1
|
Wawrzyniak O, Wawrzyniak D, Smuszkiewicz M, Głodowicz P, Gotz-Więckowska A, Rolle K. Exploring microRNA signatures in pediatric non-infectious uveitis: meta-analysis and molecular profiling of patient samples. J Appl Genet 2024:10.1007/s13353-024-00922-8. [PMID: 39695050 DOI: 10.1007/s13353-024-00922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
To find a distinct non-coding RNA characteristic for idiopathic uveitis in the pediatric population. To explore the autoimmune-related miRNA expression profile in pediatric patients with idiopathic uveitis (IU) and juvenile idiopathic arthritis-associated uveitis (JIA-AU) and find a common molecular background for idiopathic uveitis and other autoimmune diseases. The expression levels of miRNAs were analyzed by quantitative real-time PCR using serum samples from patients with idiopathic uveitis (n = 8), juvenile idiopathic arthritis-associated uveitis (n = 7), and healthy controls. We selected the most promising miRNAs from the original research papers: miR-16-5p, miR-26a-5p, miR-145-5p, and miR-451a as markers for juvenile idiopathic arthritis; miR-23a-3p, miR-29a-3p, miR-140-5p, miR-193a-5p, and miR-491-5p for uveitis in the adult population; and miR-125a-5p, miR-146a-5p, miR-155-5p, miR-223-5p, and miR-223-3p characteristic for both diseases and confirm their expression changes in serum from children with idiopathic uveitis. We comprehensively reviewed the literature enrolling the papers that met the inclusion criteria (miRNA and non-infectious uveitis/juvenile idiopathic arthritis) and performed target prediction analysis of appoint miRNAs. It additionally confirmed that altered miRNAs target the immunologically involved genes. Immunological-involved miRNAs such as miR-146a-5p and miR-155-5p show diverse expression levels in different patients as they interact with multiple targets. miR-204-5p is downregulated in both patient groups compared to healthy controls. miR-204-5p and miR-155-5p are candidates for molecular markers of autoimmune uveitis. We did not identify the miRNAs specific only to idiopathic uveitis, but for the first time in the pediatric population, we confirmed that this disease entity shares a molecular basis with other autoimmune diseases. Further studies are required to elucidate the molecular interactions among miRNAs, cytokines, and transcription factors within the intricate immune response, particularly in the eye.
Collapse
Affiliation(s)
- Olga Wawrzyniak
- Department of Ophthalmology, Poznan University of Medical Sciences, Augustyna Szamarzewskiego 84, 61-848, Poznan, Poland
| | - Dariusz Wawrzyniak
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Michał Smuszkiewicz
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Paweł Głodowicz
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Anna Gotz-Więckowska
- Department of Ophthalmology, Poznan University of Medical Sciences, Augustyna Szamarzewskiego 84, 61-848, Poznan, Poland.
| | - Katarzyna Rolle
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
2
|
Li N, Yi YK, Zhao J, Wang Q, Yu JY, You YT, Zhu YY, Liu YY, Zhao XS, Pan DM. Kaempferol Improved Rheumatoid Arthritis by Regulating the Immune Imbalance of Treg/Th17. Curr Med Sci 2024:10.1007/s11596-024-2925-8. [PMID: 39673582 DOI: 10.1007/s11596-024-2925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/18/2024] [Indexed: 12/16/2024]
Abstract
OBJECTIVE The objective of this study was to explore the therapeutic effects of kaempferol (Kae) on rheumatoid arthritis (RA) and to elucidate the underlying mechanisms. METHODS The collagen-induced arthritis (CIA) model was established using collagen II to induce RA. Mice were treated with Kae at a dose of 25 or 50 mg/kg/day via gavage. Pathological changes in the ankle joint were analyzed. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of inflammatory factors. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to assess the expression of genes associated with the balance of regulatory T (Treg)/T helper 17 (Th17) cells. Flow cytometry was utilized to determine the Treg/Th17 ratio. Furthermore, these techniques were employed to evaluate the impact of miR-34a and Foxp3 dysregulation on cellular functions in RA under the influence of Kae. Dual luciferase reporter assay was conducted to analyze the binding of miR-34a to Foxp3. RESULTS Treatment with Kae led to a downregulation of receptor-related orphan receptor gamma t (RORγt) and IL-17 expression, and an upregulation of Foxp3, IL-10, and TGF-β expression in CIA mice. Kae intervention inhibited the production of proinflammatory cytokines and increased the production of anti-inflammatory cytokines. Furthermore, Kae treatment suppressed the expression of miR-34a, which was identified as a target of miR-34a. Finally, Kae regulated Treg/ Th17 balance-related genes and cellular inflammation through the miR-34a/Foxp3 axis. CONCLUSION The study demonstrated that Kae effectively ameliorates CIA in mice by modulating the Treg/Th17 balance and related genes via the miR-34a/Foxp3 axis. These findings suggest that Kae may serve as a promising therapeutic agent for the treatment of RA and for restoring immune homeostasis.
Collapse
Affiliation(s)
- Nan Li
- Department of Clinical Basis of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yan-Kui Yi
- Department of Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jie Zhao
- Health College of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiang Wang
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Guangzhou, 529500, China
| | - Jie-Ying Yu
- Department of Clinical Basis of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yan-Ting You
- Department of Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Yan Zhu
- Department of Chemistry and Analysis of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yan-Yan Liu
- Department of Internal Medicine of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Xiao-Shan Zhao
- Department of Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Dong-Mei Pan
- Department of Clinical Basis of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Ruscitti P, Nunziato M, Caso F, Scarpa R, Di Maggio F, Giacomelli R, Salvatore F. Prevention of rheumatoid arthritis using a familial predictive medicine approach. Autoimmun Rev 2024; 23:103653. [PMID: 39370029 DOI: 10.1016/j.autrev.2024.103653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Most of the chronic-degenerative diseases deserve a very early recognition of symptoms and signs for the earliest secondary prevention, which could be also very useful in many cases for the most precocious clinical approach. The periodic monitoring of a subject at risk of a specific disease, because of genomic predisposition by predictive medicine approach, may help to earlier detection of onset and/or the progression of the pathology itself, through intra-individual monitoring. This is particularly the case of rheumatoid arthritis (RA) for which an early diagnosis is undoubtedly the first step to ensure the most proper therapy for the patient. Thus, the earlier identification of individuals at high risk of RA could lead to ultra-preventive strategies to start for the best lifestyle performances and/or for any other effective therapeutic interventions to contrast the onset, and/or the evolution of the putative RA. This will also optimize both costs and medical resources, according to the health care policies of many countries.
Collapse
Affiliation(s)
- Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marcella Nunziato
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131 Napoli, NA, Italy; CEINGE - Biotecnologie Avanzate - Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Francesco Caso
- Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Raffaele Scarpa
- Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Federica Di Maggio
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131 Napoli, NA, Italy; CEINGE - Biotecnologie Avanzate - Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Roberto Giacomelli
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128 Rome, Italy; Rheumatology, Immunology and Clinical Medicine Unit, Department of Medicine, University of Rome "Campus Biomedico" School of Medicine, Rome, Italy.
| | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131 Napoli, NA, Italy; CEINGE - Biotecnologie Avanzate - Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Napoli, Italy.
| |
Collapse
|
4
|
Vivas AJ, Boumediene S, Tobón GJ. Predicting autoimmune diseases: A comprehensive review of classic biomarkers and advances in artificial intelligence. Autoimmun Rev 2024; 23:103611. [PMID: 39209014 DOI: 10.1016/j.autrev.2024.103611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Autoimmune diseases comprise a spectrum of disorders characterized by the dysregulation of immune tolerance, resulting in tissue or organ damage and inflammation. Their prevalence has been on the rise, significantly impacting patients' quality of life and escalating healthcare costs. Consequently, the prediction of autoimmune diseases has recently garnered substantial interest among researchers. Despite their wide heterogeneity, many autoimmune diseases exhibit a consistent pattern of paraclinical findings that hold predictive value. From serum biomarkers to various machine learning approaches, the array of available methods has been continuously expanding. The emergence of artificial intelligence (AI) presents an exciting new range of possibilities, with notable advancements already underway. The ultimate objective should revolve around disease prevention across all levels. This review provides a comprehensive summary of the most recent data pertaining to the prediction of diverse autoimmune diseases and encompasses both traditional biomarkers and the latest innovations in AI.
Collapse
Affiliation(s)
| | - Synda Boumediene
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University-School of Medicine, Springfield, IL, United States of America
| | - Gabriel J Tobón
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University-School of Medicine, Springfield, IL, United States of America; Department of Internal Medicine, Division of Rheumatology, Southern Illinois University-School of Medicine, Springfield, IL, United States of America.
| |
Collapse
|
5
|
Akbarzadeh A, Gerami MH, Farrokhi MR, Shapoori S, Jafarinia M. Therapeutic prospects of microRNAs derived from mesenchymal stem cell extracellular vesicles in rheumatoid arthritis: a comprehensive overview. Mol Cell Biochem 2024:10.1007/s11010-024-05082-1. [PMID: 39105963 DOI: 10.1007/s11010-024-05082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by inflammatory joint damage. Recent studies have focused on the significance of microRNAs (miRNAs) in the pathogenesis of RA. Mesenchymal stem cells (MSCs) have emerged as a potential therapeutic option for RA based on their regenerative and immunomodulatory properties. MSCs release extracellular vesicles (EVs) containing miRNAs that can modulate immune and inflammatory responses. This article provides a comprehensive overview of the current evidence on the existence of various MSCs-derived miRNAs involved in the pathophysiology, characterization, and treatment of RA. An overview of the miRNA profiles in MSC-EVs is provided, along with an examination of their impact on various cell types implicated in RA pathogenesis, including synovial fibroblasts, macrophages, and T cells. Furthermore, the therapeutic capability of MSC-EVs for miRNA-based therapies in RA is discussed. In total, this review can present an extensive view of the complex interaction between EVs and MSC-derived miRNAs in RA and thus suggest valuable strategies for developing new therapeutic approaches to target this debilitating disease.
Collapse
Affiliation(s)
- Armin Akbarzadeh
- Department of Orthopedic Surgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hadi Gerami
- Department of Orthopedic Surgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Reza Farrokhi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Shapoori
- Center for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Ermencheva P, Kotov G, Shumnalieva R, Velikova T, Monov S. Exploring the Role of the Microbiome in Rheumatoid Arthritis-A Critical Review. Microorganisms 2024; 12:1387. [PMID: 39065155 PMCID: PMC11278530 DOI: 10.3390/microorganisms12071387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune rheumatic disease characterized by synovial joint inflammation with subsequent destruction as well as systemic manifestation, leading to impaired mobility and impaired quality of life. The etiopathogenesis of RA is still unknown, with genetic, epigenetic and environmental factors (incl. tobacco smoking) contributing to disease susceptibility. The link between genetic factors like "shared epitope alleles" and the development of RA is well known. However, why only some carriers have a break in self-tolerance and develop autoimmunity still needs to be clarified. The presence of autoantibodies in patients' serum months to years prior to the onset of clinical manifestations of RA has moved the focus to possible epigenetic factors, including environmental triggers that could contribute to the initiation and perpetuation of the inflammatory reaction in RA. Over the past several years, the role of microorganisms at mucosal sites (i.e., microbiome) has emerged as an essential mediator of inflammation in RA. An increasing number of studies have revealed the microbial role in the immunopathogenesis of autoimmune rheumatic diseases. Interaction between the host immune system and microbiota initiates loss of immunological tolerance and autoimmunity. The alteration in microbiome composition, the so-called dysbiosis, is associated with an increasing number of diseases. Immune dysfunction caused by dysbiosis triggers and sustains chronic inflammation. This review aims to provide a critical summary of the literature findings related to the hypothesis of a reciprocal relation between the microbiome and the immune system. Available data from studies reveal the pivotal role of the microbiome in RA pathogenesis.
Collapse
Affiliation(s)
- Plamena Ermencheva
- Clinic of Rheumatology, University Hospital ‘St. Ivan Rilski’, 13 Urvich Str., 1612 Sofia, Bulgaria; (P.E.); (G.K.); (R.S.); (S.M.)
| | - Georgi Kotov
- Clinic of Rheumatology, University Hospital ‘St. Ivan Rilski’, 13 Urvich Str., 1612 Sofia, Bulgaria; (P.E.); (G.K.); (R.S.); (S.M.)
| | - Russka Shumnalieva
- Clinic of Rheumatology, University Hospital ‘St. Ivan Rilski’, 13 Urvich Str., 1612 Sofia, Bulgaria; (P.E.); (G.K.); (R.S.); (S.M.)
- Department of Rheumatology, Medical University of Sofia, 13 Urvich Str., 1612 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Kozyak 1, 1407 Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Kozyak 1, 1407 Sofia, Bulgaria
| | - Simeon Monov
- Clinic of Rheumatology, University Hospital ‘St. Ivan Rilski’, 13 Urvich Str., 1612 Sofia, Bulgaria; (P.E.); (G.K.); (R.S.); (S.M.)
- Department of Rheumatology, Medical University of Sofia, 13 Urvich Str., 1612 Sofia, Bulgaria
| |
Collapse
|
7
|
Khokhar M, Dey S, Tomo S, Jaremko M, Emwas AH, Pandey RK. Unveiling Novel Drug Targets and Emerging Therapies for Rheumatoid Arthritis: A Comprehensive Review. ACS Pharmacol Transl Sci 2024; 7:1664-1693. [PMID: 38898941 PMCID: PMC11184612 DOI: 10.1021/acsptsci.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disease, that causes joint damage, deformities, and decreased functionality. In addition, RA can also impact organs like the skin, lungs, eyes, and blood vessels. This autoimmune condition arises when the immune system erroneously targets the joint synovial membrane, resulting in synovitis, pannus formation, and cartilage damage. RA treatment is often holistic, integrating medication, physical therapy, and lifestyle modifications. Its main objective is to achieve remission or low disease activity by utilizing a "treat-to-target" approach that optimizes drug usage and dose adjustments based on clinical response and disease activity markers. The primary RA treatment uses disease-modifying antirheumatic drugs (DMARDs) that help to interrupt the inflammatory process. When there is an inadequate response, a combination of biologicals and DMARDs is recommended. Biological therapies target inflammatory pathways and have shown promising results in managing RA symptoms. Close monitoring for adverse effects and disease progression is critical to ensure optimal treatment outcomes. A deeper understanding of the pathways and mechanisms will allow new treatment strategies that minimize adverse effects and maintain quality of life. This review discusses the potential targets that can be used for designing and implementing precision medicine in RA treatment, spotlighting the latest breakthroughs in biologics, JAK inhibitors, IL-6 receptor antagonists, TNF blockers, and disease-modifying noncoding RNAs.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Sangita Dey
- CSO
Department, Cellworks Research India Pvt
Ltd, Bengaluru, 560066 Karnataka, India
| | - Sojit Tomo
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Jeddah, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rajan Kumar Pandey
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
8
|
Letonja J, Petrovič D. A Review of MicroRNAs and lncRNAs in Atherosclerosis as Well as Some Major Inflammatory Conditions Affecting Atherosclerosis. Biomedicines 2024; 12:1322. [PMID: 38927529 PMCID: PMC11201627 DOI: 10.3390/biomedicines12061322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
It is generally accepted that atherosclerosis is a chronic inflammatory disease. The link between atherosclerosis and other inflammatory diseases such as psoriasis, type 2 diabetes mellitus (T2DM), and rheumatoid arthritis (RA) via metabolic, inflammatory, and immunoregulatory pathways is well established. The aim of our review was to summarize the associations between selected microRNAs (miRs) and long non-coding RNAs (lncRNAs) and atherosclerosis, psoriasis, T2DM, and RA. We reviewed the role of miR-146a, miR-210, miR-143, miR-223, miR-126, miR-21, miR-155, miR-145, miR-200, miR-133, miR-135, miR-221, miR-424, let-7, lncRNA-H19, lncRNA-MEG3, lncRNA-UCA1, and lncRNA-XIST in atherosclerosis and psoriasis, T2DM, and RA. Extracellular vesicles (EVs) are a method of intracellular signal transduction. Their function depends on surface expression, cargo, and the cell from which they originate. The majority of the studies that investigated lncRNAs and some miRs had relatively small sample sizes, which limits the generalizability of their findings and indicates the need for more research. Based on the studies reviewed, miR-146a, miR-155, miR-145, miR-200, miR-133, and lncRNA-H19 are the most promising potential biomarkers and, possibly, therapeutic targets for atherosclerosis as well as T2DM, RA, and psoriasis.
Collapse
Affiliation(s)
- Jernej Letonja
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Danijel Petrovič
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Chacon-Millan P, Lama S, Del Gaudio N, Gravina AG, Federico A, Pellegrino R, Luce A, Altucci L, Facchiano A, Caraglia M, Stiuso P. A Combination of Microarray-Based Profiling and Biocomputational Analysis Identified miR331-3p and hsa-let-7d-5p as Potential Biomarkers of Ulcerative Colitis Progression to Colorectal Cancer. Int J Mol Sci 2024; 25:5699. [PMID: 38891888 PMCID: PMC11171846 DOI: 10.3390/ijms25115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Ulcerative colitis (UC), an inflammatory bowel disease (IBD), may increase the risk of colorectal cancer (CRC) by activating chronic proinflammatory pathways. The goal of this study was to find serum prediction biomarkers in UC to CRC development by combining low-density miRNA microarray and biocomputational approaches. The UC and CRC miRNA expression profiles were compared by low-density miRNA microarray, finding five upregulated miRNAs specific to UC progression to CRC (hsa-let-7d-5p, hsa-miR-16-5p, hsa-miR-145-5p, hsa-miR-223-5p, and hsa-miR-331-3p). The circRNA/miRNA/mRNA competitive endogenous RNA (ceRNA) network analysis showed that the candidate miRNAs were connected to well-known colitis-associated CRC ACVR2A, SOCS1, IGF2BP1, FAM126A, and CCDC85C mRNAs, and circ-SHPRH circRNA. SST and SCARA5 genes regulated by hsa-let-7d-5p, hsa-miR-145-5p, and hsa-miR-331-3p were linked to a poor survival prognosis in a CRC patient dataset from The Cancer Genome Atlas (TCGA). Lastly, our mRNA and miRNA candidates were validated by comparing their expression to differentially expressed mRNAs and miRNAs from colitis-associated CRC tissue databases. A high level of hsa-miR-331-3p and a parallel reduction in SOCS1 mRNA were found in tissue and serum. We propose hsa-miR-331-3p and possibly hsa-let-7d-5p as novel serum biomarkers for predicting UC progression to CRC. More clinical sample analysis is required for further validation.
Collapse
Affiliation(s)
- Pilar Chacon-Millan
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
| | - Stefania Lama
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
| | - Antonietta Gerarda Gravina
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
| | - Raffaele Pellegrino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS)-National Research Council (CNR), Via Sergio Pansini, 80131 Naples, Italy
- Programma di Epigenetica Medica, A.O.U. “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Angelo Facchiano
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy
- Programma di Epigenetica Medica, A.O.U. “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
| |
Collapse
|
10
|
Zhang M, Niu Z, Huang Q, Han L, Du J, Liang J, Cheng Y, Cao R, Yawalkar N, Zhang Z, Yan K. Identification of an exosomal miRNA-mRNA regulatory network contributing to methotrexate efficacy. Int Immunopharmacol 2024; 135:112280. [PMID: 38776848 DOI: 10.1016/j.intimp.2024.112280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Methotrexate (MTX) is an economic and effective medicine treatment for psoriasis. Extracellular vesicle (EV) miRNA biomarkers related to its efficiency have been identified in various diseases. Whether certain miRNA profiles are associated with psoriasis treatment is unknown. In order to determine specific miRNA biomarkers for MTX effectiveness prediction and the severity of psoriasis, our study looked at the variations in circulating EV miRNA profiles before and after MTX therapy. METHODS Plasma EV isolation and next-generation sequencing were performed to identify differentially expressed EV miRNAs between GRs (n = 14) and NRs (n = 6). Univariate and multiple linear regression analyses were performed to evaluate the correlation between PASI scores and miRNA expression levels. RESULTS 15 miRNAs out of a total profile of 443 miRNAs were substantially different between GRs and NRs at baseline, 4 of them (miR-199a-5p, miR-195-5p, miR-196a-5p, and miR-1246) have the potential to distinguish between GRs and NRs [area under the curve (AUC) ≥ 0.70, all P < 0.05]. KEGG pathway analyses revealed differentially expressed miRNAs to potentially target immune-related pathways. SIRT1 was discovered to be a target of miR-199a-5p and involved in MAPK signaling pathway. MiR-191-5p and miR-21-5p expression levels have been discovered to positively correlate with PASI scores[P < 0.05]. CONCLUSION This pilot investigation found that miR-199a-5p, miR-195-5p, miR-196a-5p, and miR-1246 might be prospective biomarkers to predict the efficacy of MTX, and that miR-191-5p and miR-21-5p were correlated with psoriasis severity. Five of them previously reported to be involved in MAPK signaling pathway, indicating a potential role of MTX in delaying the progression of psoriatic inflammation.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenmin Niu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Qiong Huang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ling Han
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Juan Du
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Liang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanwen Cheng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruoshui Cao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Nikhil Yawalkar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Zhenghua Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Kexiang Yan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Chai F, Peng H, Qin L, Liu C, Zeng Y, Wang R, Xu G, Wang R, Wei G, Huang H, Lan Y, Chen W, Wang C. MicroRNA miR-181d-5p regulates the MAPK signaling pathway by targeting mitogen-activated protein kinase 8 (MAPK8) to improve lupus nephritis. Gene 2024; 893:147961. [PMID: 37931853 DOI: 10.1016/j.gene.2023.147961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Lupus nephritis (LN) is a common immune disease. The microRNA (miR)-181d-5p is a potential target for treating kidney injury. However, the therapeutic role of miR-181d-5p in LN has not been investigated. This study aimed to investigate the role of miR-181d-5p in targeting mitogen-activated protein kinase 8 (MAPK8) and stimulating the MAPK signaling pathway in LN. METHODS RT-qPCR was performed to identify the variations in miR-181d-5p expression in peripheral blood mononuclear cells (PBMCs) obtained from 42 LN patients, 30 healthy individuals, 6 MRL/lpr mice and 6 C57BL/6 mice. Western blot was used to detect the effect of miR-181d-5p on the MAPK signaling pathway in THP-1 cells and MRL/lpr mice. Enzyme-linked immunosorbent assay (ELISA) was utilized to detect the effect of miR-181d-5p on antinuclear antibodies and inflammatory factors. A dual-luciferase reporter assay was used to verify whether miR-181d-5p directly targets MAPK8. Flow cytometry was performed to evaluate apoptosis rates in transfected THP-1 cells. RESULTS miR-181d-5p expression was downregulated in PBMCs of LN patients (P < 0.01) and MRL/lpr mice (P < 0.05). A dual luciferase reporter assay demonstrated that miR-181d-5p inhibits MAPK8 (P < 0.01). Overexpression of miR-181d-5p inhibited the phosphorylation of p38 (P < 0.001) and p44/42 (P < 0.01). Moreover, miR-181d-5p decreased the apoptosis rate of THP-1 cells (P < 0.001), and reduced the secretion of IL-6 (P < 0.01) and TNF-α (P < 0.01). Furthermore, overexpression of miR-181d-5p decreased anti-dsDNA antibody (P < 0.05), anti-Sm antibody (P < 0.01), and fibrosis levels in MRL/lpr mice. CONCLUSION Upregulation of miR-181d-5p showed anti-inflammatory and anti-apoptotic effects on THP-1 cells in vitro and kidney injury in vivo. These effects were achieved by miR-181d-5p targeting MAPK8 to inhibit phosphorylation of p38 and p44/42. These results may offer new insights for improving therapeutic strategies against lupus nephritis.
Collapse
Affiliation(s)
- Fu Chai
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China; Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Huixin Peng
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China; Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Linxiu Qin
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China; Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Chunhong Liu
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Yonglong Zeng
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Rong Wang
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Guidan Xu
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Rongqi Wang
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Guijiang Wei
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Huayi Huang
- Roswell Park Comprehensive Cancer Center, Surgical Oncology, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Yan Lan
- Department of Dermatology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Wencheng Chen
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| | - Chunfang Wang
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| |
Collapse
|
12
|
Pascual-García S, Martínez-Peinado P, Pujalte-Satorre C, Navarro-Sempere A, Esteve-Girbés J, López-Jaén AB, Javaloyes-Antón J, Cobo-Velacoracho R, Navarro-Blasco FJ, Sempere-Ortells JM. Exosomal Osteoclast-Derived miRNA in Rheumatoid Arthritis: From Their Pathogenesis in Bone Erosion to New Therapeutic Approaches. Int J Mol Sci 2024; 25:1506. [PMID: 38338785 PMCID: PMC10855630 DOI: 10.3390/ijms25031506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes inflammation, pain, and ultimately, bone erosion of the joints. The causes of this disease are multifactorial, including genetic factors, such as the presence of the human leukocyte antigen (HLA)-DRB1*04 variant, alterations in the microbiota, or immune factors including increased cytotoxic T lymphocytes (CTLs), neutrophils, or elevated M1 macrophages which, taken together, produce high levels of pro-inflammatory cytokines. In this review, we focused on the function exerted by osteoclasts on osteoblasts and other osteoclasts by means of the release of exosomal microRNAs (miRNAs). Based on a thorough revision, we classified these molecules into three categories according to their function: osteoclast inhibitors (miR-23a, miR-29b, and miR-214), osteoblast inhibitors (miR-22-3p, miR-26a, miR-27a, miR-29a, miR-125b, and miR-146a), and osteoblast enhancers (miR-20a, miR-34a, miR-96, miR-106a, miR-142, miR-199a, miR-324, and miR-486b). Finally, we analyzed potential therapeutic targets of these exosomal miRNAs, such as the use of antagomiRs, blockmiRs, agomiRs and competitive endogenous RNAs (ceRNAs), which are already being tested in murine and ex vivo models of RA. These strategies might have an important role in reestablishing the regulation of osteoclast and osteoblast differentiation making progress in the development of personalized medicine.
Collapse
Affiliation(s)
- Sandra Pascual-García
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | | | | | - Alicia Navarro-Sempere
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Jorge Esteve-Girbés
- Department of Legal Studies of the State, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Ana B. López-Jaén
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Juan Javaloyes-Antón
- Department of Physics, Systems Engineering and Signal Theory, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Raúl Cobo-Velacoracho
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Francisco J. Navarro-Blasco
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
- Rheumatology Unit, University General Hospital of Elche, 03203 Elche, Spain
| | | |
Collapse
|
13
|
Ma XN, Feng W, Li N, Chen SL, Zhong XQ, Chen JX, Lin CS, Xu Q. Leonurine alleviates rheumatoid arthritis by regulating the Hippo signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155243. [PMID: 38056147 DOI: 10.1016/j.phymed.2023.155243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease that can cause joint inflammation and damage. Leonurine (LE) is an alkaloid found in Leonurus heterophyllus. It has anti-inflammatory effects. HYPOTHESIS/PURPOSE The molecular mechanisms by which LE acts in RA are unclear and further investigation is required. METHODS Mice with collagen-induced arthritis (CIA), and RA-fibroblast-like synoviocytes (FLSs) isolated from them were used as in vivo and in vitro models of RA, respectively. The therapeutic effects of LE on CIA-induced joint injury were investigated by micro-computed tomography, and staining with hematoxylin and eosin and Safranin-O/Fast Green. Cell Counting Kit-8, a Transwell® chamber, enzyme-linked immunosorbent assays, RT-qPCR, and western blotting were used to investigate the effects of LE on RA-FLS viability, migratory capacity, inflammation, microRNA-21 (miR-21) levels, the Hippo signaling pathway, and the effects and intrinsic mechanisms of related proteins. Dual luciferase was used to investigate the binding of miR-21 to YOD1 deubiquitinase (YOD1) and yes-associated protein (YAP). Immunofluorescence was used to investigate the localization of YAP within the nucleus and cytoplasm. RESULTS Treatment with LE significantly inhibited joint swelling, bone damage, synovial inflammation, and proteoglycan loss in the CIA mice. It also reduced the proliferation, cell colonization, migration/invasion, and inflammation levels of RA-FLSs, and promoted miR-21 expression in vitro. The effects of LE on RA-FLSs were enhanced by an miR-21 mimic and reversed by an miR-21 inhibitor. The dual luciferase investigation confirmed that both YOD1 and YAP are direct targets of miR-21. Treatment with LE activated the Hippo signaling pathway, and promoted the downregulation and dephosphorylation of MST1 and LATS1 in RA, while inhibiting the activation of YOD1 and YAP. Regulation of the therapeutic effects of LE by miR-21 was counteracted by YOD1 overexpression, which caused the phosphorylation of YAP and prevented its nuclear ectopic position, thereby reducing LE effect on pro-proliferation-inhibiting apoptosis target genes. CONCLUSION LE regulates the Hippo signaling pathway through the miR-21/YOD1/YAP axis to reduce joint inflammation and bone destruction in CIA mice, thereby inhibiting the growth and inflammation of RA-FLSs. LE has potential for the treatment of RA.
Collapse
Affiliation(s)
- Xiao-Na Ma
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wei Feng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Nan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Shu-Lin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiao-Qin Zhong
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jia-Xu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Chang-Song Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qiang Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
14
|
Lin L, Zhang K, Xiong Q, Zhang J, Cai B, Huang Z, Yang B, Wei B, Chen J, Niu Q. Gut microbiota in pre-clinical rheumatoid arthritis: From pathogenesis to preventing progression. J Autoimmun 2023; 141:103001. [PMID: 36931952 DOI: 10.1016/j.jaut.2023.103001] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/30/2022] [Accepted: 01/31/2023] [Indexed: 03/17/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by progressive polyarthritis that leads to cartilage and bone damage. Pre-clinical RA is a prolonged state before clinical arthritis and RA develop, in which autoantibodies (antibodies against citrullinated proteins, rheumatoid factors) can be present due to the breakdown of immunologic self-tolerance. As early treatment initiation before the onset of polyarthritis may achieve sustained remission, optimize clinical outcomes, and even prevent RA progression, the pre-clinical RA stage is showing the prospect to be the window of opportunity for RA treatment. Growing evidence has shown the role of the gut microbiota in inducing systemic inflammation and polyarthritis via multiple mechanisms, which may involve molecular mimicry, impaired intestinal barrier function, gut microbiota-derived metabolites mediated immune regulation, modulation of the gut microbiota's effect on immune cells, intestinal epithelial cells autophagy, and the interaction between the microbiome and human leukocyte antigen alleles as well as microRNAs. Since gut microbiota alterations in pre-clinical RA have been reported, potential therapies for modifying the gut microbiota in pre-clinical RA, including natural products, antibiotic therapy, fecal microbiota transplantation, probiotics, microRNAs therapy, vitamin D supplementation, autophagy inducer-based treatment, prebiotics, and diet, holds great promise for the successful treatment and even prevention of RA via altering ongoing inflammation. In this review, we summarized current studies that include pathogenesis of gut microbiota in RA progression and promising therapeutic strategies to provide novel ideas for the management of pre-clinical RA and possibly preventing arthritis progression.
Collapse
Affiliation(s)
- Liyan Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Keyi Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Infection Control, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Wei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Qian Niu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Nag S, Mitra O, Tripathi G, Samanta S, Bhattacharya B, Chandane P, Mohanto S, Sundararajan V, Malik S, Rustagi S, Adhikari S, Mohanty A, León‐Figueroa DA, Rodriguez‐Morales AJ, Barboza JJ, Sah R. Exploring the theranostic potentials of miRNA and epigenetic networks in autoimmune diseases: A comprehensive review. Immun Inflamm Dis 2023; 11:e1121. [PMID: 38156400 PMCID: PMC10755504 DOI: 10.1002/iid3.1121] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Autoimmune diseases (AD) are severe pathophysiological ailments that are stimulated by an exaggerated immunogenic response towards self-antigens, which can cause systemic or site-specific organ damage. An array of complex genetic and epigenetic facets majorly contributes to the progression of AD, thus providing significant insight into the regulatory mechanism of microRNA (miRNA). miRNAs are short, non-coding RNAs that have been identified as essential contributors to the post-transcriptional regulation of host genome expression and as crucial regulators of a myriad of biological processes such as immune homeostasis, T helper cell differentiation, central and peripheral tolerance, and immune cell development. AIMS This article tends to deliberate and conceptualize the brief pathogenesis and pertinent epigenetic regulatory mechanism as well as miRNA networks majorly affecting five different ADs namely rheumatoid arthritis (RA), type 1 diabetes, multiple sclerosis (MS), systemic lupus erythematosus (SLE) and inflammatory bowel disorder (IBD) thereby providing novel miRNA-based theranostic interventions. RESULTS & DISCUSSION Pertaining to the differential expression of miRNA attributed in target tissues and cellular bodies of innate and adaptive immunity, a paradigm of scientific expeditions suggests an optimistic correlation between immunogenic dysfunction and miRNA alterations. CONCLUSION Therefore, it is not astonishing that dysregulations in miRNA expression patterns are now recognized in a wide spectrum of disorders, establishing themselves as potential biomarkers and therapeutic targets. Owing to its theranostic potencies, miRNA targets have been widely utilized in the development of biosensors and other therapeutic molecules originating from the same.
Collapse
Affiliation(s)
- Sagnik Nag
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Oishi Mitra
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Garima Tripathi
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Souvik Samanta
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Bikramjit Bhattacharya
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
- Department of Applied MicrobiologyVellore Institute of Technology (VIT)Tamil NaduIndia
| | - Priti Chandane
- Department of BiochemistrySchool of Life SciencesUniversity of HyderabadHyderabadTelanganaIndia
| | - Sourav Mohanto
- Department of PharmaceuticsYenepoya Pharmacy College & Research CentreYenepoya (Deemed to be University)MangaluruKarnatakaIndia
| | - Vino Sundararajan
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Sumira Malik
- Amity Institute of BiotechnologyAmity University JharkhandRanchiJharkhandIndia
- University Centre for Research and DevelopmentUniversity of Biotechnology, Chandigarh University, GharuanMohaliPunjab
| | - Sarvesh Rustagi
- School of Applied and Life SciencesUttaranchal UniversityDehradunUttarakhandIndia
| | | | - Aroop Mohanty
- Department of Clinical MicrobiologyAll India Institute of Medical SciencesGorakhpurUttar PradeshIndia
| | | | - Alfonso J. Rodriguez‐Morales
- Clinical Epidemiology and Biostatistics, School of MedicineUniversidad Científica del SurLimaPeru
- Gilbert and Rose‐Marie Chagoury School of MedicineLebanese American UniversityBeirutLebanon
| | | | - Ranjit Sah
- Department of Clinical MicrobiologyInstitute of Medicine, Tribhuvan University Teaching HospitalKathmanduNepal
- Department of Clinical MicrobiologyDr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil VidyapeethPuneIndia
- Department of Public Health DentistryDr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil VidyapeethPuneMaharashtraIndia
| |
Collapse
|
16
|
Llop D, Paredes S, Ibarretxe D, Taverner D, Plana N, Rosales R, Masana L, Vallvé JC. Plasma Expression of Carotid Plaque Presence-Related MicroRNAs Is Associated with Inflammation in Patients with Rheumatoid Arthritis. Int J Mol Sci 2023; 24:15347. [PMID: 37895027 PMCID: PMC10607586 DOI: 10.3390/ijms242015347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is associated with problems beyond the joints such as cardiovascular (CV) disease. MicroRNA-24, -146 and -Let7a are associated with carotid plaque presence in RA patients. We evaluated whether these microRNAs were involved in the inflammatory state of RA, and we studied their gene targets to understand their role in inflammation and atherosclerosis. A total of 199 patients with RA were included. Inflammatory variables such as disease activity score 28 (DAS28) and erythrocyte sedimentation rate (ESR) were quantified. MicroRNAs were extracted from plasma and quantified with qPCR. Multivariate models and classification methods were used for analysis. The multivariate models showed that diminished expression of microRNA-146 was associated with inferior levels of DAS28-ESR, and the decreased expression of microRNA-24, -146 and -Let7a were associated with lowered ESR in the overall cohort. When microRNAs were evaluated globally, a global increase was associated with increased DAS28-ESR and ESR in the overall cohort. Sex-stratified analyses showed different associations of these microRNAs with the inflammatory variables. Finally, random forest models showed that microRNAs have a pivotal role in classifying patients with high and low inflammation. Plasmatic expressions of microRNA-24, -146 and -Let7a were associated with inflammatory markers of RA. These microRNAs are associated with both inflammation and atherosclerosis and are potential therapeutic targets for RA.
Collapse
Affiliation(s)
- Dídac Llop
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Catalonia, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Reus, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Silvia Paredes
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Catalonia, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Reus, Catalonia, Spain
- Sección de Reumatología, Hospital Universitario Sant Joan, 43204 Reus, Catalonia, Spain
| | - Daiana Ibarretxe
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Catalonia, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Reus, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
- Servicio de Medicina Interna, Hospital Universitario Sant Joan, 43204 Reus, Catalonia, Spain
| | - Delia Taverner
- Sección de Reumatología, Hospital Universitario Sant Joan, 43204 Reus, Catalonia, Spain
| | - Núria Plana
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Catalonia, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Reus, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
- Servicio de Medicina Interna, Hospital Universitario Sant Joan, 43204 Reus, Catalonia, Spain
| | - Roser Rosales
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Lluís Masana
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Catalonia, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Reus, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
- Servicio de Medicina Interna, Hospital Universitario Sant Joan, 43204 Reus, Catalonia, Spain
| | - Joan Carles Vallvé
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Catalonia, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Reus, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| |
Collapse
|
17
|
Yang X, Wang Z, Zhang M, Shuai Z. Differential Expression Profiles of Plasma Exosomal microRNAs in Rheumatoid Arthritis. J Inflamm Res 2023; 16:3687-3698. [PMID: 37663759 PMCID: PMC10473432 DOI: 10.2147/jir.s413994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Aim Differential expression maps of microRNAs (miRNAs) are connected to the autoimmune diseases. This study sought to elucidate the expression maps of exosomal miRNA in plasma of rheumatoid arthritis (RA) patients and their potential clinical significance. Methods In the screening phase, small RNA sequencing was performed to characterize dysregulated exosome-derived miRNAs in the plasma samples from six patients with RA and six healthy patients. At the independent verification stage, the candidate plasma exosomal miRNAs were verified in 40 patients with RA and 32 healthy patients by using qRT-PCR. The correlation of miRNA levels and clinical characteristics was tested in patients with RA. The value of these miRNAs in diagnosing RA was assessed with the receiver operating characteristic curve. Results During the screening phase, 177 and 129 miRNAs were increased and decreased in RA patients and healthy controls, respectively. There were 10 candidate plasma exosomal miRNAs selected for the next identification. Compared with the healthy controls, eight plasma exosomal miRNAs (let-7a-5p, let-7b-5p, let-7d-5p, let-7f-5p, let-7g-5p, let-7i-5p, miR-128-3p, and miR-25-3p) were significantly elevated in RA patients, but miR-144-3p and miR-15a-5p expression exhibited no significant changes. The let-7a-5p and miR-25-3p levels were linked to the rheumatoid factor-positive phenotype in RA patients. For the eight miRNAs, the area under the subject work characteristic curve (AUC) is 0.641 to 0.843, and their combination had a high diagnostic accuracy for RA (AUC = 0.916). Conclusion Our study illustrates that novel exosomal miRNAs in the plasma may represent potential noninvasive biomarkers for RA.
Collapse
Affiliation(s)
- Xiaoke Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Zhixin Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Mingming Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
18
|
Pascual-García S, Martínez-Peinado P, López-Jaén AB, Navarro-Blasco FJ, Montoyo-Pujol YG, Roche E, Peiró G, Sempere-Ortells JM. Analysis of Novel Immunological Biomarkers Related to Rheumatoid Arthritis Disease Severity. Int J Mol Sci 2023; 24:12351. [PMID: 37569732 PMCID: PMC10418816 DOI: 10.3390/ijms241512351] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Rheumatoid factor (RF) and anti-citrullinated protein antibodies (ACPAs) are the most frequently used rheumatoid arthritis (RA) diagnostic markers, but they are unable to anticipate the patient's evolution or response to treatment. The aim of this study was to identify possible severity biomarkers to predict an upcoming flare-up or remission period. To address this objective, sera and anticoagulated blood samples were collected from healthy controls (HCs; n = 39) and from early RA (n = 10), flare-up (n = 5), and remission (n = 16) patients. We analyzed leukocyte phenotype markers, regulatory T cells, cell proliferation, and cytokine profiles. Flare-up patients showed increased percentages of cluster of differentiation (CD)3+CD4- lymphocytes (p < 0.01) and granulocytes (p < 0.05) but a decreased natural killer (NK)/T lymphocyte ratio (p < 0.05). Analysis of leukocyte markers by principal component analysis (PCA) and receiver operating characteristic (ROC) curves showed that CD45RO+ (p < 0.0001) and CD45RA+ (p < 0.0001) B lymphocyte expression can discriminate between HCs and early RA patients, while CD3+CD4- lymphocyte percentage (p < 0.0424) and CD45RA+ (p < 0.0424), CD62L+ (p < 0.0284), and CD11a+ (p < 0.0185) B lymphocyte expression can differentiate between flare-up and RA remission subjects. Thus, the combined study of these leukocyte surface markers could have potential as disease severity biomarkers for RA, whose fluctuations could be related to the development of the characteristic pro-inflammatory environment.
Collapse
Affiliation(s)
- Sandra Pascual-García
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | | | - Ana B. López-Jaén
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Francisco J. Navarro-Blasco
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
- Rheumatology Unit, University General Hospital of Elche, 03203 Elche, Spain
| | - Yoel G. Montoyo-Pujol
- Medical Oncology Department, Dr. Balmis University General Hospital, Pintor Baeza 12, 03010 Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Enrique Roche
- Biochemistry and Cell Therapy Unit, Institute of Bioengineering, Miguel Hernandez University of Elche, 03202 Elche, Spain
| | - Gloria Peiró
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
- Pathology Department, Dr. Balmis University General Hospital, Pintor Baeza 12, 03010 Alicante, Spain
| | - José M. Sempere-Ortells
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| |
Collapse
|
19
|
Infante-Menéndez J, López-Pastor AR, González-Illanes T, González-López P, Huertas-Lárez R, Rey E, González-Rodríguez Á, García-Monzón C, Patil NP, de Céniga MV, Baker AB, Gómez-Hernández A, Escribano O. Increased let-7d-5p in non-alcoholic fatty liver promotes insulin resistance and is a potential blood biomarker for diagnosis. Liver Int 2023; 43:1714-1728. [PMID: 37057737 PMCID: PMC10523911 DOI: 10.1111/liv.15581] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/15/2023] [Accepted: 03/26/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND AND AIMS The molecular mechanisms driving non-alcoholic fatty liver disease (NAFLD) are poorly understood; however, microRNAs might play a key role in these processes. We hypothesize that let-7d-5p could contribute to the pathophysiology of NAFLD and serve as a potential diagnostic biomarker. METHODS We evaluated let-7d-5p levels and its targets in liver biopsies from a cross-sectional study including patients with NAFLD and healthy donors, and from a mouse model of NAFLD. Moreover, the induction of let-7d-5p expression by fatty acids was evaluated in vitro. Further, we overexpressed let-7d-5p in vitro to corroborate the results observed in vivo. Circulating let-7d-5p and its potential as a NAFLD biomarker was determined in isolated extracellular vesicles from human plasma by RT-qPCR. RESULTS Our results demonstrate that hepatic let-7d-5p was significantly up-regulated in patients with steatosis, and this increase correlated with obesity and a decreased expression of AKT serine/threonine kinase (AKT), insulin-like growth factor 1 (IGF1), IGF-I receptor (IGF1R) and insulin receptor (INSR). These alterations were corroborated in a NAFLD mouse model. In vitro, fatty acids increased let-7d-5p expression, and its overexpression decreased AKT, IGF-IR and IR protein expression. Furthermore, let-7d-5p hindered AKT phosphorylation in vitro after insulin stimulation. Finally, circulating let-7d-5p significantly decreased in steatosis patients and receiver operating characteristic (ROC) analyses confirmed its utility as a diagnostic biomarker. CONCLUSIONS Our results highlight the emerging role of let-7d-5p as a potential therapeutic target for NAFLD since its overexpression impairs hepatic insulin signalling, and also, as a novel non-invasive biomarker for NAFLD diagnosis.
Collapse
Affiliation(s)
- Jorge Infante-Menéndez
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid. Madrid, Spain
| | - Andrea R. López-Pastor
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid. Madrid, Spain
| | - Tamara González-Illanes
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid. Madrid, Spain
| | - Paula González-López
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid. Madrid, Spain
| | - Raquel Huertas-Lárez
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid. Madrid, Spain
| | - Esther Rey
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa. Madrid, Spain
| | - Águeda González-Rodríguez
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa. Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa. Madrid, Spain
- CIBER de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Nikita P. Patil
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Melina Vega de Céniga
- Department of Angiology and Vascular Surgery, Hospital de Galdakao-Usansolo, Galdakao, Bizkaia, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Aaron B. Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Almudena Gómez-Hernández
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid. Madrid, Spain
| | - Oscar Escribano
- Laboratory of Hepatic and Cardiovascular Diseases, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid. Madrid, Spain
| |
Collapse
|
20
|
He XH, Xiao YT, Chen WY, Wang MJ, Wu XD, Mei LY, Gao KX, Huang QC, Huang RY, Chen XM. In silico analysis of serum miRNA profiles in seronegative and seropositive rheumatoid arthritis patients by small RNA sequencing. PeerJ 2023; 11:e15690. [PMID: 37525657 PMCID: PMC10387234 DOI: 10.7717/peerj.15690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/14/2023] [Indexed: 08/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a refractory autoimmune disease, affecting about 1% of the world's population. RA is divided into seronegative RA and seropositive RA. However, biomarkers for discriminating between seronegative and seropositive RA have not been reported. In this study, we profiled serum miRNAs in seronegative RA patients (N-RA), seropositive RA patients (P-RA) and healthy controls (HC) by small RNA sequencing. Results indicated that compared with HC group, there were one up-regulated and four downregulated miRNAs in N-RA group (fold change ≥ 2 and P value < 0.05); compared with P-RA group, there were two up-regulated and four downregulated miRNAs in N-RA group; compared with HC group, there were three up-regulated and four downregulated miRNAs in P-RA group. Among them, the level of hsa-miR-362-5p in N-RA group was up-regulated compared with that in HC group and P-RA group, and the level of hsa-miR-6855-5p and hsa-miR-187-3p in P-RA group was upregulated compared with that in N-RA group and HC group. Validation by qPCR confirmed that serum hsa-miR-362-5p level was elevated in N-RA group. Subsequently, by analyzing the target genes using RNAhybrid, PITA, Miranda and TargetScan and functions of differential miRNAs utilizing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), we found that the target genes and molecular pathways regulated by miRNAs in seronegative RA and seropositive RA were roughly the same, and miRNAs in these two diseases may participate in the occurrence and development of diseases by regulating the immune system. In conclusion, this study revealed the profiles of serum miRNAs in seronegative and seropositive RA patients for the first time, providing potential biomarkers and targets for the diagnosis and treatment of seronegative and seropositive RA.
Collapse
Affiliation(s)
- Xiao-Hong He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun-Ting Xiao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-Ying Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mao-Jie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xiao-Dong Wu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Yan Mei
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai-Xin Gao
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Chun Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| | - Run-Yue Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xiu-Min Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| |
Collapse
|
21
|
Zhang Y, Yang M, Xie H, Hong F, Yang S. Role of miRNAs in Rheumatoid Arthritis Therapy. Cells 2023; 12:1749. [PMID: 37443783 PMCID: PMC10340706 DOI: 10.3390/cells12131749] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease characterized by autoimmunity, synovial inflammation and joint destruction. Pannus formation in the synovial cavity can cause irreversible damage to the joint and cartilage and eventually permanent disability. Current conventional treatments for RA have limitations regarding efficacy, safety and cost. microRNA (miRNA) is a type of non-coding RNA (ncRNA) that regulates gene expression at the post-transcriptional level. The dysregulation of miRNA has been observed in RA patients and implicated in the pathogenesis of RA. miRNAs have emerged as potential biomarkers or therapeutic agents. In this review, we explore the role of miRNAs in various aspects of RA pathophysiology, including immune cell imbalance, the proliferation and invasion of fibroblast-like synovial (FLS) cell, the dysregulation of inflammatory signaling and disturbance in angiogenesis. We delve into the regulatory effects of miRNAs on Treg/Th17 and M1/M2 polarization, the activation of the NF-κB/NLRP3 signaling pathway, neovascular formation, energy metabolism induced by FLS-cell-induced energy metabolism, apoptosis, osteogenesis and mobility. These findings shed light on the potential applications of miRNAs as diagnostic or therapeutic biomarkers for RA management. Furthermore, there are some strategies to regulate miRNA expression levels by utilizing miRNA mimics or exosomes and to hinder miRNA activity via competitive endogenous RNA (ceRNA) network-based antagonists. We conclude that miRNAs offer a promising avenue for RA therapy with unlimited potential.
Collapse
Affiliation(s)
- Yiping Zhang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Meiwen Yang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Department of Physiology, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344100, China
| | - Hongyan Xie
- Department of Foreign Language, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China;
| | - Fenfang Hong
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang 330031, China
| | - Shulong Yang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Department of Physiology, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344100, China
| |
Collapse
|
22
|
Hou J, Sun X. Let -7i : A key player and a promising biomarker in diseases. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:909-919. [PMID: 37587077 PMCID: PMC10930445 DOI: 10.11817/j.issn.1672-7347.2023.220146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 08/18/2023]
Abstract
MicroRNAs (miRNAs) are endogenous non-coding single-stranded small RNAs that regulate gene expression by recognizing homologous sequences and interfering with transcriptional, translational or epigenetic processes. MiRNAs are involved in a variety of disease processes, and regulate the physiological and pathological status of diseases by modulating target cell activity, migration, invasion, apoptosis, autophagy and other processes. Among them, let-7i is highly expressed in various systems, which participates in the process of tumors, cardiovascular and cerebrovascular diseases, fibrotic diseases, inflammatory diseases, neurodegenerative diseases and other diseases, and plays a positive or negative regulatory role in these diseases through different signal pathways and key molecules. Moreover, it can be used as an early diagnosis and prognostic marker for a variety of diseases and become a potential therapeutic target. As a biomarker, let-7i is frequently tested in combination with other miRNAs to diagnose multiple diseases and evaluate the clinical treatment or prognosis.
Collapse
Affiliation(s)
- Jiali Hou
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha 410078.
- National Engineering Research Center of Human Stem Cells, Changsha 410205, China.
| | - Xuan Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha 410078.
- National Engineering Research Center of Human Stem Cells, Changsha 410205, China.
| |
Collapse
|
23
|
Feng W, Zhong XQ, Zheng XX, Liu QP, Liu MY, Liu XB, Lin CS, Xu Q. The Underlying Mechanism of Duanteng Yimu Decoction in Inhibiting Synovial Hyperplasia in Rheumatoid Arthritis. J Immunol Res 2023; 2023:2340538. [PMID: 37252680 PMCID: PMC10225272 DOI: 10.1155/2023/2340538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 04/19/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
Dysregulation of microRNAs (miRNAs) is associated with the pathogenesis of rheumatoid arthritis (RA). Our previous studies confirmed that Duanteng Yimu decoction (DTYMT) effectively inhibits RA fibroblast-like synoviocyte (FLS) proliferation. In this study, we investigated the influence of DTYMT on miR-221 in RA individuals. Hematoxylin-eosin (HE) staining was performed to assess histopathological alterations in collagen-induced arthritis (CIA) mice. The expression of miR-221-3p and TLR4 in PBMC, FLS, and cartilage was measured by RT-qPCR. In the in vitro experiments, DTYMT-containing serum was incubated with FLS-transfected miR-221 mimic or inhibitor. CCK-8 was performed to determine FLS proliferation, and the secretion of IL-1β, IL-6, IL-18, and TNF-α was quantified by ELISA assay. In addition, the regulation of miR-221 expression on FLS apoptosis was assessed using flow cytometry. Finally, western blot was employed to reflect TLR4/MyD88 protein levels. HE results showed that DTYMT effectively reduced synovial hyperplasia in the joints of CIA mice. RT-qPCR assay of FLS and cartilage of the model group showed that miR-221-3p and TLR4 significantly increased compared with those in the normal group. All outcomes were improved by DTYMT. The miR-221 mimic reversed the inhibitory effect of DTYMT-containing serum on FLS proliferation, the release of IL-1β, IL-18, IL-6, and TNF-α, and FLS apoptosis, as well as TLR4/MyD88 protein levels. The results showed that miR-221 promotes the activity of RA-FLS by activating TLR4/MyD88 signaling, and DTYMT treats RA by reducing miR-221 in CIA mice.
Collapse
Affiliation(s)
- Wei Feng
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiao-Qin Zhong
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xue-Xia Zheng
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qing-Ping Liu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Min-Ying Liu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiao-Bao Liu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Chang-Song Lin
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiang Xu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
24
|
Yang YX, Li H, Bai L, Yao S, Zhang W, Wang TS, Wan QF. Bioinformatics analysis of ceRNA regulatory network of baicalin in alleviating pathological joint alterations in CIA rats. Eur J Pharmacol 2023; 951:175757. [PMID: 37149276 DOI: 10.1016/j.ejphar.2023.175757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inffammation of synovium, leading to cartilage damage, bone erosion,even joint destruction and deformity. The conventional treatment modalities in RA are associated with side effects, emphasizing the need for alternative therapeutic remedies. Baicalin possesses multiple pharmacological effects and the advantage of low toxicity. This study aimed to reveal the potential gene regulatory mechanisms underlying the alleviating effects of baicalin in joint pathological alterations in Collagen-Induced Arthritis (CIA) rat models. At 28 days after the primary immunization, 60mg/kg/d of baicalin was administered via intraperitoneal injection once daily for 40 days, and the pathological alterations of hind paw joints were examined with X-ray imaging. Subsequently, the synovial tissue of knee joints was isolated, from which total RNA was extracted, and mRNA and miRNA sequencing libraries were established. Finally, High-throughput transcriptome sequencing(RNA-seq) technology was performed, and the lncRNAs/miRNAs/mRNAs competing endogenous RNA(ceRNA) regulatory network was analyzed. The CIA model was successfully established, and baicalin treatment significantly alleviated the destruction of distal joints of CIA rat models (p < 0.01). We found that 3 potential ceRNA regulatory networks of baicalin were established, including lncRNA ENSRNOT00000076420/miR-144-3p/Fosb, lncRNA MSTRG.1448.13/miR-144-3p/Atp2b2 and lncRNA MSTRG.1448.13/miR-144-3p/Shanks. The validation results from synovial tissue of CIA rats were consistent with the RNA-Seq results. Overall, this study revealed potentially important genes and ceRNA regulatory network that mediate the alleviating effects of baicalin on joint pathological alterations in CIA rats.
Collapse
Affiliation(s)
- Yu-Xin Yang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Hui Li
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Lin Bai
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China; Department of Medicine, Luoyang Polytechnic, Luoyang, Henang, 471000, PR China
| | - Si Yao
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Wei Zhang
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Tian-Song Wang
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Qiao-Feng Wan
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China.
| |
Collapse
|
25
|
Doghish AS, Ismail A, El-Mahdy HA, Elkhawaga SY, Elsakka EGE, Mady EA, Elrebehy MA, Khalil MAF, El-Husseiny HM. miRNAs insights into rheumatoid arthritis: Favorable and detrimental aspects of key performers. Life Sci 2023; 314:121321. [PMID: 36574943 DOI: 10.1016/j.lfs.2022.121321] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) is a severe autoimmune inflammation that mostly affects the joints. It's a multifactorial disease. Its clinical picture depends on genetic and epigenetic factors such as miRNAs. The miRNAs are small noncoding molecules that are able to negatively or positively modulate their target gene expression. In RA, miRNAs are linked to its pathogenesis. They disrupt immunity balance by controlling granulocytes, triggering the release of several proinflammatory cytokines such as interleukin-6 and tumor necrosis factor-α, finally leading to synovium hyperplasia and inflammation. Besides, they also may trigger activation of some pathways as nuclear factor kappa-β disrupts the balance between osteoclast and osteoblast activity, leading to increased bone destruction. Moreover, miRNAs are also applied with efficiency in RA diagnosis and prognosis. Besides the significant association between miRNAs and RA response to treatment, they are also applied as a choice for treatment based on their effects on the immune system and inflammatory cytokines. Hence, the review aims to present an updated overview of miRNAs, their biogenesis, implications in RA pathogenesis, and finally, the role of miRNAs in RA treatment.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Eman A Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukfh, Elqaliobiya 13736, Egypt; Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A F Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| |
Collapse
|
26
|
RBP-RNA interactions in the control of autoimmunity and autoinflammation. Cell Res 2023; 33:97-115. [PMID: 36599968 PMCID: PMC9892603 DOI: 10.1038/s41422-022-00752-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/07/2022] [Indexed: 01/06/2023] Open
Abstract
Autoimmunity and autoinflammation arise from aberrant immunological and inflammatory responses toward self-components, contributing to various autoimmune diseases and autoinflammatory diseases. RNA-binding proteins (RBPs) are essential for immune cell development and function, mainly via exerting post-transcriptional regulation of RNA metabolism and function. Functional dysregulation of RBPs and abnormities in RNA metabolism are closely associated with multiple autoimmune or autoinflammatory disorders. Distinct RBPs play critical roles in aberrant autoreactive inflammatory responses via orchestrating a complex regulatory network consisting of DNAs, RNAs and proteins within immune cells. In-depth characterizations of RBP-RNA interactomes during autoimmunity and autoinflammation will lead to a better understanding of autoimmune pathogenesis and facilitate the development of effective therapeutic strategies. In this review, we summarize and discuss the functions of RBP-RNA interactions in controlling aberrant autoimmune inflammation and their potential as biomarkers and therapeutic targets.
Collapse
|
27
|
Peng X, Wang Q, Li W, Ge G, Peng J, Xu Y, Yang H, Bai J, Geng D. Comprehensive overview of microRNA function in rheumatoid arthritis. Bone Res 2023; 11:8. [PMID: 36690624 PMCID: PMC9870909 DOI: 10.1038/s41413-023-00244-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs), a class of endogenous single-stranded short noncoding RNAs, have emerged as vital epigenetic regulators of both pathological and physiological processes in animals. They direct fundamental cellular pathways and processes by fine-tuning the expression of multiple genes at the posttranscriptional level. Growing evidence suggests that miRNAs are implicated in the onset and development of rheumatoid arthritis (RA). RA is a chronic inflammatory disease that mainly affects synovial joints. This common autoimmune disorder is characterized by a complex and multifaceted pathogenesis, and its morbidity, disability and mortality rates remain consistently high. More in-depth insights into the underlying mechanisms of RA are required to address unmet clinical needs and optimize treatment. Herein, we comprehensively review the deregulated miRNAs and impaired cellular functions in RA to shed light on several aspects of RA pathogenesis, with a focus on excessive inflammation, synovial hyperplasia and progressive joint damage. This review also provides promising targets for innovative therapies of RA. In addition, we discuss the regulatory roles and clinical potential of extracellular miRNAs in RA, highlighting their prospective applications as diagnostic and predictive biomarkers.
Collapse
Affiliation(s)
- Xiaole Peng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Qing Wang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Wenming Li
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Gaoran Ge
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiachen Peng
- grid.413390.c0000 0004 1757 6938Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, P. R. China
| | - Yaozeng Xu
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Huilin Yang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiaxiang Bai
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Dechun Geng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| |
Collapse
|
28
|
Jiang Y, Zhong S, He S, Weng J, Liu L, Ye Y, Chen H. Biomarkers (mRNAs and non-coding RNAs) for the diagnosis and prognosis of rheumatoid arthritis. Front Immunol 2023; 14:1087925. [PMID: 36817438 PMCID: PMC9929281 DOI: 10.3389/fimmu.2023.1087925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
In recent years, diagnostic and therapeutic approaches for rheumatoid arthritis (RA) have continued to improve. However, in the advanced stages of the disease, patients are unable to achieve long-term clinical remission and often suffer from systemic multi-organ damage and severe complications. Patients with RA usually have no overt clinical manifestations in the early stages, and by the time a definitive diagnosis is made, the disease is already at an advanced stage. RA is diagnosed clinically and with laboratory tests, including the blood markers C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) and the autoantibodies rheumatoid factor (RF) and anticitrullinated protein antibodies (ACPA). However, the presence of RF and ACPA autoantibodies is associated with aggravated disease, joint damage, and increased mortality, and these autoantibodies have low specificity and sensitivity. The etiology of RA is unknown, with the pathogenesis involving multiple factors and clinical heterogeneity. The early diagnosis, subtype classification, and prognosis of RA remain challenging, and studies to develop minimally invasive or non-invasive biomarkers in the form of biofluid biopsies are becoming more common. Non-coding RNA (ncRNA) molecules are composed of long non-coding RNAs, small nucleolar RNAs, microRNAs, and circular RNAs, which play an essential role in disease onset and progression and can be used in the early diagnosis and prognosis of RA. In this review of the diagnostic and prognostic approaches to RA disease, we provide an overview of the current knowledge on the subject, focusing on recent advances in mRNA-ncRNA as diagnostic and prognostic biomarkers from the biofluid to the tissue level.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.,Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuxin Zhong
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Shenghua He
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Juanling Weng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijin Liu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yufeng Ye
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Hanwei Chen
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.,Department of Radiology, GuangzhouPanyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou, China
| |
Collapse
|
29
|
Duan B, Yu Z, Liu R, Li J, Song Z, Zhou Q, Chen L. Tetrandrine-induced downregulation of lncRNA NEAT1 inhibits rheumatoid arthritis progression through the STAT3/miR-17-5p pathway. Immunopharmacol Immunotoxicol 2022; 44:886-893. [PMID: 35815670 DOI: 10.1080/08923973.2022.2092748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The inhibitory effect of Tetrandrine (Tet) on rheumatoid arthritis (RA) is well established. However, its exact molecular mechanism remains unknown. METHODS RT-qPCR coupled with western blotting was employed to analyze the expression of NEAT1, miR-17-5p, and STAT3 in RA tissues and/or RA-fibroblast-like synoviocytes (RA-FLS) treated with 3 μmol/L of Tet for 48 h. Cell Counting Kit-8 assay and flow cytometry were performed to assess RA-FLS proliferation and apoptosis. Luciferase reporter assays were used to validate the interactions between miR-17-5p and STAT3 or NEAT1. RESULTS The expression of NEAT1 decreased in a time-dependent manner upon Tet treatment. Tet significantly inhibited RA-FLS proliferation and triggered apoptosis by downregulating NEAT1 expression. Additionally, NEAT1 directly targeted miR-17-5p to upregulate STAT3 expression. Tet-induced low NEAT1 expression impaired RA-FLS growth by targeting miR-17-5p and inhibiting STAT3. CONCLUSION Tet exerts its inhibitory role in RA progression by regulating the NEAT1/miR-17-5p/STAT3 pathway.
Collapse
Affiliation(s)
- Bo Duan
- Department of Rheumatology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zhao Yu
- Department of Rheumatology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Ruilin Liu
- Department of Rheumatology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jigao Li
- Department of Rheumatology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhe Song
- Department of Rheumatology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Quan Zhou
- Department of Rheumatology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Lichuan Chen
- Department of Rheumatology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
30
|
Yang J, Li Z, Wang L, Yun X, Zeng Y, Ng JP, Lo H, Wang Y, Zhang K, Law BYK, Wong VKW. The role of non-coding RNAs (miRNA and lncRNA) in the clinical management of rheumatoid arthritis. Pharmacol Res 2022; 186:106549. [DOI: 10.1016/j.phrs.2022.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
31
|
Gao Y, Cai W, Zhou Y, Li Y, Cheng J, Wei F. Immunosenescence of T cells: a key player in rheumatoid arthritis. Inflamm Res 2022; 71:1449-1462. [DOI: 10.1007/s00011-022-01649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022] Open
|
32
|
Li B, Yang B, Liu X, Zhao J, Ross RP, Stanton C, Zhang H, Chen W. Microbiota-assisted therapy for systemic inflammatory arthritis: advances and mechanistic insights. Cell Mol Life Sci 2022; 79:470. [PMID: 35932328 PMCID: PMC11072763 DOI: 10.1007/s00018-022-04498-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/22/2022]
Abstract
Research on the influence of gut microbiota on systemic inflammatory arthritis has exploded in the past decade. Gut microbiota changes may be a crucial regulatory component in systemic inflammatory arthritis. As a result of advancements in the field, microbiota-assisted therapy has evolved, but this discipline is still in its infancy. Consequently, we review the limitations of current systemic inflammatory arthritis treatment, analyze the connection between the microbiota and arthritis, and summarize the research progress of microbiota regulating systemic inflammatory arthritis and the further development aspects of microbiota-assisted therapy. Finally, the partial mechanisms of microbiota-assisted therapy of systemic inflammatory arthritis are being discussed. In general, this review summarizes the current progress, challenges, and prospects of microbiota-assisted therapy for systemic inflammatory arthritis and points out the direction for the development of microbiota-assisted therapy in the future.
Collapse
Affiliation(s)
- Bowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - R Paul Ross
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Catherine Stanton
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.
| |
Collapse
|
33
|
MicroRNAs (miRNAs) in Cardiovascular Complications of Rheumatoid Arthritis (RA): What Is New? Int J Mol Sci 2022; 23:ijms23095254. [PMID: 35563643 PMCID: PMC9101033 DOI: 10.3390/ijms23095254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/08/2023] Open
Abstract
Rheumatoid Arthritis (RA) is among the most prevalent and impactful rheumatologic chronic autoimmune diseases (AIDs) worldwide. Within a framework that recognizes both immunological activation and inflammatory pathways, the exact cause of RA remains unclear. It seems however, that RA is initiated by a combination between genetic susceptibility, and environmental triggers, which result in an auto-perpetuating process. The subsequently, systemic inflammation associated with RA is linked with a variety of extra-articular comorbidities, including cardiovascular disease (CVD), resulting in increased mortality and morbidity. Hitherto, vast evidence demonstrated the key role of non-coding RNAs such as microRNAs (miRNAs) in RA, and in RA-CVD related complications. In this descriptive review, we aim to highlight the specific role of miRNAs in autoimmune processes, explicitly on their regulatory roles in the pathogenesis of RA, and its CV consequences, their main role as novel biomarkers, and their possible role as therapeutic targets.
Collapse
|
34
|
Bonek K, Kuca Warnawin E, Kornatka A, Plebańczyk M, Burakowski T, Maśliński W, Wisłowska M, Głuszko P, Ciechomska M. Circulating miRNA Correlates with Lipid Profile and Disease Activity in Psoriatic Arthritis, Rheumatoid Arthritis, and Ankylosing Spondylitis Patients. Biomedicines 2022; 10:biomedicines10040893. [PMID: 35453643 PMCID: PMC9024741 DOI: 10.3390/biomedicines10040893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to investigate the associations of microRNA (miRs) signatures with cytokines, serum lipids, and disease activity in patients with psoriatic arthritis (PsA), ankylosing spondylitis (AS), and rheumatoid arthritis (RA). In total, 65 patients (PsA n = 25, AS n = 25, RA n = 15) and 25 healthy controls (HC) were enrolled into the study. The expression of miR-223-5p, miR-92b-3p, miR-485-3p, miR-10b-5p, let-7d-5p, miR-26a-2-3p, miR-146b-3p, and cytokines levels were measured in sera. DIANA-mirPath analysis was used to predict pathways targeted by the dysregulated miRs. Disease activity scores were calculated. Lipid profile, uric acid, glucose level, and C-reactive protein (CRP) concentrations were determined in the blood. Based on lipid profiles, the PsA group had hypertriglyceridaemia, and RA patients revealed mixed dyslipidaemia, while in AS, no specific changes were found. miR expression analysis revealed upregulation of miR-26a-2-3p and miR-10b-5p in PsA, miR-485-3p in AS, and let-7d-5p in RA. Several correlations between disease activity indexes, metabolites levels, and expression of miRs were observed in PsA, RA, and AS patients. Finally, in ROC analysis, miR-26a-2-3p/miR-485-3p, and let-7d-5p/miR-146b-3p tandems revealed high sensitivity and specificity in distinguishing between PsA, AS, and RA. Our study illustrates the superiority of miR expressions in distinguishing between RA, PsA, and AS. In PsA, a unique regulatory pathway exists through miR-26a-2-3p, miR-223-5p, miR-10b-5p, and miR-92b-3p that converges proatherogenic metabolism and disease activity.
Collapse
Affiliation(s)
- Krzysztof Bonek
- Department of Rheumatology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (M.W.); (P.G.)
- Correspondence: (K.B.); (M.C.)
| | - Ewa Kuca Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (E.K.W.); (A.K.); (M.P.); (T.B.); (W.M.)
| | - Anna Kornatka
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (E.K.W.); (A.K.); (M.P.); (T.B.); (W.M.)
| | - Magdalena Plebańczyk
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (E.K.W.); (A.K.); (M.P.); (T.B.); (W.M.)
| | - Tomasz Burakowski
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (E.K.W.); (A.K.); (M.P.); (T.B.); (W.M.)
| | - Włodzimierz Maśliński
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (E.K.W.); (A.K.); (M.P.); (T.B.); (W.M.)
| | - Małgorzata Wisłowska
- Department of Rheumatology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (M.W.); (P.G.)
| | - Piotr Głuszko
- Department of Rheumatology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (M.W.); (P.G.)
| | - Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (E.K.W.); (A.K.); (M.P.); (T.B.); (W.M.)
- Correspondence: (K.B.); (M.C.)
| |
Collapse
|
35
|
Li L, Zhan M, Li M. Circular RNA circ_0130438 suppresses TNF-α-induced proliferation, migration, invasion and inflammation in human fibroblast-like MH7A synoviocytes by regulating miR-130a-3p/KLF9 axis. Transpl Immunol 2022; 72:101588. [PMID: 35358709 DOI: 10.1016/j.trim.2022.101588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) can play a critical role in rheumatoid arthritis (RA) pathogenesis by involving gene regulation by competing for shared microRNAs (miRNAs), a family of small noncoding RNAs. MiR-130a-3p is a disease-related miRNA and Kruppel-like factor 9 (KLF9) is a zinc finger transcription factor, which are involved in RA pathogenesis. Here, we identified the action of circRNA circ_0130438 in regulating fibroblast-like synoviocytes (FLSs) stimulated by tumor necrosis factor α (TNF-α). METHODS The direct relationship between miR-130a-3p and circRNA circ_0130438 or KLF9 was predicted by bioinformatics analysis and examined by a dual-luciferase reporter or RNA immunoprecipitation (RIP) assay. CircRNA circ_0130438, miR-130a-3p and KLF9 factor expression levels were gauged by a quantitative real-time PCR (qRT-PCR) or a western blot method. Cell proliferation ability was analyzed by a 5-Ethynyl-2'-Deoxyuridine (EdU) staining assay. The transwell assay was used to evaluate cell migration and invasion capacities. The production levels of interleukin-1β (IL)-1β, IL-6 and IL-8 were assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS The level of circRNA circ_0130438 was reduced in RA tissues (P = 0.0001) and FLSs isolated from RA tissues (P = 0.0001) compared with corresponding normal controls. Exposure of human fibroblast-like MH7A synoviocytes to TNF-α suppressed circRNA circ_0130438 expression (P < 0.0001). In contrast, the elevated expression of circRNA circ_0130438 suppressed the TNF-α-induced proliferation (P = 0.0047) and migration (P = 0.0023) of MH7A cells, as well as their pro-inflammatory cytokines (IL-1β, IL-6 and IL-8) production (P < 0.0001, P < 0.0001 and P < 0.0001). The circRNA circ_0130438 contained a miR-130a-3p binding site. Furthermore, the increase of miR-130-3p in TNF-α-stimulated MH7A cells reversed the effects of circRNA circ_0130438 elevation on cell proliferation (P = 0.0006), migration (P = 0.0406) and pro-inflammatory cytokines (IL-1β, IL-6 and IL-8) production (P = 0.0036, P < 0.0001 and P = 0.0004), indicating that miR-130a-3p was a functional mediator of circRNA circ_0130438 regulation. We also documented that KLF9 was a direct target and downstream effector of miR-130a-3p. Importantly, circRNA circ_0130438 enhanced KLF9 expression (P < 0.0001) in TNF-α-stimulated MH7A cells by functioning as a competing endogenous RNA (ceRNA) for miR-130a-3p (P = 0.0004). CONCLUSION Our findings demonstrate that the elevated expression of circRNA circ_0130438 suppresses TNF-α-induced migration, proliferation and pro-inflammatory cytokines (IL-1β, IL-6 and IL-8) production of human MH7A cells by enhancing KLF9 expression by operating as a ceRNA for miR-130a-3p.
Collapse
Affiliation(s)
- Lei Li
- Department of Joint Surgery Treatment Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China
| | - Minqing Zhan
- Department of Orthopedics, Weihaiwei People's Hospital, Weihai City, Shandong Province, China
| | - Mingwei Li
- Department of Traumatology, Zaozhuang Municipal Hospital Affiliated to Jining Medical College, Zaozhuang City, Shandong Province, China.
| |
Collapse
|
36
|
MicroRNA-17-92a-1 Host Gene (MIR17HG) Expression Signature and rs4284505 Variant Association with Alopecia Areata: A Case-Control Study. Genes (Basel) 2022; 13:genes13030505. [PMID: 35328059 PMCID: PMC8955921 DOI: 10.3390/genes13030505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Accumulating evidence indicates the implication of microRNAs (miRs) in cutaneous and hair follicle immunobiology. We evaluated, for the first time, the miR-17-92a-1 cluster host gene (MIR17HG) expression in peripheral blood of 248 unrelated alopecia areata (AA) patients compared to 244 matched controls using Real-Time qPCR. We also tested its association with different rs4284505A>G genotypes (based on TaqMan allelic discrimination PCR) and the available clinical data. The adjusted odds ratio (OR) and 95% confidence interval (CI) were calculated for each genetic association model. The upregulation of miR-17 was observed in the serum of patients with alopecia compared to controls (p-value = 0.004). The ROC curve showed high diagnostic performance of miR-17 in differentiating between patients and controls (AUC = 0.85, p-value < 0.001). rs4284505*A/G heterozygotes were more susceptible to the disease (OR = 1.57, 95% CI = 1.01−2.45) under the over-dominant model. Interestingly, patients with the rs4284505*G/G genotype had a higher level of miR-17 than those with the A/A and A/G genotypes. The G/G genotype was associated with the severe phenotype (p-value = 0.038). A/G carriers were the youngest (p-value < 0.001), had more frequent scalp infection (p-value = 0.006), exhibited the worst dermatology life quality index score (p-value = 0.037), and responded less to treatment (p-value = 0.033). In conclusion, MIR17HG expression and the rs4284505 variant were significantly associated with AA and could play a role in pathogenesis and phenotype in the Egyptian population. Further multi-center studies in other ethnicities are warranted to replicate the findings.
Collapse
|
37
|
A review of non-coding RNA related to NF-κB signaling pathway in the pathogenesis of osteoarthritis. Int Immunopharmacol 2022; 106:108607. [PMID: 35180625 DOI: 10.1016/j.intimp.2022.108607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA), often called as "wear and tear" arthritis, is the most common form of degenerative joint arthritis and is a leading cause of disability. The nuclear factor-kappaB (NF-κB) transcription factor has long been recognized as a disease-contributing factor for OA. More and more evidences show that targeting NF-κB signaling could offer novel potential therapeutic options for OA damage and reduce the risk of potential side-effects. In recent years, it has been shown that non-coding RNAs(ncRNAs) can trigger the expression of an array of genes and widely activate NF-κB signaling pathway, which induces destruction of the articular joint, leading to OA onset and progression. In this review, we discuss the involvement of NF-κB in OA pathogenesis and how ncRNAs attend and affect OA incidence and evolution, offering novel potential therapeutic options for OA treatment.
Collapse
|
38
|
Han JJ, Wang XQ, Zhang XA. Functional Interactions Between lncRNAs/circRNAs and miRNAs: Insights Into Rheumatoid Arthritis. Front Immunol 2022; 13:810317. [PMID: 35197980 PMCID: PMC8858953 DOI: 10.3389/fimmu.2022.810317] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases that affect synovitis, bone, cartilage, and joint. RA leads to bone and cartilage damage and extra-articular disorders. However, the pathogenesis of RA is still unclear, and the lack of effective early diagnosis and treatment causes severe disability, and ultimately, early death. Accumulating evidence revealed that the regulatory network that includes long non-coding RNAs (lncRNAs)/circular RNAs (circRNAs), micro RNAs (miRNAs), and messenger RNAs (mRNA) plays important roles in regulating the pathological and physiological processes in RA. lncRNAs/circRNAs act as the miRNA sponge and competitively bind to miRNA to regulate the expression mRNA in synovial tissue, FLS, and PBMC, participate in the regulation of proliferation, apoptosis, invasion, and inflammatory response. Thereby providing new strategies for its diagnosis and treatment. In this review, we comprehensively summarized the regulatory mechanisms of lncRNA/circRNA-miRNA-mRNA network and the potential roles of non-coding RNAs as biomarkers and therapeutic targets for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Juan-Juan Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| | - Xin-An Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| |
Collapse
|
39
|
Floudas A, Neto N, Orr C, Canavan M, Gallagher P, Hurson C, Monaghan MG, Nagpar S, Mullan RH, Veale DJ, Fearon U. Loss of balance between protective and pro-inflammatory synovial tissue T-cell polyfunctionality predates clinical onset of rheumatoid arthritis. Ann Rheum Dis 2022; 81:193-205. [PMID: 34598926 DOI: 10.1136/annrheumdis-2021-220458] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/10/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVES This study investigates pathogenic and protective polyfunctional T-cell responses in patient with rheumatoid arthritis (RA), individuals at risk (IAR) and healthy control (HC) synovial-tissue biopsies and identifies the presence of a novel population of pathogenic polyfunctional T-cells that are enriched in the RA joint prior to the development of clinical inflammation. METHODS Pathway enrichment analysis of previously obtained RNAseq data of synovial biopsies from RA (n=118), IAR (n=20) and HC (n=44) was performed. Single-cell synovial tissue suspensions from RA (n=10), IAR (n=7) and HC (n=7) and paired peripheral blood mononuclear cells (PBMC) were stimulated in vitro and polyfunctional synovial T-cell subsets examined by flow cytometric analysis, simplified presentation of incredibly complex evaluations (SPICE) and FlowSom clustering. Flow-imaging was utilised to confirm specific T-cell cluster identification. Fluorescent lifetime imaging microscopy (FLIM) was used to visualise metabolic status of sorted T-cell populations. RESULTS Increased plasticity of Tfh cells and CD4 T-cell polyfunctionality with enriched memory Treg cell responses was demonstrated in RA patient synovial tissue. Synovial-tissue RNAseq analysis reveals that enrichment in T-cell activation and differentiation pathways pre-dates the onset of RA. Switch from potentially protective IL-4 and granulocyte macrophage colony stimulating factor (GMCSF) dominated polyfunctional CD4 T-cell responses towards pathogenic polyfunctionality is evident in patient with IAR and RA synovial tissue. Cluster analysis reveals the accumulation of highly polyfunctional CD4+ CD8dim T-cells in IAR and RA but not HC synovial tissue. CD4+ CD8dim T-cells show increased utilisation of oxidative phosphorylation, a characteristic of metabolically primed memory T-cells. Frequency of synovial CD4+ CD8dim T-cells correlates with RA disease activity. CONCLUSION Switch from potentially protective to pathogenic T-cell polyfunctionality pre-dates the onset of clinical inflammation and constitutes an opportunity for therapeutic intervention in RA.
Collapse
Affiliation(s)
- Achilleas Floudas
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Nuno Neto
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland
| | - Carl Orr
- Department of Rheumatology, EULAR Centre of excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, UCD, Dublin, Ireland
| | - Mary Canavan
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Phil Gallagher
- Department of Orthopaedics, St Vincent's University Hospital, Dublin, Ireland
| | - Conor Hurson
- Department of Orthopaedics, St Vincent's University Hospital, Dublin, Ireland
| | - Michael G Monaghan
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland
| | - Sunil Nagpar
- Department of Immunology, Janssen Research & Development, Immunology, Philadelphia, Pennsylvania, USA
| | - Ronan H Mullan
- Department of Rheumatology, Tallaght University Hospital, Dublin, Dublin, Ireland
| | - Douglas J Veale
- Department of Rheumatology, EULAR Centre of excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, UCD, Dublin, Ireland
| | - Ursula Fearon
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
40
|
Kmiołek T, Paradowska-Gorycka A. miRNAs as Biomarkers and Possible Therapeutic Strategies in Rheumatoid Arthritis. Cells 2022; 11:cells11030452. [PMID: 35159262 PMCID: PMC8834522 DOI: 10.3390/cells11030452] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Within the past years, more and more attention has been devoted to the epigenetic dysregulation that provides an additional window for understanding the possible mechanisms involved in the pathogenesis of autoimmune rheumatic diseases. Rheumatoid arthritis (RA) is a heterogeneous disease where a specific immunologic and genetic/epigenetic background is responsible for disease manifestations and course. In this field, microRNAs (miRNA; miR) are being identified as key regulators of immune cell development and function. The identification of disease-associated miRNAs will introduce us to the post-genomic era, providing the real probability of manipulating the genetic impact of autoimmune diseases. Thereby, different miRNAs may be good candidates for biomarkers in disease diagnosis, prognosis, treatment and other clinical applications. Here, we outline not only the role of miRNAs in immune and inflammatory responses in RA, but also present miRNAs as diagnostic/prognostic biomarkers. Research into miRNAs is still in its infancy; however, investigation into these novel biomarkers could progress the use of personalized medicine in RA treatment. Finally, we discussed the possibility of miRNA-based therapy in RA patients, which holds promise, given major advances in the therapy of patients with inflammatory arthritis.
Collapse
|
41
|
Di Y, Zhang M, Chen Y, Sun R, Shen M, Tian F, Yang P, Qian F, Zhou L. Catalpol Inhibits Tregs-to-Th17 Cell Transdifferentiation by Up-Regulating Let-7g-5p to Reduce STAT3 Protein Levels. Yonsei Med J 2022; 63:56-65. [PMID: 34913284 PMCID: PMC8688372 DOI: 10.3349/ymj.2022.63.1.56] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease, and Th17 cells are key factors in the pathogenesis of human inflammatory conditions, such as RA. Catalpol (CAT), a component in Rehmanniae Radix (RR), has been found to regulate human immunity. However, the effects of CAT on Th17 cell differentiation and improvement of RA are not clear. MATERIALS AND METHODS Collagen-induced arthritis (CIA) mice were constructed to detect the effects of CAT on arthritis and Th17 cells. The effect of CAT on Th17 differentiation was evaluated with let-7g-5p transfection experiments. Flow cytometry was used to detect the proportion of Th17 cells after CAT treatment. Levels of interleukin-17 and RORγt were assessed by qRT-PCR and enzyme-linked immunosorbent assay. The expression of signal transducer and activator of transcription 3 (STAT3) was determined by qRT-PCR and Western blot. RESULTS We found that the proportion of Th17 cells was negatively associated with let-7g-5p expression in CIA mice. In in vitro experiments, CAT suppressed traditional differentiation of Th17 cells. Simultaneously, CAT significantly decreased Tregs-to-Th17 cells transdifferentiation. Our results demonstrated that CAT inhibited Tregs-to-Th17 cells transdifferentiation by up-regulating let-7g-5p and that the suppressive effect of CAT on traditional differentiation of Th17 cells is not related with let-7-5p. CONCLUSION Our data indicate that CAT may be a potential modulator of Tregs-to-Th17 cells transdifferentiation by up-regulating let-7g-5p to reduce the expression of STAT3. These results provide new directions for research into RA treatment.
Collapse
Affiliation(s)
- Yuxi Di
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingfei Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yichang Chen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruonan Sun
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meiyu Shen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fengxiang Tian
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pei Yang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feiya Qian
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
42
|
Iwamoto N, Furukawa K, Endo Y, Shimizu T, Sumiyoshi R, Umeda M, Koga T, Kawashiri SY, Igawa T, Ichinose K, Tamai M, Origuchi T, Kawakami A. Methotrexate Alters the Expression of microRNA in Fibroblast-like Synovial Cells in Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms222111561. [PMID: 34768991 PMCID: PMC8584010 DOI: 10.3390/ijms222111561] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
We aimed to investigate the effect of methotrexate (MTX) on microRNA modulation in rheumatoid arthritis fibroblast-like synovial cells (RA-FLS). RA-FLS were treated with MTX for 48 h. We then performed miRNA array analysis to investigate differentially expressed miRNAs. Transfection with miR-877-3p precursor and inhibitor were used to investigate the functional role of miR-877-3p in RA-FLS. Gene ontology analysis was used to investigate the cellular processes involving miR-877-3p. The production of cytokines/chemokines was screened by multiplex cytokine/chemokine bead assay and confirmed by ELISA and quantitative real-time PCR. The migratory and proliferative activities of RA-FLS were analyzed by wound healing assay and MKI-67 expression. MTX treatment altered the expression of 13 miRNAs (seven were upregulated and six were downregulated). Among them, quantitative real-time PCR confirmed that miR-877-3p was upregulated in response to MTX (1.79 ± 0.46-fold, p < 0.05). The possible target genes of miR-877-3p in RA-FLS revealed by the microarray analysis were correlated with biological processes. The overexpression of miR-877-3p decreased the production of GM-CSF and CCL3, and the overexpression of miR-877-3p inhibited migratory and proliferative activity. MTX altered the miR-877-3p expression on RA-FLS, and this alteration of miR-877-3p attenuated the abundant production of cytokines/chemokines and proliferative property of RA-FLS.
Collapse
Affiliation(s)
- Naoki Iwamoto
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
- Correspondence: ; Tel.: +81-95-819-7260; Fax: +81-95-849-7270
| | - Kaori Furukawa
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
| | - Yushiro Endo
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
| | - Remi Sumiyoshi
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
| | - Masataka Umeda
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan
| | - Shin-ya Kawashiri
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
- Division of Advanced Preventive Medical Sciences, Department of Community Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan
| | - Takashi Igawa
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
| | - Kunihiro Ichinose
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
| | - Mami Tamai
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
| | - Tomoki Origuchi
- Department of Physical Therapy, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan;
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan; (K.F.); (Y.E.); (T.S.); (R.S.); (M.U.); (T.K.); (S.-y.K.); (T.I.); (K.I.); (M.T.); (A.K.)
| |
Collapse
|
43
|
Lu J, Bi Y, Zhu Y, Huipeng S, Duan W, Zhou J. CD3D, GZMK, and KLRB1 Are Potential Markers for Early Diagnosis of Rheumatoid Arthritis, Especially in Anti-Citrullinated Protein Antibody-Negative Patients. Front Pharmacol 2021; 12:726529. [PMID: 34603038 PMCID: PMC8483717 DOI: 10.3389/fphar.2021.726529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022] Open
Abstract
Early diagnosis and monitoring of rheumatoid arthritis (RA) progress are critical for effective treatment. In clinic, the detection of rheumatoid factor (RF) and anti-citrullinated protein antibodies (ACPA) are usually combined to diagnose early RA. However, the poor specificity of RF and high heterogeneity of ACPA make the early diagnosis of RA still challenging. Bioinformatics analysis based on high-throughput omics is an emerging method to identify novel and effective biomarkers, which has been widely used in many diseases. Herein, utilizing an integrated strategy based on expression correlation analysis and weighted gene coexpression network analysis (WGCNA), we identified 76 RA-trait different expression genes (DEGs). Combined with protein-protein interaction (PPI) network construction and clustering, new hub genes associated in RA synovia, CD3D, GZMK, and KLRB1, were identified. We verified the specificity of these genes in the synovium of RA patients through three external datasets. We also observed high sensitivity and specificity of them for ACPA-negative patients. CD3D, GZMK, and KLRB1 are potentially key mediators of RA pathogenesis and markers for RA diagnosis.
Collapse
Affiliation(s)
- Junqin Lu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yihui Bi
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yapeng Zhu
- Department of Interventional Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shi Huipeng
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai, China
| | - Wenxiu Duan
- Department of Interventional Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jian Zhou
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
44
|
S1P Increases VEGF Production in Osteoblasts and Facilitates Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-16-5p Expression via the c-Src/FAK Signaling Pathway in Rheumatoid Arthritis. Cells 2021; 10:cells10082168. [PMID: 34440937 PMCID: PMC8393529 DOI: 10.3390/cells10082168] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is a critical process in the formation of new capillaries and a key participant in rheumatoid arthritis (RA) pathogenesis. Vascular endothelial growth factor (VEGF) stimulation of endothelial progenitor cells (EPCs) facilitates angiogenesis and the progression of RA. Phosphorylation of sphingosine kinase 1 (SphK1) produces sphingosine-1-phosphate (S1P), which increases inflammatory cytokine production, although the role of S1P in RA angiogenesis is unclear. In this study, we evaluated the impact of S1P treatment on VEGF-dependent angiogenesis in osteoblast-like cells (MG-63 cells) and the significance of SphK1 short hairpin RNA (shRNA) on S1P production in an in vivo model. We found significantly higher levels of S1P and VEGF expression in synovial fluid from RA patients compared with those with osteoarthritis by ELISA analysis. Treating MG-63 cells with S1P increased VEGF production, while focal adhesion kinase (FAK) and Src siRNAs and inhibitors decreased VEGF production in S1P-treated MG-63 cells. Conditioned medium from S1P-treated osteoblasts significantly increased EPC tube formation and migration by inhibiting miR-16-5p synthesis via proto-oncogene tyrosine-protein kinase src (c-Src) and FAK signaling in chick chorioallantoic membrane (CAM) and Matrigel plug assays. Infection with SphK1 shRNA reduced angiogenesis, articular swelling and cartilage erosion in the ankle joints of mice with collagen-induced arthritis (CIA). S1P appears to have therapeutic potential in RA treatment.
Collapse
|
45
|
Ultra-Low Dose Cytokines in Rheumatoid Arthritis, Three Birds with One Stone as the Rationale of the 2LARTH ® Micro-Immunotherapy Treatment. Int J Mol Sci 2021; 22:ijms22136717. [PMID: 34201546 PMCID: PMC8268272 DOI: 10.3390/ijms22136717] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) are two cytokines involved in the perpetuation of the chronic inflammation state characterizing rheumatoid arthritis (RA). Significant advances in the treatment of this pathology have been made over the past ten years, partially through the development of anti-TNF and anti-IL-1 therapies. However, major side effects still persist and new alternative therapies should be considered. The formulation of the micro-immunotherapy medicine (MIM) 2LARTH® uses ultra-low doses (ULD) of TNF-α, IL-1β, and IL-2, in association with other immune factors, to gently restore the body’s homeostasis. The first part of this review aims at delineating the pivotal roles played by IL-1β and TNF-α in RA physiopathology, leading to the development of anti-TNF and anti-IL-1 therapeutic agents. In a second part, an emphasis will be made on explaining the rationale of using multiple therapeutic targets, including both IL-1β and TNF-α in 2LARTH® medicine. Particular attention will be paid to the ULD of those two main pro-inflammatory factors in order to counteract their overexpression through the lens of their molecular implication in RA pathogenesis.
Collapse
|