1
|
Petrone L, Peruzzu D, Altera AMG, Salmi A, Vanini V, Cuzzi G, Coppola A, Mellini V, Gualano G, Palmieri F, Panda S, Peters B, Sette A, Arlehamn CSL, Goletti D. Therapy modulates the response to T cell epitopes over the spectrum of tuberculosis infection. J Infect 2024; 89:106295. [PMID: 39343243 DOI: 10.1016/j.jinf.2024.106295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Identifying stage-specific antigens is essential for developing tuberculosis (TB) diagnostics and vaccines. In a low TB endemic country, we characterized, the Mycobacterium tuberculosis (Mtb)-specific immune response to a pool of Mtb-derived epitopes (ATB116), demonstrated as associated with TB disease. METHODS In this prospective observational cross-sectional study, we enrolled healthy donors (HD), subjects with TB disease, and TB infection (TBI) at baseline and therapy completion. T-cell response after whole blood stimulation with the peptide pools was characterized by ELISA, flow cytometry, and multiplex assay. RESULTS ATB116-specific IFN-γ response (by ELISA) significantly associates with Mtb regardless of infection/disease (p < 0.0001) and decreases during TB therapy (p = 0.0002). Flow cytometry confirms that ATB116-specific CD4+ T-cell response associated with Mtb regardless of infection/disease (p < 0.0001) and shows a significantly higher frequency of IFN-γ/IL-2 and central memory T-cells in TBI compared to TB (p = 0.016; p = 0.0242, respectively). CD4+ T cell-specific response decreases after TB therapy completion. The antigen-specific CD8+ T-cell response mirrors the CD4+ response. Finally, the multiplex assay analysis showed that ATB116 induces several immune factors in both TB and TBI. CONCLUSION We characterized the immune response to Mtb peptide pools that is modulated by TB therapy. These results are important for our understanding of TB immunopathogenesis and vaccine design.
Collapse
Affiliation(s)
- Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Daniela Peruzzu
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy; UOS Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Andrea Coppola
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Valeria Mellini
- Respiratory Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Gina Gualano
- Respiratory Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | - Sudhasini Panda
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Bjoern Peters
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani"-IRCCS, Rome, Italy.
| |
Collapse
|
2
|
Hu S, Guo J, Chen Z, Gong F, Yu Q. Nutritional Indices Predict All Cause Mortality in Patients with Multi-/Rifampicin-Drug Resistant Tuberculosis. Infect Drug Resist 2024; 17:3253-3263. [PMID: 39104459 PMCID: PMC11298562 DOI: 10.2147/idr.s457146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
Background Multidrug- and rifampicin-resistant tuberculosis (MDR/RR-TB) with high mortality remains a public health crisis and health security threat. This study aimed to explore the predictive value of nutritional indices for all-cause mortality (ACM) in MDR/RR-TB patients. Methods We retrospectively recruited MDR/RR-TB patients between January 2015 and December 2021, randomly assigning them to training and validation cohorts. Patients were divided into high nutritional risk groups (HNRGs) and low nutritional risk groups (LNRGs) based on the optimal cut-off value obtained from receiver operating characteristic (ROC) analyses of the hemoglobin-albumin-lymphocyte-platelet (HALP) score, prognostic nutritional index (PNI), and controlling nutritional status (CONUT) score. In the training cohort, Kaplan-Meier survival curves and Log rank tests were used to compare overall survival (OS) between the groups. Cox risk proportion regression analyses were used to explore the risk factors of ACM in patients with MDR/RR-TB. The predictive performance of ACM was assessed using area under the curve (AUC), sensitivity and specificity of ROC analyses. Results A total of 524 MDR/RR-TB patients, with 255 in the training cohort and 269 in the validation cohort, were included. Survival analyses in the training cohort revealed significantly lower OS in the HNRGs compared to the LNRGs. After adjusting for covariates, multivariate analysis identified low HALP score, low PNI and high CONUT score were independent risk factors for ACM in MDR/RR-TB patients. ROC analyses demonstrated good predictive performance for ACM with AUCs of 0.765, 0.783, 0.807, and 0.811 for HALP score, PNI, CONUT score, and their combination, respectively. Similar results were observed in the validation set. Conclusion HALP score, PNI, and CONUT scores could effectively predict ACM in patients with MDR/RR-TB. Hence, routine screening for malnutrition should be given more attention in clinical practice to identify MDR/RR-TB patients at higher risk of mortality and provide them with nutritional support to reduce mortality.
Collapse
Affiliation(s)
- Shengling Hu
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, People’s Republic of China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, 430023, People’s Republic of China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, 430023, People’s Republic of China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, People’s Republic of China
| | - Jinqiang Guo
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Zhe Chen
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
| | - Fengyun Gong
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, People’s Republic of China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, 430023, People’s Republic of China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, 430023, People’s Republic of China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, People’s Republic of China
| | - Qi Yu
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, People’s Republic of China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, 430023, People’s Republic of China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, 430023, People’s Republic of China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, People’s Republic of China
| |
Collapse
|
3
|
Larenas-Muñoz F, Sánchez-Carvajal JM, Ruedas-Torres I, Álvarez-Delgado C, Fristiková K, Pallarés FJ, Carrasco L, Chicano-Gálvez E, Rodríguez-Gómez IM, Gómez-Laguna J. Proteomic analysis of granulomas from cattle and pigs naturally infected with Mycobacterium tuberculosis complex by MALDI imaging. Front Immunol 2024; 15:1369278. [PMID: 39021575 PMCID: PMC11252589 DOI: 10.3389/fimmu.2024.1369278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has recently gained prominence for its ability to provide molecular and spatial information in tissue sections. This technology has the potential to uncover novel insights into proteins and other molecules in biological and immunological pathways activated along diseases with a complex host-pathogen interaction, such as animal tuberculosis. Thus, the present study conducted a data analysis of protein signature in granulomas of cattle and pigs naturally infected with the Mycobacterium tuberculosis complex (MTC), identifying biological and immunological signaling pathways activated throughout the disease. Lymph nodes from four pigs and four cattle, positive for the MTC by bacteriological culture and/or real-time PCR, were processed for histopathological examination and MALDI-MSI. Protein identities were assigned using the MaTisse database, and protein-protein interaction networks were visualized using the STRING database. Gene Ontology (GO) analysis was carried out to determine biological and immunological signaling pathways in which these proteins could participate together with Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Distinct proteomic profiles between cattle and pig granulomas were displayed. Noteworthy, the GO analysis revealed also common pathways among both species, such as "Complement activation, alternative pathway" and "Tricarboxylic acid cycle", which highlight pathways that are conserved among different species infected by the MTC. In addition, species-specific terms were identified in the current study, such as "Natural killer cell degranulation" in cattle or those related to platelet and neutrophil recruitment and activation in pigs. Overall, this study provides insights into the immunopathogenesis of tuberculosis in cattle and pigs, opening new areas of research and highlighting the importance, among others, of the complement activation pathway and the regulation of natural killer cell- and neutrophil-mediated immunity in this disease.
Collapse
Affiliation(s)
- Fernanda Larenas-Muñoz
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
- Pathology Group, United Kingdom Health Security Agency (UKHSA), Salisbury, United Kingdom
| | - Carmen Álvarez-Delgado
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Karola Fristiková
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Eduardo Chicano-Gálvez
- Instituto Maimónides de Investigaciones Biomédicas (IMIBIC) Mass Spectrometry and Molecular Imaging Unit (IMSMI), Maimónides Biomedical Research Institute of Córdoba, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| |
Collapse
|
4
|
Djibougou DA, Mensah GI, Kaboré A, Toé I, Sawadogo LT, Lompo PF, Kone AMM, Hien H, Meda CZ, Combary A, Bonfoh B, Addo KK, Belem AMG, Dabiré RK, Hoffmann J, Perreau M, Diagbouga PS. Immunological and Haematological Relevance of Helminths and Mycobacterium tuberculosis Complex Coinfection among Newly Diagnosed Pulmonary Tuberculosis Patients from Bobo-Dioulasso, Burkina Faso. Biomedicines 2024; 12:1472. [PMID: 39062045 PMCID: PMC11274831 DOI: 10.3390/biomedicines12071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
The effect of helminthiasis on host immunity is a neglected area of research, particularly in tuberculosis (TB) infection. This study aimed to evaluate the effect of helminthiasis on immunological and haematological parameters in newly diagnosed TB patients in Bobo-Dioulasso. After all biological analyses, we formed three subpopulations: group 1 (n = 82), as control, were participants without helminthic or Mycobacterium tuberculosis complex infection (Mtb-/Helm-), group 2 (n = 73) were TB patients without helminthic infection (Mtb+/Helm-), and group 3 (n = 22) were TB patients with helminthic infection (Mtb+/Helm+). The proportion of helminth coinfection was 23.16% (22/95) in TB patients, and Schistosoma mansoni infection was found in 77.3% (17/22) cases of helminthiasis observed in this study. A low CD4 T cell count and a low CD4:CD8 ratio were significantly associated with concomitant infection with helminths and the Mtb complex (Mtb+/Helm+) compared to the other groups (p < 0.05). However, there was no statistically significant difference in the CD8 median among the three participating groups (p > 0.05). Lymphopenia, monocytosis, thrombocytosis, and hypochromic microcytic anaemia were the haematological defects observed in the Mtb+/Helm+ and Mtb+/Helm- patients. Exploring these types of immune-haematological biomarkers would be a valuable aid in diagnosing and a better follow-up and monitoring of the tuberculosis-helminthiasis coinfection.
Collapse
Affiliation(s)
- Diakourga Arthur Djibougou
- Doctoral School of Natural Sciences and Agronomy, Université Nazi BONI, Bobo-Dioulasso 1091, Burkina Faso; (I.T.); (L.T.S.); (C.Z.M.); (A.M.-G.B.)
- Infectious Diseases Program, Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso 1091, Burkina Faso; (A.M.M.K.); (H.H.); (R.K.D.)
- Institut de Recherche en Sciences de la Santé, CNRST, Bobo-Dioulasso 545, Burkina Faso
| | - Gloria Ivy Mensah
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra 00233, Ghana; (G.I.M.); (K.K.A.)
| | - Achille Kaboré
- Infectious Disease and Health Systems (IDHS), FHI 360, Washington, DC 20037, USA;
| | - Inoussa Toé
- Doctoral School of Natural Sciences and Agronomy, Université Nazi BONI, Bobo-Dioulasso 1091, Burkina Faso; (I.T.); (L.T.S.); (C.Z.M.); (A.M.-G.B.)
- Institut de Recherche en Sciences de la Santé, CNRST, Bobo-Dioulasso 545, Burkina Faso
| | - Leon Tinnoga Sawadogo
- Doctoral School of Natural Sciences and Agronomy, Université Nazi BONI, Bobo-Dioulasso 1091, Burkina Faso; (I.T.); (L.T.S.); (C.Z.M.); (A.M.-G.B.)
- National Tuberculosis Programme, Ministry of Health and Public Hygiene, Ouagadougou 01 P.O. Box 690, Burkina Faso;
| | - Palpouguini Felix Lompo
- Etudes Formation et Recherches Développement en Santé (EFORDS), Ouagadougou 10 P.O. Box 13064, Burkina Faso;
| | - Amariane M. M. Kone
- Infectious Diseases Program, Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso 1091, Burkina Faso; (A.M.M.K.); (H.H.); (R.K.D.)
| | - Hervé Hien
- Infectious Diseases Program, Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso 1091, Burkina Faso; (A.M.M.K.); (H.H.); (R.K.D.)
- Institut de Recherche en Sciences de la Santé, CNRST, Bobo-Dioulasso 545, Burkina Faso
| | - Clement Ziemlé Meda
- Doctoral School of Natural Sciences and Agronomy, Université Nazi BONI, Bobo-Dioulasso 1091, Burkina Faso; (I.T.); (L.T.S.); (C.Z.M.); (A.M.-G.B.)
- Infectious Diseases Program, Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso 1091, Burkina Faso; (A.M.M.K.); (H.H.); (R.K.D.)
| | - Adjima Combary
- National Tuberculosis Programme, Ministry of Health and Public Hygiene, Ouagadougou 01 P.O. Box 690, Burkina Faso;
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifique de Côte d’Ivoire, Adiopodoumé 01 P.O. Box 1303, Côte d’Ivoire;
| | - Kennedy Kwasi Addo
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra 00233, Ghana; (G.I.M.); (K.K.A.)
| | - Adrien Marie-Gaston Belem
- Doctoral School of Natural Sciences and Agronomy, Université Nazi BONI, Bobo-Dioulasso 1091, Burkina Faso; (I.T.); (L.T.S.); (C.Z.M.); (A.M.-G.B.)
| | - Roch Konbobr Dabiré
- Infectious Diseases Program, Centre MURAZ, Institut National de Santé Publique, Bobo-Dioulasso 1091, Burkina Faso; (A.M.M.K.); (H.H.); (R.K.D.)
- Institut de Recherche en Sciences de la Santé, CNRST, Bobo-Dioulasso 545, Burkina Faso
| | - Jonathan Hoffmann
- Département Médical et Scientifique, Fondation Mérieux, 17 rue Bourgelat, 69002 Lyon, France;
| | - Matthieu Perreau
- Faculty of Biology and Medicine, Université de Lausanne, 1010 Lausanne, Switzerland;
| | - Potiandi Serge Diagbouga
- Institut de Recherche en Sciences de la Santé, CNRST, Bobo-Dioulasso 545, Burkina Faso
- Etudes Formation et Recherches Développement en Santé (EFORDS), Ouagadougou 10 P.O. Box 13064, Burkina Faso;
| |
Collapse
|
5
|
Bohórquez JA, Adduri S, Ansari D, John S, Florence J, Adejare O, Singh G, Konduru NV, Jagannath C, Yi G. A novel humanized mouse model for HIV and tuberculosis co-infection studies. Front Immunol 2024; 15:1395018. [PMID: 38799434 PMCID: PMC11116656 DOI: 10.3389/fimmu.2024.1395018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major public health problem worldwide. The human immunodeficiency virus (HIV) is another equally important life-threatening pathogen. HIV infection decreases CD4+ T cell levels markedly increasing Mtb co-infections. An appropriate animal model for HIV/Mtb co-infection that can recapitulate the diversity of the immune response in humans during co-infection would facilitate basic and translational research in HIV/Mtb infections. Herein, we describe a novel humanized mouse model. Methods The irradiated NSG-SGM3 mice were transplanted with human CD34+ hematopoietic stem cells, and the humanization was monitored by staining various immune cell markers for flow cytometry. They were challenged with HIV and/or Mtb, and the CD4+ T cell depletion and HIV viral load were monitored over time. Before necropsy, the live mice were subjected to pulmonary function test and CT scan, and after sacrifice, the lung and spleen homogenates were used to determine Mtb load (CFU) and cytokine/chemokine levels by multiplex assay, and lung sections were analyzed for histopathology. The mouse sera were subjected to metabolomics analysis. Results Our humanized NSG-SGM3 mice were able to engraft human CD34+ stem cells, which then differentiated into a full-lineage of human immune cell subsets. After co-infection with HIV and Mtb, these mice showed decrease in CD4+ T cell counts overtime and elevated HIV load in the sera, similar to the infection pattern of humans. Additionally, Mtb caused infections in both lungs and spleen, and induced granulomatous lesions in the lungs. Distinct metabolomic profiles were also observed in the tissues from different mouse groups after co-infections. Conclusion The humanized NSG-SGM3 mice are able to recapitulate the pathogenic effects of HIV and Mtb infections and co-infection at the pathological, immunological and metabolism levels and are therefore a reproducible small animal model for studying HIV/Mtb co-infection.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| | - Sitaramaraju Adduri
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Danish Ansari
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| | - Sahana John
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| | - Jon Florence
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Omoyeni Adejare
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Gaurav Singh
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| | - Nagarjun V. Konduru
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Guohua Yi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| |
Collapse
|
6
|
Yu Z, Shang Z, Huang Q, Wen F, Patil S. Integrating systemic immune-inflammation index, fibrinogen, and T-SPOT.TB for precision distinction of active pulmonary tuberculosis in the era of mycobacterial disease research. Front Microbiol 2024; 15:1382665. [PMID: 38725688 PMCID: PMC11079184 DOI: 10.3389/fmicb.2024.1382665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Background The clinical challenge of differentiating suspected tuberculosis with positive T-SPOT.TB results persist. This study aims to investigate the utility of the Systemic Immune-Inflammation Index (SII), Fibrinogen, and T-SPOT.TB in distinguishing between active pulmonary tuberculosis (PTB) and non-tuberculous lung diseases. Methods A retrospective analysis included 1,327 cases of active PTB with positive T-SPOT.TB results and 703 cases of non-tuberculous lung diseases from May 2016 to December 2020 at Meizhou People's Hospital. These were designated as the case group and the control group, respectively. The detection indicators of T-SPOT.TB: Early Secreted Antigenic Target 6 (ESAT-6), Culture Filtrate Protein 10 (CFP-10), as well as SII and Fibrinogen levels-were compared and analyzed for association and joint diagnostic value between the two groups. Results The case group showed higher values of ESAT-6, CFP-10, SII, and Fibrinogen compared to the control group (all p < 0.001). In the case group, SII and Fibrinogen did not correlate with ESAT-6 and CFP-10 (∣rs∣ all < 0.3) but were positively correlated with C-reactive protein (CRP; rs all > 0.3). SII and Fibrinogen values in smear-positive pulmonary tuberculosis were higher than in smear-negative cases (all p < 0.05). The optimal diagnostic thresholds for ESAT-6, CFP-10, SII, and Fibrinogen in differentiating between active PTB and non-tuberculous lung diseases were 21.50 SFCs/106 PBMC, 22.50 SFCs/106 PBMC, 2128.32, and 5.02 g/L, respectively. Regression logistic analysis showed that ESAT-6 < 21.5 (OR: 1.637, 95% CI: 1.311-2.043, p < 0.001), CFP-10 < 22.5 (OR: 3.918, 95% CI: 3.138-4.892, p = 0.025), SII < 2128.32 (OR: 0.763, 95% CI: 0.603-0.967, p < 0.001), and FIB < 5.02 (OR: 2.287, 95% CI: 1.865-2.806, p < 0.001) were independent risk factors for active PTB. The specificity for ESAT-6 + CFP-10, ESAT-6 + CFP-10 + SII, ESAT-6 + CFP-10 + FIB, and ESAT-6 + CFP-10 + SII + FIB was 82.5%, 83.2%, 95.8%, and 80.1%, respectively, while sensitivity was 52.6%, 53.0%, 55.8%, and 44.7%, and positive predictive values were 85.0%, 85.6%, 84.1%, and 89.6%, respectively. Conclusion SII and Fibrinogen are positively correlated with the degree of tuberculosis inflammation and the bacterial load of Mycobacterium tuberculosis. The combined detection of SII, Fibrinogen, and T-SPOT.TB is significant in distinguishing between active PTB with positive T-SPOT.TB results and non-tuberculous lung diseases.
Collapse
Affiliation(s)
- Zhikang Yu
- Research Experiment Center, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| | - Zifang Shang
- Research Experiment Center, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| | - Qingyan Huang
- Research Experiment Center, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| | - Feiqiu Wen
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Paediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
7
|
Cotugno S, Guido G, Manco Cesari G, Ictho J, Lochoro P, Amone J, Segala FV, De Vita E, Lattanzio R, Okori S, De Iaco G, Girma A, Sura A, Hessebo ET, Balsemin F, Putoto G, Ronga L, Manenti F, Facci E, Saracino A, Di Gennaro F. Cardiac Tuberculosis: A Case Series from Ethiopia, Italy, and Uganda and a Literature Review. Am J Trop Med Hyg 2024; 110:795-804. [PMID: 38412542 PMCID: PMC10993843 DOI: 10.4269/ajtmh.23-0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/19/2023] [Indexed: 02/29/2024] Open
Abstract
Extrapulmonary tuberculosis (TB) is estimated to account for up to 20% of active cases of TB disease, but its prevalence is difficult to ascertain because of the difficulty of diagnosis. Involvement of the heart is uncommon, with constrictive pericarditis being the most common cardiac manifestation. Diagnostic research for cardiac disease is frequently lacking, resulting in a high mortality rate. In addition to direct cardiac involvement, instances of cardiac events during antitubercular therapy are described. This case series describes five cases of TB affecting the heart (cardiac TB) from Italy and high-burden, low-income countries (Ethiopia and Uganda), including a case of Loeffler syndrome manifesting as myocarditis in a patient receiving antitubercular therapy. Our study emphasizes how cardiac TB, rare but important in high-burden areas, is a leading cause of pericardial effusion or pericarditis. Timely diagnosis and a comprehensive approach, including imaging and microbiological tools, are crucial. Implementing high-sensitivity methods and investigating alternative samples, such as detection of tuberculosis lipoarabinomannan or use of the GeneXpert assay with stool, is recommended in TB control programs.
Collapse
Affiliation(s)
- Sergio Cotugno
- Department of Precision and Regenerative Medicine and Ionian Area, Clinic of Infectious Diseases, University of Bari, Bari, Italy
| | - Giacomo Guido
- Department of Precision and Regenerative Medicine and Ionian Area, Clinic of Infectious Diseases, University of Bari, Bari, Italy
| | - Giorgia Manco Cesari
- Department of Precision and Regenerative Medicine and Ionian Area, Clinic of Infectious Diseases, University of Bari, Bari, Italy
| | | | | | - James Amone
- St. John’s XXIII Hospital Aber, Jaber, Uganda
| | - Francesco Vladimiro Segala
- Department of Precision and Regenerative Medicine and Ionian Area, Clinic of Infectious Diseases, University of Bari, Bari, Italy
| | - Elda De Vita
- Department of Precision and Regenerative Medicine and Ionian Area, Clinic of Infectious Diseases, University of Bari, Bari, Italy
| | - Rossana Lattanzio
- Department of Precision and Regenerative Medicine and Ionian Area, Clinic of Infectious Diseases, University of Bari, Bari, Italy
| | | | - Giuseppina De Iaco
- Department of Precision and Regenerative Medicine and Ionian Area, Clinic of Infectious Diseases, University of Bari, Bari, Italy
| | - Adisu Girma
- Doctors with Africa CUAMM, Wolisso, Ethiopia
| | - Abata Sura
- Doctors with Africa CUAMM, Wolisso, Ethiopia
| | | | | | - Giovanni Putoto
- Operational Research Unit, Doctors with Africa CUAMM, Padua, Italy
| | - Luigi Ronga
- Microbiology and Virology Unit, University of Bari, University Hospital Policlinico, Bari, Italy
| | | | - Enzo Facci
- Doctors with Africa CUAMM, Wolisso, Ethiopia
| | - Annalisa Saracino
- Department of Precision and Regenerative Medicine and Ionian Area, Clinic of Infectious Diseases, University of Bari, Bari, Italy
| | - Francesco Di Gennaro
- Department of Precision and Regenerative Medicine and Ionian Area, Clinic of Infectious Diseases, University of Bari, Bari, Italy
| |
Collapse
|
8
|
Vinhaes CL, Fukutani ER, Santana GC, Arriaga MB, Barreto-Duarte B, Araújo-Pereira M, Maggitti-Bezerril M, Andrade AM, Figueiredo MC, Milne GL, Rolla VC, Kristki AL, Cordeiro-Santos M, Sterling TR, Andrade BB, Queiroz AT. An integrative multi-omics approach to characterize interactions between tuberculosis and diabetes mellitus. iScience 2024; 27:109135. [PMID: 38380250 PMCID: PMC10877940 DOI: 10.1016/j.isci.2024.109135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/02/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Tuberculosis-diabetes mellitus (TB-DM) is linked to a distinct inflammatory profile, which can be assessed using multi-omics analyses. Here, a machine learning algorithm was applied to multi-platform data, including cytokines and gene expression in peripheral blood and eicosanoids in urine, in a Brazilian multi-center TB cohort. There were four clinical groups: TB-DM(n = 24), TB only(n = 28), DM(HbA1c ≥ 6.5%) only(n = 11), and a control group of close TB contacts who did not have TB or DM(n = 13). After cross-validation, baseline expression or abundance of MMP-28, LTE-4, 11-dTxB2, PGDM, FBXO6, SECTM1, and LINCO2009 differentiated the four patient groups. A distinct multi-omic-derived, dimensionally reduced, signature was associated with TB, regardless of glycemic status. SECTM1 and FBXO6 mRNA levels were positively correlated with sputum acid-fast bacilli grade in TB-DM. Values of the biomarkers decreased during the course of anti-TB therapy. Our study identified several markers associated with the pathophysiology of TB-DM that could be evaluated in future mechanistic investigations.
Collapse
Affiliation(s)
- Caian L. Vinhaes
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Programa de Pós-Graduação em Medicina e Saúde Humana, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-150, Brazil
- Departamento de Infectologia, Hospital Português da Bahia, Salvador 40140-901, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
| | - Eduardo R. Fukutani
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
- Centro de Integração de Dados e Conhecimentos para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Gabriel C. Santana
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Curso de Medicina, Universidade Salvador, Salvador, Brazil
| | - María B. Arriaga
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Beatriz Barreto-Duarte
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
- Curso de Medicina, Universidade Salvador, Salvador, Brazil
- Programa Acadêmico de Tuberculose. Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Araújo-Pereira
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
- Faculdade de Medicina, Univerdidade Federal da Bahia, Salvador, Brazil
| | - Mateus Maggitti-Bezerril
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
| | - Alice M.S. Andrade
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
| | - Marina C. Figueiredo
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ginger L. Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Valeria C. Rolla
- Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Afrânio L. Kristki
- Programa Acadêmico de Tuberculose. Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Cordeiro-Santos
- Fundação Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Universidade Nilton Lins, Manaus, Brazil
| | - Timothy R. Sterling
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bruno B. Andrade
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Programa de Pós-Graduação em Medicina e Saúde Humana, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-150, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
- Curso de Medicina, Universidade Salvador, Salvador, Brazil
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Faculdade de Medicina, Univerdidade Federal da Bahia, Salvador, Brazil
| | - Artur T.L. Queiroz
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
- Centro de Integração de Dados e Conhecimentos para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - for the RePORT Brazil Consortium
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil
- Programa de Pós-Graduação em Medicina e Saúde Humana, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-150, Brazil
- Departamento de Infectologia, Hospital Português da Bahia, Salvador 40140-901, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
- Centro de Integração de Dados e Conhecimentos para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Curso de Medicina, Universidade Salvador, Salvador, Brazil
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Programa Acadêmico de Tuberculose. Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Medicina, Univerdidade Federal da Bahia, Salvador, Brazil
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
- Fundação Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Universidade Nilton Lins, Manaus, Brazil
| |
Collapse
|
9
|
Bohórquez JA, Adduri S, Ansari D, John S, Florence J, Adejare O, Singh G, Konduru N, Jagannath C, Yi G. A Novel Humanized Mouse Model for HIV and Tuberculosis Co-infection Studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583545. [PMID: 38496484 PMCID: PMC10942347 DOI: 10.1101/2024.03.05.583545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major public health problem worldwide. The human immunodeficiency virus (HIV) is another equally important life-threatening pathogen. Further, co-infections with HIV and Mtb have severe effects in the host, with people infected with HIV being fifteen to twenty-one times more likely to develop active TB. The use of an appropriate animal model for HIV/Mtb co-infection that can recapitulate the diversity of the immune response in humans would be a useful tool for conducting basic and translational research in HIV/Mtb infections. The present study was focused on developing a humanized mouse model for investigations on HIV-Mtb co-infection. Using NSG-SGM3 mice that can engraft human stem cells, our studies showed that they were able to engraft human CD34+ stem cells which then differentiate into a full-lineage of human immune cell subsets. After co-infection with HIV and Mtb, these mice showed decrease in CD4+ T cell counts overtime and elevated HIV load in the sera, similar to the infection pattern of humans. Additionally, Mtb caused infections in both lungs and spleen, and induced the development of granulomatous lesions in the lungs, detected by CT scan and histopathology. Distinct metabolomic profiles were also observed in the tissues from different mouse groups after co-infections. Our results suggest that the humanized NSG-SGM3 mice are able to recapitulate the effects of HIV and Mtb infections and co-infection in the human host at pathological, immunological and metabolism levels, providing a dependable small animal model for studying HIV/Mtb co-infection.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Sitaramaraju Adduri
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Danish Ansari
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Sahana John
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Jon Florence
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Omoyeni Adejare
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Gaurav Singh
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Nagarjun Konduru
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Guohua Yi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| |
Collapse
|
10
|
J NH, Venkataraman A, Thiruvengadam K, B B, M K, S S, Balaji S, S E, Smuk M, Hanna LE, Prendergast AJ. Evaluation of platelet indices as markers of tuberculosis among children in India. ERJ Open Res 2024; 10:00734-2023. [PMID: 38410718 PMCID: PMC10895425 DOI: 10.1183/23120541.00734-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/15/2023] [Indexed: 02/28/2024] Open
Abstract
Children with tuberculosis have increased platelet count and platelet/lymphocyte ratio along with decreased mean platelet volume, suggesting that these indices may be useful as adjunct tools in diagnosis of paediatric tuberculosis https://bit.ly/3Ga4AWT.
Collapse
Affiliation(s)
- Nancy Hilda J
- ICMR - National Institute for Research in Tuberculosis, Chennai, India
- Joint first authors
| | - Aishwarya Venkataraman
- ICMR - National Institute for Research in Tuberculosis, Chennai, India
- Blizard Institute, Queen Mary University of London, London, UK
- Joint first authors
| | | | - Brindha B
- ICMR - National Institute for Research in Tuberculosis, Chennai, India
| | - Karthick M
- ICMR - National Institute for Research in Tuberculosis, Chennai, India
| | - Subha S
- ICMR - National Institute for Research in Tuberculosis, Chennai, India
| | - Sarath Balaji
- Institute of Child Health, Madras Medical College, Chennai, India
| | - Elilarasi S
- Institute of Child Health, Madras Medical College, Chennai, India
| | - Melanie Smuk
- Blizard Institute, Queen Mary University of London, London, UK
| | - Luke Elizabeth Hanna
- ICMR - National Institute for Research in Tuberculosis, Chennai, India
- Joint senior authors
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London, UK
- Joint senior authors
| |
Collapse
|
11
|
Krause R, Warren CM, Simmons JD, Rebeiro PF, Maruri F, Karim F, Sterling TR, Koethe JR, Leslie A, van der Heijden YF. Failure to decrease HbA1c levels following TB treatment is associated with elevated Th1/Th17 CD4+ responses. Front Immunol 2023; 14:1151528. [PMID: 37313404 PMCID: PMC10258338 DOI: 10.3389/fimmu.2023.1151528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction The rising global burden of metabolic disease impacts the control of endemic tuberculosis (TB) in many regions, as persons with diabetes mellitus (DM) are up to three times more likely to develop active TB than those without DM. Active TB can also promote glucose intolerance during both acute infection and over a longer term, potentially driven by aspects of the immune response. Identifying patients likely to have persistent hyperglycemia following TB treatment would enable closer monitoring and care, and an improved understanding of underlying immunometabolic dysregulation. Methods We measured the relationship of plasma cytokine levels, T cell phenotypes and functional responses with the change in hemoglobin A1c (HbA1c) before and after treatment of pulmonary TB in a prospective observational cohort in Durban, South Africa. Participants were stratified based on stable/increased HbA1c (n = 16) versus decreased HbA1c (n = 46) levels from treatment initiation to 12 month follow-up. Results CD62 P-selectin was up- (1.5-fold) and IL-10 downregulated (0.85-fold) in plasma among individuals whose HbA1c remained stable/increased during TB treatment. This was accompanied by increased pro-inflammatory TB-specific IL-17 production (Th17). In addition, Th1 responses were upregulated in this group, including TNF-α production and CX3CR1 expression, with decreased IL-4 and IL-13 production. Finally, the TNF-α+ IFNγ+ CD8+ T cells were associated with stable/increased HbA1c. These changes were all significantly different in the stable/increased HbA1c relative to the decreased HbA1c group. Discussion Overall, these data suggest that patients with stable/increased HbA1c had an increased pro-inflammatory state. Persistent inflammation and elevated T cell activity in individuals with unresolved dysglycemia following TB treatment may indicate failure to fully resolve infection or may promote persistent dysglycemia in these individuals, and further studies are needed to explore potential mechanisms.
Collapse
Affiliation(s)
- Robert Krause
- Africa Health Research Institute (AHRI), Durban, South Africa
- College of Health Sciences, School of Laboratory Medicine & Medical Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Christian M. Warren
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Joshua D. Simmons
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Peter F. Rebeiro
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Fernanda Maruri
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Farina Karim
- Africa Health Research Institute (AHRI), Durban, South Africa
- College of Health Sciences, School of Laboratory Medicine & Medical Sciences, University of KwaZulu Natal, Durban, South Africa
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Timothy R. Sterling
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - John R. Koethe
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Al Leslie
- Africa Health Research Institute (AHRI), Durban, South Africa
- College of Health Sciences, School of Laboratory Medicine & Medical Sciences, University of KwaZulu Natal, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Yuri F. van der Heijden
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- The Aurum Institute, Johannesburg, South Africa
| |
Collapse
|
12
|
Mekonnen D, Nibret E, Munshea A, Derbie A, Zenebe Y, Tadese A, Birku T, Tesfa E, Sinishaw MA, Getachew H, Gashaw Y, Yismaw G, Kebede MM, Gelaw B. Comparative serum lipid and immunohematological values among adult pulmonary tuberculosis and tuberculosis lymphadenitis cases and their association with sputum bacilli load and time to culture positivity in Northwestern Ethiopia. Lipids Health Dis 2023; 22:56. [PMID: 37106418 PMCID: PMC10134535 DOI: 10.1186/s12944-023-01821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The serum lipid and immunohematological values of tuberculosis lymphadenitis (TBLN) patients is poorly documented relative to pulmonary tuberculosis (PTB) cases. Therefore, the aim of this study was to investigate the serum lipid and immunohematological values of patients with TBLN in comparison with PTB (PTB) patients. METHODS An institution-based comparative cross-sectional study was conducted in Northwest Ethiopia from March to December 2021. The study participants were bacteriologically confirmed PTB (n = 82) and TBLN (n = 94) cases with no known comorbidity and whose ages was greater than 18 years and with no current pregnancy. Independent sample t-test, one-way ANOVA, box plot, and correlation matrix were used to analyze the data. RESULTS The body mass index (BMI), CD4 + T cell count, and high-density lipoprotein-Cholesterol (HDL-C) values were significantly higher among TBLN cases compared with PTB cases. Additionally, the total white blood cell (WBC) count, hemoglobin (Hb), total Cholesterol (CHO) and creatinine (Cr) values were relatively higher among TBLN than PTB (P > 0.05). On the reverse, the platelet count and triacylglycerol (TAG) values were relatively higher among PTB than in TBLN cases. While the mean days of culture positivity were 11.6 days for TBLN, the mean days of culture positivity were 14.0 days for PTB. Anemia and serum lipid values showed no correlation with sputum bacilli load and time to culture positivity. CONCLUSION Tuberculous lymphadenitis patients were well-endowed with serum lipid, immunological and nutritional status compared with PTB cases. Hence, the high incidence rate of TBLN in Ethiopia could not be explained by low peripheral immunohematological values, malnutrition, Anemia, and dyslipidemia. Further study for identifying the predictors for TBLN in Ethiopia is highly desirable.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Medical Laboratory Sciences, School of Health Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia.
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Endalkachew Nibret
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abaineh Munshea
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Awoke Derbie
- Department of Medical Laboratory Sciences, School of Health Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- The Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia
| | - Yohannes Zenebe
- Department of Medical Laboratory Sciences, School of Health Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Aimro Tadese
- Amhara Public Health Institute, Bahir Dar, Ethiopia
| | - Tigist Birku
- Amhara Public Health Institute, Bahir Dar, Ethiopia
| | - Endalamaw Tesfa
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Mulusew Alemneh Sinishaw
- Department of Medical Laboratory Sciences, School of Health Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | | | - Yosef Gashaw
- Amhara Public Health Institute, Bahir Dar, Ethiopia
| | | | - Mihiretu M Kebede
- German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Baye Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
13
|
Shyama S, Ojha VS, Biswas R, Luv L, Kaur G, Jaiswal Y, Aneef AN. Comparison of Biochemical and Hematological Profiles in Patients of Extrapulmonary and Pulmonary Tuberculosis at a Tertiary Care Center. Cureus 2023; 15:e35778. [PMID: 37025745 PMCID: PMC10071940 DOI: 10.7759/cureus.35778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 03/07/2023] Open
Abstract
Background Tuberculosis (TB) is a disease of global concern, especially in countries like India. Pulmonary TB (PTB) and extrapulmonary TB (EPTB) differ a lot when it comes to presentations, treatment, and outcomes. The biochemical and hematological test can serve as a marker reflecting the response to treatment in various types of TB, resulting in a better prognosis. Therefore, this study was conducted to compare the biochemical and hematological profiles in patients of extrapulmonary and pulmonary tuberculosis in adults and children. Methods TB cases were divided into four categories: PTB adult, EPTB adult, PTB pediatrics, and EPTB pediatrics. Forty-nine patients in each category were selected, resulting in a total of 196 patients. The sample size was met via convenience sampling. A total of 27 parameters were compared. Mann-Whitney U tests were used for statistical analysis. Results It was observed that serum calcium levels in PTB cases (11.65, 1.15; median and inter-quartile range (IQR), respectively) were significantly different from those in EPTB cases (9.18, 1.03; p<0.001). The median serum sodium levels in EPTB cases (139.49, 6.86) were higher than in PTB cases (130.10, 5.77; p<0.001). For total platelet count levels, a significant difference was observed between PTB (337.00, 180.75) and EPTB cases (278, 159.25; p=0.006). In EPTB cases, the total red blood count (RBC) count levels (4.47, 0.96) were higher than in PTB cases (4.24, 0.89; p=0.036). Biochemical and hematological parameters between pediatrics and adult age groups were compared, and it was observed that the median values (IQR) of serum phosphorus, total white blood cells (WBC), and platelet count in pediatric cases were 5.16 (1.09), 14.75 (6.03), and 350.00 (155.75), respectively, and were higher from those in adult cases 3.78 (0.97); 8.35 (6.66) and 264 (181.5), respectively (p<0.001). For serum creatinine levels, a significant rise was observed between PTB 0.54 (0.19) and EPTB cases 0.57 (0.16) (p<0.001). It was also observed that alanine transaminase (ALT) levels were higher in adults (18.90 (17.83)) than in the pediatric age group (24.70 (28.67); p=0.042) while alkaline phosphatase (ALP) was higher in the pediatric age group (108.95 (78.37)) than in adults (94.25 (47.92); p=0.003). Conclusion Serum calcium levels and total WBC counts were higher in PTB cases, while the levels of serum sodium and total RBC counts were higher in EPTB cases. ALT, serum phosphorus, total WBC counts, and total platelet counts were higher in the pediatric age group, while ALP, serum urea, and creatinine levels were higher in adults. Increased tissue damage and severity of disease in the pediatric age group, reactive thrombocytosis due to biogenesis in lungs, and abnormal anti-diuretic hormone secretion in PTB cases may be possible explanations for these findings. These findings may help clinicians in the early identification of potential complications, and further studies on these parameters should be conducted.
Collapse
|
14
|
Zhou C, Liang T, Jiang J, Chen J, Chen T, Huang S, Chen L, Sun X, Chen W, Zhu J, Wu S, Fan B, Liu C, Zhan X. MMP9 and STAT1 are biomarkers of the change in immune infiltration after anti-tuberculosis therapy, and the immune status can identify patients with spinal tuberculosis. Int Immunopharmacol 2023; 116:109588. [PMID: 36773569 DOI: 10.1016/j.intimp.2022.109588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 02/11/2023]
Abstract
BACKGROUND Due to a lack of studies on immune-related pathogenesis and a clinical diagnostic model, the diagnosis of Spinal Tuberculosis (STB) remains uncertain. Our study aimed to investigate the possible pathogenesis of STB and to develop a clinical diagnostic model for STB based on immune cell infiltration. METHODS Label-free quantification protein analysis of five pairs of specimens was used to determine the protein expression of the intervertebral disc in STB and non-STB. GO enrichment analysis, and KEGG pathway analysis were used to investigate the pathogenesis of STB. The Hub proteins were then eliminated. Four datasets were downloaded from the GEO database to analyze immune cell infiltration, and the results were validated using blood routine test data from 8535TB and 7337 non-TB patients. Following that, clinical data from 164 STB and 162 non-STB patients were collected. The Random-Forest algorithm was used to screen out clinical predictors of STB and build a diagnostic model. The differential expression of MMP9 and STAT1 in STB and controls was confirmed using immunohistochemistry. RESULTS MMP9 and STAT1 were STB Hub proteins that were linked to disc destruction in STB. MMP9 and STAT1 were found to be associated with Monocytes, Neutrophils, and Lymphocytes in immune cell infiltration studies. Data from 15,872 blood routine tests revealed that the Monocytes ratio and Neutrophils ratio was significantly higher in TB patients than in non-TB patients (p < 0.001), while the Lymphocytes ratio was significantly lower in TB patients than in non-TB patients (p < 0.001). MMP9 and STAT1 expression were downregulated following the anti-TB therapy. For STB, a clinical diagnostic model was built using six clinical predictors: MR, NR, LR, ESR, BMI, and PLT. The model was evaluated using a ROC curve, which yielded an AUC of 0.816. CONCLUSIONS MMP9 and STAT1, immune-related hub proteins, were correlated with immune cell infiltration in STB patients. MR, NR, LR ESR, BMI, and PLT were clinical predictors of STB. Thus, the immune cell Infiltration-related clinical diagnostic model can predict STB effectively.
Collapse
Affiliation(s)
- Chenxing Zhou
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Tuo Liang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Jie Jiang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Jiarui Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Tianyou Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Shengsheng Huang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Liyi Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Xuhua Sun
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Wenkang Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Jichong Zhu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Shaofeng Wu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Binguang Fan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Chong Liu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Xinli Zhan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| |
Collapse
|
15
|
Okeke CO, Amilo GI, Manafa PO, Ibeh NC. Inflammation-mediated changes in haemostatic variables of pulmonary tuberculosis patients during treatment. Tuberculosis (Edinb) 2023; 138:102285. [PMID: 36436460 DOI: 10.1016/j.tube.2022.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Tuberculosis (TB) disease is usually marked by inflammation which is closely linked to haemostasis both in health and disease. Close monitoring of haemostatic response to inflammatory changes during treatment is important to improve TB management. Here we studied associations between haemostatic markers and inflammatory cytokines in 60 TB-infected individuals, aged 18-65 years who received anti-TB therapy. They were recruited before commencement of therapy and followed up till completion of therapy after 6-months. The TNF-α, IL-6, IL-2 (pro-inflammatory cytokines) and P-selectin, GP IIb/IIIa, thrombopoietin (haemostatic variables) were significantly increased at 2 month into therapy compared to pre-treatment values and decreased at 6 month into therapy. Also at 6 month into therapy in comparison to 2-month into therapy, there were significant increase in IL-10 and TGF-β (anti-inflammatory cytokines) as well as a significant decline in PF-4. There were significant positive correlations between GP IIb/IIIa and TNF-α, IL-6 and PSEL, IL-6 and TPO, PF4 and TGF-β. Conclusively, the changes in the TNF-α, IL-6, IL-2 aligned with changes in the levels of P-selectin, GP IIb/IIIa, and TPO in the course of TB therapy. This may suggest that the levels of inflammatory cytokines are linked to the levels of these haemostatic variables in TB individuals.
Collapse
Affiliation(s)
- C O Okeke
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus P.M.B. 5001, Anambra State, Nigeria.
| | - G I Amilo
- Department of Haematology, Faculty of Medicine, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus P.M.B. 5001, Anambra State, Nigeria
| | - P O Manafa
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus P.M.B. 5001, Anambra State, Nigeria
| | - N C Ibeh
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus P.M.B. 5001, Anambra State, Nigeria
| |
Collapse
|
16
|
Wang LN, He DK, Shao YR, Lv J, Wang PF, Ge Y, Yan W. Early platelet level reduction as a prognostic factor in intensive care unit patients with severe aspiration pneumonia. Front Physiol 2023; 14:1064699. [PMID: 36960160 PMCID: PMC10029141 DOI: 10.3389/fphys.2023.1064699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction: This study investigates risk factors underlying the prognosis of severe aspiration pneumonia (SAP) in intensive care unit (ICU) patients and attempts to provide early prognosis reference for clinical tasks. Methods: Patients diagnosed with SAP and admitted to the ICU of Jinshan Hospital, Fudan University, Shanghai, China, between January 2021 and December 2021 were recruited in this retrospective cohort study. Clinical data on a patient's general condition, underlying diseases, laboratory indicators, and 90-day outcomes (survival or death) were recorded. Results: Multivariate logistic regression analysis showed that a low platelet count was an independent risk factor affecting the prognosis of death (OR = 6.68, 95% CI:1.10-40.78, β = 1.90, P = 0.040). Receiver operating characteristic (ROC) curve analysis was used to evaluate the predictive value of variables; cut-off values were calculated and the area under the curve was 0.7782 [(95% CI:0.686-0.871), p < 0.001] for the prediction of death at 90 days in all patients. The Kaplan-Meier curve used for survival analysis showed that, compared with the normal platelet group, the overall survival rate of patients with low platelet levels was significantly lower, and the difference was statistically significant [HR = 2.11, (95% CI:1.47-3.03), p = 0.0001, z = 4.05, X 2 = 14.89]. Cox regression analysis, used to further verify the influence of prognostic risk factors, showed that a concurrent low platelet count was the most important independent risk factor affecting the prognosis of SAP (HR = 2.12 [95% CI:1.12-3.99], X2 = 50.95, p = 0.021). Conclusion: These findings demonstrate an association between SAP mortality and platelet levels on admission. Thus, platelet level at admission may be used as a readily available marker for assessing the prognosis of patients with SAP.
Collapse
Affiliation(s)
- Li-Na Wang
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, China
| | - Dai-Kun He
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, China
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
- Medical Research Centre for Chemical Injury, Emergency and Critical Care, Jinshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Dai-Kun He,
| | - Yi-Ru Shao
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
- Medical Research Centre for Chemical Injury, Emergency and Critical Care, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jiang Lv
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, China
| | - Peng-Fei Wang
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
- Medical Research Centre for Chemical Injury, Emergency and Critical Care, Jinshan Hospital, Fudan University, Shanghai, China
| | - Ying Ge
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wei Yan
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Kim MA, Park YE, Chong YP, Shim TS, Jo KW. Neutrophil-Lymphocyte Ratio and Monocyte-Lymphocyte Ratio According to the Radiologic Severity of Mycobacterium avium Complex Pulmonary Disease. J Korean Med Sci 2022; 37:e292. [PMID: 36254530 PMCID: PMC9577355 DOI: 10.3346/jkms.2022.37.e292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/10/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND To date, no study has investigated whether the neutrophil-lymphocyte ratio (NLR) and monocyte-lymphocyte ratio (MLR) have a clinical value in Mycobacterium avium complex (MAC)-pulmonary disease (PD). METHODS We aimed to assess whether the baseline NLR and MLR were different according to the severity of MAC-PD based on the radiologic classification by retrospectively analyzing 549 patients treated in a tertiary referral center in South Korea. RESULTS Both NLR and MLR were significantly higher as 3.33 and 0.43 respectively in the fibrocavitary type, followed by 2.34 and 0.27 in the cavitary nodular bronchiectatic type and significantly lower as 1.88 and 0.23 in the non-cavitary nodular bronchiectatic type. CONCLUSION The baseline NLR and MLR showed a distinct difference in accordance with the radiologic severity of MAC-PD.
Collapse
Affiliation(s)
- Mi-Ae Kim
- Department of Internal Medicine, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Yea Eun Park
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Pil Chong
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae Sun Shim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung-Wook Jo
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
18
|
Urbán-Solano A, Flores-Gonzalez J, Cruz-Lagunas A, Pérez-Rubio G, Buendia-Roldan I, Ramón-Luing LA, Chavez-Galan L. High levels of PF4, VEGF-A, and classical monocytes correlate with the platelets count and inflammation during active tuberculosis. Front Immunol 2022; 13:1016472. [PMID: 36325331 PMCID: PMC9618821 DOI: 10.3389/fimmu.2022.1016472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Platelets play a major role in coagulation and hemostasis; evidence supports the hypothesis that they also contribute to immunological processes. Increased platelet counts have been associated with poor prognosis in tuberculosis (TB). Platelet–monocyte aggregates have been reported in patients with TB, but it is still unclear if only one monocyte subpopulation is correlated to the platelet count; moreover, the platelet–monocyte axis has not been studied during latent tuberculosis (LTB). In this study, mononuclear cells and plasma were obtained from patients diagnosed with active drug-sensitive TB (DS-TB, n = 10) and LTB (n = 10); cytokines and growth factors levels associated to platelets were evaluated, and correlations with monocyte subpopulations were performed to identify a relationship between them, as well as an association with the degree of lung damage. Our data showed that, compared to LTB, DS-TB patients had an increased frequency of platelets, monocytes, and neutrophils. Although DS-TB patients showed no significant difference in the frequency of classical and non-classical monocytes, the classical monocytes had increased CD14 intensity of expression and frequency of TLR-2+. Furthermore, the plasma levels of angiogenic factors such as vascular endothelial growth factor (VEGF-A), platelet-derived growth factor (PDGF-BB), and platelet factor-4 (PF4), and pro-inflammatory cytokines like interleukin 6 (IL-6), interleukin 1 beta (IL-1β), and interferon-γ-inducible protein 10 (IP-10) were increased in DS-TB patients. In addition, PF-4 and VEGF-A correlated positively with the frequency of classical monocytes and the platelet count. Using a principal component analysis, we identified four groups of DS-TB patients according to their levels of pro-inflammatory cytokines, angiogenic factors, and degree of lung damage. This study establishes that there is a correlation between VEGF-A and PF4 with platelets and classical monocytes during active TB, suggesting that those cell subpopulations are the major contributors of these molecules, and together, they control the severity of lung damage by amplification of the inflammatory environment.
Collapse
Affiliation(s)
- Alexia Urbán-Solano
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetic, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ivette Buendia-Roldan
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Lucero A. Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- *Correspondence: Leslie Chavez-Galan, ;
| |
Collapse
|
19
|
Sun J, Zhang Q, Yang G, Li Y, Fu Y, Zheng Y, Jiang X. The licorice flavonoid isoliquiritigenin attenuates Mycobacterium tuberculosis-induced inflammation through Notch1/NF-κB and MAPK signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115368. [PMID: 35589023 DOI: 10.1016/j.jep.2022.115368] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/24/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Glycyrrhiza is a small perennial herb that has been traditionally used to treat many diseases across the world. Licorice (Gancao in Chinese) is the dried root and rhizome of G. glabra, G. uralensis or G. inflata. Licorice plays an important role in traditional Chinese medicine (TCM), and is the most frequently used in Chinese herbal formulas. Isoliquiritigenin (ISL) is a flavonoid extracted from licorice, and has been evaluated for its various biological activities, including anti-inflammatory, anti-tumor and anti-oxidant activities. Excessive and persistent inflammation in the Mycobacterium tuberculosis (Mtb) infection is not conducive to the elimination of Mtb, but contributes to serious pulmonary dysfunction. AIM OF THE STUDY This study aimed to examine the anti-inflammatory effects of ISL in the Mtb infection. METHODS In vitro models of Mtb-infected macrophages were established. Murine macrophage Raw 264.7 cells and primary peritoneal macrophages were used in this study. Cell viability was determined by the cell counting kit-8 (CCK-8) assay. The effects of ISL on the secretion levels of interleukin -1β (IL-1β), tumor necrosis factor -α (TNF-α), and interleukin -6 (IL-6) were detected by the enzyme-linked immunosorbent assay (ELISA). The expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) were measured by the real time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. Western blot was used to assess the effects of ISL on the activation of NLRP3 inflammasome and Notch1/NF-κB and MAPK signaling pathways. Immunofluorescence assays was used to detected the translocation of phosphorylation of p65 subunit of NF-κB. RESULTS It was revealed that ISL inhibited the secretion of IL-1β and the activation of pore-forming protein (gasdermin D, GSDMD) by suppressing the activation of NLPR3 inflammasome induced by Mtb infection. ISL was also shown to have promising inhibitory effects on inflammatory factors, such as TNF-α, IL-6, iNOS and COX2. Regarding the anti-inflammatory mechanism of ISL, it was found that ISL exerted its anti-inflammatory effects by inhibiting the activation of Notch1/NF-κB and MAPK signaling pathways. CONCLUSION ISL reduced Mtb-induced inflammation through the Notch1/NF-κB and MAPK signaling pathways. ISL might be used as a potential adjuvant drug to treat tuberculosis by adjusting host immune responses.
Collapse
Affiliation(s)
- Jinxia Sun
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, PR China
| | - Qingwen Zhang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, PR China; Department of Inspection and Quarantine, School of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Guizhen Yang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, PR China
| | - Yinhong Li
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, PR China
| | - Yan Fu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, PR China
| | - Yuejuan Zheng
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, PR China.
| | - Xin Jiang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, PR China.
| |
Collapse
|
20
|
Alterations in the nasopharyngeal microbiota associated with active and latent tuberculosis. Tuberculosis (Edinb) 2022; 136:102231. [DOI: 10.1016/j.tube.2022.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/24/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022]
|
21
|
Wei Y, Tang S, Xie Z, He Y, Zhang Y, Xie Y, Chen S, Liu L, Liu Y, Liang Z. Pulmonary Tuberculosis-Related Ischemic Stroke: A Retrospective Case Control Study. J Inflamm Res 2022; 15:4239-4249. [PMID: 35923909 PMCID: PMC9341260 DOI: 10.2147/jir.s368183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yunfei Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, People’s Republic of China
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Shiting Tang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, People’s Republic of China
| | - Zhouhua Xie
- Department of Tuberculosis, The Fourth People’s Hospital of Nanning City, Nanning, People’s Republic of China
| | - Yaoqin He
- Department of Tuberculosis, The Fourth People’s Hospital of Nanning City, Nanning, People’s Republic of China
| | - Yunli Zhang
- Department of Neurology, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, People’s Republic of China
| | - Yiju Xie
- Department of Neurology, Wuming hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Shijian Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, People’s Republic of China
| | - Liuyu Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, People’s Republic of China
| | - Yayuan Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, People’s Republic of China
| | - Zhijian Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, People’s Republic of China
- Correspondence: Zhijian Liang, Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, People’s Republic of China, Tel +86-771-5330705, Fax +86-771-5352627, Email
| |
Collapse
|
22
|
La Manna MP, Orlando V, Badami GD, Tamburini B, Azgomi MS, Presti EL, Del Nonno F, Petrone L, Belmonte B, Falasca L, Carlo PD, Dieli F, Goletti D, Caccamo N. Platelets accumulate in lung lesions of tuberculosis patients and inhibit T-cell responses and Mycobacterium tuberculosis replication in macrophages. Eur J Immunol 2022; 52:784-799. [PMID: 35338775 PMCID: PMC9325462 DOI: 10.1002/eji.202149549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/24/2021] [Accepted: 03/23/2022] [Indexed: 12/05/2022]
Abstract
Platelets regulate human inflammatory responses that lead to disease. However, the role of platelets in tuberculosis (TB) pathogenesis is still unclear. Here, we show that patients with active TB have a high number of platelets in peripheral blood and a low number of lymphocytes leading to a high platelets to lymphocytes ratio (PL ratio). Moreover, the serum concentration of different mediators promoting platelet differentiation or associated with platelet activation is increased in active TB. Immunohistochemistry analysis shows that platelets localise around the lung granuloma lesions in close contact with T lymphocytes and macrophages. Transcriptomic analysis of caseous tissue of human pulmonary TB granulomas, followed by Gene Ontology analysis, shows that 53 platelet activation‐associated genes are highly expressed compared to the normal lung tissue. In vitro activated platelets (or their supernatants) inhibit BCG‐induced T‐ lymphocyte proliferation and IFN‐γ production. Likewise, platelets inhibit the growth of intracellular macrophages of Mycobacterium (M.) tuberculosis. Soluble factors released by activated platelets mediate both immunological and M. tuberculosis replication activities. Furthermore, proteomic and neutralisation studies (by mAbs) identify TGF‐β and PF4 as the factors responsible for inhibiting T‐cell response and enhancing the mycobactericidal activity of macrophages, respectively. Altogether these results highlight the importance of platelets in TB pathogenesis.
Collapse
Affiliation(s)
- Marco P La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR).,Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, 90127, Italy
| | - Valentina Orlando
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR).,Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, 90127, Italy
| | - Giusto D Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR).,Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, 90127, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR).,Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, 90127, Italy
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR).,Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, 90127, Italy
| | - Elena Lo Presti
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Franca Del Nonno
- Pathology Unit, National Institute for Infectious Diseases L. Spallanzani-IRCCS, Rome, Italy
| | - Linda Petrone
- Translational research Unit, National Institute for Infectious Diseases L. Spallanzani-IRCCS, Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Laura Falasca
- Pathology Unit, National Institute for Infectious Diseases L. Spallanzani-IRCCS, Rome, Italy
| | - Paola Di Carlo
- Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR).,Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, 90127, Italy
| | - Delia Goletti
- Translational research Unit, National Institute for Infectious Diseases L. Spallanzani-IRCCS, Rome, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR).,Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, 90127, Italy
| |
Collapse
|
23
|
Di Bari V, Gualano G, Musso M, Libertone R, Nisii C, Ianniello S, Mosti S, Mastrobattista A, Cerva C, Bevilacqua N, Iacomi F, Mondi A, Topino S, Goletti D, Girardi E, Palmieri F. Increased Association of Pulmonary Thromboembolism and Tuberculosis during COVID-19 Pandemic: Data from an Italian Infectious Disease Referral Hospital. Antibiotics (Basel) 2022; 11:antibiotics11030398. [PMID: 35326861 PMCID: PMC8944753 DOI: 10.3390/antibiotics11030398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Pulmonary thromboembolism (PTE) has been associated with tuberculosis (TB), but the true incidence is unknown. The aim of our study was to retrospectively evaluate the PTE prevalence in TB patients hospitalized at the National Institute for Infectious Diseases L. Spallanzani during the January 2016–December 2021 period. Retrospective data collection and evaluation were conducted. Among 1801 TB patients, 29 (1.61%) exhibited PTE. Twenty (69%) had comorbidities; eleven (37.9%) had predisposing factors for PTE. Nineteen (65.5%) had extensive TB disease. The commonest respiratory symptoms were cough (37.9%), dyspnea (31%), chest pain (10.3%), and hemoptysis (6.9%). Twenty-five (86.2%) had elevated serum D-dimer levels. An increased prevalence of PTE from 0.6% in the pre-COVID-19 pandemic period to 4.6% in the pandemic period was found. Acute respiratory failure and extensive TB disease increased significantly in the pandemic period. The increase in PTE could be explained by the increased severity of TB in patients in the pandemic period and by increased clinical suspicion and, consequently, increased requests for D-dimer testing, including in patients with non-COVID-19 pneumonia. Patients with extensive pulmonary disease are at high risk of developing PTE. Clinicians should be aware of this potentially life-threatening complication of TB, and patients should receive a thromboembolism risk assessment.
Collapse
Affiliation(s)
- Virginia Di Bari
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy
| | - Gina Gualano
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy
| | - Maria Musso
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy
| | - Raffaella Libertone
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy
| | - Carla Nisii
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy
| | - Stefania Ianniello
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy
| | - Silvia Mosti
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy
| | | | - Carlotta Cerva
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy
| | - Nazario Bevilacqua
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy
| | - Fabio Iacomi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy
| | - Annalisa Mondi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy
| | - Simone Topino
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy
| | - Delia Goletti
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy
| | - Enrico Girardi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy
| | - Fabrizio Palmieri
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy
| |
Collapse
|
24
|
Poh XY, Loh FK, Friedland JS, Ong CWM. Neutrophil-Mediated Immunopathology and Matrix Metalloproteinases in Central Nervous System - Tuberculosis. Front Immunol 2022; 12:788976. [PMID: 35095865 PMCID: PMC8789671 DOI: 10.3389/fimmu.2021.788976] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB) remains one of the leading infectious killers in the world, infecting approximately a quarter of the world’s population with the causative organism Mycobacterium tuberculosis (M. tb). Central nervous system tuberculosis (CNS-TB) is the most severe form of TB, with high mortality and residual neurological sequelae even with effective TB treatment. In CNS-TB, recruited neutrophils infiltrate into the brain to carry out its antimicrobial functions of degranulation, phagocytosis and NETosis. However, neutrophils also mediate inflammation, tissue destruction and immunopathology in the CNS. Neutrophils release key mediators including matrix metalloproteinase (MMPs) which degrade brain extracellular matrix (ECM), tumor necrosis factor (TNF)-α which may drive inflammation, reactive oxygen species (ROS) that drive cellular necrosis and neutrophil extracellular traps (NETs), interacting with platelets to form thrombi that may lead to ischemic stroke. Host-directed therapies (HDTs) targeting these key mediators are potentially exciting, but currently remain of unproven effectiveness. This article reviews the key role of neutrophils and neutrophil-derived mediators in driving CNS-TB immunopathology.
Collapse
Affiliation(s)
- Xuan Ying Poh
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fei Kean Loh
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jon S Friedland
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Catherine W M Ong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore, Singapore.,Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| |
Collapse
|