1
|
Gao X, Shao S, Zhang X, Li C, Jiang Q, Li B. Interaction between CD244 and SHP2 regulates inflammation in chronic obstructive pulmonary disease via targeting the MAPK/NF-κB signaling pathway. PLoS One 2024; 19:e0312228. [PMID: 39423200 PMCID: PMC11488738 DOI: 10.1371/journal.pone.0312228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
This study delved into the interplay between CD244 and Src Homology 2 Domain Containing Phosphatase-2 (SHP2) in chronic obstructive pulmonary disease (COPD) pathogenesis, focusing on apoptosis and inflammation in cigarette smoke extract (CSE)-treated human bronchial epithelial (HBE) cells. Analysis of the GSE100153 dataset identified 290 up-regulated and 344 down-regulated differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) highlighted the turquoise module had the highest correlation with COPD samples. Functional enrichment analysis linked these DEGs to critical COPD processes and pathways like neutrophil degranulation, protein kinase B activity, and diabetic cardiomyopathy. Observations on CD244 expression revealed its upregulation with increasing CSE concentrations, suggesting a dose-dependent relationship with inflammatory cytokines (IL-6, IL-8, TNF-α). CD244 knockdown mitigated CSE-induced apoptosis and inflammation, while overexpression exacerbated these responses. Co-immunoprecipitation (Co-IP) confirmed the physical interaction between CD244 and SHP2, emphasizing their regulatory connection. Analysis of Concurrently, the Nuclear Factor-kappa B (NF-κB) and Mitogen-activated protein kinase (MAPK) signaling pathways showed that modulating CD244 expression impacted key pathway components (p-JNK, p-IKKβ, p-ERK, p-P38, p-lkBα, p-P65), an effect reversed upon SHP2 knockdown. These findings underscore the pivotal role of the CD244/SHP2 axis in regulating inflammatory and apoptotic responses in CSE-exposed HBE cells, suggesting its potential as a therapeutic target in COPD treatment strategies.
Collapse
Affiliation(s)
- Xiaobing Gao
- Department of Emergency Medicine, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Suhua Shao
- Department of Emergency Medicine, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Xi Zhang
- Department of Outpatient, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Changjie Li
- Laboratory of Shanghai Yijian Medical Testing Institute, Shanghai, China
| | - Qianqian Jiang
- Health Management Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Bo Li
- Department of Emergency Medicine, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Nii Otinkorang Ankrah J, Gyilbagr F, Vicar EK, Antwi Boasiako Frimpong E, Alhassan RB, Sibdow Baako I, Boakye AN, Akwetey SA, Karikari AB, Sorvor FKB, Walana W. T cells exhaustion, inflammatory and cellular activity markers in PBMCs predict treatment outcome in pulmonary tuberculosis patients. Cytokine 2024; 182:156708. [PMID: 39053080 DOI: 10.1016/j.cyto.2024.156708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Pulmonary tuberculosis (PTB) is a well-known disease caused by Mycobacterium tuberculosis. Its pathogenesis is premised on evasion of the immune system and dampened immune cells activity. METHODS Here, the transcription pattern of immune cells exhaustion, inflammatory, and cellular activity markers were examined in peripheral blood mononuclear cells (PBMCs) from PTB patients at various stages of treatment. PBMCs were isolated, and RNA extracted. cDNA synthesis was performed, then amplification of genes of interest. RESULTS The T cell exhaustion markers (PD-L1, CTLA4, CD244 and LAG3) showed varied levels of expressions when comparing 0 T and 1 T to the other treatment phases, suggesting their potential roles as markers for monitoring TB treatment. IL-2, IFN-g and TNF-a expression at the gene level returned to normal at completion of treatment, while granzyme B levels remained undetectable at the cured stage. At the cured stage, the cellular activity monitors Ki67, CD69, GATA-3, CD8 and CD4 expressions were comparable to the healthy controls. Correlation analysis revealed a significantly strong negative relationship with CD244 expression, particularly between 1 T and 2 T (r = -0.94; p = 0.018), and 3 T (r = -0.95; p = 0.013). Comparing 0 T and 3 T, a genitive correlation existed in PD-L1 (r = -0.74) but statistically not significant, as seen in CTLA4 and LAG-3 expressions. CONCLUSION Collectively, the findings of the study suggest that T-cells exhaustion marker particularly CD244, inflammatory markers IL-2, IFN-g and TNF-a, and cellular activity indicators such as Ki67, CD69, GATA-3, CD8 and CD4 are promising markers in monitoring the progress of PTB patients during treatment.
Collapse
Affiliation(s)
| | - Fredrick Gyilbagr
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana
| | - Ezekiel Kofi Vicar
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana.
| | | | - Rukaya Baanah Alhassan
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana
| | - Ibrahim Sibdow Baako
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana
| | - Alahaman Nana Boakye
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana.
| | - Samuel Addo Akwetey
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana.
| | - Akosua Bonsu Karikari
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana.
| | | | - Williams Walana
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana.
| |
Collapse
|
3
|
McQueen LW, Ladak SS, Layton GR, Wozniak M, Solomon C, El-Dean Z, Murphy GJ, Zakkar M. Spatial Transcriptomic Profiling of Human Saphenous Vein Exposed to Ex Vivo Arterial Haemodynamics-Implications for Coronary Artery Bypass Graft Patency and Vein Graft Disease. Int J Mol Sci 2024; 25:10368. [PMID: 39408698 PMCID: PMC11476946 DOI: 10.3390/ijms251910368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Vein graft disease is the process by which saphenous vein grafts, utilised for revascularisation during coronary artery bypass graft surgery, undergo an inflammation-driven intimal hyperplasia and accelerated atherosclerosis process in subsequent years after implantation. The role of the arterial circulation, particularly the haemodynamic properties' impact on graft patency, have been investigated but have not to date been explored in depth at the transcriptomic level. We have undertaken the first-in-man spatial transcriptomic analysis of the long saphenous vein in response to ex vivo acute arterial haemodynamic stimulation, utilising a combination of a custom 3D-printed perfusion bioreactor and the 10X Genomics Visium Spatial Gene Expression technology. We identify a total of 413 significant genes (372 upregulated and 41 downregulated) differentially expressed in response to arterial haemodynamic conditions. These genes were associated with pathways including NFkB, TNF, MAPK, and PI3K/Akt, among others. These are established pathways involved in the initiation of an early pro-inflammatory response, leukocyte activation and adhesion signalling, tissue remodelling, and cellular differentiation. Utilising unsupervised clustering analysis, we have been able to classify subsets of the expression based on cell type and with spatial resolution. These findings allow for further characterisation of the early saphenous vein graft transcriptional landscape during the earliest stage of implantation that contributes to vein graft disease, in particular validation of pathways and druggable targets that could contribute towards the therapeutic inhibition of processes underpinning vein graft disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mustafa Zakkar
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK; (L.W.M.); (S.S.L.); (G.R.L.); (M.W.); (C.S.); (Z.E.-D.); (G.J.M.)
| |
Collapse
|
4
|
King HAD, Lewin SR. Immune checkpoint inhibitors in infectious disease. Immunol Rev 2024. [PMID: 39248154 DOI: 10.1111/imr.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.
Collapse
Affiliation(s)
- Hannah A D King
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Kwantwi LB, Rosen ST, Querfeld C. The role of signaling lymphocyte activation molecule family receptors in hematologic malignancies. Curr Opin Oncol 2024; 36:449-455. [PMID: 39007334 DOI: 10.1097/cco.0000000000001067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
PURPOSE OF REVIEW In this review, we provide an overview of the current understanding of SLAM-family receptors in hematologic malignancies. We highlighted their contribution to the disease pathogenesis and targeting strategies to improve therapeutic outcomes. RECENT FINDINGS Emerging studies have reported the tumor-promoting role of SLAM-family receptors in various hematologic malignancies, including chronic lymphocytic leukemia, acute myeloid leukemia, and multiple myeloma. Specifically, they regulate the interaction between malignant cells and the tumor microenvironment to promote apoptosis resistance, therapeutic resistance, impairment of antitumor and tumor progression. SUMMARY SLAM-family receptors promote the progression of hematologic malignancies by regulating the interaction between malignant cells and the tumor microenvironment. This provides the rationale that SLAM-targeted therapies are appealing strategies to enhance therapeutic outcomes in patients.
Collapse
Affiliation(s)
| | - Steven T Rosen
- Department of Hematology & Hematopoietic Cell Transplantation
- Beckman Research Institute, Duarte, California, USA
| | - Christiane Querfeld
- Department of Pathology
- Department of Hematology & Hematopoietic Cell Transplantation
- Division of Dermatology, City of Hope Medical Center
- Beckman Research Institute, Duarte, California, USA
| |
Collapse
|
6
|
Kwantwi LB. SLAM family-mediated crosstalk between tumor and immune cells in the tumor microenvironment: a promising biomarker and a potential therapeutic target for immune checkpoint therapies. Clin Transl Oncol 2024:10.1007/s12094-024-03675-2. [PMID: 39212911 DOI: 10.1007/s12094-024-03675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Immune cells infiltrating the tumor microenvironment are physiologically important in controlling cancers. However, emerging studies have shown that cancer cells can evade immune surveillance and establish a balance in which these immune cells support tumor progression and therapeutic resistance. The signaling lymphocytic activation molecule family members have been recognized as mediators of tumor microenvironment interactions, and a promising therapeutic target for cancer immunotherapy. This review is focused on the role of SLAM family in tumor and immune cell interactions and discusses how such crosstalk affects tumor behavior. This will shed insight into the next step toward improving cancer immunotherapy.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
7
|
Yang J, Li J, Li S, Yang Y, Su H, Guo H, Lei J, Wang Y, Wen K, Li X, Zhang S, Wang Z. Effects of HOX family regulator-mediated modification patterns and immunity characteristics on tumor-associated cell type in endometrial cancer. MOLECULAR BIOMEDICINE 2024; 5:32. [PMID: 39138733 PMCID: PMC11322468 DOI: 10.1186/s43556-024-00196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Endometrial cancer (UCEC) is one of three major malignant tumors in women. The HOX gene regulates tumor development. However, the potential roles of HOX in the expression mechanism of multiple cell types and in the development and progression of tumor microenvironment (TME) cell infiltration in UCEC remain unknown. In this study, we utilized both the The Cancer Genome Atlas (TCGA) database and International Cancer Genome Consortium (ICGC) database to analyze transcriptome data of 529 patients with UCEC based on 39 HOX genes, combing clinical information, we discovered HOX gene were a pivotal factor in the development and progression of UCEC and in the formation of TME diversity and complexity. Here, a new scoring system was developed to quantify individual HOX patterns in UCEC. Our study found that patients in the low HOX score group had abundant anti-tumor immune cell infiltration, good tumor differentiation, and better prognoses. In contrast, a high HOX score was associated with blockade of immune checkpoints, which enhances the response to immunotherapy. The Real-Time quantitative PCR (RT-qPCR) and Immunohistochemistry (IHC) exhibited a higher expression of the HOX gene in the tumor patients. We revealed that the significant upregulation of the HOX gene in the epithelial cells can activate signaling pathway associated with tumour invasion and metastasis through single-cell RNA sequencing (scRNA-seq), such as nucleotide metabolic proce and so on. Finally, a risk prognostic model established by the positive relationship between HOX scores and cancer-associated fibroblasts (CAFs) can predict the prognosis of individual patients by scRNA-seq and transcriptome data sets. In sum, HOX gene may serve as a potential biomarker for the diagnosis and prediction of UCEC and to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- JiaoLin Yang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - JinPeng Li
- Shanxi Medical University, Taiyuan, 030001, China
| | - SuFen Li
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - YuTong Yang
- Shanxi Medical University, Taiyuan, 030001, China
| | - HuanCheng Su
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - HongRui Guo
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Lei
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - YaLin Wang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - KaiTing Wen
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xia Li
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - SanYuan Zhang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhe Wang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
8
|
Chen Y, Li E, Chang Z, Zhang T, Song Z, Wu H, Cheng ZJ, Sun B. Identifying potential therapeutic targets in lung adenocarcinoma: a multi-omics approach integrating bulk and single-cell RNA sequencing with Mendelian randomization. Front Pharmacol 2024; 15:1433147. [PMID: 39092217 PMCID: PMC11291359 DOI: 10.3389/fphar.2024.1433147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Our research aimed to identify new therapeutic targets for Lung adenocarcinoma (LUAD), a major subtype of non-small cell lung cancer known for its low 5-year survival rate of 22%. By employing a comprehensive methodological approach, we analyzed bulk RNA sequencing data from 513 LUAD and 59 non-tumorous tissues, identifying 2,688 differentially expressed genes. Using Mendelian randomization (MR), we identified 74 genes with strong evidence for a causal effect on risk of LUAD. Survival analysis on these genes revealed significant differences in survival rates for 13 of them. Our pathway enrichment analysis highlighted their roles in immune response and cell communication, deepening our understanding. We also utilized single-cell RNA sequencing (scRNA-seq) to uncover cell type-specific gene expression patterns within LUAD, emphasizing the tumor microenvironment's heterogeneity. Pseudotime analysis further assisted in assessing the heterogeneity of tumor cell populations. Additionally, protein-protein interaction (PPI) network analysis was conducted to evaluate the potential druggability of these identified genes. The culmination of our efforts led to the identification of five genes (tier 1) with the most compelling evidence, including SECISBP2L, PRCD, SMAD9, C2orf91, and HSD17B13, and eight genes (tier 2) with convincing evidence for their potential as therapeutic targets.
Collapse
Affiliation(s)
- Youpeng Chen
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Enzhong Li
- Department of Endocrinology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenglin Chang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenfeng Song
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Haojie Wu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhangkai J. Cheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Renert-Yuval Y, Gonzalez J, Garcet S, Williams SC, Moreno A, Krueger JG. Eosinophils in hidradenitis suppurativa patients exhibit pro-inflammatory traits, implicating a potential pathogenic role in the disease. Exp Dermatol 2024; 33:e15129. [PMID: 38984465 DOI: 10.1111/exd.15129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 07/11/2024]
Abstract
Hidradenitis suppurativa (HS) is an inflammatory skin disease characterized by painful nodules, abscesses and purulent secretions in intertriginous regions. Intense pruritus frequently accompanies HS lesions, adding further discomfort for patients. While Th17 pathway activation is implicated in HS pathogenesis, disease mechanisms are still not fully understood, and therapeutics are lacking. Previous reports raise a potential role for eosinophils in HS, showing a strong association of eosinophil levels with disease severity. To investigate eosinophils in HS, we recruited patients and matched healthy controls and then performed flow-cytometry studies, eosinophil stimulation assays, and lesional skin staining for eosinophils. We found that HS patients reported similar levels of pain and itch. Compared to matched controls, HS blood exhibited decreased mature eosinophils and increased numbers of immature eosinophils, coupled with a significant increase in dermal eosinophilic infiltrates. Additionally, IL-17RA+ eosinophils were highly and significantly correlated with multiple HS-related clinical scores. In both stimulated and unstimulated conditions, HS eosinophils showed an inflammatory phenotype versus controls, including an increase in costimulatory T- and B-cell markers (e.g. CD5 and CD40) following all stimulations (TNFα/IL-17A/IL-17F). These findings highlight the significance of pruritus in HS and suggest a higher turnover of eosinophils in HS blood, potentially due to the consumption of eosinophils in skin lesions. Our data delineate the features and functions of eosinophils in HS and suggest that eosinophils participate in disease pathogenesis, advancing Th17-related inflammation. Further studies are needed to investigate eosinophils' response to current HS treatments and their potential as a therapeutic target in the disease.
Collapse
Affiliation(s)
- Yael Renert-Yuval
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
- Pediatric Dermatology Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Juana Gonzalez
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Sandra Garcet
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Samuel C Williams
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
- Weill Cornell-Sloan Memorial Sloan Kettering-Rockefeller University, New York, New York, USA
| | - Ariana Moreno
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
10
|
Long J, Dang H, Su W, Moneruzzaman M, Zhang H. Interactions between circulating inflammatory factors and autism spectrum disorder: a bidirectional Mendelian randomization study in European population. Front Immunol 2024; 15:1370276. [PMID: 38742104 PMCID: PMC11089225 DOI: 10.3389/fimmu.2024.1370276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Background Extensive observational studies have reported an association between inflammatory factors and autism spectrum disorder (ASD), but their causal relationships remain unclear. This study aims to offer deeper insight into causal relationships between circulating inflammatory factors and ASD. Methods Two-sample bidirectional Mendelian randomization (MR) analysis method was used in this study. The genetic variation of 91 circulating inflammatory factors was obtained from the genome-wide association study (GWAS) database of European ancestry. The germline GWAS summary data for ASD were also obtained (18,381 ASD cases and 27,969 controls). Single nucleotide polymorphisms robustly associated with the 91 inflammatory factors were used as instrumental variables. The random-effects inverse-variance weighted method was used as the primary analysis, and the Bonferroni correction for multiple comparisons was applied. Sensitivity tests were carried out to assess the validity of the causal relationship. Results The forward MR analysis results suggest that levels of sulfotransferase 1A1, natural killer cell receptor 2B4, T-cell surface glycoprotein CD5, Fms-related tyrosine kinase 3 ligand, and tumor necrosis factor-related apoptosis-inducing ligand are positively associated with the occurrence of ASD, while levels of interleukin-7, interleukin-2 receptor subunit beta, and interleukin-2 are inversely associated with the occurrence of ASD. In addition, matrix metalloproteinase-10, caspase 8, tumor necrosis factor-related activation-induced cytokine, and C-C motif chemokine 19 were considered downstream consequences of ASD. Conclusion This MR study identified additional inflammatory factors in patients with ASD relative to previous studies, and raised a possibility of ASD-caused immune abnormalities. These identified inflammatory factors may be potential biomarkers of immunologic dysfunction in ASD.
Collapse
Affiliation(s)
- Junzi Long
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
- Division of Brain Sciences, Changping Laboratory, Beijing, China
| | - Hui Dang
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenlong Su
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Md. Moneruzzaman
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
- Division of Brain Sciences, Changping Laboratory, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Deng Y, Zhang L, Dai C, Xu Y, Gan Q, Cheng J. SLAMF7 predicts prognosis and correlates with immune infiltration in serous ovarian carcinoma. J Gynecol Oncol 2024; 35:35.e79. [PMID: 38606823 DOI: 10.3802/jgo.2024.35.e79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/07/2024] [Accepted: 02/25/2024] [Indexed: 04/13/2024] Open
Abstract
OBJECTIVE Signaling lymphocytic activation molecule family members (SLAMFs) play a critical role in immune regulation of malignancies. This study aims to investigate the prognostic value and function of SLAMFs in ovarian cancer (OC). METHODS The expression analysis of SLAMFs was conducted based on The Cancer Genome Atlas Ovarian Cancer Collection (TCGA-OV) and Gene Expression Omnibus (GEO) databases. Immunohistochemistry (IHC) was further performed on tissue arrays (n=98) to determine the expression of SLAMF7. Kaplan-Meier plotter and multivariate Cox regression model were used to evaluate the correlation of SLAMF7 expression with survival outcomes of patients. The molecular function of SLAMF7 in OC was further investigated using Gene Set Enrichment Analysis (GSEA). RESULTS SLAMF7 mRNA expression were significantly upregulated in OC tumor tissue compared to normal tissue. IHC revealed that SLAMF7 expression was located in the interstitial parts of tumor tissue, and higher SLAMF7 expression was associated with favorable survival outcomes. GSEA demonstrated that SLAMF7 is involved immune-related pathways. Further analysis showed that SLAMF7 had a strong correlation with the T cell-specific biomarker (CD3) but not with the B cell (CD19, CD22, and CD23) and natural killer cell-specific biomarkers (CD85C, CD336, and CD337). Furthermore, IHC analysis confirmed that SLAMF7 was expressed in tumor-infiltrating T cells, and the IHC score of SLAMF7 was positively correlated with CD3 (r=0.85, p<0.001). CONCLUSION SLAMF7 is expressed in the interstitial components of clinical OC tissue, and higher SLAMF7 expression indicated a favorable prognosis for patients with OC. Additionally, SLAMF7 is involved in T-cell immune infiltration in OC.
Collapse
Affiliation(s)
- Yalong Deng
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lu Zhang
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Changyuan Dai
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Xu
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiyu Gan
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingxin Cheng
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Gynecology and Obstetrics, Shanghai East Hospital Ji'an Hospital, Jiangxi, China.
| |
Collapse
|
12
|
Gunes M, Rosen ST, Shachar I, Gunes EG. Signaling lymphocytic activation molecule family receptors as potential immune therapeutic targets in solid tumors. Front Immunol 2024; 15:1297473. [PMID: 38476238 PMCID: PMC10927787 DOI: 10.3389/fimmu.2024.1297473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Recently, cancer immunotherapy has revolutionized cancer treatment. Various forms of immunotherapy have a manageable safety profile and result in prolongation of overall survival in patients with solid tumors, but only in a proportion of patients. Various factors in the tumor microenvironment play critical roles and may be responsible for this lack of therapeutic response. Signaling lymphocytic activation molecule family (SLAMF) members are increasingly being studied as factors impacting the tumor immune microenvironment. SLAMF members consist of nine receptors mainly expressed in immune cells. However, SLAMF receptors have also been detected in cancer cells, and they may be involved in a spectrum of anti-tumor immune responses. Here, we review the current knowledge of the expression of SLAMF receptors in solid tumors and tumor-infiltrating immune cells and their association with patient outcomes. Furthermore, we discuss the therapeutic potential of targeting SLAMF receptors to improve outcomes of cancer therapy in solid tumors. We believe the research on SLAMF receptor-targeted strategies may enhance anti-cancer immunity in patients with solid tumors and improve clinical outcomes.
Collapse
Affiliation(s)
- Metin Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Los Angeles, CA, United States
| | - Steven T. Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Los Angeles, CA, United States
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Los Angeles, CA, United States
| | - Idit Shachar
- Department of System Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - E. Gulsen Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Los Angeles, CA, United States
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Los Angeles, CA, United States
- Toni Stephenson Lymphoma Center, City of Hope, Los Angeles, CA, United States
| |
Collapse
|
13
|
Wang CM, Jan Wu YJ, Huang LY, Zheng JW, Chen JY. Comprehensive Co-Inhibitory Receptor (Co-IR) Expression on T Cells and Soluble Proteins in Rheumatoid Arthritis. Cells 2024; 13:403. [PMID: 38474367 DOI: 10.3390/cells13050403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Co-inhibitory receptors (Co-IRs) are essential in controlling the progression of immunopathology in rheumatoid arthritis (RA) by limiting T cell activation. The objective of this investigation was to determine the phenotypic expression of Co-IR T cells and to assess the levels of serum soluble PD-1, PDL-2, and TIM3 in Taiwanese RA patients. METHODS Co-IRs T cells were immunophenotyped employing multicolor flow cytometry, and ELISA was utilized for measuring soluble PD-1, PDL-2, and TIM3. Correlations have been detected across the percentage of T cells expressing Co-IRs (MFI) and different indicators in the blood, including ESR, high-sensitivity CRP (hsCRP), 28 joint disease activity scores (DAS28), and soluble PD-1/PDL-2/TIM3. RESULTS In RA patients, we recognized elevated levels of PD-1 (CD279), CTLA-4, and TIGIT in CD4+ T cells; TIGIT, HLA-DR, TIM3, and LAG3 in CD8+ T cells; and CD8+CD279+TIM3+, CD8+HLA-DR+CD38+ T cells. The following tests were revealed to be correlated with hsCRP: CD4/CD279 MFI, CD4/CD279%, CD4/TIM3%, CD8/TIM3%, CD8/TIM3 MFI, CD8/LAG3%, and CD8+HLA-DR+CD38+%. CD8/LAG3 and CD8/TIM3 MFIs are linked to ESR. DAS28-ESR and DAS28-CRP exhibited relationships with CD4/CD127 MFI, CD8/CD279%, and CD8/CD127 MFI, respectively. CD4+CD279+TIM3+% was correlated with DAS28-ESR (p = 0.0084, N = 46), DAS28-CRP (p = 0.007, N = 47), and hsCRP (p = 0.002, N = 56), respectively. In the serum of patients with RA, levels of soluble PD-1, PDL-2, and Tim3 were extremely elevated. CD4+ TIM3+% (p = 0.0089, N = 46) and CD8+ TIM3+% (p = 0.0305, N = 46) were correlated with sTIM3 levels; sPD1 levels were correlated with CD4+CD279+% (p < 0.0001, N = 31) and CD3+CD279+% (p = 0.0084, N = 30). CONCLUSIONS Co-IR expressions on CD4+ and CD8+ T cells, as well as soluble PD-1, PDL-2, and TIM3 levels, could function as indicators of disease activity and potentially play crucial roles in the pathogenesis of RA.
Collapse
Affiliation(s)
- Chin-Man Wang
- Department of Rehabilitation, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Yeong-Jian Jan Wu
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Taoyuan 33305, Taiwan
| | - Li-Yu Huang
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Taoyuan 33305, Taiwan
| | - Jian-Wen Zheng
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Taoyuan 33305, Taiwan
| | - Ji-Yih Chen
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Taoyuan 33305, Taiwan
| |
Collapse
|
14
|
Zhou D, Liu L, Liu J, Li H, Zhang J, Cao Z. A Systematic Review of the Advances in the Study of T Lymphocyte Suppressor Receptors in HBV Infection: Potential Therapeutic Targets. J Clin Med 2024; 13:1210. [PMID: 38592036 PMCID: PMC10931645 DOI: 10.3390/jcm13051210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 04/10/2024] Open
Abstract
Background: HBV-specific T lymphocytes are pivotal in eliminating the hepatitis B virus (HBV) and regulating intrahepatic inflammatory reactions. Effective T cell responses curtail HBV infection; however, compromised immunity can result in persistent infection. Beyond the acute phase, the continued presence of antigens and inflammation leads to the increased expression of various inhibitory receptors, such as PD-1, CTLA-4, Tim-3, LAG3, 2B4, CD160, BTLA, and TIGIT. This escalates the dysfunction of and diminishes the immune and proliferative abilities of T cells. Methods: In this study, we reviewed English-language literature from PubMed, Web of Science, and Scopus up to 9 July 2023. This paper aims to elucidate the inhibitory effects of these receptors on HBV-specific T lymphocytes and how immune function can be rejuvenated by obstructing the inhibitory receptor signaling pathway in chronic HBV patients. We also summarize the latest insights into related anti-HBV immunotherapy. Result: From 66 reviewed reports, we deduced that immunotherapy targeting inhibitory receptors on T cells is a reliable method to rejuvenate T cell immune responses in chronic HBV patients. However, comprehensive combination therapy strategies are essential for a functional cure. Conclusions: Targeting T cell suppressor receptors and combining immunotherapy with antiviral treatments may offer a promising approach towards achieving a functional cure, urging future research to prioritize effective combination therapeutic strategies for chronic HBV infection.
Collapse
Affiliation(s)
| | | | | | | | - Jing Zhang
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (D.Z.); (L.L.); (J.L.); (H.L.)
| | - Zhenhuan Cao
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (D.Z.); (L.L.); (J.L.); (H.L.)
| |
Collapse
|
15
|
Liu B, Wang Y, Han G, Zhu M. Tolerogenic dendritic cells in radiation-induced lung injury. Front Immunol 2024; 14:1323676. [PMID: 38259434 PMCID: PMC10800505 DOI: 10.3389/fimmu.2023.1323676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Radiation-induced lung injury is a common complication associated with radiotherapy. It is characterized by early-stage radiation pneumonia and subsequent radiation pulmonary fibrosis. However, there is currently a lack of effective therapeutic strategies for radiation-induced lung injury. Recent studies have shown that tolerogenic dendritic cells interact with regulatory T cells and/or regulatory B cells to stimulate the production of immunosuppressive molecules, control inflammation, and prevent overimmunity. This highlights a potential new therapeutic activity of tolerogenic dendritic cells in managing radiation-induced lung injury. In this review, we aim to provide a comprehensive overview of tolerogenic dendritic cells in the context of radiation-induced lung injury, which will be valuable for researchers in this field.
Collapse
Affiliation(s)
| | - Yilong Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
16
|
Ljunggren M, Zhou X, Theorell-Haglöw J, Janson C, Franklin KA, Emilsson Ö, Lindberg E. Sleep Apnea Indices Associated with Markers of Inflammation and Cardiovascular Disease: A Proteomic Study in the MUSTACHE Cohort. Ann Am Thorac Soc 2024; 21:165-169. [PMID: 37788298 PMCID: PMC10867909 DOI: 10.1513/annalsats.202305-472rl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023] Open
|
17
|
Moris D, Barfield R, Chan C, Chasse S, Stempora L, Xie J, Plichta JK, Thacker J, Harpole DH, Purves T, Lagoo-Deenadayalan S, Hwang ESS, Kirk AD. Immune Phenotype and Postoperative Complications After Elective Surgery. Ann Surg 2023; 278:873-882. [PMID: 37051915 DOI: 10.1097/sla.0000000000005864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
OBJECTIVES To characterize and quantify accumulating immunologic alterations, pre and postoperatively in patients undergoing elective surgical procedures. BACKGROUND Elective surgery is an anticipatable, controlled human injury. Although the human response to injury is generally stereotyped, individual variability exists. This makes surgical outcomes less predictable, even after standardized procedures, and may provoke complications in patients unable to compensate for their injury. One potential source of variation is found in immune cell maturation, with phenotypic changes dependent on an individual's unique, lifelong response to environmental antigens. METHODS We enrolled 248 patients in a prospective trial facilitating comprehensive biospecimen and clinical data collection in patients scheduled to undergo elective surgery. Peripheral blood was collected preoperatively, and immediately on return to the postanesthesia care unit. Postoperative complications that occurred within 30 days after surgery were captured. RESULTS As this was an elective surgical cohort, outcomes were generally favorable. With a median follow-up of 6 months, the overall survival at 30 days was 100%. However, 20.5% of the cohort experienced a postoperative complication (infection, readmission, or system dysfunction). We identified substantial heterogeneity of immune senescence and terminal differentiation phenotypes in surgical patients. More importantly, phenotypes indicating increased T-cell maturation and senescence were associated with postoperative complications and were evident preoperatively. CONCLUSIONS The baseline immune repertoire may define an immune signature of resilience to surgical injury and help predict risk for surgical complications.
Collapse
Affiliation(s)
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University; Durham, NC
- Duke Center for Genomic and Computational Biology, Duke University; Durham, NC
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University; Durham, NC
- Duke Center for Genomic and Computational Biology, Duke University; Durham, NC
| | - Scott Chasse
- Department of Surgery, Duke University; Durham, NC
| | | | - Jichun Xie
- Department of Biostatistics and Bioinformatics, Duke University; Durham, NC
- Duke Center for Genomic and Computational Biology, Duke University; Durham, NC
| | | | | | | | - Todd Purves
- Department of Surgery, Duke University; Durham, NC
| | | | | | - Allan D Kirk
- Department of Surgery, Duke University; Durham, NC
| |
Collapse
|
18
|
Nayak SS, Panigrahi M, Kumar H, Rajawat D, Sharma A, Bhushan B, Dutt T. Evidence for selective sweeps in the MHC gene repertoire of various cattle breeds. Anim Biotechnol 2023; 34:4167-4173. [PMID: 37039747 DOI: 10.1080/10495398.2023.2196317] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Major Histocompatibility Complex (MHC) genes are among the immune genes that have been extensively studied in vertebrates and are necessary for adaptive immunity. In the immunological response to infectious diseases, they play several significant roles. This research paper provides the selection signatures in the MHC region of the bovine genome as well as how certain genes related to innate immunity are undergoing a positive selective sweep. Here, we investigated signatures of historical selection on MHC genes in 15 different cattle populations and a total of 427 individuals. To identify the selection signatures, we have used three separate summary statistics. The findings show potential selection signatures in cattle from whom we isolated genes involved in the MHC. The most significant regions related to the bovine MHC are BOLA, non-classical MHC class I antigen (BOLA-NC1), Microneme protein 1 (MIC1) , Cluster of Differentiation 244 (CD244), Gap Junction Alpha-5 Protein (GJA5). It will be possible to gain new insight into immune system evolution by understanding the distinctive characteristics of MHC in cattle.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| |
Collapse
|
19
|
Tan J, Wang C, Jin Y, Xia Y, Gong B, Zhao Q. Optimal combination of MYCN differential gene and cellular senescence gene predicts adverse outcomes in patients with neuroblastoma. Front Immunol 2023; 14:1309138. [PMID: 38035110 PMCID: PMC10687280 DOI: 10.3389/fimmu.2023.1309138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Neuroblastoma (NB) is a common extracranial tumor in children and is highly heterogeneous. The factors influencing the prognosis of NB are not simple. Methods To investigate the effect of cell senescence on the prognosis of NB and tumor immune microenvironment, 498 samples of NB patients and 307 cellular senescence-related genes were used to construct a prediction signature. Results A signature based on six optimal candidate genes (TP53, IL-7, PDGFRA, S100B, DLL3, and TP63) was successfully constructed and proved to have good prognostic ability. Through verification, the signature had more advantages than the gene expression level alone in evaluating prognosis was found. Further T cell phenotype analysis displayed that exhausted phenotype PD-1 and senescence-related phenotype CD244 were highly expressed in CD8+ T cell in MYCN-amplified group with higher risk-score. Conclusion A signature constructed the six MYCN-amplified differential genes and aging-related genes can be used to predict the prognosis of NB better than using each high-risk gene individually and to evaluate immunosuppressed and aging tumor microenvironment.
Collapse
Affiliation(s)
- Jiaxiong Tan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Chaoyu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yan Jin
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yuren Xia
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Baocheng Gong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qiang Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
20
|
Torki E, Gharezade A, Doroudchi M, Sheikhi S, Mansury D, Sullman MJM, Fouladseresht H. The kinetics of inhibitory immune checkpoints during and post-COVID-19: the knowns and unknowns. Clin Exp Med 2023; 23:3299-3319. [PMID: 37697158 DOI: 10.1007/s10238-023-01188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
The immune system is tightly regulated to prevent immune reactions to self-antigens and to avoid excessive immune responses during and after challenges from non-self-antigens. Inhibitory immune checkpoints (IICPs), as the major regulators of immune system responses, are extremely important for maintaining the homeostasis of cells and tissues. However, the high and sustained co-expression of IICPs in chronic infections, under persistent antigenic stimulations, results in reduced immune cell functioning and more severe and prolonged disease complications. Furthermore, IICPs-mediated interactions can be hijacked by pathogens in order to evade immune induction or effector mechanisms. Therefore, IICPs can be potential targets for the prognosis and treatment of chronic infectious diseases. This is especially the case with regards to the most challenging infectious disease of recent times, coronavirus disease-2019 (COVID-19), whose long-term complications can persist long after recovery. This article reviews the current knowledge about the kinetics and functioning of the IICPs during and post-COVID-19.
Collapse
Affiliation(s)
- Ensiye Torki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Gharezade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Sheikhi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
21
|
Xu X, Xu Z, Yang B, Yi K, He F, Sun A, Li J, Luo Y, Wang J. Assessing the Effects of Dietary Cadmium Exposure on the Gastrointestinal Tract of Beef Cattle via Microbiota and Transcriptome Profile. Animals (Basel) 2023; 13:3104. [PMID: 37835710 PMCID: PMC10571678 DOI: 10.3390/ani13193104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Cadmium (Cd) is an environmental pollutant, widely existing in soil, and can be absorbed and accumulated by plants. Hunan Province exhibits the worst cadmium contamination of farmland in China. Ruminants possess an abundant microbial population in the rumen, which enables them to tolerate various poisonous plants. To investigate whether the rumen microbiota could respond to Cd and mitigate the toxicity of Cd-accumulated maize to ruminants, 6-month-old cattle were fed with 85.82% (fresh basis) normal whole-plant maize silage diet (CON, n = 10) or Cd-accumulated whole-plant maize silage diet (CAM, n = 10) for 107 days. When compared to the CON cattle, CAM cattle showed significantly higher gain-to-feed ratio and an increased total bacterial population in the rumen, but a decreased total bacterial population in the colon. CAM cattle had higher relative abundance of Prevotella and Lachnospiraceae ND3007 group in the rumen, and Lachnospiraceae NK4A136 group and Clostridia vadinBB60 group in the colon. Notably, microbial correlations were enhanced in all segments of CAM cattle, especially Peptostreptococcaceae in the jejunum. Transcriptome analysis revealed down-regulation of several immune-related genes in the rumen of CAM cattle, and differentially expressed genes in the rumen were mostly involved in immune regulation. These findings indicated that feeding Cd-accumulated maize diet with a Cd concentration of 6.74 mg/kg dry matter (DM) could stimulate SCFA-related bacteria in the rumen, induce hormesis to promote weight gain, and improve energy utilization of cattle.
Collapse
Affiliation(s)
- Xinxin Xu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.X.); (Z.X.); (B.Y.)
| | - Zebang Xu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.X.); (Z.X.); (B.Y.)
| | - Bin Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.X.); (Z.X.); (B.Y.)
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (K.Y.); (F.H.); (A.S.); (J.L.)
| | - Fang He
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (K.Y.); (F.H.); (A.S.); (J.L.)
| | - Ao Sun
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (K.Y.); (F.H.); (A.S.); (J.L.)
| | - Jianbo Li
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (K.Y.); (F.H.); (A.S.); (J.L.)
| | - Yang Luo
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.X.); (Z.X.); (B.Y.)
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (K.Y.); (F.H.); (A.S.); (J.L.)
| | - Jiakun Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.X.); (Z.X.); (B.Y.)
| |
Collapse
|
22
|
Royer L, Chauvin M, Dhiab J, Pedruzzi E, Boddaert J, Sauce D, Vallet H. Expression of immune checkpoint on subset of monocytes in old patients. Exp Gerontol 2023; 181:112267. [PMID: 37562546 DOI: 10.1016/j.exger.2023.112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Immune checkpoints and their ligands are important actors of lymphocytes and monocytes activation's regulation. Their expression level within T cells changes with aging. Despite the major impact of aging on monocytes, there is no data about the expression of ICs on monocytes from old patients. The objective of our study is to describe the expression of ICs and their ligands on monocytes from young individuals compared to old patients. METHODS We included 18 old control (>75 years old), 10 young control (<55 years old) and 45 old patients with hip fracture (HF). Phenotypical and functional analyses were performed on cryopreserved PBMCs. RESULTS There is a differential expression of immune checkpoints and their ligands within monocyte subtypes regardless of age at baseline. After stimulation, a differential expression of immune checkpoints in young subjects but not in old subjects was observed which would be in favor of a regulation defect in old subjects. We hypothesize that this lack of regulation could partially explain the excess production of pro-inflammatory cytokines by the stimulated monocytes in old subjects. In HF, we also observe a differential expression of immune checkpoints, especially in old patients with a poor prognosis. CONCLUSION Our results suggest that the immune regulation which should take place post-acute stress may be affected in old individuals.
Collapse
Affiliation(s)
- Luca Royer
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1135, Centre d'immunologie et de Maladies Infectieuses (CIMI), France; Department of Geriatrics, Saint Antoine hospital, Assistance Publique Hôpitaux de Paris (AP-HP), F75012 Paris, France
| | - Manon Chauvin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1135, Centre d'immunologie et de Maladies Infectieuses (CIMI), France
| | - Jamila Dhiab
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1135, Centre d'immunologie et de Maladies Infectieuses (CIMI), France
| | - Eric Pedruzzi
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1135, Centre d'immunologie et de Maladies Infectieuses (CIMI), France
| | - Jacques Boddaert
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1135, Centre d'immunologie et de Maladies Infectieuses (CIMI), France; Department of Geriatrics, Pitié Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), F75012 Paris, France
| | - Delphine Sauce
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1135, Centre d'immunologie et de Maladies Infectieuses (CIMI), France
| | - Hélène Vallet
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1135, Centre d'immunologie et de Maladies Infectieuses (CIMI), France; Department of Geriatrics, Saint Antoine hospital, Assistance Publique Hôpitaux de Paris (AP-HP), F75012 Paris, France.
| |
Collapse
|
23
|
Tojjari A, Giles FJ, Vilbert M, Saeed A, Cavalcante L. SLAM Modification as an Immune-Modulatory Therapeutic Approach in Cancer. Cancers (Basel) 2023; 15:4808. [PMID: 37835502 PMCID: PMC10571764 DOI: 10.3390/cancers15194808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
In the field of oncology, the Signaling Lymphocyte Activation Molecule (SLAM) family is emerging as pivotal in modulating immune responses within tumor environments. The SLAM family comprises nine receptors, mainly found on immune cell surfaces. These receptors play complex roles in the interaction between cancer and the host immune system. Research suggests SLAM's role in both enhancing and dampening tumor-immune responses, influencing the progression and treatment outcomes of various cancers. As immunotherapy advances, resistance remains an issue. The nuanced roles of the SLAM family might provide answers. With the rise in technologies like single-cell RNA sequencing and advanced imaging, there is potential for precise SLAM-targeted treatments. This review stresses patient safety, the importance of thorough clinical trials, and the potential of SLAM-focused therapies to transform cancer care. In summary, SLAM's role in oncology signals a new direction for more tailored and adaptable cancer treatments.
Collapse
Affiliation(s)
- Alireza Tojjari
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; (A.T.); (M.V.)
| | | | - Maysa Vilbert
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; (A.T.); (M.V.)
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; (A.T.); (M.V.)
| | | |
Collapse
|
24
|
Amgalan B, Day CP, Przytycka TM. Exploring tumor-normal cross-talk with TranNet: Role of the environment in tumor progression. PLoS Comput Biol 2023; 19:e1011472. [PMID: 37721939 PMCID: PMC10538798 DOI: 10.1371/journal.pcbi.1011472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/28/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
There is a growing awareness that tumor-adjacent normal tissues used as control samples in cancer studies do not represent fully healthy tissues. Instead, they are intermediates between healthy tissues and tumors. The factors that contribute to the deviation of such control samples from healthy state include exposure to the tumor-promoting factors, tumor-related immune response, and other aspects of tumor microenvironment. Characterizing the relation between gene expression of tumor-adjacent control samples and tumors is fundamental for understanding roles of microenvironment in tumor initiation and progression, as well as for identification of diagnostic and prognostic biomarkers for cancers. To address the demand, we developed and validated TranNet, a computational approach that utilizes gene expression in matched control and tumor samples to study the relation between their gene expression profiles. TranNet infers a sparse weighted bipartite graph from gene expression profiles of matched control samples to tumors. The results allow us to identify predictors (potential regulators) of this transition. To our knowledge, TranNet is the first computational method to infer such dependencies. We applied TranNet to the data of several cancer types and their matched control samples from The Cancer Genome Atlas (TCGA). Many predictors identified by TranNet are genes associated with regulation by the tumor microenvironment as they are enriched in G-protein coupled receptor signaling, cell-to-cell communication, immune processes, and cell adhesion. Correspondingly, targets of inferred predictors are enriched in pathways related to tissue remodelling (including the epithelial-mesenchymal Transition (EMT)), immune response, and cell proliferation. This implies that the predictors are markers and potential stromal facilitators of tumor progression. Our results provide new insights into the relationships between tumor adjacent control sample, tumor and the tumor environment. Moreover, the set of predictors identified by TranNet will provide a valuable resource for future investigations.
Collapse
Affiliation(s)
- Bayarbaatar Amgalan
- National Center for Biotechnology Information/National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics/Center for Cancer Research/National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Teresa M. Przytycka
- National Center for Biotechnology Information/National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
25
|
Deng C, Peng J, Yuan C, Li H, Li W, Chu H, Wei H, He Y, Zeng L, Huo M, Zhang C. Comprehensive analysis to construct a novel immune-related prognostic panel in aging-related gastric cancer based on the lncRNA‒miRNA-mRNA ceRNA network. Front Mol Biosci 2023; 10:1163977. [PMID: 37255541 PMCID: PMC10226425 DOI: 10.3389/fmolb.2023.1163977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction: Gastric cancer (GC) is the fifth frequent malignancy and is responsible for the third leading cause of cancer-related deaths. Gastric cancer is an aging-related disease, with incidence and mortality rates increasing with aging. The development of GC is affected by lncRNAs, miRNAs, and mRNAs at the transcriptional and posttranscriptional levels. This study aimed to establish a prognostic panel for GC based on competing endogenous RNA (ceRNA) networks. Methods: RNA sequences were obtained from the TCGA database. Different expressions of RNAs were scrutinized with the EdgeR package. The ceRNA network was built using the starBase database and the Cytoscape. The prognostic panel was constituted with the LASSO algorithm. We developed a nomogram comprising clinical characteristic and risk score. The receiver operating characteristic (ROC) was used to evaluate the accuracy of the nomogram prediction. Hub RNAs expressions were detected by qPCR, immunohistochemistry and western blot respectively. Clinical relevance and survival analyses were analyzed. The relationship between RNAs and immune infiltrations, as well as immune checkpoints, was analyzed and evaluated using the CIBERSORT, TIMER and TISIDB databases. Results: Four DElncRNAs, 21 DEmiRNAs and 45 DEmRNAs were included in the ceRNA network. A 3-element panel (comprising lncRNA PVT1, hsa-miR-130a-3p and RECK) with poor overall survival (OS) was established and qPCR was applied to validate the expressions of hub RNAs. Hub RNAs were firmly associated with T, M, and N stage. The CIBERSORT database showed that the high lassoScore group exhibited a significantly high ratio of resting memory CD4+ T cells, M2 macrophages and a significantly low ratio of activated memory CD4+ T cells and M1 macrophages. According to the TIMER database, this panel was linked to immune infiltrations and immune cell gene markers. TISIDB database indicated that RECK was positively correlated with immune checkpoints (including CD160, CD244, PDCD1, and TGFBR1). Discussion: A novel triple prognostic panel of GC constructed based on the ceRNA network was associated with clinical prognostic, clinicopathological features, immune infiltrations, immune checkpoints and immune gene markers. This panel might provide potential therapeutic targets for GC and more experimental verification research is needed.
Collapse
Affiliation(s)
- Cuncan Deng
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Juzheng Peng
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Cheng Yuan
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huafu Li
- Institute of Cancer Research, Cancer Stem Cell Team, London, United Kingdom
| | - Wenchao Li
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongwu Chu
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongfa Wei
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Leli Zeng
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Mingyu Huo
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
26
|
Farhangnia P, Ghomi SM, Mollazadehghomi S, Nickho H, Akbarpour M, Delbandi AA. SLAM-family receptors come of age as a potential molecular target in cancer immunotherapy. Front Immunol 2023; 14:1174138. [PMID: 37251372 PMCID: PMC10213746 DOI: 10.3389/fimmu.2023.1174138] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The signaling lymphocytic activation molecule (SLAM) family receptors were discovered in immune cells for the first time. The SLAM-family receptors are a significant player in cytotoxicity, humoral immune responses, autoimmune diseases, lymphocyte development, cell survival, and cell adhesion. There is growing evidence that SLAM-family receptors have been involved in cancer progression and heralded as a novel immune checkpoint on T cells. Previous studies have reported the role of SLAMs in tumor immunity in various cancers, including chronic lymphocytic leukemia, lymphoma, multiple myeloma, acute myeloid leukemia, hepatocellular carcinoma, head and neck squamous cell carcinoma, pancreas, lung, and melanoma. Evidence has deciphered that the SLAM-family receptors may be targeted for cancer immunotherapy. However, our understanding in this regard is not complete. This review will discuss the role of SLAM-family receptors in cancer immunotherapy. It will also provide an update on recent advances in SLAM-based targeted immunotherapies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shamim Mollazadeh Ghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shabnam Mollazadehghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, United States
| | - Ali-Akbar Delbandi
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Dumolard L, Aspord C, Marche PN, Macek Jilkova Z. Immune checkpoints on T and NK cells in the context of HBV infection: Landscape, pathophysiology and therapeutic exploitation. Front Immunol 2023; 14:1148111. [PMID: 37056774 PMCID: PMC10086248 DOI: 10.3389/fimmu.2023.1148111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
In hepatitis B virus (HBV) infection, the interplay between the virus and the host immune system is crucial in determining the pathogenesis of the disease. Patients who fail to mount a sufficient and sustained anti-viral immune response develop chronic hepatitis B (CHB). T cells and natural killer (NK) cells play decisive role in viral clearance, but they are defective in chronic HBV infection. The activation of immune cells is tightly controlled by a combination of activating and inhibitory receptors, called immune checkpoints (ICs), allowing the maintenance of immune homeostasis. Chronic exposure to viral antigens and the subsequent dysregulation of ICs actively contribute to the exhaustion of effector cells and viral persistence. The present review aims to summarize the function of various ICs and their expression in T lymphocytes and NK cells in the course of HBV infection as well as the use of immunotherapeutic strategies targeting ICs in chronic HBV infection.
Collapse
Affiliation(s)
- Lucile Dumolard
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Caroline Aspord
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhone-Alpes, Grenoble, France
| | - Patrice N. Marche
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Zuzana Macek Jilkova
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
- *Correspondence: Zuzana Macek Jilkova,
| |
Collapse
|
28
|
Sandström K, Ehrsson YT, Sellberg F, Johansson H, Laurell G. Loco-Regional Control and Sustained Difference in Serum Immune Protein Expression in Patients Treated for p16-Positive and p16-Negative Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24043838. [PMID: 36835246 PMCID: PMC9961007 DOI: 10.3390/ijms24043838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The main prognostic factors for patients with head and neck cancer are the tumour site and stage, yet immunological and metabolic factors are certainly important, although knowledge is still limited. Expression of the biomarker p16INK4a (p16) in oropharyngeal cancer tumour tissue is one of the few biomarkers for the diagnosis and prognosis of head and neck cancer. The association between p16 expression in the tumour and the systemic immune response in the blood compartment has not been established. This study aimed to assess whether there is a difference in serum immune protein expression profiles between patients with p16+ and p16- head and squamous cell carcinoma (HNCC). The serum immune protein expression profiles, using the Olink® immunoassay, of 132 patients with p16+ and p16- tumours were compared before treatment and one year after treatment. A significant difference in the serum immune protein expression profile was observed both before and one year after treatment. In the p16- group, a low expression of four proteins: IL12RB1, CD28, CCL3, and GZMA before treatment conferred a higher rate of failure. Based on the sustained difference between serum immune proteins, we hypothesise that the immunological system is still adapted to the tumour p16 status one year after tumour eradication or that a fundamental difference exists in the immunological system between patients with p16+ and p16- tumours.
Collapse
Affiliation(s)
- Karl Sandström
- Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
- Correspondence:
| | | | - Felix Sellberg
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Hemming Johansson
- Department of Oncology-Pathology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Göran Laurell
- Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
29
|
Kupke P, Adenugba A, Schemmerer M, Bitterer F, Schlitt HJ, Geissler EK, Wenzel JJ, Werner JM. Immunomodulation of Natural Killer Cell Function by Ribavirin Involves TYK-2 Activation and Subsequent Increased IFN-γ Secretion in the Context of In Vitro Hepatitis E Virus Infection. Cells 2023; 12:cells12030453. [PMID: 36766795 PMCID: PMC9913562 DOI: 10.3390/cells12030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Hepatitis E virus (HEV) is a major cause of acute hepatitis globally. Chronic and fulminant courses are observed especially in immunocompromised transplant recipients since administration of ribavirin (RBV) does not always lead to a sustained virologic response. By in vitro stimulation of NK cells through hepatoma cell lines inoculated with a full-length HEV and treatment with RBV, we analyzed the viral replication and cell response to further elucidate the mechanism of action of RBV on immune cells, especially NK cells, in the context of HEV infection. Co-culture of HEV-infected hepatoma cells with PBMCs and treatment with RBV both resulted in a decrease in viral replication, which in combination showed an additive effect. An analysis of NK cell functions after stimulation revealed evidence of reduced cytotoxicity by decreased TRAIL and CD107a degranulation. Simultaneously, IFN-ɣ production was significantly increased through the IL-12R pathway. Although there was no direct effect on the IL-12R subunits, downstream events starting with TYK-2 and subsequently pSTAT4 were upregulated. In conclusion, we showed that RBV has an immunomodulatory effect on the IL-12R pathway of NK cells via TYK-2. This subsequently leads to an enhanced IFN-ɣ response and thus, to an additive antiviral effect in the context of an in vitro HEV infection.
Collapse
Affiliation(s)
- Paul Kupke
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Akinbami Adenugba
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Mathias Schemmerer
- National Consultant Laboratory for HAV and HEV, Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Florian Bitterer
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Hans J. Schlitt
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Edward K. Geissler
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Jürgen J. Wenzel
- National Consultant Laboratory for HAV and HEV, Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Jens M. Werner
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
30
|
Abstract
INTRODUCTION New methods in cancer immunotherapy, such as chimeric antigen receptor (CAR)-T cells, have shown promising results in destroying malignant cells. However, limitations and side effects of CAR-T cell therapy, such as graft-versus-host disease (GVHD), neurotoxicity, and cytokine release syndrome, have motivated researchers to investigate safer alternative cells like natural killer (NK) cells. AREA COVERED NK cells can effectively recognize hematologic malignant cells and destroy them. Many clinical and preclinical studies investigate the efficacy of CAR-NK cells in treating lymphoma and other hematologic malignancies. The results of published clinical trials and preclinical studies have shown that CAR-NK cells could be an appropriate choice for treating lymphoma. In this review, we discuss the characteristics of CAR-NK cells, their role in treating B-cell and T-cell lymphoma, and the challenges faced by using them. We also highlight clinical trials using CAR-NK cells for treating lymphoma. EXPERT OPINION CAR-NK cells have shown promising results in cancer therapy, especially B-cell lymphoma, with a much lower risk for GVHD, cytokine release syndrome, and neurotoxicity than CAR-T cells. Further investigations are required to overcome the obstacles of CAR-NK cell therapy, both generally, and in cancers like T-cell lymphoma.
Collapse
Affiliation(s)
- Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Lee H, Joo JY, Sohn DH, Kang J, Yu Y, Park HR, Kim YH. Single-cell RNA sequencing reveals rebalancing of immunological response in patients with periodontitis after non-surgical periodontal therapy. J Transl Med 2022; 20:504. [PMID: 36329504 PMCID: PMC9635198 DOI: 10.1186/s12967-022-03702-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Background Periodontitis is a major inflammatory disease of the oral mucosa that is not limited to the oral cavity but also has systemic consequences. Although the importance of chronic periodontitis has been emphasized, the systemic immune response induced by periodontitis and its therapeutic effects remain elusive. Here, we report the transcriptomes of peripheral blood mononuclear cells (PBMCs) from patients with periodontitis. Methods Using single-cell RNA sequencing, we profiled PBMCs from healthy controls and paired pre- and post-treatment patients with periodontitis. We extracted differentially expressed genes and biological pathways for each cell type and calculated activity scores reflecting cellular characteristics. Intercellular crosstalk was classified into therapy-responsive and -nonresponsive pathways. Results We analyzed pan-cellular differentially expressed genes caused by periodontitis and found that most cell types showed a significant increase in CRIP1, which was further supported by the increased levels of plasma CRIP1 observed in patients with periodontitis. In addition, activated cell type-specific ligand-receptor interactions, including the BTLA, IFN-γ, and RESISTIN pathways, were prominent in patients with periodontitis. Both the BTLA and IFN-γ pathways returned to similar levels in healthy controls after periodontal therapy, whereas the RESISTIN pathway was still activated even after therapy. Conclusion These data collectively provide insights into the transcriptome changes and molecular interactions that are responsive to periodontal treatment. We identified periodontitis-specific systemic inflammatory indicators and suggest unresolved signals of non-surgical therapy as future therapeutic targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03702-2.
Collapse
Affiliation(s)
- Hansong Lee
- grid.262229.f0000 0001 0719 8572Convergence Medical Sciences, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Ji-Young Joo
- grid.262229.f0000 0001 0719 8572Department of Periodontology, School of Dentistry, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Dong Hyun Sohn
- grid.262229.f0000 0001 0719 8572Department of Microbiology and Immunology, School of Medicine, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Junho Kang
- grid.262229.f0000 0001 0719 8572Medical Research Institute, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Yeuni Yu
- grid.262229.f0000 0001 0719 8572Medical Research Institute, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Hae Ryoun Park
- grid.262229.f0000 0001 0719 8572Department of Oral Pathology, School of Dentistry, Pusan National University, 49 Busandaehak- ro, 50612 Yangsan, Republic of Korea
| | - Yun Hak Kim
- grid.262229.f0000 0001 0719 8572Convergence Medical Sciences, Pusan National University, 50612 Yangsan, Republic of Korea ,grid.262229.f0000 0001 0719 8572Department of Anatomy, School of Medicine, Pusan National University, 49 Busandaehak-ro, 50612 Yangsan, Republic of Korea
| |
Collapse
|
32
|
Chen X, Chen M, Yang Y, Xu C, Lu H, Xu Y, Li X, Wei Y, Zhu Z, Ding Y, Yu W. LIPOPOLYSACCHARIDE-PRECONDITIONED MESENCHYMAL STEM CELL TRANSPLANTATION ATTENUATES CRITICAL PERSISTENT INFLAMMATION IMMUNE SUPPRESSION AND CATABOLISM SYNDROME IN MICE. Shock 2022; 58:417-425. [PMID: 36155397 DOI: 10.1097/shk.0000000000001993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABSTRACT Background: Persistent inflammation, immunosuppression, and catabolism syndrome (PIICS) is associated with high mortality and high health care costs, and there is currently no effective target treatment. Mesenchymal stem cells (MSCs) possess multipotent immunomodulatory properties. LPS-preconditioned type 1 MSCs (MSC1s) are potentially beneficial for PIICS treatment because of their proinflammatory, anti-infective, and healing properties. Here, we investigated the therapeutic efficacy and mechanisms of action of MSC1s in PIICS. Methods: We previously optimized a reaggravated PIICS mouse model, which was used in this study. PIICS mice were subjected to cecal ligation and puncture on day 1 and LPS injection on day 11. Subsequently, the mice were treated with or without MSC1s. Animal survival and phenotypes, along with the levels of catabolism, inflammation, and immunosuppression, were evaluated. MSC1s were cocultured with CD8 + T cells in vitro , and inflammatory cytokine levels and CD8 + T-cell function were assessed. Results: MSC1 transplantation alleviated weight loss and muscle wasting, inhibited catabolism and inflammation, and considerably improved the proportion and function of CD8 + T cells in the PIICS mice. After coculture with MSC1s, the expression levels of CD107a and interferon γ increased, whereas the expression level of programmed death 1 decreased significantly in CD8 + T cells. MSC1s also promoted proinflammatory cytokine secretion and reduced the concentration of soluble PD-L1 in vitro . Conclusions: MSC1s can protect mice against critical PIICS, partly by enhancing CD8 + T-cell function. Therefore, MSC1 transplantation is a novel therapeutic candidate for PIICS.
Collapse
Affiliation(s)
- Xiancheng Chen
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Ming Chen
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Can Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Huimin Lu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yali Xu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Xiaojing Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yu Wei
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhanghua Zhu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yitao Ding
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Wenkui Yu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Ye Y, Jiang H, Wu Y, Wang G, Huang Y, Sun W, Zhang M. Role of ARRB1 in prognosis and immunotherapy: A Pan-Cancer analysis. Front Mol Biosci 2022; 9:1001225. [PMID: 36213111 PMCID: PMC9538973 DOI: 10.3389/fmolb.2022.1001225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background: β-arrestin1 (ARRB1), was originally identified as a multifunctional adaptor protein. Although ARRB1 has recently been shown to also play an important role in tumor growth, metastasis, inflammation, and immunity, its relationship with distinct tumor types and the tumor immune microenvironment remains unclear.Methods: We analyzed the ARRB1 expression profile and clinical characteristics in 33 cancer types using datasets from The Cancer Genome Atlas (TCGA) database. Clinical parameters such as patient survival, tumor stage, age, and gender were used to assess the prognostic value of ARRB1. The Human Protein Atlas (HPA) database was used to explore ARRB1 protein expression data. ESTIMATE and CIBERSORT algorithms were performed to assess immune infiltration. Furthermore, putative correlations between ARRB1 and tumor-infiltrating immune cells, the signatures of T-cell subtypes, immunomodulators, the tumor mutation burden (TMB), Programmed cell death ligand 1 (PD-L1), and microsatellite instability (MSI) were also explored. Gene functional enrichment was determined using GSEA. GSE40435 and GSE13213 cohorts were used to validate the correlation of ARRB1 with KIRC and LUAD clinicopathological parameters. Finally, the relationship between ARRB1 and immunotherapeutic responses was assessed using three independent immunotherapy cohorts, namely, GSE67501, GSE168204, and IMvigor210.Results: We found that ARRB1 expression levels were lower in 17 tumor tissues than in the corresponding normal tissues. We further found that ARRB1 expression was significantly correlated with tumor stage in BRCA, ESCA, KIRC, TGCT, and THCA, while in some tumors, particularly KIRC and LUAD, ARRB1 expression was associated with better prognosis. ARRB1 expression was also positively correlated with the stromal score or the immune score in some tumors. Regarding immune cell infiltration, ARRB1 expression in DLBC was positively correlated with M1 macrophage content and negatively correlated with B-cell infiltration. Additionally, there was a broad correlation between ARRB1 expression and three classes of immunomodulators. Furthermore, high ARRB1 expression levels were significantly correlated with some tumor immune-related pathways. Finally, ARRB1 expression was significantly associated with MSI, PD-L1, and TMB in some tumors and with the efficacy of immune checkpoint inhibitors (ICIs) in melanoma.Conclusion: ARRB1 has prognostic value in malignant tumors, especially in KIRC and LUAD. At the same time, ARRB1 was closely correlated with the tumor immune microenvironment and indicators of immunotherapy efficacy, indicating its great potential as a reliable marker for predicting the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Haili Jiang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Yue Wu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Gaoxiang Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Yi Huang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Weijie Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Weijie Sun, ; Mei Zhang,
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
- *Correspondence: Weijie Sun, ; Mei Zhang,
| |
Collapse
|
34
|
París-Muñoz A, Aizpurua G, Barber DF. Helios Expression Is Downregulated on CD8+ Treg in Two Mouse Models of Lupus During Disease Progression. Front Immunol 2022; 13:922958. [PMID: 35784310 PMCID: PMC9244697 DOI: 10.3389/fimmu.2022.922958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
T-cell–mediated autoimmunity reflects an imbalance in this compartment that is not restored by tolerogenic immune cells, e.g., regulatory T cells or tolerogenic dendritic cells (tolDCs). Although studies into T-cell equilibrium have mainly focused on regulatory CD4+FoxP3+ T cells (CD4+ Tregs), recent findings on the lesser known CD8+ Tregs (CD44+CD122+Ly49+) have highlighted their non-redundant role in regulating lupus-like disease and their regulatory phenotype facilitated by the transcription factor Helios in mice and humans. However, there are still remaining questions about Helios regulation and dynamics in different autoimmune contexts. Here, we show the absence of CD8+ Tregs in two lupus-prone murine models: MRL/MPJ and MRL/lpr, in comparison with a non-prone mouse strain like C57BL/6. We observed that all MRL animals showed a dramatically reduced population of CD8+ Tregs and a greater Helios downregulation on diseased mice. Helios induction was detected preferentially on CD8+ T cells from OT-I mice co-cultured with tolDCs from C57BL/6 but not in MRL animals. Furthermore, the Helios profile was also altered in other relevant T-cell populations implicated in lupus, such as CD4+ Tregs, conventional CD4+, and double-negative T cells. Together, these findings could make Helios a versatile maker across the T-cell repertoire that is capable of differentiating lupus disease states.
Collapse
Affiliation(s)
- Andrés París-Muñoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gonzalo Aizpurua
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Domingo F. Barber
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- *Correspondence: Domingo F. Barber,
| |
Collapse
|
35
|
Zhang J, Wang N, Wu J, Gao X, Zhao H, Liu Z, Yan X, Dong J, Wang F, Ba Y, Ma S, Jin J, Du J, Ji H, Hu S. 5-Methylcytosine Related LncRNAs Reveal Immune Characteristics, Predict Prognosis and Oncology Treatment Outcome in Lower-Grade Gliomas. Front Immunol 2022; 13:844778. [PMID: 35309316 PMCID: PMC8927645 DOI: 10.3389/fimmu.2022.844778] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/11/2022] [Indexed: 12/21/2022] Open
Abstract
5-Methylcytosine (m5C) methylation is an important RNA modification pattern that can participate in oncogenesis and progression of cancers by affecting RNA stability, expression of oncogenes, and the activity of cancer signaling pathways. Alterations in the expression pattern of long non-coding RNAs (lncRNAs) are potentially correlated with abnormalities in the m5C regulation features of cancers. Our aim was to reveal the mechanisms by which lncRNAs regulated the m5C process, to explore the impact of aberrant regulation of m5C on the biological properties of lower-grade gliomas (LGG), and to optimize current therapeutic. By searching 1017 LGG samples from the Cancer Genome Atlas and Chinese Glioma Genome Atlas, we first clarified the potential impact of m5C regulators on LGG prognosis in this study and used univariate Cox analysis and least absolute shrinkage and selection operator regression to explore clinically meaningful lncRNAs. Consequently, we identified four lncRNAs, including LINC00265, CIRBP-AS1, GDNF-AS1, and ZBTB20-AS4, and established a novel m5C-related lncRNAs signature (m5CrLS) that was effective in predicting prognosis. Notably, mutation rate, WHO class II, IDH mutation, 1p/19q co-deletion and MGMT promoter methylation were increased in the low m5CrLS score group. Patients with increased m5CrLS scores mostly showed activation of tumor malignancy-related pathways, increased immune infiltrating cells, and decreased anti-tumor immune function. Besides, the relatively high expression of immune checkpoints also revealed the immunosuppressed state of patients with high m5CrLS scores. In particular, m5CrLS stratification was sensitive to assess the efficacy of LGG to temozolomide and the responsiveness of immune checkpoint blockade. In conclusion, our results revealed the molecular basis of LGG, provided valuable clues for our understanding of m5C-related lncRNAs, and filled a gap between epigenetics and tumor microenvironment.
Collapse
Affiliation(s)
- Jiheng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Nan Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Jiasheng Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongtao Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Zhihui Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Xiuwei Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Jiawei Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Fang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Yixu Ba
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaqi Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianyang Du
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hang Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China
- *Correspondence: Shaoshan Hu, ; Hang Ji,
| | - Shaoshan Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated to Hangzhou Medical College, Hangzhou, China
- *Correspondence: Shaoshan Hu, ; Hang Ji,
| |
Collapse
|
36
|
Taslimi Y, Masoudzadeh N, Bahrami F, Rafati S. Cutaneous leishmaniasis: multiomics approaches to unravel the role of immune cells checkpoints. Expert Rev Proteomics 2022; 19:213-225. [PMID: 36191333 DOI: 10.1080/14789450.2022.2131545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Cutaneous leishmaniasis (CL) is the most frequent form of leishmaniases, associated with skin inflammation and ulceration. Understanding the interaction of different phagocytic cells in the recognition and uptake of different Leishmania species is critical for controlling the infection. Phagocytic cells have a pivotal role as professional antigen-presenting cells that bridge the innate and adaptive immunity and shape the outcome of the disease. AREAS COVERED Here we reviewed new technologies with high-throughput data collection capabilities along with systems biology approaches which are recently being used to decode the paradox of CL immunology. EXPERT OPINION We emphasized on the crosstalk between DC and T-cells while focusing on the immune checkpoints interactions between the human immune system and the Leishmania species. Further, we discussed omics technologies including bulk RNA sequencing, reverse transcriptase-multiplex ligation dependent probe amplification (RT-MLPA), and proximity extension assay (PEA) in studies on human blood or tissue-driven samples from CL patients in which we have so far been involved.
Collapse
Affiliation(s)
- Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran Iran
| | - Nasrin Masoudzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran Iran
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran Iran
| |
Collapse
|
37
|
CD48-expressing non-small-cell lung cancer cells are susceptible to natural killer cell-mediated cytotoxicity. Arch Pharm Res 2021; 45:1-10. [PMID: 34905179 DOI: 10.1007/s12272-021-01365-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2023]
Abstract
The susceptibility of cancer cells to natural killer (NK) cell-mediated cytotoxicity depends on the balance of activating and inhibitory ligands expressed on their surface. Although many types of cancer cells are killed by NK cells, non-small-cell lung cancer (NSCLC) cells are relatively resistant to NK cell-mediated cytotoxicity. In this study, we showed that several NSCLC cell lines have differential sensitivity to NK cell-mediated cytotoxicity: NCI-H522 cells were highly sensitive, but A549, NCI-H23, NCI-H1915, and NCI-H1299 were resistant. Among activating ligands such as CD48, HLA-A/B/G, ICAM-1, MICA/B, and ULBPs, only CD48 rendered NCI-H522 cells susceptible to NK cell-mediated cytotoxicity, which was proved by using CD48 siRNA and neutralizing antibody. CD48-positive NCI-H522 cells established a more stable contact with NK cells than did CD48-negative A549 and CD48 siRNA cell-transfected NCI-H522 cells. Taken together, these data demonstrate that CD48-positive NSCLC cells might be susceptible to NK cell-mediated cytotoxicity, which provide information on how to stratify NSCLC patients potentially responsive to NK-cell therapy.
Collapse
|