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Moravej
- Department of Laboratory Sciences, School of Allied Medical Sciences, Fasa University of Medical Science, Fasa, Iran
| | - Seyedeh Azra Shamsdin
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Amirreza Saghi
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran
- Student Research Committee, Faculty of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Kawai T, Ikegawa M, Ori D, Akira S. Decoding Toll-like receptors: Recent insights and perspectives in innate immunity. Immunity 2024; 57:649-673. [PMID: 38599164 DOI: 10.1016/j.immuni.2024.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Toll-like receptors (TLRs) are an evolutionarily conserved family in the innate immune system and are the first line of host defense against microbial pathogens by recognizing pathogen-associated molecular patterns (PAMPs). TLRs, categorized into cell surface and endosomal subfamilies, recognize diverse PAMPs, and structural elucidation of TLRs and PAMP complexes has revealed their intricate mechanisms. TLRs activate common and specific signaling pathways to shape immune responses. Recent studies have shown the importance of post-transcriptional regulation in TLR-mediated inflammatory responses. Despite their protective functions, aberrant responses of TLRs contribute to inflammatory and autoimmune disorders. Understanding the delicate balance between TLR activation and regulatory mechanisms is crucial for deciphering their dual role in immune defense and disease pathogenesis. This review provides an overview of recent insights into the history of TLR discovery, elucidation of TLR ligands and signaling pathways, and their relevance to various diseases.
Collapse
Affiliation(s)
- Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan; Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan.
| | - Moe Ikegawa
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Shizuo Akira
- Center for Advanced Modalities and DSS (CAMaD), Osaka University, Osaka 565-0871, Japan; Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
15
|
Jimenez-Uribe AP, Mangos S, Hahm E. Type I IFN in Glomerular Disease: Scarring beyond the STING. Int J Mol Sci 2024; 25:2497. [PMID: 38473743 PMCID: PMC10931919 DOI: 10.3390/ijms25052497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The field of nephrology has recently directed a considerable amount of attention towards the stimulator of interferon genes (STING) molecule since it appears to be a potent driver of chronic kidney disease (CKD). STING and its activator, the cyclic GMP-AMP synthase (cGAS), along with intracellular RIG-like receptors (RLRs) and toll-like receptors (TLRs), are potent inducers of type I interferon (IFN-I) expression. These cytokines have been long recognized as part of the mechanism used by the innate immune system to battle viral infections; however, their involvement in sterile inflammation remains unclear. Mounting evidence pointing to the involvement of the IFN-I pathway in sterile kidney inflammation provides potential insights into the complex interplay between the innate immune system and damage to the most sensitive segment of the nephron, the glomerulus. The STING pathway is often cited as one cause of renal disease not attributed to viral infections. Instead, this pathway can recognize and signal in response to host-derived nucleic acids, which are also recognized by RLRs and TLRs. It is still unclear, however, whether the development of renal diseases depends on subsequent IFN-I induction or other processes involved. This review aims to explore the main endogenous inducers of IFN-I in glomerular cells, to discuss what effects autocrine and paracrine signaling have on IFN-I induction, and to identify the pathways that are implicated in the development of glomerular damage.
Collapse
Affiliation(s)
| | | | - Eunsil Hahm
- Department of Internal Medicine, Division of Nephrology, Rush University Medical Center, Chicago, IL 60612, USA; (A.P.J.-U.); (S.M.)
| |
Collapse
|
16
|
Sinsinbar G, Bindra AK, Liu S, Chia TW, Yoong Eng EC, Loo SY, Lam JH, Schultheis K, Nallani M. Amphiphilic Block Copolymer Nanostructures as a Tunable Delivery Platform: Perspective and Framework for the Future Drug Product Development. Biomacromolecules 2024; 25:541-563. [PMID: 38240244 DOI: 10.1021/acs.biomac.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Nanoformulation of active payloads or pharmaceutical ingredients (APIs) has always been an area of interest to achieve targeted, sustained, and efficacious delivery. Various delivery platforms have been explored, but loading and delivery of APIs have been challenging because of the chemical and structural properties of these molecules. Polymersomes made from amphiphilic block copolymers (ABCPs) have shown enormous promise as a tunable API delivery platform and confer multifold advantages over lipid-based systems. For example, a COVID booster vaccine comprising polymersomes encapsulating spike protein (ACM-001) has recently completed a Phase I clinical trial and provides a case for developing safe drug products based on ABCP delivery platforms. However, several limitations need to be resolved before they can reach their full potential. In this Perspective, we would like to highlight such aspects requiring further development for translating an ABCP-based delivery platform from a proof of concept to a viable commercial product.
Collapse
Affiliation(s)
- Gaurav Sinsinbar
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Anivind Kaur Bindra
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Shaoqiong Liu
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Teck Wan Chia
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Eunice Chia Yoong Eng
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Ser Yue Loo
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Jian Hang Lam
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Katherine Schultheis
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Madhavan Nallani
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| |
Collapse
|
17
|
Sharma P, Hoorn D, Aitha A, Breier D, Peer D. The immunostimulatory nature of mRNA lipid nanoparticles. Adv Drug Deliv Rev 2024; 205:115175. [PMID: 38218350 DOI: 10.1016/j.addr.2023.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
mRNA-Lipid nanoparticles (LNPs) are at the forefront of global medical research. With the development of mRNA-LNP vaccines to combat the COVID-19 pandemic, the clinical potential of this platform was unleashed. Upon administering 16 billion doses that protected billions of people, it became clear that a fraction of them witnessed mild and in some cases even severe adverse effects. Therefore, it is paramount to define the safety along with the therapeutic efficacy of the mRNA-LNP platform for the successful translation of new genetic medicines based on this technology. While mRNA was the effector molecule of this platform, the ionizable lipid component of the LNPs played an indispensable role in its success. However, both of these components possess the ability to induce undesired immunostimulation, which is an area that needs to be addressed systematically. The immune cell agitation caused by this platform is a two-edged sword as it may prove beneficial for vaccination but detrimental to other applications. Therefore, a key challenge in advancing the mRNA-LNP drug delivery platform from bench to bedside is understanding the immunostimulatory behavior of these components. Herein, we provide a detailed overview of the structural modifications and immunogenicity of synthetic mRNA. We discuss the effect of ionizable lipid structure on LNP functionality and offer a mechanistic overview of the ability of LNPs to elicit an immune response. Finally, we shed some light on the current status of this technology in clinical trials and discuss a few challenges to be addressed to advance the field.
Collapse
Affiliation(s)
- Preeti Sharma
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Daniek Hoorn
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Anjaiah Aitha
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dor Breier
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
18
|
Yuan M, Peng L, Huang D, Gavin A, Luan F, Tran J, Feng Z, Zhu X, Matteson J, Wilson IA, Nemazee D. Structural and mechanistic insights into disease-associated endolysosomal exonucleases PLD3 and PLD4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567917. [PMID: 38045427 PMCID: PMC10690185 DOI: 10.1101/2023.11.20.567917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Endolysosomal exonucleases PLD3 and PLD4 (phospholipases D3 and D4) are associated with autoinflammatory and autoimmune diseases. We report structures of these enzymes, and the molecular basis of their catalysis. The structures reveal an intra-chain dimer topology forming a basic active site at the interface. Like other PLD superfamily members, PLD3 and PLD4 carry HxKxxxxD/E motifs and participate in phosphodiester-bond cleavage. The enzymes digest ssDNA and ssRNA in a 5'-to-3' manner and are blocked by 5'-phosphorylation. We captured structures in apo, intermediate, and product states and revealed a 'link-and-release' two-step catalysis. We also unexpectedly demonstrated phosphatase activity via a covalent 3' phosphistidine intermediate. PLD4 contains an extra hydrophobic clamp that stabilizes substrate and could affect oligonucleotide substrate preference and product release. Biochemical and structural analysis of disease-associated mutants of PLD3/4 demonstrated reduced enzyme activity or thermostability and the possible basis for disease association. Furthermore, these findings provide insight into therapeutic design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- These authors contribute equally
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- These authors contribute equally
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- These authors contribute equally
- Present address: Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Amanda Gavin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fangkun Luan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jenny Tran
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ziqi Feng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeanne Matteson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
Sparmann A, Vogel J. RNA-based medicine: from molecular mechanisms to therapy. EMBO J 2023; 42:e114760. [PMID: 37728251 PMCID: PMC10620767 DOI: 10.15252/embj.2023114760] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
RNA-based therapeutics have the potential to revolutionize the treatment and prevention of human diseases. While early research faced setbacks, it established the basis for breakthroughs in RNA-based drug design that culminated in the extraordinarily fast development of mRNA vaccines to combat the COVID-19 pandemic. We have now reached a pivotal moment where RNA medicines are poised to make a broad impact in the clinic. In this review, we present an overview of different RNA-based strategies to generate novel therapeutics, including antisense and RNAi-based mechanisms, mRNA-based approaches, and CRISPR-Cas-mediated genome editing. Using three rare genetic diseases as examples, we highlight the opportunities, but also the challenges to wide-ranging applications of this class of drugs.
Collapse
Affiliation(s)
- Anke Sparmann
- Helmholtz Institute for RNA‐based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI)WürzburgGermany
| | - Jörg Vogel
- Helmholtz Institute for RNA‐based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI)WürzburgGermany
- Institute of Molecular Infection Biology (IMIB)University of WürzburgWürzburgGermany
| |
Collapse
|
20
|
Bharadwaj R, Anonick MV, Jaiswal S, Mashayekh S, Brown A, Wodzanowski KA, Okuda K, Silverman N, Grimes CL. Synthesis and validation of click-modified NOD1/2 agonists. Innate Immun 2023; 29:186-200. [PMID: 37828863 PMCID: PMC10621468 DOI: 10.1177/17534259231207198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
NOD1 and NOD2 sense small bacterial peptidoglycan fragments, often called muropeptides, that access the cytosol. These muropeptides include iE-DAP and MDP, the minimal agonists for NOD1 and NOD2, respectively. Here, we synthesized and validated alkyne-modified muropeptides, iE-DAP-Alk and MDP-Alk, for use in click-chemistry reactions. While it has long been known that many cell types respond to extracellular exposure to muropeptides, it is unclear how these innate immune activators access their cytosolic innate immune receptors, NOD1 and NOD2. The subcellular trafficking and transport mechanisms by which muropeptides access these cytosolic innate immune receptors are a major gap in our understanding of these critical host responses. The click-chemistry-enabled agonists developed here will be particularly powerful to decipher the underlying cell biology and biochemistry of NOD1 and NOD2 innate immune sensing.
Collapse
Affiliation(s)
- Ravi Bharadwaj
- Program in Innate Immunity and Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester MA 01605, USA
| | - Madison V. Anonick
- Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Swati Jaiswal
- Program in Innate Immunity and Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester MA 01605, USA
| | - Siavash Mashayekh
- Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Ashley Brown
- Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | | | - Kendi Okuda
- Program in Innate Immunity and Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester MA 01605, USA
| | - Neal Silverman
- Program in Innate Immunity and Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester MA 01605, USA
| | | |
Collapse
|
21
|
Kong LZ, Kim SM, Wang C, Lee SY, Oh SC, Lee S, Jo S, Kim TD. Understanding nucleic acid sensing and its therapeutic applications. Exp Mol Med 2023; 55:2320-2331. [PMID: 37945923 PMCID: PMC10689850 DOI: 10.1038/s12276-023-01118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 11/12/2023] Open
Abstract
Nucleic acid sensing is involved in viral infections, immune response-related diseases, and therapeutics. Based on the composition of nucleic acids, nucleic acid sensors are defined as DNA or RNA sensors. Pathogen-associated nucleic acids are recognized by membrane-bound and intracellular receptors, known as pattern recognition receptors (PRRs), which induce innate immune-mediated antiviral responses. PRR activation is tightly regulated to eliminate infections and prevent abnormal or excessive immune responses. Nucleic acid sensing is an essential mechanism in tumor immunotherapy and gene therapies that target cancer and infectious diseases through genetically engineered immune cells or therapeutic nucleic acids. Nucleic acid sensing supports immune cells in priming desirable immune responses during tumor treatment. Recent studies have shown that nucleic acid sensing affects the efficiency of gene therapy by inhibiting translation. Suppression of innate immunity induced by nucleic acid sensing through small-molecule inhibitors, virus-derived proteins, and chemical modifications offers a potential therapeutic strategy. Herein, we review the mechanisms and regulation of nucleic acid sensing, specifically covering recent advances. Furthermore, we summarize and discuss recent research progress regarding the different effects of nucleic acid sensing on therapeutic efficacy. This study provides insights for the application of nucleic acid sensing in therapy.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seok-Min Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Chunli Wang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Soo Yun Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Se-Chan Oh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sunyoung Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Seona Jo
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Korea.
- Biomedical Mathematics Group, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
22
|
Roe K. The interferon-stimulated genes are plausibly a primary genetic locus for genetically enabling hyperinflammatory and autoimmune diseases and lymphocyte exhaustion. Hum Cell 2023; 36:2278-2280. [PMID: 37624513 DOI: 10.1007/s13577-023-00969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
|
23
|
Konaka H, Kato Y, Hirano T, Tsujimoto K, Park J, Koba T, Aoki W, Matsuzaki Y, Taki M, Koyama S, Itotagawa E, Jo T, Hirayama T, Kawai T, Ishii KJ, Ueda M, Yamaguchi S, Akira S, Morita T, Maeda Y, Nishide M, Nishida S, Shima Y, Narazaki M, Takamatsu H, Kumanogoh A. Secretion of mitochondrial DNA via exosomes promotes inflammation in Behçet's syndrome. EMBO J 2023; 42:e112573. [PMID: 37661814 PMCID: PMC10577637 DOI: 10.15252/embj.2022112573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 05/21/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Mitochondrial DNA (mtDNA) leakage into the cytoplasm can occur when cells are exposed to noxious stimuli. Specific sensors recognize cytoplasmic mtDNA to promote cytokine production. Cytoplasmic mtDNA can also be secreted extracellularly, leading to sterile inflammation. However, the mode of secretion of mtDNA out of cells upon noxious stimuli and its relevance to human disease remain unclear. Here, we show that pyroptotic cells secrete mtDNA encapsulated within exosomes. Activation of caspase-1 leads to mtDNA leakage from the mitochondria into the cytoplasm via gasdermin-D. Caspase-1 also induces intraluminal membrane vesicle formation, allowing for cellular mtDNA to be taken up and secreted as exosomes. Encapsulation of mtDNA within exosomes promotes a strong inflammatory response that is ameliorated upon exosome biosynthesis inhibition in vivo. We further show that monocytes derived from patients with Behçet's syndrome (BS), a chronic systemic inflammatory disorder, show enhanced caspase-1 activation, leading to exosome-mediated mtDNA secretion and similar inflammation pathology as seen in BS patients. Collectively, our findings support that mtDNA-containing exosomes promote inflammation, providing new insights into the propagation and exacerbation of inflammation in human inflammatory diseases.
Collapse
Affiliation(s)
- Hachiro Konaka
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
- Department of Internal MedicineNippon Life HospitalOsakaJapan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
- Department of Advanced Clinical and Translational Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Toru Hirano
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Nishinomiya Municipal Central HospitalNishinomiyaJapan
| | - Kohei Tsujimoto
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
- Department of Advanced Clinical and Translational Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - JeongHoon Park
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Internal MedicineDaini Osaka Police HospitalOsakaJapan
| | - Taro Koba
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Yusei Matsuzaki
- Division of Applied Life Sciences, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Masayasu Taki
- Institute of Transformative Bio‐Molecules (WPI‐ITbM), Nagoya UniversityNagoyaJapan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
| | - Eri Itotagawa
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
| | - Tatsunori Jo
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
| | - Takehiro Hirayama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and TechnologyNara Institute of Science and Technology (NAIST)IkomaJapan
| | - Ken J Ishii
- Division of Vaccine ScienceThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Shigehiro Yamaguchi
- Institute of Transformative Bio‐Molecules (WPI‐ITbM), Nagoya UniversityNagoyaJapan
| | - Shizuo Akira
- Laboratory of Host Defense, Immunology Frontier Research Center (IFReC)Osaka UniversityOsakaJapan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
| | - Yuichi Maeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Yoshihito Shima
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Division of Thermo‐Therapeutics for Vascular Dysfunction, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Masashi Narazaki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Advanced Clinical and Translational Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
- Department of Clinical Research CenterNational Hospital Organization Osaka Minami Medical CenterOsakaJapan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Immunopathology, Immunology Frontier Research Center (iFReC)Osaka UniversityOsakaJapan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research InitiativesOsaka UniversityOsakaJapan
- Center for Infectious Disease for Education and Research (CiDER)Osaka UniversityOsakaJapan
| |
Collapse
|
24
|
Zahnreich S, El Guerzyfy S, Kaufmann J, Schmidberger H. The cGAS/STING/IFN-1 Response in Squamous Head and Neck Cancer Cells after Genotoxic Challenges and Abrogation of the ATR-Chk1 and Fanconi Anemia Axis. Int J Mol Sci 2023; 24:14900. [PMID: 37834346 PMCID: PMC10573837 DOI: 10.3390/ijms241914900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Locally advanced head and neck squamous cell carcinomas (HNSCC) are often refractory to platinum-based radiochemotherapy and new immuno-oncological strategies. To stimulate immunogenic antitumor responses in HNSCC patients, we investigated the cGAS/STING/IFN-1 signaling pathway after genotoxic treatments and concomitant abrogation of the DNA damage response (DDR). For this purpose, FaDu and UM-SCC1 cells were exposed to X-rays or cisplatin and treated with an ATR or Chk1 inhibitor, or by Fanconi anemia gene A knockout (FANCA ko). We assessed clonogenic survival, cell cycle regulation, micronuclei, free cytosolic double-stranded DNA, and the protein expression and activity of the cGAS/STING/IFN-1 pathway and related players. Cell survival, regulation of G2/M arrest, and formation of rupture-prone cGAS-positive micronuclei after genotoxic treatments were most affected by ATR inhibition and FANCA ko. In UM-SCC-1 cells only, 8 Gy X-rays promoted IFN-1 expression unaltered by abrogation of the DDR or concomitant increased TREX1 expression. At a higher dose of 20 Gy, this effect was observed only for concurrent Chk1- or ATR-inhibition. FANCA ko or cisplatin treatment was ineffective in this regard. Our observations open new perspectives for the enhancement of cGAS/STING/IFN-1-mediated antitumor immune response in HNSCC by hypofractionated or stereotactic radiotherapy concepts in multimodal settings with immuno-oncological strategies.
Collapse
Affiliation(s)
- Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg, University Mainz, 55131 Mainz, Germany (H.S.)
| | | | | | | |
Collapse
|
25
|
Vinuesa CG, Shen N, Ware T. Genetics of SLE: mechanistic insights from monogenic disease and disease-associated variants. Nat Rev Nephrol 2023; 19:558-572. [PMID: 37438615 DOI: 10.1038/s41581-023-00732-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 07/14/2023]
Abstract
The past few years have provided important insights into the genetic architecture of systemic autoimmunity through aggregation of findings from genome-wide association studies (GWAS) and whole-exome or whole-genome sequencing studies. In the prototypic systemic autoimmune disease systemic lupus erythematosus (SLE), monogenic disease accounts for a small fraction of cases but has been instrumental in the elucidation of disease mechanisms. Defects in the clearance or digestion of extracellular or intracellular DNA or RNA lead to increased sensing of nucleic acids, which can break B cell tolerance and induce the production of type I interferons leading to tissue damage. Current data suggest that multiple GWAS SLE risk alleles act in concert with rare functional variants to promote SLE development. Moreover, introduction of orthologous variant alleles into mice has revealed that pathogenic X-linked dominant and recessive SLE can be caused by novel variants in TLR7 and SAT1, respectively. Such bespoke models of disease help to unravel pathogenic pathways and can be used to test targeted therapies. Cell type-specific expression data revealed that most GWAS SLE risk genes are highly expressed in age-associated B cells (ABCs), which supports the view that ABCs produce lupus autoantibodies and contribute to end-organ damage by persisting in inflamed tissues, including the kidneys. ABCs have thus emerged as key targets of promising precision therapeutics.
Collapse
Affiliation(s)
- Carola G Vinuesa
- The Francis Crick Institute, London, UK.
- University College London, London, UK.
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Center for Autoimmune Genomics and Aetiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Paediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Thuvaraka Ware
- The Francis Crick Institute, London, UK
- University College London, London, UK
| |
Collapse
|
26
|
Peng X, Shi Y, Zhang B, Xu C, Lang J. Establishment of nucleic acid sensing pathways-based model in predicting response to immunotherapy and targeted drug in hepatitis virus-related hepatocellular carcinoma. J Med Virol 2023; 95:e29084. [PMID: 37721443 DOI: 10.1002/jmv.29084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Hepatocellular carcinoma (HCC) accounts for 80% of liver cancers, while 70%-80% of HCC developed from chronic liver disease with hepatitis B virus (HBV) and hepatitis C virus (HCV) infection as the major etiology. Immunotherapy is assuming a role as a pillar of HCC treatment, but the remarkable immune-mediated responses are restricted in a minority of patients. Nucleic acid sensing (NAS) pathways are the central pathway of the innate immune system and antiviral immune response to viral infection, but their role in hepatitis virus-related HCC remains undetermined. In our study, we performed a comprehensive bioinformatics analysis based on transcriptomic data of hepatitis virus related-HCC tissues collected from multiple public data sets. Two subgroups were validated based on NAS-related genes in virus-related HCC patients, which were defined as NAS-activated subgroups and NAS-suppressed subgroups based on the expression of NAS-related genes. On this basis, a NAS-related risk score (NASRS) predictive model was established for risk stratification and prognosis prediction in the hepatitis virus-related HCC (TCGA-LIHC and ICGC cohorts). The predictive values of the NASRS in prognosis and immunotherapy were also verified in multiple data sets. A nomogram was also established to facilitate the clinical use of NASRS and demonstrate its effectiveness through different approaches. Additionally, six potential drugs binding to the core target of the NAS signature were predicted via molecular docking strategy. We subsequently evaluated the cytotoxic capabilities of potential drug in vitro and in vivo. Based on these results, we conclude that the NASRS model could serve as a power prognostic biomarker and predict responses to immunotherapy, which is meaningful in clinical decision-making of hepatitis virus-related HCC patients.
Collapse
Affiliation(s)
- Xinhao Peng
- Department of Biomedical Engineering, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Oncology, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Ying Shi
- Department of Biomedical Engineering, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Biqin Zhang
- Department of Biomedical Engineering, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chuan Xu
- Department of Biomedical Engineering, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jinyi Lang
- Department of Biomedical Engineering, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Bishani A, Makarova DM, Shmendel EV, Maslov MA, Sen‘kova AV, Savin IA, Gladkikh DV, Zenkova MA, Chernolovskaya EL. Influence of the Composition of Cationic Liposomes on the Performance of Cargo Immunostimulatory RNA. Pharmaceutics 2023; 15:2184. [PMID: 37765155 PMCID: PMC10535620 DOI: 10.3390/pharmaceutics15092184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, the impact of different delivery systems on the cytokine-inducing, antiproliferative, and antitumor activities of short immunostimulatory double-stranded RNA (isRNA) was investigated. The delivery systems, consisting of the polycationic amphiphile 1,26-bis(cholest-5-en-3-yloxycarbonylamino)-7,11,16,20 tetraazahexacosan tetrahydrochloride (2X3), and the lipid-helper dioleoylphosphatidylethanolamine (DOPE), were equipped with polyethylene glycol lipoconjugates differing in molecular weight and structure. The main findings of this work are as follows: (i) significant activation of MCP-1 and INF-α, β, and γ production in CBA mice occurs under the action of isRNA complexes with liposomes containing lipoconjugates with long PEG chains, while activation of MCP-1 and INF-γ, but not INF-α or β, was observed under the action of isRNA lipoplexes containing lipoconjugates with short PEG chains; (ii) a pronounced antiproliferative effect on B16 melanoma cells in vitro, as well as an antitumor and hepatoprotective effect in vivo, was induced by isRNA pre-complexes with non-pegylated liposomes, while complexes containing lipoconjugates with long-chain liposomes were inactive; (iii) the antitumor activity of isRNA correlated with the efficiency of its accumulation in the cells and did not explicitly depend on the activation of cytokine and interferon production. Thus, the structure of the delivery system plays a vital role in determining the response to isRNA and allows for the choice of a delivery system depending on the desired effect.
Collapse
Affiliation(s)
- Ali Bishani
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (A.V.S.); (I.A.S.); (D.V.G.); (M.A.Z.)
| | - Darya M. Makarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia; (D.M.M.); (E.V.S.); (M.A.M.)
| | - Elena V. Shmendel
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia; (D.M.M.); (E.V.S.); (M.A.M.)
| | - Mikhail A. Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia; (D.M.M.); (E.V.S.); (M.A.M.)
| | - Aleksandra V. Sen‘kova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (A.V.S.); (I.A.S.); (D.V.G.); (M.A.Z.)
| | - Innokenty A. Savin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (A.V.S.); (I.A.S.); (D.V.G.); (M.A.Z.)
| | - Daniil V. Gladkikh
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (A.V.S.); (I.A.S.); (D.V.G.); (M.A.Z.)
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (A.V.S.); (I.A.S.); (D.V.G.); (M.A.Z.)
| | - Elena L. Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (A.V.S.); (I.A.S.); (D.V.G.); (M.A.Z.)
| |
Collapse
|
28
|
Hashimoto T, Yoshida K, Yokoyama Y, Hashimoto N, Kaneshiro K, Yoshikawa T, Tateishi K, Terashima Y, Matsui K, Hashiramoto A. Tocilizumab suppresses NF-kappa B activation via toll-like receptor 9 signaling by reducing cell-free DNA in rheumatoid arthritis. Clin Exp Immunol 2023; 213:209-220. [PMID: 37279559 PMCID: PMC10361738 DOI: 10.1093/cei/uxad064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
Endogenous DNA is released into the bloodstream as cell-free DNA (cfDNA) following cell death and is associated with various pathological conditions. However, their association with therapeutic drugs against rheumatoid arthritis (RA) remains unknown. Therefore, we investigated the significance of cfDNA in RA treated with tocilizumab and tumour necrosis factor inhibitor (TNF-I). Biological DMARDs (bDMARDs), including tocilizumab and TNF-I, were administered to 77 and 59 RA patients, respectively. Plasma cfDNA levels were measured at weeks 0, 4, and 12 by quantitative polymerase chain reaction. Disease activity was evaluated at the same time point using DAS28ESR. cfDNA levels from RA synovial cells treated with tocilizumab or etanercept for 24 h were measured. Human toll-like receptor 9 (hTLR9)-expressing HEK293 cells, which release secreted embryonic alkaline phosphatase (SEAP) upon NF-κB activation, were stimulated by cfDNA from RA patients, and subsequently, SEAP levels were determined. NF-κB translocation was evaluated by immunofluorescence staining with or without tocilizumab. The DAS28ESR significantly improved in both bDMARD groups at week 12. However, plasma cfDNA levels significantly decreased in the tocilizumab group at week 12 compared to that in week 0. cfDNA levels correlated with DAS28ESR in biological treatment-naïve patients administered tocilizumab. cfDNA levels in synovial cells were significantly suppressed by tocilizumab treatment and unaltered with etanercept. HEK293 cells released SEAP upon cfDNA stimulation, and the observed NF-κB nuclear translocation was suppressed by tocilizumab. Tocilizumab suppressed inflammation via the TLR9 pathway by decreasing cfDNA levels. Regulation of cfDNA may be a therapeutic target for RA.
Collapse
Affiliation(s)
- Teppei Hashimoto
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Kohsuke Yoshida
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yuichi Yokoyama
- Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Naonori Hashimoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Kenta Kaneshiro
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Takahiro Yoshikawa
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Koji Tateishi
- Department of Orthopedics, Konan Kakogawa Hospital, Kakogawa, Japan
| | | | - Kiyoshi Matsui
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Akira Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
29
|
Elcheva IA, Gowda CP, Bogush D, Gornostaeva S, Fakhardo A, Sheth N, Kokolus KM, Sharma A, Dovat S, Uzun Y, Schell TD, Spiegelman VS. IGF2BP family of RNA-binding proteins regulate innate and adaptive immune responses in cancer cells and tumor microenvironment. Front Immunol 2023; 14:1224516. [PMID: 37503349 PMCID: PMC10369348 DOI: 10.3389/fimmu.2023.1224516] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IGF2BP1, IGF2BP2, and IGF2BP3) are a family of RNA-binding proteins that play an essential role in the development and disease by regulating mRNA stability and translation of critical regulators of cell division and metabolism. Genetic and chemical inhibition of these proteins slows down cancer cell proliferation, decreases invasiveness, and prolongs life span in a variety of animal models. The role of RNA-binding proteins in the induction of tissues' immunogenicity is increasingly recognized, but, the impact of the IGF2BPs family of proteins on the induction of innate and adaptive immune responses in cancer is not fully understood. Here we report that downregulation of IGF2BP1, 2, and 3 expression facilitates the expression of interferon beta-stimulated genes. IGF2BP1 has a greater effect on interferon beta and gamma signaling compared to IGF2BP2 and IGF2BP3 paralogs. We demonstrate that knockdown or knockout of IGF2BP1, 2, and 3 significantly potentiates inhibition of cell growth induced by IFNβ and IFNγ. Mouse melanoma cells with Igf2bp knockouts demonstrate increased expression of MHC I (H-2) and induce intracellular Ifn-γ expression in syngeneic T-lymphocytes in vitro. Increased immunogenicity, associated with Igf2bp1 inhibition, "inflames" mouse melanoma tumors microenvironment in SM1/C57BL/6 and SW1/C3H mouse models measured by a two-fold increase of NK cells and tumor-associated myeloid cells. Finally, we demonstrate that the efficiency of anti-PD1 immunotherapy in the mouse melanoma model is significantly more efficient in tumors that lack Igf2bp1 expression. Our retrospective data analysis of immunotherapies in human melanoma patients indicates that high levels of IGF2BP1 and IGF2BP3 are associated with resistance to immunotherapies and poor prognosis. In summary, our study provides evidence of the role of IGF2BP proteins in regulating tumor immunogenicity and establishes those RBPs as immunotherapeutic targets in cancer.
Collapse
Affiliation(s)
- Irina A. Elcheva
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chethana P. Gowda
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Daniel Bogush
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Svetlana Gornostaeva
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Anna Fakhardo
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Neil Sheth
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Kathleen M. Kokolus
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Arati Sharma
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Yasin Uzun
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Division of Neonatology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Todd D. Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Vladimir S. Spiegelman
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
30
|
Green JP, El-Sharkawy LY, Roth S, Zhu J, Cao J, Leach AG, Liesz A, Freeman S, Brough D. Discovery of an inhibitor of DNA-driven inflammation that preferentially targets the AIM2 inflammasome. iScience 2023; 26:106758. [PMID: 37216118 PMCID: PMC10193008 DOI: 10.1016/j.isci.2023.106758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/07/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Inflammation driven by DNA sensors is now understood to be important to disease pathogenesis. Here, we describe new inhibitors of DNA sensing, primarily of the inflammasome forming sensor AIM2. Biochemistry and molecular modeling has revealed 4-sulfonic calixarenes as potent inhibitors of AIM2 that likely work by binding competitively to the DNA-binding HIN domain. Although less potent, these AIM2 inhibitors also inhibit DNA sensors cGAS and TLR9 demonstrating a broad utility against DNA-driven inflammatory responses. The 4-sulfonic calixarenes inhibited AIM2-dependent post-stroke T cell death, highlighting a proof of concept that the 4-sulfonic calixarenes could be effective at combating post-stroke immunosuppression. By extension, we propose a broad utility against DNA-driven inflammation in disease. Finally, we reveal that the drug suramin, by virtue of its structural similarities, is an inhibitor of DNA-dependent inflammation and propose that suramin could be rapidly repurposed to meet an increasing clinical need.
Collapse
Affiliation(s)
- Jack P. Green
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| | - Lina Y. El-Sharkawy
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Stefan Roth
- Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, 81377 Munich, Germany
| | - Jie Zhu
- Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, 81377 Munich, Germany
| | - Jiayu Cao
- Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, 81377 Munich, Germany
| | - Andrew G. Leach
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
31
|
Vega-Muñoz I, Herrera-Estrella A, Martínez-de la Vega O, Heil M. ATM and ATR, two central players of the DNA damage response, are involved in the induction of systemic acquired resistance by extracellular DNA, but not the plant wound response. Front Immunol 2023; 14:1175786. [PMID: 37256140 PMCID: PMC10225592 DOI: 10.3389/fimmu.2023.1175786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Background The plant immune response to DNA is highly self/nonself-specific. Self-DNA triggered stronger responses by early immune signals such as H2O2 formation than nonself-DNA from closely related plant species. Plants lack known DNA receptors. Therefore, we aimed to investigate whether a differential sensing of self-versus nonself DNA fragments as damage- versus pathogen-associated molecular patterns (DAMPs/PAMPs) or an activation of the DNA-damage response (DDR) represents the more promising framework to understand this phenomenon. Results We treated Arabidopsis thaliana Col-0 plants with sonicated self-DNA from other individuals of the same ecotype, nonself-DNA from another A. thaliana ecotype, or nonself-DNA from broccoli. We observed a highly self/nonself-DNA-specific induction of H2O2 formation and of jasmonic acid (JA, the hormone controlling the wound response to chewing herbivores) and salicylic acid (SA, the hormone controlling systemic acquired resistance, SAR, to biotrophic pathogens). Mutant lines lacking Ataxia Telangiectasia Mutated (ATM) or ATM AND RAD3-RELATED (ATR) - the two DDR master kinases - retained the differential induction of JA in response to DNA treatments but completely failed to induce H2O2 or SA. Moreover, we observed H2O2 formation in response to in situ-damaged self-DNA from plants that had been treated with bleomycin or SA or infected with virulent bacteria Pseudomonas syringae pv. tomato DC3000 or pv. glycinea carrying effector avrRpt2, but not to DNA from H2O2-treated plants or challenged with non-virulent P. syringae pv. glycinea lacking avrRpt2. Conclusion We conclude that both ATM and ATR are required for the complete activation of the plant immune response to extracellular DNA whereas an as-yet unknown mechanism allows for the self/nonself-differential activation of the JA-dependent wound response.
Collapse
Affiliation(s)
- Isaac Vega-Muñoz
- Laboratorio de Ecología de Plantas, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad Irapuato, Irapuato, GTO, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad de Genómica Avanzada, Irapuato, GTO, Mexico
| | - Octavio Martínez-de la Vega
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad de Genómica Avanzada, Irapuato, GTO, Mexico
| | - Martin Heil
- Laboratorio de Ecología de Plantas, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad Irapuato, Irapuato, GTO, Mexico
| |
Collapse
|
32
|
Ji D, Zhao J, Liu Y, Wei D. Electrical Nanobiosensors for Nucleic Acid Based Diagnostics. J Phys Chem Lett 2023; 14:4084-4095. [PMID: 37125726 DOI: 10.1021/acs.jpclett.3c00495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent advances in nanotechnologies have promoted the iterative updating of nucleic acid sensors. Among various sensing technologies, the electrical nanobiosensor is regarded as one of the most promising prospects to achieve rapid, precise, and point-of-care nucleic acid based diagnostics. In this Perspective, we introduce recent progresses in electrical nanobiosensors for nucleic acid detection. First, the strategies for improving detection performance are summarized, including chemical amplification and electrical amplification. Then, the detection mechanism of electrical nanobiosensors, such as electrochemical biosensors, field-effect transistors, and photoelectric enhanced biosensors, is illustrated. At the same time, their applications in cancer screening, pathogen detection, gene sequencing, and genetic disease diagnosis are introduced. Finally, challenges and future prospects in clinical application are discussed.
Collapse
Affiliation(s)
- Daizong Ji
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Junhong Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
33
|
Paulose AK, Hou YJ, Huang YS, Chakkalaparambil Dileep N, Chiu CL, Pal A, Kalaimani VM, Lin ZH, Chang CR, Chen CP, Lin YC, Cheng CY, Cheng SH, Cheng CM, Wang YL. Rapid Escherichia coli Cloned DNA Detection in Serum Using an Electrical Double Layer-Gated Field-Effect Transistor-Based DNA Sensor. Anal Chem 2023; 95:6871-6878. [PMID: 37080900 DOI: 10.1021/acs.analchem.2c05719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
In this study, a rapid diagnosis platform was developed for the detection of Escherichia coli O157:H7. An electrical double layer (EDL)-gated field-effect transistor-based biosensor (BioFET) as a point-of-care testing device is demonstrated with its high sensitivity, portability, high selectivity, quick response, and ease of use. The specially designed ssDNA probe was immobilized on the extended gate electrode to bind the target complementary DNA segment of E. coli, resulting in a sharp drain current change within minutes. The limit of detection for target DNA is validated to a concentration of 1 fM in buffer solution and serum. Meanwhile, the results of a Kelvin probe force microscope were shown to have reduced surface potential of the DNA immobilized sensors before and after the cDNA detection, which is consistent with the decreased drain current of the BioFET. A 1.2 kb E. coli duplex DNA synthesized in plasmid was sonicated and detected in serum samples with the sensor array. Gel electrophoresis was used to confirm the efficiency of sonication by elucidating the length of DNA. Those results show that the EDL-gated BioFET system is a promising platform for rapid identification of pathogens for future clinical needs.
Collapse
Affiliation(s)
- Akhil K Paulose
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Yueh-Ju Hou
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811726, Taiwan, ROC
| | - Yu-Shan Huang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | | | - Chia-Lin Chiu
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Arnab Pal
- International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Vishal Mani Kalaimani
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Chuang-Rung Chang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Cheng-Pin Chen
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 32748, Taiwan
| | - Yi-Chun Lin
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 32748, Taiwan
| | - Chien-Yu Cheng
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 32748, Taiwan
| | - Shu-Hsing Cheng
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 32748, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Yu-Lin Wang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| |
Collapse
|
34
|
Corbet GA, Burke JM, Parker R. Nucleic acid-protein condensates in innate immune signaling. EMBO J 2023; 42:e111870. [PMID: 36178199 PMCID: PMC10068312 DOI: 10.15252/embj.2022111870] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/24/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
The presence of foreign nucleic acids in the cytosol is a marker of infection. Cells have sensors, also known as pattern recognition receptors (PRRs), in the cytosol that detect foreign nucleic acid and initiate an innate immune response. Recent studies have reported the condensation of multiple PRRs including PKR, NLRP6, and cGAS, with their nucleic acid activators into discrete nucleoprotein assemblies. Nucleic acid-protein condensates form due to multivalent interactions and can create high local concentrations of components. The formation of PRR-containing condensates may alter the magnitude or timing of PRR activation. In addition, unique condensates form following RNase L activation or during paracrine signaling from virally infected cells that may play roles in antiviral defense. These observations suggest that condensate formation may be a conserved mechanism that cells use to regulate activation of the innate immune response and open an avenue for further investigation into the composition and function of these condensates. Here we review the nucleic acid-protein granules that are implicated in the innate immune response, discuss general consequences of condensate formation and signal transduction, as well as what outstanding questions remain.
Collapse
Affiliation(s)
- Giulia A Corbet
- Department of BiochemistryUniversity of ColoradoBoulderCOUSA
| | - James M Burke
- Department of BiochemistryUniversity of ColoradoBoulderCOUSA
- Present address:
Department of Molecular MedicineUniversity of Florida Scripps Biomedical ResearchJupiterFLUSA
| | - Roy Parker
- Department of BiochemistryUniversity of ColoradoBoulderCOUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| |
Collapse
|
35
|
Pezone A, Olivieri F, Napoli MV, Procopio A, Avvedimento EV, Gabrielli A. Inflammation and DNA damage: cause, effect or both. Nat Rev Rheumatol 2023; 19:200-211. [PMID: 36750681 DOI: 10.1038/s41584-022-00905-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 02/09/2023]
Abstract
Inflammation is a biological response involving immune cells, blood vessels and mediators induced by endogenous and exogenous stimuli, such as pathogens, damaged cells or chemicals. Unresolved (chronic) inflammation is characterized by the secretion of cytokines that maintain inflammation and redox stress. Mitochondrial or nuclear redox imbalance induces DNA damage, which triggers the DNA damage response (DDR) that is orchestrated by ATM and ATR kinases, which modify gene expression and metabolism and, eventually, establish the senescent phenotype. DDR-mediated senescence is induced by the signalling proteins p53, p16 and p21, which arrest the cell cycle in G1 or G2 and promote cytokine secretion, producing the senescence-associated secretory phenotype. Senescence and inflammation phenotypes are intimately associated, but highly heterogeneous because they vary according to the cell type that is involved. The vicious cycle of inflammation, DNA damage and DDR-mediated senescence, along with the constitutive activation of the immune system, is the core of an evolutionarily conserved circuitry, which arrests the cell cycle to reduce the accumulation of mutations generated by DNA replication during redox stress caused by infection or inflammation. Evidence suggests that specific organ dysfunctions in apparently unrelated diseases of autoimmune, rheumatic, degenerative and vascular origins are caused by inflammation resulting from DNA damage-induced senescence.
Collapse
Affiliation(s)
- Antonio Pezone
- Dipartimento di Biologia, Università Federico II, Napoli, Italy.
| | - Fabiola Olivieri
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Clinica di Medicina di Laboratorio e di Precisione, IRCCS INRCA, Ancona, Italy
| | - Maria Vittoria Napoli
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Procopio
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Clinica di Medicina di Laboratorio e di Precisione, IRCCS INRCA, Ancona, Italy
| | - Enrico Vittorio Avvedimento
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del C.N.R., Università Federico II, Napoli, Italy.
| | - Armando Gabrielli
- Fondazione di Medicina Molecolare e Terapia Cellulare, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
36
|
Singh J, Boettcher M, Dölling M, Heuer A, Hohberger B, Leppkes M, Naschberger E, Schapher M, Schauer C, Schoen J, Stürzl M, Vitkov L, Wang H, Zlatar L, Schett GA, Pisetsky DS, Liu ML, Herrmann M, Knopf J. Moonlighting chromatin: when DNA escapes nuclear control. Cell Death Differ 2023; 30:861-875. [PMID: 36755071 PMCID: PMC9907214 DOI: 10.1038/s41418-023-01124-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 02/10/2023] Open
Abstract
Extracellular chromatin, for example in the form of neutrophil extracellular traps (NETs), is an important element that propels the pathological progression of a plethora of diseases. DNA drives the interferon system, serves as autoantigen, and forms the extracellular scaffold for proteins of the innate immune system. An insufficient clearance of extruded chromatin after the release of DNA from the nucleus into the extracellular milieu can perform a secret task of moonlighting in immune-inflammatory and occlusive disorders. Here, we discuss (I) the cellular events involved in the extracellular release of chromatin and NET formation, (II) the devastating consequence of a dysregulated NET formation, and (III) the imbalance between NET formation and clearance. We include the role of NET formation in the occlusion of vessels and ducts, in lung disease, in autoimmune diseases, in chronic oral disorders, in cancer, in the formation of adhesions, and in traumatic spinal cord injury. To develop effective therapies, it is of utmost importance to target pathways that cause decondensation of chromatin during exaggerated NET formation and aggregation. Alternatively, therapies that support the clearance of extracellular chromatin are conceivable.
Collapse
Affiliation(s)
- Jeeshan Singh
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maximilian Dölling
- Department of Surgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Annika Heuer
- Division of Spine Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Mildred-Scheel Cancer Career Center Hamburg HaTriCS4, University Cancer Center Hamburg, Hamburg, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Moritz Leppkes
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 1, Gastroenterology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mirco Schapher
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus University, Nürnberg, Germany
| | - Christine Schauer
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ljubomir Vitkov
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, 5020, Austria
- Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Republic of Srpska, Bosnia and Herzegovina
| | - Han Wang
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Leticija Zlatar
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg A Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - David S Pisetsky
- Department of Medicine and Immunology and Medical Research Service, Duke University Medical Center and Veterans Administration Medical Center, Durham, NC, USA
| | - Ming-Lin Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Jasmin Knopf
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
37
|
Miller RAJ, Williams AP, Kovats S. Sex chromosome complement and sex steroid signaling underlie sex differences in immunity to respiratory virus infection. Front Pharmacol 2023; 14:1150282. [PMID: 37063266 PMCID: PMC10097973 DOI: 10.3389/fphar.2023.1150282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/08/2023] [Indexed: 04/18/2023] Open
Abstract
Epidemiological studies have revealed sex differences in the incidence and morbidity of respiratory virus infection in the human population, and often these observations are correlated with sex differences in the quality or magnitude of the immune response. Sex differences in immunity and morbidity also are observed in animal models of respiratory virus infection, suggesting differential dominance of specific immune mechanisms. Emerging research shows intrinsic sex differences in immune cell transcriptomes, epigenomes, and proteomes that may regulate human immunity when challenged by viral infection. Here, we highlight recent research into the role(s) of sex steroids and X chromosome complement in immune cells and describe how these findings provide insight into immunity during respiratory virus infection. We focus on the regulation of innate and adaptive immune cells by receptors for androgen and estrogens, as well as genes with a propensity to escape X chromosome inactivation. A deeper mechanistic knowledge of these pathways will help us to understand the often significant sex differences in immunity to endemic or pandemic respiratory pathogens such as influenza viruses, respiratory syncytial viruses and pathogenic coronaviruses.
Collapse
Affiliation(s)
- Reegan A. J. Miller
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Abigael P. Williams
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Susan Kovats
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
38
|
Zecchini V, Paupe V, Herranz-Montoya I, Janssen J, Wortel IMN, Morris JL, Ferguson A, Chowdury SR, Segarra-Mondejar M, Costa ASH, Pereira GC, Tronci L, Young T, Nikitopoulou E, Yang M, Bihary D, Caicci F, Nagashima S, Speed A, Bokea K, Baig Z, Samarajiwa S, Tran M, Mitchell T, Johnson M, Prudent J, Frezza C. Fumarate induces vesicular release of mtDNA to drive innate immunity. Nature 2023; 615:499-506. [PMID: 36890229 PMCID: PMC10017517 DOI: 10.1038/s41586-023-05770-w] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/30/2023] [Indexed: 03/10/2023]
Abstract
Mutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell carcinoma1. Loss of FH in the kidney elicits several oncogenic signalling cascades through the accumulation of the oncometabolite fumarate2. However, although the long-term consequences of FH loss have been described, the acute response has not so far been investigated. Here we generated an inducible mouse model to study the chronology of FH loss in the kidney. We show that loss of FH leads to early alterations of mitochondrial morphology and the release of mitochondrial DNA (mtDNA) into the cytosol, where it triggers the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-TANK-binding kinase 1 (TBK1) pathway and stimulates an inflammatory response that is also partially dependent on retinoic-acid-inducible gene I (RIG-I). Mechanistically, we show that this phenotype is mediated by fumarate and occurs selectively through mitochondrial-derived vesicles in a manner that depends on sorting nexin 9 (SNX9). These results reveal that increased levels of intracellular fumarate induce a remodelling of the mitochondrial network and the generation of mitochondrial-derived vesicles, which allows the release of mtDNAin the cytosol and subsequent activation of the innate immune response.
Collapse
Affiliation(s)
- Vincent Zecchini
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
| | - Vincent Paupe
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Irene Herranz-Montoya
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Joëlle Janssen
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Inge M N Wortel
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
- Department of Data Science, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands
| | - Jordan L Morris
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Ashley Ferguson
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
| | - Suvagata Roy Chowdury
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Marc Segarra-Mondejar
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
- CECAD Research Centre, University of Cologne, Cologne, Germany
| | - Ana S H Costa
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
- Matterworks, Somerville, MA, USA
| | - Gonçalo C Pereira
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Laura Tronci
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
- Cogentech SRL Benefit Corporation, Milan, Italy
| | - Timothy Young
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
| | | | - Ming Yang
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
- CECAD Research Centre, University of Cologne, Cologne, Germany
| | - Dóra Bihary
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
- VIB KU Leuven Center for Cancer Biology, Leuven, Belgium
| | | | - Shun Nagashima
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Alyson Speed
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
| | - Kalliopi Bokea
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, UCL, London, UK
| | - Zara Baig
- Division of Infection and Immunity, Institute of Immunity and Transplantation, UCL, London, UK
| | - Shamith Samarajiwa
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
| | - Maxine Tran
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, UCL, London, UK
| | - Thomas Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Mark Johnson
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK.
- CECAD Research Centre, University of Cologne, Cologne, Germany.
| |
Collapse
|
39
|
Vasanthan V, Shim HB, Teng G, Belke D, Svystonyuk D, Deniset JF, Fedak PWM. Acellular biomaterial modulates myocardial inflammation and promotes endogenous mechanisms of postinfarct cardiac repair. J Thorac Cardiovasc Surg 2023; 165:e122-e140. [PMID: 35058062 DOI: 10.1016/j.jtcvs.2021.12.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE After myocardial infarction, we previously showed that epicardial implantation of porcine small intestinal submucosal extracellular matrix (SIS-ECM) improves postinfarct cardiac function through fibroblast-mediated angiogenic and antifibrotic pathways. Herein, we characterize how SIS-ECM also coordinates a reparative cardiac inflammatory response. METHODS RNA sequencing and multiplex characterized modulation of fibroblast transcriptional and paracrine activity by SIS-ECM. Inhibitors of fibroblast growth factor 2 and toll-like receptor 9 elucidated mechanism. Mice received coronary ligation (infarction) and either SIS-ECM implantation (treatment) or sham surgery (control). Flow cytometry of SIS-ECM and the murine myocardium quantified monocytes, neutrophils, and proangiogenic subtypes. Microscopy tracked fibroblasts and immune cells, and characterized myocardial angiogenesis. RESULTS SIS-ECM increased fibroblast transcription of inflammatory pathways and production of angiogenic vascular endothelial growth factor and inflammatory cytokines via fibroblast growth factor 2 and toll-like receptor 9-dependent pathways. Two-photon microscopy showed that SIS-ECM became engrafted by native fibroblasts and leukocytes, subsequently increasing release of inflammatory cytokines and angiogenic vascular endothelial growth factor. On flow cytometry, SIS-ECM implantation increased day-7 myocardial counts of neutrophils, inflammatory monocytes, and proangiogenic vascular endothelial growth factor recptor 1 subtypes. SIS-ECM has a higher proportion of proangiogenic leukocytes compared with the myocardium. Resonant confocal microscopy showed neovascularization near SIS-ECM. CONCLUSIONS SIS-ECM promotes engraftment by native fibroblasts and leukocytes, and modulates fibroblast activity via fibroblast growth factor 2 and toll-like receptor 9 to potentiate a proangiogenic inflammatory response. Subsequently, the material increases myocardial counts of reparative proangiogenic leukocytes that can induce neovascularization. This reparative inflammatory response may explain previously reported functional improvements. Fibroblast growth factor 2 and toll-like receptor 9 mechanisms can be leveraged to design next-generation materials for postinfarct cardiac repair.
Collapse
Affiliation(s)
- Vishnu Vasanthan
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hanjoo B Shim
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Guoqi Teng
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Darrell Belke
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniyil Svystonyuk
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin F Deniset
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
40
|
Wang H, Stehr AM, Singh J, Zlatar L, Hartmann A, Evert K, Naschberger E, von Stillfried S, Boor P, Muñoz LE, Knopf J, Stürzl M, Herrmann M. Anti-DNA-IgM Favors the Detection of NET-Associated Extracellular DNA. Int J Mol Sci 2023; 24:ijms24044101. [PMID: 36835515 PMCID: PMC9958910 DOI: 10.3390/ijms24044101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
During inflammatory responses, neutrophils enter the sites of attack where they execute various defense mechanisms. They (I) phagocytose microorganisms, (II) degranulate to release cytokines, (III) recruit various immune cells by cell-type specific chemokines, (IV) secrete anti-microbials including lactoferrin, lysozyme, defensins and reactive oxygen species, and (V) release DNA as neutrophil extracellular traps (NETs). The latter originates from mitochondria as well as from decondensed nuclei. This is easily detected in cultured cells by staining of DNA with specific dyes. However, in tissues sections the very high fluorescence signals emitted from the condensed nuclear DNA hamper the detection of the widespread, extranuclear DNA of the NETs. In contrast, when we employ anti-DNA-IgM antibodies, they are unable to penetrate deep into the tightly packed DNA of the nucleus, and we observe a robust signal for the extended DNA patches of the NETs. To validate anti-DNA-IgM, we additionally stained the sections for the NET-markers histone H2B, myeloperoxidase, citrullinated histone H3, and neutrophil elastase. Altogether, we have described a fast one-step procedure for the detection of NETs in tissue sections, which provides new perspectives to characterize neutrophil-associated immune reactions in disease.
Collapse
Affiliation(s)
- Han Wang
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Antonia Margarethe Stehr
- Division of Molecular and Experimental Surgery, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jeeshan Singh
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Leticija Zlatar
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Arndt Hartmann
- Institut für Pathologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Katja Evert
- Institut für Pathologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | | | - Peter Boor
- Institute of Pathology, University Clinic of the RWTH Aachen, 52074 Aachen, Germany
| | - Luis E. Muñoz
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
41
|
Viengkhou B, Hofer MJ. Breaking down the cellular responses to type I interferon neurotoxicity in the brain. Front Immunol 2023; 14:1110593. [PMID: 36817430 PMCID: PMC9936317 DOI: 10.3389/fimmu.2023.1110593] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Since their original discovery, type I interferons (IFN-Is) have been closely associated with antiviral immune responses. However, their biological functions go far beyond this role, with balanced IFN-I activity being critical to maintain cellular and tissue homeostasis. Recent findings have uncovered a darker side of IFN-Is whereby chronically elevated levels induce devastating neuroinflammatory and neurodegenerative pathologies. The underlying causes of these 'interferonopathies' are diverse and include monogenetic syndromes, autoimmune disorders, as well as chronic infections. The prominent involvement of the CNS in these disorders indicates a particular susceptibility of brain cells to IFN-I toxicity. Here we will discuss the current knowledge of how IFN-Is mediate neurotoxicity in the brain by analyzing the cell-type specific responses to IFN-Is in the CNS, and secondly, by exploring the spectrum of neurological disorders arising from increased IFN-Is. Understanding the nature of IFN-I neurotoxicity is a crucial and fundamental step towards development of new therapeutic strategies for interferonopathies.
Collapse
Affiliation(s)
- Barney Viengkhou
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
42
|
Hue SSS, Jin Y, Cheng H, Bin Masroni MS, Tang LWT, Ho YH, Ong DBL, Leong SM, Tan SY. Tissue-Specific microRNA Expression Profiling to Derive Novel Biomarkers for the Diagnosis and Subtyping of Small B-Cell Lymphomas. Cancers (Basel) 2023; 15:cancers15020453. [PMID: 36672402 PMCID: PMC9856483 DOI: 10.3390/cancers15020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Accurate diagnosis of the most common histological subtypes of small B-cell lymphomas is challenging due to overlapping morphological features and limitations of ancillary testing, which involves a large number of immunostains and molecular investigations. In addition, a common diagnostic challenge is to distinguish reactive lymphoid hyperplasia that do not require additional stains from such lymphomas that need ancillary investigations. We investigated if tissue-specific microRNA (miRNA) expression may provide potential biomarkers to improve the pathology diagnostic workflow. This study seeks to distinguish reactive lymphoid proliferation (RL) from small B-cell lymphomas, and to further distinguish the four main subtypes of small B-cell lymphomas. Two datasets were included: a discovery cohort (n = 100) to screen for differentially expressed miRNAs and a validation cohort (n = 282) to develop classification models. The models were evaluated for accuracy in subtype prediction. MiRNA gene set enrichment was also performed to identify differentially regulated pathways. 306 miRNAs were detected and quantified, resulting in 90-miRNA classification models from which smaller panels of miRNAs biomarkers with good accuracy were derived. Bioinformatic analysis revealed the upregulation of known and other potentially relevant signaling pathways in such lymphomas. In conclusion, this study suggests that miRNA expression profiling may serve as a promising tool to aid the diagnosis of common lymphoid lesions.
Collapse
Affiliation(s)
- Susan Swee-Shan Hue
- Department of Pathology, National University Hospital, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Yu Jin
- MiRXES Pte Ltd., 2 Tukang Innovation Grove, JTC MedTech Hub, #08-01, Singapore 618305, Singapore
| | - He Cheng
- MiRXES Pte Ltd., 2 Tukang Innovation Grove, JTC MedTech Hub, #08-01, Singapore 618305, Singapore
| | - Muhammad Sufyan Bin Masroni
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Lloyd Wei Tat Tang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543, Singapore
| | - Yong Howe Ho
- Department of Pathology, Tan Tock Seng Hospital, Level 2 Podium Block, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Diana Bee-Lan Ong
- Department of Pathology, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Sai Mun Leong
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Soo Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Correspondence:
| |
Collapse
|
43
|
Role of TLRs in HIV-1 Infection and Potential of TLR Agonists in HIV-1 Vaccine Development and Treatment Strategies. Pathogens 2023; 12:pathogens12010092. [PMID: 36678440 PMCID: PMC9866513 DOI: 10.3390/pathogens12010092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Toll-like receptors (TLRs), as a family of pattern recognition receptors, play an important role in the recognition of HIV-1 molecular structures by various cells of the innate immune system, but also provide a functional association with subsequent mechanisms of adaptive immunity. TLR7 and TLR8 play a particularly important role in the innate immune response to RNA viruses due to their ability to recognise GU-rich single-stranded RNA molecules and subsequently activate intracellular signalling pathways resulting in expression of genes coding for various biological response modifiers (interferons, proinflammatory cytokines, chemokines). The aim of this review is to summarise the most recent knowledge on the role of TLRs in the innate immune response to HIV-1 and the role of TLR gene polymorphisms in the biology and in the clinical aspects of HIV infections. In addition, the role of TLR agonists as latency reversing agents in research to treat HIV infections and as immunomodulators in HIV vaccine research will be discussed.
Collapse
|
44
|
Waad Sadiq Z, Brioli A, Al-Abdulla R, Çetin G, Schütt J, Murua Escobar H, Krüger E, Ebstein F. Immunogenic cell death triggered by impaired deubiquitination in multiple myeloma relies on dysregulated type I interferon signaling. Front Immunol 2023; 14:982720. [PMID: 36936919 PMCID: PMC10018035 DOI: 10.3389/fimmu.2023.982720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Proteasome inhibition is first line therapy in multiple myeloma (MM). The immunological potential of cell death triggered by defects of the ubiquitin-proteasome system (UPS) and subsequent perturbations of protein homeostasis is, however, less well defined. Methods In this paper, we applied the protein homeostasis disruptors bortezomib (BTZ), ONX0914, RA190 and PR619 to various MM cell lines and primary patient samples to investigate their ability to induce immunogenic cell death (ICD). Results Our data show that while BTZ treatment triggers sterile type I interferon (IFN) responses, exposure of the cells to ONX0914 or RA190 was mostly immunologically silent. Interestingly, inhibition of protein de-ubiquitination by PR619 was associated with the acquisition of a strong type I IFN gene signature which relied on key components of the unfolded protein and integrated stress responses including inositol-requiring enzyme 1 (IRE1), protein kinase R (PKR) and general control nonderepressible 2 (GCN2). The immunological relevance of blocking de-ubiquitination in MM was further reflected by the ability of PR619-induced apoptotic cells to facilitate dendritic cell (DC) maturation via type I IFN-dependent mechanisms. Conclusion Altogether, our findings identify de-ubiquitination inhibition as a promising strategy for inducing ICD of MM to expand current available treatments.
Collapse
Affiliation(s)
- Zeinab Waad Sadiq
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Annamaria Brioli
- Klinik und Poliklinik für Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Ruba Al-Abdulla
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Gonca Çetin
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jacqueline Schütt
- Klinik und Poliklinik für Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
45
|
Alexopoulou L. Nucleic acid-sensing toll-like receptors: Important players in Sjögren’s syndrome. Front Immunol 2022; 13:980400. [PMID: 36389822 PMCID: PMC9659959 DOI: 10.3389/fimmu.2022.980400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Sjögren’s syndrome (SS) is a chronic systemic autoimmune disease that affects the salivary and lacrimal glands, as well as other organ systems like the lungs, kidneys and nervous system. SS can occur alone or in combination with another autoimmune disease, such as systemic lupus erythematosus (SLE) or rheumatoid arthritis. The etiology of SS is unknown but recent studies have revealed the implication of the activation of innate immune receptors, including Toll-like receptors (TLRs), mainly through the detection of endogenous nucleic acids, in the pathogenesis of systemic autoimmune diseases. Studies on SS mouse models suggest that TLRs and especially TLR7 that detects single-stranded RNA of microbial or endogenous origin can drive the development of SS and findings in SS patients corroborate those in mouse models. In this review, we will give an overview of the function and signaling of nucleic acid-sensing TLRs, the interplay of TLR7 with TLR8 and TLR9 in the context of autoimmunity, summarize the evidence for the critical role of TLR7 in the pathogenesis of SS and present a possible connection between SARS-CoV-2 and SS.
Collapse
|
46
|
Jin S, Wang Y, Qie C, Yang L, Wu Y, Zhang T, Di J, Liu J. Single-Cell RNA Sequencing Reveals the Immune Cell Profiling in IMQ Induced Psoriasis-Like Model. J Inflamm Res 2022; 15:5999-6012. [PMID: 36330167 PMCID: PMC9626250 DOI: 10.2147/jir.s379349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Psoriasis is a chronic systemic inflammatory skin disease with a high recurrence rate. The immune response plays an important role in psoriasis. However, the subsets of immune cells involved in inflammation in psoriatic mice have not been fully studied. This study showed the immune environment characteristics of psoriasis in mice. METHODS We used single-cell RNA sequencing (10× Genomics) as an unbiased analytical strategy to investigate the heterogeneity of skin immune cells in imiquimod-induced psoriasis mice systematically. RESULTS We identified 10 major clusters and their marker genes among 14,439 cells. The proportions of macrophages, NK/T cells, conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs) were increased in psoriatic mice. Macrophages were the largest group and were further divided into 7 subgroups, and all macrophage clusters were increased in psoriatic mice. Differentially expressed genes in control versus psoriatic mice skin lesions showed that Fcgr4, Saa3 and Acp5 in macrophages, Acp5, Fcgr4 and Ms4a6d in NK/T cells, Saa3 in cDCs, and Ifitm1 in pDCs were upregulated in psoriasis mice. Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis emphasized the role of oxidative phosphorylation signals and antigen processing and presentation signals in murine psoriasis-like models. CONCLUSION Our study reveals the immune environment characteristics of the commonly used IMQ induced psoriasis-like models and provides a systematic insight into the immune response of mice with psoriasis, which is conducive to comparing the similarities and differences between the mouse model and human psoriasis.
Collapse
Affiliation(s)
- Shasha Jin
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Yixin Wang
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Chenxin Qie
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Lu Yang
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Yinhao Wu
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Tingting Zhang
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Jianwen Di
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Jun Liu
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China,Correspondence: Jun Liu, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China, Tel +86-25-83271043, Fax +86-25-83271142, Email
| |
Collapse
|
47
|
Nishimoto S, Sata M, Fukuda D. Expanding role of deoxyribonucleic acid-sensing mechanism in the development of lifestyle-related diseases. Front Cardiovasc Med 2022; 9:881181. [PMID: 36176986 PMCID: PMC9513035 DOI: 10.3389/fcvm.2022.881181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/15/2022] [Indexed: 11/14/2022] Open
Abstract
In lifestyle-related diseases, such as cardiovascular, metabolic, respiratory, and kidney diseases, chronic inflammation plays a causal role in their pathogenesis; however, underlying mechanisms of sterile chronic inflammation are not well-understood. Previous studies have confirmed the damage of cells in these organs in the presence of various risk factors such as diabetes, dyslipidemia, and cigarette smoking, releasing various endogenous ligands for pattern recognition receptors. These studies suggested that nucleic acids released from damaged tissues accumulate in these tissues, acting as an endogenous ligand. Undamaged DNA is an integral factor for the sustenance of life, whereas, DNA fragments, especially those from pathogens, are potent activators of the inflammatory response. Recent studies have indicated that inflammatory responses such as the production of type I interferon (IFN) induced by DNA-sensing mechanisms which contributes to self-defense system in innate immunity participates in the progression of inflammatory diseases by the recognition of nucleic acids derived from the host, including mitochondrial DNA (mtDNA). The body possesses several types of DNA sensors. Toll-like receptor 9 (TLR9) recognizes DNA fragments in the endosomes. In addition, the binding of DNA fragments in the cytosol activates cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS), resulting in the synthesis of the second messenger cyclic GMP-AMP (cGAMP). The binding of cGAMP to stimulator of interferon genes (STING) activates NF-κB and TBK-1 signaling and consequently the production of many inflammatory cytokines including IFNs. Numerous previous studies have demonstrated the role of DNA sensors in self-defense through the recognition of DNA fragments derived from pathogens. Beyond the canonical role of TLR9 and cGAS-STING, this review describes the role of these DNA-sensing mechanism in the inflammatory responses caused by endogenous DNA fragments, and in the pathogenesis of lifestyle-related diseases.
Collapse
Affiliation(s)
- Sachiko Nishimoto
- Faculty of Clinical Nutrition and Dietetics, Konan Women’s University, Kobe, Japan
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Cardiovascular Medicine, Osaka Metropolitan University, Osaka, Japan
- *Correspondence: Daiju Fukuda, ,
| |
Collapse
|
48
|
Rattay S, Hufbauer M, Hagen C, Putschli B, Coch C, Akgül B, Hartmann G. Human Beta Papillomavirus Type 8 E1 and E2 Proteins Suppress the Activation of the RIG-I-like Receptor MDA5. Viruses 2022; 14:v14071361. [PMID: 35891343 PMCID: PMC9317666 DOI: 10.3390/v14071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/25/2022] Open
Abstract
Persistent infections of the skin with the human papillomavirus of genus beta (β-HPV) in immunocompetent individuals are asymptomatic, but in immunosuppressed patients, β-HPV infections exhibit much higher viral loads on the skin and are associated with an increased risk of skin cancer. Unlike with HPV16, a high-risk α-HPV, the impact of β-HPV early genes on the innate immune sensing of viral nucleic acids has not been studied. Here, we used primary skin keratinocytes and U2OS cells expressing HPV8 or distinct HPV8 early genes and well-defined ligands of the nucleic-acid-sensing receptors RIG-I, MDA5, TLR3, and STING to analyze a potential functional interaction. We found that primary skin keratinocytes and U2OS cells expressed RIG-I, MDA5, TLR3, and STING, but not TLR7, TLR8, or TLR9. While HPV16-E6 downregulated the expression of RIG-I, MDA5, TLR3, and STING and, in conjunction with HPV16-E7, effectively suppressed type I IFN in response to MDA5 activation, the presence of HPV8 early genes showed little effect on the expression of these immune receptors, except for HPV8-E2, which was associated with an elevated expression of TLR3. Nevertheless, whole HPV8 genome expression, as well as the selective expression of HPV8-E1 or HPV8-E2, was found to suppress MDA5-induced type I IFN and the proinflammatory cytokine IL-6. Furthermore, RNA isolated from HPV8-E2 expressing primary human keratinocytes, but not control cells, stimulated a type I IFN response in peripheral blood mononuclear cells, indicating that the expression of HPV8-E2 in keratinocytes leads to the formation of stimulatory RNA ligands that require the active suppression of immune recognition. These results identify HPV8-E1 and HPV8-E2 as viral proteins that are responsible for the immune escape of β-HPV from the innate recognition of viral nucleic acids, a mechanism that may be necessary for establishing persistent β-HPV infections.
Collapse
Affiliation(s)
- Stephanie Rattay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56., 50935 Cologne, Germany; (M.H.); (B.A.)
- Correspondence: ; Tel.: +49-221-478-85821; Fax: +49-221-478-85802
| | - Martin Hufbauer
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56., 50935 Cologne, Germany; (M.H.); (B.A.)
| | - Christian Hagen
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| | - Bastian Putschli
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| | - Baki Akgül
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56., 50935 Cologne, Germany; (M.H.); (B.A.)
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| |
Collapse
|
49
|
Wang Y, Abolhassani H, Hammarström L, Pan-Hammarström Q. SARS-CoV-2 infection in patients with inborn errors of immunity due to DNA repair defects. Acta Biochim Biophys Sin (Shanghai) 2022; 54:836-846. [PMID: 35713311 PMCID: PMC9827799 DOI: 10.3724/abbs.2022071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clinical information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in patients with inborn errors of immunity (IEI) during the current Coronavirus disease 2019 (COVID-19) pandemic is still limited. Proper DNA repair machinery is required for the development of the adaptive immune system, which provides specific and long-term protection against SARS-CoV-2. This review highlights the impact of SARS-CoV-2 infections on IEI patients with DNA repair disorders and summarizes susceptibility risk factors, pathogenic mechanisms, clinical manifestations and management strategies of COVID-19 in this special patient population.
Collapse
|
50
|
Liu J, Zhang H, Su Y, Zhang B. Application and prospect of targeting innate immune sensors in the treatment of autoimmune diseases. Cell Biosci 2022; 12:68. [PMID: 35619184 PMCID: PMC9134593 DOI: 10.1186/s13578-022-00810-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of auto-reactive T cells and autoantibody-producing B cells and excessive inflammation are responsible for the occurrence and development of autoimmune diseases. The suppression of autoreactive T cell activation and autoantibody production, as well as inhibition of inflammatory cytokine production have been utilized to ameliorate autoimmune disease symptoms. However, the existing treatment strategies are not sufficient to cure autoimmune diseases since patients can quickly suffer a relapse following the end of treatments. Pattern recognition receptors (PRRs), including Toll-like receptors (TLRs), Nod-like receptors (NLRs), RIG-I like receptors (RLRs), C-type lectin receptors (CLRs) and various nucleic acid sensors, are expressed in both innate and adaptive immune cells and are involved in the development of autoimmune diseases. Here, we have summarized advances of PRRs signaling pathways, association between PRRs and autoimmune diseases, application of inhibitors targeting PRRs and the corresponding signaling molecules relevant to strategies targeting autoimmune diseases. This review emphasizes the roles of different PRRs in activating both innate and adaptive immunity, which can coordinate to trigger autoimmune responses. The review may also prompt the formulation of novel ideas for developing therapeutic strategies against autoimmune diseases by targeting PRRs-related signals.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hui Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China. .,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Basic and Translational Research Laboratory of Immune Related Diseases, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|