1
|
Zhang Y, Li X, Li S, Zhou Y, Zhang T, Sun L. Immunotherapy for Pulmonary Arterial Hypertension: From the Pathogenesis to Clinical Management. Int J Mol Sci 2024; 25:8427. [PMID: 39125996 PMCID: PMC11313500 DOI: 10.3390/ijms25158427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Pulmonary hypertension (PH) is a progressive cardiovascular disease, which may lead to severe cardiopulmonary dysfunction. As one of the main PH disease groups, pulmonary artery hypertension (PAH) is characterized by pulmonary vascular remodeling and right ventricular dysfunction. Increased pulmonary artery resistance consequently causes right heart failure, which is the major reason for morbidity and mortality in this disease. Although various treatment strategies have been available, the poor clinical prognosis of patients with PAH reminds us that further studies of the pathological mechanism of PAH are still needed. Inflammation has been elucidated as relevant to the initiation and progression of PAH, and plays a crucial and functional role in vascular remodeling. Many immune cells and cytokines have been demonstrated to be involved in the pulmonary vascular lesions in PAH patients, with the activation of downstream signaling pathways related to inflammation. Consistently, this influence has been found to correlate with the progression and clinical outcome of PAH, indicating that immunity and inflammation may have significant potential in PAH therapy. Therefore, we reviewed the pathogenesis of inflammation and immunity in PAH development, focusing on the potential targets and clinical application of anti-inflammatory and immunosuppressive therapy.
Collapse
Affiliation(s)
| | | | | | | | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; (Y.Z.); (X.L.); (S.L.); (Y.Z.)
| | - Lan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; (Y.Z.); (X.L.); (S.L.); (Y.Z.)
| |
Collapse
|
2
|
Chen X, Yan Z, Pan Q, Zhang C, Chen Y, Liang X, Li S, Wang L. Bibliometric analysis of T-cells immunity in pulmonary hypertension from 1992 to 2022. Immun Inflamm Dis 2024; 12:e1280. [PMID: 38967362 PMCID: PMC11225084 DOI: 10.1002/iid3.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Adaptive immunity is an important disease mediator of pulmonary vascular remodeling during pulmonary hypertension (PH) development, especially T-cells lymphocytes. However, data for bibliometric analysis of T cell immunity in PH is currently vacant. This aimed to provide a comprehensive and visualized view of T-cells research in PH pathogenesis and to lay a solid foundation for further studies. METHODS The data was acquired from the Web of Science Core Collection database. Web of Science analytic tool was used to analysis the publication years, authors, journals, countries, and organizations. CiteSpace 6.2.R3, VOSviewer 1.6.16, and Scimago Graphica 1.0.35.0 were applied to conduct a visualization bibliometric analysis about authors, countries, institutions, journals, references, and keywords. RESULTS Nine hundred and eight publications from 1992 to 2022 were included in the analysis. The results showed that Humbert Marc was the most prolific author. American Journal of Physiology Lung Cellular and Molecular Physiology had the most related articles. The institution with the most articles was Udice French Research University. The United States was far ahead in the article output. Keywords analysis showed that "Pulmonary hypertension" was the most usually appeared keyword in the relevant literature, and included "T-cells", "Regulatory T cells", and "Activated T cell." "miRNA" of reference co-citation clustering analysis demonstrated the possible T-cell immunity activation mechanisms in PH. The most cited literature was published in the European Heart Journal by Galie N in 2016. The strongest citation burst of keyword is "gene expression" and terms such as "vascular remodeling," "growth," "proliferation," and "fibrosis" are among the list, indicating that T-cells interact with stromal vascular cells to induce pulmonary vascular remodeling. The strongest burst of cited reference is "Galie N, 2016." CONCLUSIONS T-cell immunity is an important pathogenesis mechanism for PH development, which may have interaction with miRNAs and stromal vascular cells, but the possible T-cell immunity activation mechanisms in PH need to be investigated further.
Collapse
Affiliation(s)
- Xian Chen
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Zhe Yan
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Qing Pan
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Chunxia Zhang
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yakun Chen
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Xuzhi Liang
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Shaomei Li
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Lei Wang
- Department of Pulmonary and Critical Care MedicineSecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
3
|
Zhang H, Li M, Hu CJ, Stenmark KR. Fibroblasts in Pulmonary Hypertension: Roles and Molecular Mechanisms. Cells 2024; 13:914. [PMID: 38891046 PMCID: PMC11171669 DOI: 10.3390/cells13110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Fibroblasts, among the most prevalent and widely distributed cell types in the human body, play a crucial role in defining tissue structure. They do this by depositing and remodeling extracellular matrixes and organizing functional tissue networks, which are essential for tissue homeostasis and various human diseases. Pulmonary hypertension (PH) is a devastating syndrome with high mortality, characterized by remodeling of the pulmonary vasculature and significant cellular and structural changes within the intima, media, and adventitia layers. Most research on PH has focused on alterations in the intima (endothelial cells) and media (smooth muscle cells). However, research over the past decade has provided strong evidence of the critical role played by pulmonary artery adventitial fibroblasts in PH. These fibroblasts exhibit the earliest, most dramatic, and most sustained proliferative, apoptosis-resistant, and inflammatory responses to vascular stress. This review examines the aberrant phenotypes of PH fibroblasts and their role in the pathogenesis of PH, discusses potential molecular signaling pathways underlying these activated phenotypes, and highlights areas of research that merit further study to identify promising targets for the prevention and treatment of PH.
Collapse
Affiliation(s)
- Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cheng-Jun Hu
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Russo I, Dun W, Mehta S, Ahmed S, Tzimas C, Fukuma N, Tsai EJ. Extracellular Matrix Instability and Chronic Inflammation Underlie Maladaptive Right Ventricular Pressure Overload Remodeling and Failure in Male Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.588013. [PMID: 38617374 PMCID: PMC11014567 DOI: 10.1101/2024.04.03.588013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Background Right ventricular dysfunction (RVD) portends increased death risk for heart failure (HF) and pulmonary arterial hypertension (PAH) patients, regardless of left ventricular function or etiology. In both, RVD arises from the chronic RV pressure overload, and represents advanced cardiopulmonary disease. RV remodeling responses and survival rates of HF and PAH patients, however, differ by sex. Men develop more severe RVD and die at younger ages than do women. Mechanistic details of this sexual dimorphism in RV remodeling are incompletely understood. We sought to elucidate the cardiac pathophysiology underlying the sex-specific RV remodeling phenotypes, RV failure (RVF) versus compensated RVD. Methods We subjected male (M-) and female (F-) adult mice to moderate pulmonary artery banding (PAB) for 9wks. Mice underwent serial echocardiography, cardiac MRI, RV pressure-volume loop recordings, histologic and molecular analyses. Results M-PAB developed severe RVD with RVF, increased RV collagen deposition and degradation, extracellular matrix (ECM) instability, and activation and recruitment of macrophages. Despite the same severity and chronicity of RV pressure overload, F-PAB had more stable ECM, lacked chronic inflammation, and developed mild RVD without RVF. Conclusions ECM destabilization and chronic activation of recruited macrophages are associated with maladaptive RV remodeling and RVF in male PAB mice. Adaptive RV remodeling of female PAB mice lacked these histopathologic changes. Our findings suggest that these two pathophysiologic processes likely contribute to the sexual dimorphism of RV pressure overload remodeling. Further mechanistic studies are needed to assess their pathogenic roles and potential as targets for RVD therapy and RVF prevention. CLINICAL PERSPECTIVE What is new?: In a mouse model of pure PH, males but not females showed an association between ECM instability, chronic inflammation with activation of recruited macrophages, and severe RV dysfunction and failure.What are the clinical implications?: In male HF and PH patients, enhancing ECM stability and countering the recruitment and activation of macrophages may help preserve RV function such that RVF can be prevented or delayed. Further preclinical mechanistic studies are needed to assess the therapeutic potential of such approaches. RESEARCH PERSPECTIVE What new question does this study raise? What question should be addressed next?: What mechanisms regulate RV ECM stability and macrophage recruitment and activation in response to chronic RV pressure overload? Are these regulatory mechanisms dependent upon or independent of sex hormone signaling?
Collapse
|
5
|
Xia Y, Gao D, Wang X, Liu B, Shan X, Sun Y, Ma D. Role of Treg cell subsets in cardiovascular disease pathogenesis and potential therapeutic targets. Front Immunol 2024; 15:1331609. [PMID: 38558816 PMCID: PMC10978666 DOI: 10.3389/fimmu.2024.1331609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
In the genesis and progression of cardiovascular diseases involving both innate and adaptive immune responses, inflammation plays a pivotal and dual role. Studies in experimental animals indicate that certain immune responses are protective, while others exacerbate the disease. T-helper (Th) 1 cell immune responses are recognized as key drivers of inflammatory progression in cardiovascular diseases. Consequently, the CD4+CD25+FOXP3+ regulatory T cells (Tregs) are gaining increasing attention for their roles in inflammation and immune regulation. Given the critical role of Tregs in maintaining immune-inflammatory balance and homeostasis, abnormalities in their generation or function might lead to aberrant immune responses, thereby initiating pathological changes. Numerous preclinical studies and clinical trials have unveiled the central role of Tregs in cardiovascular diseases, such as atherosclerosis. Here, we review the roles and mechanisms of Treg subsets in cardiovascular conditions like atherosclerosis, hypertension, myocardial infarction and remodeling, myocarditis, dilated cardiomyopathy, and heart failure. While the precise molecular mechanisms of Tregs in cardiac protection remain elusive, therapeutic strategies targeting Tregs present a promising new direction for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunpeng Sun
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dashi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Zhu Y, He L, Zhu Y, Yao H, Jiang J, Lu H. IRF4 affects the protective effect of regulatory T cells on the pulmonary vasculature of a bronchopulmonary dysplasia mouse model by regulating FOXP3. Mol Med 2024; 30:6. [PMID: 38195465 PMCID: PMC10777489 DOI: 10.1186/s10020-023-00770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in preterm infants, characterised by compromised alveolar development and pulmonary vascular abnormalities. Emerging evidence suggests that regulatory T cells (Tregs) may confer protective effects on the vasculature. Knockdown of their transcription factor, interferon regulatory factor 4 (IRF4), has been shown to promote vascular endothelial hyperplasia. However, the involvement of Tregs and IRF4 in the BPD pathogenesis remains unclear. This study aimed to investigate the regulation of Tregs by IRF4 and elucidate its potential role in pulmonary vasculature development in a BPD mouse model. METHODS The BPD model was established using 85% hyperoxia exposure, with air exposure as the normal control. Lung tissues were collected after 7 or 14 days of air or hyperoxia exposure, respectively. Haematoxylin-eosin staining was performed to assess lung tissue pathology. Immunohistochemistry was used to measure platelet endothelial cell adhesion molecule-1 (PECAM-1) level, flow cytometry to quantify Treg numbers, and Western blot to assess vascular endothelial growth factor (VEGFA), angiopoietin-1 (Ang-1), forkhead box protein P3 (FOXP3), and IRF4 protein levels. We also examined the co-expression of IRF4 and FOXP3 proteins using immunoprecipitation and immunofluorescence double staining. Furthermore, we employed CRISPR/Cas9 technology to knock down the IRF4 gene and observed changes in the aforementioned indicators to validate its effect on pulmonary vasculature development in mice. RESULTS Elevated IRF4 levels in BPD model mice led to FOXP3 downregulation, reduced Treg numbers, and impaired pulmonary vascular development. Knockdown of IRF4 resulted in improved pulmonary vascular development and upregulated FOXP3 level. CONCLUSION IRF4 may affect the protective role of Tregs in the proliferation of pulmonary vascular endothelial cells and pulmonary vascular development in BPD model mice by inhibiting the FOXP3 level.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Langyue He
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yue Zhu
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huici Yao
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jianfeng Jiang
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hongyan Lu
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
7
|
Mocumbi A, Humbert M, Saxena A, Jing ZC, Sliwa K, Thienemann F, Archer SL, Stewart S. Pulmonary hypertension. Nat Rev Dis Primers 2024; 10:1. [PMID: 38177157 DOI: 10.1038/s41572-023-00486-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Pulmonary hypertension encompasses a range of conditions directly or indirectly leading to elevated pressures within the pulmonary arteries. Five main groups of pulmonary hypertension are recognized, all defined by a mean pulmonary artery pressure of >20 mmHg: pulmonary arterial hypertension (rare), pulmonary hypertension associated with left-sided heart disease (very common), pulmonary hypertension associated with lung disease (common), pulmonary hypertension associated with pulmonary artery obstructions, usually related to thromboembolic disease (rare), and pulmonary hypertension with unclear and/or multifactorial mechanisms (rare). At least 1% of the world's population is affected, with a greater burden more likely in low-income and middle-income countries. Across all its forms, pulmonary hypertension is associated with adverse vascular remodelling with obstruction, stiffening and vasoconstriction of the pulmonary vasculature. Without proactive management this leads to hypertrophy and ultimately failure of the right ventricle, the main cause of death. In older individuals, dyspnoea is the most common symptom. Stepwise investigation precedes definitive diagnosis with right heart catheterization. Medical and surgical treatments are approved for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. There are emerging treatments for other forms of pulmonary hypertension; but current therapy primarily targets the underlying cause. There are still major gaps in basic, clinical and translational knowledge; thus, further research, with a focus on vulnerable populations, is needed to better characterize, detect and effectively treat all forms of pulmonary hypertension.
Collapse
Affiliation(s)
- Ana Mocumbi
- Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Moçambique.
- Instituto Nacional de Saúde, EN 1, Marracuene, Moçambique.
| | - Marc Humbert
- Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre (Assistance Publique Hôpitaux de Paris), Université Paris-Saclay, INSERM UMR_S 999, Paris, France
- ERN-LUNG, Le Kremlin Bicêtre, Paris, France
| | - Anita Saxena
- Sharma University of Health Sciences, Haryana, New Delhi, India
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Karen Sliwa
- Cape Heart Institute, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Friedrich Thienemann
- Department of Medicine, Groote Schuur Hospital, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Department of Internal Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Simon Stewart
- Institute of Health Research, University of Notre Dame, Fremantle, Western Australia, Australia
| |
Collapse
|
8
|
Abstract
ABSTRACT Inflammation is a major underlying mechanism in the progression of numerous cardiovascular diseases (CVDs). Regulatory T cells (Tregs) are typical immune regulatory cells with recognized immunosuppressive properties. Despite the immunosuppressive properties, researchers have acknowledged the significance of Tregs in maintaining tissue homeostasis and facilitating repair/regeneration. Previous studies unveiled the heterogeneity of Tregs in the heart and aorta, which expanded in CVDs with unique transcriptional phenotypes and reparative/regenerative function. This review briefly summarizes the functional principles of Tregs, also including the synergistic effect of Tregs and other immune cells in CVDs. We discriminate the roles and therapeutic potential of Tregs in CVDs such as atherosclerosis, hypertension, abdominal arterial aneurysm, pulmonary arterial hypertension, Kawasaki disease, myocarditis, myocardial infarction, and heart failure. Tregs not only exert anti-inflammatory effects but also actively promote myocardial regeneration and vascular repair, maintaining the stability of the local microenvironment. Given that the specific mechanism of Tregs functioning in CVDs remains unclear, we reviewed previous clinical and basic studies and the latest findings on the function and mechanism of Tregs in CVDs.
Collapse
Affiliation(s)
- Wangling Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jingyong Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
9
|
Kim CW, Joo SY, Kim B, Kim JY, Jang S, Tzeng SJ, Lee SJ, Kim M, Kim I. Single cell transcriptome analyses reveal the roles of B cells in fructose-induced hypertension. Front Immunol 2023; 14:1279439. [PMID: 38045685 PMCID: PMC10691591 DOI: 10.3389/fimmu.2023.1279439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Rationale While the immune system plays a crucial role in the development of hypertension, the specific contributions of distinct immune cell populations remain incompletely understood. The emergence of single-cell RNA-sequencing (scRNA-seq) technology enables us to analyze the transcriptomes of individual immune cells and to assess the significance of each immune cell type in hypertension development. Objective We aimed to investigate the hypothesis that B cells play a crucial role in the development of fructose-induced hypertension. Methods and Results Eight-week-old Dahl salt-sensitive (SS) male rats were divided into two groups and given either tap water (TW) or a 20% fructose solution (HFS) for 4 weeks. Systolic blood pressure was measured using the tail-cuff method. ScRNA-seq analysis was performed on lamina propria cells (LPs) and peripheral blood mononuclear cells (PBMCs) obtained from SS rats subjected to either TW or HFS. The HFS treatment induced hypertension in the SS rats. The analysis revealed 27 clusters in LPs and 28 clusters in PBMCs, allowing for the identification and characterization of various immune cell types within each cluster. Specifically, B cells and follicular helper T (Tfh) cells were prominent in LPs, while B cells and M1 macrophages dominated PBMCs in the HFS group. Moreover, the HFS treatment triggered an increase in the number of B cells in both LPs and PBMCs, accompanied by activation of the interferon pathway. Conclusions The significant involvement of B cells in intestinal and PBMC responses indicates their pivotal contribution to the development of hypertension. This finding suggests that targeting B cells could be a potential strategy to mitigate high blood pressure in fructose-induced hypertension. Moreover, the simultaneous increase in follicular B cells and Tfh cells in LPs, along with the upregulation of interferon pathway genes in B cells, underscores a potential autoimmune factor contributing to the pathogenesis of fructose-induced hypertension in the intestine.
Collapse
Affiliation(s)
- Cheong-Wun Kim
- Department of Pharmacology, BK21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sung Yong Joo
- Department of Animal Science, Pusan National University, Miryang, Republic of Korea
| | - Boa Kim
- Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jee Young Kim
- Department of Pharmacology, BK21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sungmin Jang
- Department of Pharmacology, BK21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shiang-Jong Tzeng
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sang Jin Lee
- Division of Rheumatology, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Myunghoo Kim
- Department of Animal Science, Pusan National University, Miryang, Republic of Korea
| | - Inkyeom Kim
- Department of Pharmacology, BK21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
10
|
Farha S, Aldred MA. Regulating the Regulators: Epigenetic Modulation of Regulatory T Cells in Pulmonary Hypertension. Am J Respir Crit Care Med 2023; 208:834-836. [PMID: 37682657 PMCID: PMC10586243 DOI: 10.1164/rccm.202308-1456ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023] Open
Affiliation(s)
- Samar Farha
- Respiratory Institute Cleveland Clinic Cleveland, Ohio
| | - Micheala A Aldred
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| |
Collapse
|
11
|
Sun X, Feng Y, Gong C, Bao X, Wei Z, Chang L, Chen H, Xu B. Hypertension-Driven Regulatory T-Cell Perturbations Accelerate Myocardial Ischemia-Reperfusion Injury. Hypertension 2023; 80:2046-2058. [PMID: 37615092 DOI: 10.1161/hypertensionaha.123.20481] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Patients with a history of hypertension have elevated inflammation and a worse prognosis after acute myocardial infarction (AMI). Regulatory T cells (Tregs) are reported to lose their immunosuppressive capacity under pathological conditions. However, whether hypertension leads to Treg dysfunction, thus accelerating myocardial ischemia-reperfusion injury, is still unknown. METHODS Studies were performed in hypertensive rats and mice with myocardial ischemia-reperfusion injury. The frequencies and phenotypes of Tregs were analyzed by flow cytometry and immunohistochemistry. Reconstruction Treg experiments were performed to evaluate the effect of Tregs on ischemia-reperfusion injury. Patients with AMI were enrolled to assess circulating Tregs, inflammatory cytokines, and cardiac function. RESULTS In this study, we found that hypertension leads to proinflammatory Th1 (T helper 1 cell)-like Treg subsets with compromised suppressive capacity. Reconstruction Treg experiments identified that dysfunctional Tregs induced by hypertension play a pathogenic role in the progression of myocardial ischemia-reperfusion injury. In particular, we identified HDAC6 (histone deacetylase 6) as a central regulator in the perturbed Tregs. Clinical studies revealed that the hypertension-induced reduction in circulating Tregs strongly correlated with the higher occurrence rate of microvascular obstruction in AMI patients with hypertension. CONCLUSIONS Our study provided promising clues to explain the poor prognosis of hypertensive AMI patients due to alterations in Tregs. Targeting disturbed Tregs may be a new strategy to treat AMI patients with hypertension.
Collapse
Affiliation(s)
- Xuan Sun
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, China (X.S., Y.F., C.G., X.B., Z.W., H.C., B.X.)
| | - Yuting Feng
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, China (X.S., Y.F., C.G., X.B., Z.W., H.C., B.X.)
| | - Chenyi Gong
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, China (X.S., Y.F., C.G., X.B., Z.W., H.C., B.X.)
| | - Xue Bao
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, China (X.S., Y.F., C.G., X.B., Z.W., H.C., B.X.)
| | - Zhonghai Wei
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, China (X.S., Y.F., C.G., X.B., Z.W., H.C., B.X.)
| | - Lei Chang
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, China (L.C.)
| | - Haiting Chen
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, China (X.S., Y.F., C.G., X.B., Z.W., H.C., B.X.)
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, China (X.S., Y.F., C.G., X.B., Z.W., H.C., B.X.)
| |
Collapse
|
12
|
Norlander AE, Abney M, Cephus JY, Roe CE, Irish JM, Shelburne NJ, Newcomb DC, Hemnes AR, Peebles RS. Prostaglandin I 2 Therapy Promotes Regulatory T Cell Generation in Patients with Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2023; 208:737-739. [PMID: 37413696 PMCID: PMC10515570 DOI: 10.1164/rccm.202304-0716le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023] Open
Affiliation(s)
- Allison E. Norlander
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
- Department of Cell Biology, Anatomy, and Physiology and
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Masako Abney
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | | | - Caroline E. Roe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jonathan M. Irish
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nicholas J. Shelburne
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Dawn C. Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- United States Department of Veterans Affairs Medical Center, Nashville, Tennessee; and
| |
Collapse
|
13
|
Zhao H, Wang L, Yan Y, Zhao QH, He J, Jiang R, Luo CJ, Qiu HL, Miao YQ, Gong SG, Yuan P, Wu WH. Identification of the shared gene signatures between pulmonary fibrosis and pulmonary hypertension using bioinformatics analysis. Front Immunol 2023; 14:1197752. [PMID: 37731513 PMCID: PMC10507338 DOI: 10.3389/fimmu.2023.1197752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
Pulmonary fibrosis (PF) and pulmonary hypertension (PH) have common pathophysiological features, such as the significant remodeling of pulmonary parenchyma and vascular wall. There is no effective specific drug in clinical treatment for these two diseases, resulting in a worse prognosis and higher mortality. This study aimed to screen the common key genes and immune characteristics of PF and PH by means of bioinformatics to find new common therapeutic targets. Expression profiles are downloaded from the Gene Expression Database. Weighted gene co-expression network analysis is used to identify the co-expression modules related to PF and PH. We used the ClueGO software to enrich and analyze the common genes in PF and PH and obtained the protein-protein interaction (PPI) network. Then, the differential genes were screened out in another cohort of PF and PH, and the shared genes were crossed. Finally, RT-PCR verification and immune infiltration analysis were performed on the intersection genes. In the result, the positive correlation module with the highest correlation between PF and PH was determined, and it was found that lymphocyte activation is a common feature of the pathophysiology of PF and PH. Eight common characteristic genes (ACTR2, COL5A2, COL6A3, CYSLTR1, IGF1, RSPO3, SCARNA17 and SEL1L) were gained. Immune infiltration showed that compared with the control group, resting CD4 memory T cells were upregulated in PF and PH. Combining the results of crossing characteristic genes in ImmPort database and RT-PCR, the important gene IGF1 was obtained. Knocking down IGF1 could significantly reduce the proliferation and apoptosis resistance in pulmonary microvascular endothelial cells, pulmonary smooth muscle cells, and fibroblasts induced by hypoxia, platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-β1 (TGF-β1), respectively. Our work identified the common biomarkers of PF and PH and provided a new candidate gene for the potential therapeutic targets of PF and PH in the future.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Yan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin-Hua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing He
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ci-Jun Luo
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hong-Ling Qiu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu-Qing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China
| | - Su-Gang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen-Hui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Fernandez-Gonzalez A, Mukhia A, Nadkarni J, Willis GR, Reis M, Zhumka K, Vitali S, Liu X, Galls A, Mitsialis SA, Kourembanas S. Immunoregulatory macrophages modify local pulmonary immunity and ameliorate hypoxic-pulmonary hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551394. [PMID: 37577587 PMCID: PMC10418169 DOI: 10.1101/2023.07.31.551394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Rationale Macrophages play a central role in the onset and progression of vascular disease in pulmonary hypertension (PH) and cell-based immunotherapies aimed at treating vascular remodeling are lacking. Objective To evaluate the effect of pulmonary administration of macrophages modified to have an anti-inflammatory/pro-resolving phenotype in attenuating early pulmonary inflammation and progression of experimentally induced PH. Methods Mouse bone marrow derived macrophages (BMDMs) were polarized in vitro to a regulatory (M2 reg ) phenotype. M2 reg profile and anti-inflammatory capacity were assessed in vitro upon lipopolysaccharide (LPS)/interferon-γ (IFNγ) restimulation, before their administration to 8- to 12-week-old mice. M2 reg protective effect was tested at early (2 to 4 days) and late (4 weeks) time points during hypoxia (8.5% O 2 ) exposure. Levels of inflammatory markers were quantified in alveolar macrophages and whole lung, while PH development was ascertained by right ventricular systolic pressure (RSVP) and right ventricular hypertrophy (RVH) measurements. Bronchoalveolar lavage (BAL) from M2 reg -transplanted hypoxic mice was collected, and its inflammatory potential tested on naïve BMDMs. Results M2 reg macrophages demonstrated a stable anti-inflammatory phenotype upon a subsequent pro-inflammatory stimulus by maintaining the expression of specific anti-inflammatory markers (Tgfß, Il10 and Cd206) and downregulating the induction of proinflammatory cytokines and surface molecules (Cd86, Il6 and Tnfα). A single dose of M2 regs attenuated the hypoxic monocytic recruitment and perivascular inflammation. Early hypoxic lung and alveolar macrophage inflammation leading to PH development was significantly reduced and, importantly, M2 regs attenuated RVH, RVSP and vascular remodeling at 4 weeks post treatment. Conclusions Adoptive transfer of M2 regs halts the recruitment of monocytes and modifies the hypoxic lung microenvironment, potentially changing the immunoreactivity of recruited macrophages and restoring normal immune functionality of the lung. These findings provide new mechanistic insights on the diverse role of macrophage phenotype on lung vascular homeostasis that can be explored as novel therapeutic targets.
Collapse
|
15
|
Plecitá-Hlavatá L, Brázdová A, Křivonosková M, Hu CJ, Phang T, Tauber J, Li M, Zhang H, Hoetzenecker K, Crnkovic S, Kwapiszewska G, Stenmark KR. Microenvironmental regulation of T-cells in pulmonary hypertension. Front Immunol 2023; 14:1223122. [PMID: 37497214 PMCID: PMC10368362 DOI: 10.3389/fimmu.2023.1223122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction In pulmonary hypertension (PH), pulmonary arterial remodeling is often accompanied by perivascular inflammation. The inflammation is characterized by the accumulation of activated macrophages and lymphocytes within the adventitial stroma, which is comprised primarily of fibroblasts. The well-known ability of fibroblasts to secrete interleukins and chemokines has previously been implicated as contributing to this tissue-specific inflammation in PH vessels. We were interested if pulmonary fibroblasts from PH arteries contribute to microenvironmental changes that could activate and polarize T-cells in PH. Methods We used single-cell RNA sequencing of intact bovine distal pulmonary arteries (dPAs) from PH and control animals and flow cytometry, mRNA expression analysis, and respirometry analysis of blood-derived bovine/human T-cells exposed to conditioned media obtained from pulmonary fibroblasts of PH/control animals and IPAH/control patients (CM-(h)PH Fibs vs CM-(h)CO Fibs). Results Single-cell RNA sequencing of intact bovine dPAs from PH and control animals revealed a pro-inflammatory phenotype of CD4+ T-cells and simultaneous absence of regulatory T-cells (FoxP3+ Tregs). By exposing T-cells to CM-(h)PH Fibs we stimulated their proinflammatory differentiation documented by increased IFNγ and decreased IL4, IL10, and TGFβ mRNA and protein expression. Interestingly, we demonstrated a reduction in the number of suppressive T-cell subsets, i.e., human/bovine Tregs and bovine γδ T-cells treated with CM-(h)PH-Fibs. We also noted inhibition of anti-inflammatory cytokine expression (IL10, TGFβ, IL4). Pro-inflammatory polarization of bovine T-cells exposed to CM-PH Fibs correlated with metabolic shift to glycolysis and lactate production with increased prooxidant intracellular status as well as increased proliferation of T-cells. To determine whether metabolic reprogramming of PH-Fibs was directly contributing to the effects of PH-Fibs conditioned media on T-cell polarization, we treated PH-Fibs with the HDAC inhibitor SAHA, which was previously shown to normalize metabolic status and examined the effects of the conditioned media. We observed significant suppression of inflammatory polarization associated with decreased T-cell proliferation and recovery of mitochondrial energy metabolism. Conclusion This study demonstrates how the pulmonary fibroblast-derived microenvironment can activate and differentiate T-cells to trigger local inflammation, which is part of the vascular wall remodeling process in PH.
Collapse
Affiliation(s)
- Lydie Plecitá-Hlavatá
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Andrea Brázdová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Monika Křivonosková
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Cheng-Jun Hu
- Department of Craniofacial Biology School of Dental Medicine, University of Colorado, Aurora, CO, United States
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Aurora, CO, United States
| | - Tzu Phang
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Aurora, CO, United States
| | - Jan Tauber
- Laboratory of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Min Li
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Aurora, CO, United States
| | - Hui Zhang
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Aurora, CO, United States
| | | | - Slaven Crnkovic
- Otto Loewi Research Center, Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center, Giessen, Germany
| | - Grazyna Kwapiszewska
- Otto Loewi Research Center, Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center, Giessen, Germany
| | - Kurt R. Stenmark
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
16
|
Wang M, Thomson AW, Yu F, Hazra R, Junagade A, Hu X. Regulatory T lymphocytes as a therapy for ischemic stroke. Semin Immunopathol 2023; 45:329-346. [PMID: 36469056 PMCID: PMC10239790 DOI: 10.1007/s00281-022-00975-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/17/2022] [Indexed: 12/09/2022]
Abstract
Unrestrained excessive inflammatory responses exacerbate ischemic brain injury and impede post-stroke brain recovery. CD4+CD25+Foxp3+ regulatory T (Treg) cells play important immunosuppressive roles to curtail inflammatory responses and regain immune homeostasis after stroke. Accumulating evidence confirms that Treg cells are neuroprotective at the acute stage after stroke and promote brain repair at the chronic phases. The beneficial effects of Treg cells are mediated by diverse mechanisms involving cell-cell interactions and soluble factor release. Multiple types of cells, including both immune cells and non-immune CNS cells, have been identified to be cellular targets of Treg cells. In this review, we summarize recent findings regarding the function of Treg cells in ischemic stroke and the underlying cellular and molecular mechanisms. The protective and reparative properties of Treg cells endorse them as good candidates for immune therapy. Strategies that boost the numbers and functions of Treg cells have been actively developing in the fields of transplantation and autoimmune diseases. We discuss the approaches for Treg cell expansion that have been tested in stroke models. The application of these approaches to stroke patients may bring new hope for stroke treatments.
Collapse
Affiliation(s)
- Miao Wang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA
| | - Angus W Thomson
- Department of Surgery and Department of Immunology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA
| | - Rimi Hazra
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Aditi Junagade
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
17
|
Li C, Liu P, Yao H, Zhu H, Zhang S, Meng F, Li S, Li G, Peng Y, Gu J, Zhu L, Jiang Y, Dai A. Regulatory B cells protect against chronic hypoxia-induced pulmonary hypertension by modulating the Tfh/Tfr immune balance. Immunology 2023; 168:580-596. [PMID: 36221236 DOI: 10.1111/imm.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/23/2022] [Indexed: 01/15/2023] Open
Abstract
Hypoxia-induced pulmonary hypertension (HPH) is a progressive and lethal disease characterized by the uncontrolled proliferation of pulmonary artery smooth muscle cells (PASMCs) and obstructive vascular remodelling. Previous research demonstrated that Breg cells were involved in the pathogenesis of pulmonary hypertension. This work aimed to evaluate the regulatory function of Breg cells in HPH. HPH mice model were established and induced by exposing to chronic hypoxia for 21 days. Mice with HPH were treated with anti-CD22 or adoptive transferred of Breg cells. The coculture systems of Breg cells with CD4+ T cells and Breg cells with PASMCs in vitro were constructed. Lung pathology was evaluated by HE staining and immunofluorescence staining. The frequencies of Breg cells, Tfh cells and Tfr cells were analysed by flow cytometry. Serum IL-21 and IL-10 levels were determined by ELISA. Protein levels of Blimp-1, Bcl-6 and CTLA-4 were determined by western blot and RT-PCR. Proliferation rate of PASMCs was measured by EdU. Compared to the control group, mean PAP, RV/(LV + S) ratio, WA% and WT% were significantly increased in the model group. Anti-CD22 exacerbated abnormal hemodynamics, pulmonary vascular remodelling and right ventricle hypertrophy in HPH, which ameliorated by adoptive transfer of Breg cells into HPH mice. The proportion of Breg cells on day 7 induced by chronic hypoxia was significantly higher than control group, which significantly decreased on day 14 and day 21. The percentage of Tfh cells was significantly increased, while percentage of Tfr cells was significantly decreased in HPH than those of control group. Anti-CD22 treatment increased the percentage of Tfh cells and decreased the percentage of Tfr cells in HPH mice. However, Breg cells restrained the Tfh cells differentiation and expanded Tfr cells differentiation in vivo and in vitro. Additionally, Breg cells inhibited the proliferation of PASMCs under hypoxic condition in vitro. Collectively, these findings suggested that Breg cells may be a new therapeutic target for modulating the Tfh/Tfr immune balance in HPH.
Collapse
Affiliation(s)
- Cheng Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Pingping Liu
- Department of Emergency, Key Laboratory of Pediatric Emergency Medicine of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
| | - Huiling Yao
- Department of General Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Hao Zhu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Shaoze Zhang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Fang Meng
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - San Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Guang Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Yanping Peng
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Jing Gu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Liming Zhu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Yongliang Jiang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Aiguo Dai
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
- Hunan Province Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, People's Republic of China
| |
Collapse
|
18
|
New Drugs and Therapies in Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24065850. [PMID: 36982922 PMCID: PMC10058689 DOI: 10.3390/ijms24065850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Pulmonary arterial hypertension is a chronic, progressive disorder of the pulmonary vasculature with associated pulmonary and cardiac remodeling. PAH was a uniformly fatal disease until the late 1970s, but with the advent of targeted therapies, the life expectancy of patients with PAH has now considerably improved. Despite these advances, PAH inevitably remains a progressive disease with significant morbidity and mortality. Thus, there is still an unmet need for the development of new drugs and other interventional therapies for the treatment of PAH. One shortcoming of currently approved vasodilator therapies is that they do not target or reverse the underlying pathogenesis of the disease process itself. A large body of evidence has evolved in the past two decades clarifying the role of genetics, dysregulation of growth factors, inflammatory pathways, mitochondrial dysfunction, DNA damage, sex hormones, neurohormonal pathways, and iron deficiency in the pathogenesis of PAH. This review focuses on newer targets and drugs that modify these pathways as well as novel interventional therapies in PAH.
Collapse
|
19
|
Wang L, Zhang W, Li C, Chen X, Huang J. Identification of biomarkers related to copper metabolism in patients with pulmonary arterial hypertension. BMC Pulm Med 2023; 23:31. [PMID: 36690956 PMCID: PMC9868507 DOI: 10.1186/s12890-023-02326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The pathogenesis of pulmonary arterial hypertension (PAH) and associated biomarkers remain to be studied. Copper metabolism is an emerging metabolic research direction in many diseases, but its role in PAH is still unclear. METHODS PAH-related datasets were downloaded from the Gene Expression Omnibus database, and 2067 copper metabolism-related genes (CMGs) were obtained from the GeneCards database. Differential expression analysis and the Venn algorithm were used to acquire the differentially expressed CMGs (DE-CMGs). DE-CMGs were then used for the coexpression network construction to screen candidate key genes associated with PAH. Furthermore, the predictive performance of the model was verified by receiver operating characteristic (ROC) analysis, and genes with area under the curve (AUC) values greater than 0.8 were selected as diagnostic genes. Then support vector machine, least absolute shrinkage and selection operator regression, and Venn diagrams were applied to detect biomarkers. Moreover, gene set enrichment analysis was performed to explore the function of the biomarkers, and immune-related analyses were utilized to study the infiltration of immune cells. The drug-gene interaction database was used to predict potential therapeutic drugs for PAH using the biomarkers. Biomarkers expression in clinical samples was verified by real-time quantitative PCR. RESULTS Four biomarkers (DDIT3, NFKBIA, OSM, and PTGER4) were screened. The ROC analysis showed that the 4 biomarkers performed well (AUCs > 0.7). The high expression groups for the 4 biomarkers were enriched in protein activity-related pathways including protein export, spliceosome and proteasome. Furthermore, 8 immune cell types were significantly different between the two groups, including naive B cells, memory B cells, and resting memory CD4 T cells. Afterward, a gene-drug network was constructed. This network illustrated that STREPTOZOCIN, IBUPROFEN, and CELECOXIB were shared by the PTGER4 and DDIT3. Finally, the results of RT-qPCR in clinical samples further confirmed the results of the public database for the expression of NFKBIA and OSM. CONCLUSION In conclusion, four biomarkers (DDIT3, NFKBIA, OSM, and PTGER4) with considerable diagnostic values were identified, and a gene-drug network was further constructed. The results of this study may have significant implications for the development of new diagnostic biomarkers and actionable targets to expand treatment options for PAH patients.
Collapse
Affiliation(s)
- Lei Wang
- grid.452672.00000 0004 1757 5804Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University (Xibei Hospital), Xi’an, 710004 Shaanxi China
| | - Wei Zhang
- grid.452438.c0000 0004 1760 8119Department of Emergency, The First Affiliated Hospital Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Cong Li
- grid.452672.00000 0004 1757 5804Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University (Xibei Hospital), Xi’an, 710004 Shaanxi China
| | - Xin Chen
- grid.452672.00000 0004 1757 5804Department of Radiology, The Second Affiliated Hospital of Xi’an Jiaotong University (Xibei Hospital), Xi’an, 710004 Shaanxi China
| | - Jing Huang
- grid.452438.c0000 0004 1760 8119Department of Rheumatism and Immunology, The First Affiliated Hospital Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| |
Collapse
|
20
|
Hojda SE, Chis IC, Clichici S. Biomarkers in Pulmonary Arterial Hypertension. Diagnostics (Basel) 2022; 12:diagnostics12123033. [PMID: 36553040 PMCID: PMC9776459 DOI: 10.3390/diagnostics12123033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe medical condition characterized by elevated pulmonary vascular resistance (PVR), right ventricular (RV) failure, and death in the absence of appropriate treatment. The progression and prognosis are strictly related to the etiology, biochemical parameters, and treatment response. The gold-standard test remains right-sided heart catheterization, but dynamic monitoring of systolic pressure in the pulmonary artery is performed using echocardiography. However, simple and easily accessible non-invasive assays are also required in order to monitor this pathology. In addition, research in this area is in continuous development. In recent years, more and more biomarkers have been studied and included in clinical guidelines. These biomarkers can be categorized based on their associations with inflammation, endothelial cell dysfunction, cardiac fibrosis, oxidative stress, and metabolic disorders. Moreover, biomarkers can be easily detected in blood and urine and correlated with disease severity, playing an important role in diagnosis, prognosis, and disease progression.
Collapse
|
21
|
Zheng H, Hua J, Li H, He W, Chen X, Ji Y, Li Q. Comprehensive analysis of the expression of N6-methyladenosine RNA methylation regulators in pulmonary artery hypertension. Front Genet 2022; 13:974740. [PMID: 36171892 PMCID: PMC9510777 DOI: 10.3389/fgene.2022.974740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is a progressive disease characterized by pulmonary vascular remodeling. The development of PAH involves N6-methyladenosine (m6A) modification. However, the functional role of m6A regulators in PAH and the underlying regulatory mechanisms remain unknown so far. Methods: Microarray data (GSE149713) for monocrotaline induced PAH (MCT-PAH) rat models were downloaded and screened for differentially expressed genes (DEGs) and m6A regulators. Next, we screened for differentially expressed m6A regulators in endothelial cells (ECs), smooth muscle cells (SMCs), fibroblasts, interstitial macrophages, NK cells, B cells, T cells, regulatory T cells (Tregs) using scRNA sequencing data. The target DEGs of m6A regulators in ECs, SMCs, fibroblasts, and Tregs were functionally annotated using the Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In addition, the cellular interaction analysis was performed to reveal the receptor—ligand pairs regulated by m6A regulators. Pseudo-time trajectory analyses were performed and a ceRNA network of lncRNAs-miRNAs-mRNAs was constructed in SMCs. Furthermore, the RNA transcriptome sequencing data for the SMCs isolated from idiopathic PAH (IPAH) patients (GSE144274) were validated for differentially expressed m6A regulators. Moreover, the HNRNPA2B1 levels in the lung samples from PAH patients and MCT-PAH were determined using immunohistochemistry. Results: The m6A regulators were observed to be dysregulated in PAH. HNRNPA2B1expression level was increased in the PASMCs of scRNAs and IPAH patients. The target DEGs of HNRNPA2B1 were enriched in the regulation of muscle cell differentiation and vasculature development in PASMCs. The HNRNPA2B1 expression levels determined were consistent with the proliferation-related and collagen synthesis-related gene COL4A1. Moreover, the predicted transcription factors (TFs) foxd2/3 and NFκB could be involved in the regulation of HNRNPA2B1. HNRNPA2B1 might be regulating SMCs proliferation and phenotypic transition via rno-miR-330–3p/TGFβR3 and rno-miR-125a-3p/slc39a1. In addition, HNRNPA2B1 was observed to be highly expressed in the lung samples from MCT-PAH rat models and patients with PAH. Conclusion: In summary, the present study identified certain key functional m6A regulators that are involved in pulmonary vascular remodeling. The investigation of m6A patterns might be promising and provide biomarkers for diagnosis and treatment of PAH in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Yingqun Ji
- *Correspondence: Yingqun Ji, ; Qiang Li,
| | - Qiang Li
- *Correspondence: Yingqun Ji, ; Qiang Li,
| |
Collapse
|
22
|
Li C, Zhu H, Zhang S, Meng F, Li S, Li G, Zha J, Wu S, Zhu L, Dai A. Astragaloside IV ameliorates pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension by restraining the T follicular helper cell response and expanding T follicular regulatory cell response. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154171. [PMID: 35636165 DOI: 10.1016/j.phymed.2022.154171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a progressive disorder lacking a validated and effective therapy which characterized by elevated pulmonary arterial pressure, vascular remodeling and eventual death. FDA approved sildenafil is being used as a first-line drug for PH, however, neither survival rates nor quality of life have been improved because of side effects and patient noncompliance. Thus, the exploration of novel therapeutic drugs is urgently needed. Astragaloside IV (ASIV) exhibits a protective effect on HPH, but its mechanisms of action is unclear. HYPOTHESIS CD4+T cell subsets, Tfh and Tfr cells, may contribute to the development of chronic hypoxia-induced PH (HPH). We hypothesized that ASIV could effectively ameliorates pulmonary vascular remodeling of HPH by restraining the Tfh cell response and expanding Tfr cell response. METHODS AND RESULTS HPH mice model was established by exposure to chronic hypoxia for 21 days. Mice were randomly assigned to six groups: NaCl group, model group, SN group (100 mg/kg of sildenafil), low-dose group (20 mg/kg of ASIV), medium-dose group (40 mg/kg of ASIV) and high-dose group (80 mg/kg of ASIV). Primary culture and identification of distal pulmonary artery smooth muscle cells (PASMCs) in mice were established. Here, we demonstrated that ASIV treatment could significantly ameliorate the increase of mean PAP, RV/ (LV+S) ratio and PAMT in HPH mice. ASIV inhibited Tfh cell differentiation and IL-21 production, but promoted Tfr cell differentiation and TGF-β, IL-10 production. Chronic hypoxia promoted germinal center B cell responses, which inhibited by ASIV. ASIV regulated Tfh and Tfr cell differentiation by inhibiting the phosphorylation of mTOR signaling pathway, and the effect of ASIV-H was better than that observed in the SN group. ASIV inhibited the proliferation, migration and adhesion of PASMCs in vitro. Moreover, ASIV significantly downregulated the protein level of RhoA and upregulated the protein level of p27 in PASMCs under hypoxic condition. CONCLUSION Collectively, ASIV may regulate Tfh and Tfr cell responses to subsequently repress pulmonary vascular remodeling and hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Cheng Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of HunanNormal University, Changsha, Hunan 410016, PR China
| | - Hao Zhu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of HunanNormal University, Changsha, Hunan 410016, PR China
| | - Shaoze Zhang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of HunanNormal University, Changsha, Hunan 410016, PR China
| | - Fang Meng
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of HunanNormal University, Changsha, Hunan 410016, PR China
| | - San Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of HunanNormal University, Changsha, Hunan 410016, PR China
| | - Guang Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of HunanNormal University, Changsha, Hunan 410016, PR China
| | - Jun Zha
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Shangjie Wu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Liming Zhu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of HunanNormal University, Changsha, Hunan 410016, PR China.
| | - Aiguo Dai
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of HunanNormal University, Changsha, Hunan 410016, PR China; Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China.
| |
Collapse
|
23
|
Frech TM, Austin ED. Is It Still "Idiopathic"? Features of Autoimmunity in Idiopathic Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2022; 206:8-10. [PMID: 35442875 PMCID: PMC9954332 DOI: 10.1164/rccm.202202-0413ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Tracy M. Frech
- Department of MedicineVanderbilt University Medical CenterNashville, Tennessee
| | - Eric D. Austin
- Department of PediatricsVanderbilt University Medical CenterNashville, Tennessee
| |
Collapse
|
24
|
Liu Y, Shi JZ, Jiang R, Liu SF, He YY, van der Vorst EPC, Weber C, Döring Y, Yan Y. Regulatory T Cell-Related Gene Indicators in Pulmonary Hypertension. Front Pharmacol 2022; 13:908783. [PMID: 35712711 PMCID: PMC9197497 DOI: 10.3389/fphar.2022.908783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Objective: Regulatory T cells (Tregs) are critical immune modulators to maintain immune homeostasis and limit pulmonary hypertension (PH). This study was aimed to identify Treg-related genes (TRGs) in PH. Methods: The gene expression profile from lungs of PH patients was retrieved from the Gene Expression Omnibus (GEO) database. The abundance of Tregs was estimated by the xCell algorithm, the correlation of which with differentially expressed genes (DEGs) was performed. DEGs with a |Pearson correlation coefficient| >0.4 were identified as TRGs. Functional annotation and the protein–protein interaction (PPI) network were analyzed. A gene signature for 25 hub TRGs (TRGscore) was generated by a single sample scoring method to determine its accuracy to distinguish PH from control subjects. TRGs were validated in datasets of transcriptional profiling of PH cohorts and in lung tissues of experimental PH mice. Results: A total of 819 DEGs were identified in lungs of 58 PAH patients compared to that of 25 control subjects of dataset GSE117261. In total, 165 of all these DEGs were correlated with the abundance of Tregs and identified as TRGs, with 90 upregulated genes and 75 downregulated genes compared to that of control subjects. The upregulated TRGs were enriched in negative regulation of multiple pathways, such as cAMP-mediated signaling and I-kappaB kinase/NF-kappaB signaling, and regulated by multiple genes encoding transcriptional factors including HIF1A. Furthermore, 25 hub genes categorized into three clusters out of 165 TRGs were derived, and we identified 27 potential drugs targeting 10 hub TRGs. The TRGscore based on 25 hub TRGs was higher in PH patients and could distinguish PH from control subjects (all AUC >0.7). Among them, 10 genes including NCF2, MNDA/Ifi211, HCK, FGR, CSF3R, AQP9, S100A8, G6PD/G6pdx, PGD, and TXNRD1 were significantly reduced in lungs of severe PH patients of dataset GSE24988 as well as in lungs of hypoxic PH mice compared to corresponding controls. Conclusion: Our finding will shed some light on the Treg-associated therapeutic targets in the progression of PH and emphasize on TRGscore as a novel indicator for PH.
Collapse
Affiliation(s)
- Yan Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-Zhuo Shi
- School of Pharmacy, Henan University, Kaifeng, China.,College of Traditional Chinese Medicine, Henan University, Kaifeng, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Shao-Fei Liu
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Yang-Yang He
- School of Pharmacy, Henan University, Kaifeng, China.,College of Traditional Chinese Medicine, Henan University, Kaifeng, China
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yi Yan
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
25
|
van Uden D, Koudstaal T, van Hulst JAC, Vink M, van Nimwegen M, van den Toorn LM, Chandoesing PP, van den Bosch AE, Kool M, Hendriks RW, Boomars KA. Peripheral Blood T Cells of Patients with IPAH Have a Reduced Cytokine-Producing Capacity. Int J Mol Sci 2022; 23:ijms23126508. [PMID: 35742956 PMCID: PMC9224379 DOI: 10.3390/ijms23126508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is rare disease that is categorized as idiopathic (IPAH) when no underlying cause can be identified. Lungs of most patients with IPAH contain increased numbers of T cells and dendritic cells (DCs), suggesting involvement of the immune system in its pathophysiology. However, our knowledge on circulating immune cells in IPAH is rather limited. We used flow cytometry to characterize peripheral blood DCs and T cells in treatment-naive IPAH patients, compared with connective-tissue disease-PAH (CTD-PAH) patients and healthy controls (HCs). At diagnosis, T-helper (Th) cells of IPAH patients were less capable of producing TNFα, IFNγ, IL-4 and IL-17 compared to HCs. IPAH patients showed a decreased frequency of Th2 cells and significantly enhanced expression of the CTLA4 checkpoint molecule in naive CD4+ T cells and both naive and memory CD8+ T cells. Frequencies and surface marker expression of circulating DCs and monocytes were essentially comparable between IPAH patients and HCs. Principal component analysis (PCA) separated IPAH patients—but not CTD-PAH patients—from HCs, based on T-cell cytokine profiles. At 1-year follow-up, the frequencies of IL-17+ production by memory CD4+ T cells were increased in IPAH patients and accompanied by increased proportions of Th17 and Tc17 cells, as well as decreased CTLA4 expression. Treatment-naive IPAH patients displayed a unique T-cell phenotype that was different from CTD-PAH patients and was characterized by reduced cytokine-producing capacity. These findings point to involvement of adaptive immune responses in IPAH, which may have an implication for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Denise van Uden
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
| | - Thomas Koudstaal
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
| | - Jennifer A. C. van Hulst
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
| | - Madelief Vink
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
| | - Leon M. van den Toorn
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
| | - Prewesh P. Chandoesing
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
| | - Annemien E. van den Bosch
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
- Correspondence: (R.W.H.); (K.A.B.)
| | - Karin A. Boomars
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
- Correspondence: (R.W.H.); (K.A.B.)
| |
Collapse
|
26
|
Wang RR, Yuan TY, Wang JM, Chen YC, Zhao JL, Li MT, Fang LH, Du GH. Immunity and inflammation in pulmonary arterial hypertension: From pathophysiology mechanisms to treatment perspective. Pharmacol Res 2022; 180:106238. [DOI: 10.1016/j.phrs.2022.106238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/08/2023]
|
27
|
Abstract
RATIONALE Pulmonary hypertension encompasses progressive disorders leading to right ventricular dysfunction and early death. Late detection is an important cause of poor clinical outcomes. However, biomarkers that accurately predict the presence of pulmonary hypertension are currently lacking. OBJECTIVES In this study we provide evidence that blood platelets contain a distinctive RNA profile that may be exploited for detection of pulmonary hypertension. METHODS Blood platelet RNA was isolated prospectively from 177 prevalent patients with different subtypes of pulmonary hypertension as well as 195 controls clinically not suspected of pulmonary hypertension. Sequencing libraries were created using SMARTer cDNA amplification, and sequenced on the Illumina HiSeq platform. RNA-sequencing reads were mapped to the human reference genome, and intron-spanning spliced RNA reads were selected. Differential spliced RNA panels were calculated by ANOVA-statistics. A particle swarm optimisation (PSO)-enhanced classification algorithm was built employing a development (n=213 samples) and independent validation series (n=159 samples). RESULTS We detected a total of 4014 different RNAs in blood platelets from pulmonary hypertension patients (n=177) and asymptomatic controls (n=195). GSEA gene ontology analysis revealed enriched RNA levels for genes related to RNA-processing, translation and mitochondrial function. A PSO-selected RNA panel of 408 distinctive differentially spliced RNAs mediated detection of pulmonary hypertension with 93% sensitivity, 62% specificity, 77% accuracy, 0.89 (95%CI 0.83-0.93) area under the curve and a negative predictive value of 91% in the independent validation series. Prediction score was independent of age, sex, smoking, pulmonary hypertension subtype, and the use of pulmonary hypertension-specific medication or anti-coagulants. CONCLUSION A platelet RNA-panel may accurately discriminate patients with pulmonary hypertension from asymptomatic controls. In the light of current diagnostic delays, this study is the starting point for further development and evaluation of a platelet RNA-based blood test, to ultimately improve early diagnosis and clinical outcomes in patients with pulmonary hypertension.
Collapse
|
28
|
Christou H, Khalil RA. Mechanisms of pulmonary vascular dysfunction in pulmonary hypertension and implications for novel therapies. Am J Physiol Heart Circ Physiol 2022; 322:H702-H724. [PMID: 35213243 PMCID: PMC8977136 DOI: 10.1152/ajpheart.00021.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
Abstract
Pulmonary hypertension (PH) is a serious disease characterized by various degrees of pulmonary vasoconstriction and progressive fibroproliferative remodeling and inflammation of the pulmonary arterioles that lead to increased pulmonary vascular resistance, right ventricular hypertrophy, and failure. Pulmonary vascular tone is regulated by a balance between vasoconstrictor and vasodilator mediators, and a shift in this balance to vasoconstriction is an important component of PH pathology, Therefore, the mainstay of current pharmacological therapies centers on pulmonary vasodilation methodologies that either enhance vasodilator mechanisms such as the NO-cGMP and prostacyclin-cAMP pathways and/or inhibit vasoconstrictor mechanisms such as the endothelin-1, cytosolic Ca2+, and Rho-kinase pathways. However, in addition to the increased vascular tone, many patients have a "fixed" component in their disease that involves altered biology of various cells in the pulmonary vascular wall, excessive pulmonary artery remodeling, and perivascular fibrosis and inflammation. Pulmonary arterial smooth muscle cell (PASMC) phenotypic switch from a contractile to a synthetic and proliferative phenotype is an important factor in pulmonary artery remodeling. Although current vasodilator therapies also have some antiproliferative effects on PASMCs, they are not universally successful in halting PH progression and increasing survival. Mild acidification and other novel approaches that aim to reverse the resident pulmonary vascular pathology and structural remodeling and restore a contractile PASMC phenotype could ameliorate vascular remodeling and enhance the responsiveness of PH to vasodilator therapies.
Collapse
Affiliation(s)
- Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Funk-Hilsdorf TC, Behrens F, Grune J, Simmons S. Dysregulated Immunity in Pulmonary Hypertension: From Companion to Composer. Front Physiol 2022; 13:819145. [PMID: 35250621 PMCID: PMC8891568 DOI: 10.3389/fphys.2022.819145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Pulmonary hypertension (PH) represents a grave condition associated with high morbidity and mortality, emphasizing a desperate need for innovative and targeted therapeutic strategies. Cumulative evidence suggests that inflammation and dysregulated immunity interdependently affect maladaptive organ perfusion and congestion as hemodynamic hallmarks of the pathophysiology of PH. The role of altered cellular and humoral immunity in PH gains increasing attention, especially in pulmonary arterial hypertension (PAH), revealing novel mechanistic insights into the underlying immunopathology. Whether these immunophysiological aspects display a universal character and also hold true for other types of PH (e.g., PH associated with left heart disease, PH-LHD), or whether there are unique immunological signatures depending on the underlying cause of disease are points of consideration and discussion. Inflammatory mediators and cellular immune circuits connect the local inflammatory landscape in the lung and heart through inter-organ communication, involving, e.g., the complement system, sphingosine-1-phosphate (S1P), cytokines and subsets of, e.g., monocytes, macrophages, natural killer (NK) cells, dendritic cells (DCs), and T- and B-lymphocytes with distinct and organ-specific pro- and anti-inflammatory functions in homeostasis and disease. Perivascular macrophage expansion and monocyte recruitment have been proposed as key pathogenic drivers of vascular remodeling, the principal pathological mechanism in PAH, pinpointing toward future directions of anti-inflammatory therapeutic strategies. Moreover, different B- and T-effector cells as well as DCs may play an important role in the pathophysiology of PH as an imbalance of T-helper-17-cells (TH17) activated by monocyte-derived DCs, a potentially protective role of regulatory T-cells (Treg) and autoantibody-producing plasma cells occur in diverse PH animal models and human PH. This article highlights novel aspects of the innate and adaptive immunity and their interaction as disease mediators of PH and its specific subtypes, noticeable inflammatory mediators and summarizes therapeutic targets and strategies arising thereby.
Collapse
Affiliation(s)
- Teresa C. Funk-Hilsdorf
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Felix Behrens
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Jana Grune
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Szandor Simmons
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- *Correspondence: Szandor Simmons,
| |
Collapse
|