1
|
Ismahil MA, Zhou G, Gao M, Bansal SS, Patel B, Limdi N, Xie M, Antipenko S, Rokosh G, Hamid T, Prabhu SD. Splenic CD169 + Tim4 + Marginal Metallophilic Macrophages Are Essential for Wound Healing After Myocardial Infarction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.09.24311769. [PMID: 39211861 PMCID: PMC11361232 DOI: 10.1101/2024.08.09.24311769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fidelity of wound healing after myocardial infarction (MI) is an important determinant of subsequent adverse cardiac remodeling and failure. Macrophages derived from infiltrating Ly6C hi blood monocytes are a key component of this healing response; however, the importance of other macrophage populations is unclear. Here, using a variety of in vivo murine models and orthogonal approaches, including surgical myocardial infarction, splenectomy, parabiosis, cell adoptive transfer, lineage tracing and cell tracking, RNA sequencing, and functional characterization, we establish in mice an essential role for splenic CD169 + Tim4 + marginal metallophilic macrophages (MMMs) in post-MI wound healing. Splenic CD169 + Tim4 + MMMs circulate in blood as Ly6C low cells expressing macrophage markers and help populate CD169 + Tim4 + CCR2 - LYVE1 low macrophages in the naïve heart. After acute MI, splenic MMMs augment phagocytosis, CCR3 and CCR4 expression, and robustly mobilize to the heart, resulting in marked expansion of cardiac CD169 + Tim4 + LyVE1 low macrophages with an immunomodulatory and pro-resolving gene signature. These macrophages are obligatory for apoptotic neutrophil clearance, suppression of inflammation, and induction of a reparative macrophage phenotype in the infarcted heart. Splenic MMMs are both necessary and sufficient for post-MI wound healing, and limit late pathological remodeling. Liver X receptor-α agonist-induced expansion of the splenic marginal zone and MMMs during acute MI alleviates inflammation and improves short- and long-term cardiac remodeling. Finally, humans with acute ST-elevation MI also exhibit expansion of circulating CD169 + Tim4 + macrophages. We conclude that splenic CD169 + Tim4 + MMMs are required for pro-resolving and reparative responses after MI and can be manipulated for therapeutic benefit to limit long-term heart failure. CLINICAL PERSPECTIVE What is new?: We establish for the first time that metallophilic marginal macrophages (MMMs) from the spleen, expressing the markers CD169 and Tim4, circulate in blood and traffic to the heart to help maintain the CD169 + Tim4 + CCR2 - LYVE1 low macrophage population in the heart. After acute myocardial infarction, splenic MMMs augment cardiac trafficking in response to chemotactic signals, resulting in expansion of CD169 + Tim4 + macrophages in the heart that play an essential role in post-MI efferocytosis, wound healing and repair while limiting longer term adverse cardiac remodeling. Analogous to mice, humans also exhibit circulating CD169 + Tim4 + macrophages in the blood that expand after acute ST segment elevation MI. What are the clinical implications?: This study highlights the importance of the cardiosplenic axis in acute MI, and the splenic marginal zone, in determining the course and outcome of post-MI LV remodeling.Pharmacological expansion of splenic marginal zone macrophages alleviated post-MI adverse LV remodeling and inflammation, suggesting that splenic modulation is a potential translational therapeutic approach for limiting post-MI inflammation and improving heart repair.
Collapse
|
2
|
Boopathy AV, Nekkalapudi A, Sung J, Schulha S, Jin D, Sharma B, Ng S, Lu S, Wimmer R, Suthram S, Ahmadi-Erber S, Lauterbach H, Orlinger KK, Hung M, Carr B, Callebaut C, Geleziunas R, Kuhne M, Schmidt S, Falkard B. Flt3 agonist enhances immunogenicity of arenavirus vector-based simian immunodeficiency virus vaccine in macaques. J Virol 2024; 98:e0029424. [PMID: 38829139 PMCID: PMC11265421 DOI: 10.1128/jvi.00294-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Arenaviral vaccine vectors encoding simian immunodeficiency virus (SIV) immunogens are capable of inducing efficacious humoral and cellular immune responses in nonhuman primates. Several studies have evaluated the use of immune modulators to further enhance vaccine-induced T-cell responses. The hematopoietic growth factor Flt3L drives the expansion of various bone marrow progenitor populations, and administration of Flt3L was shown to promote expansion of dendritic cell populations in spleen and blood, which are targets of arenaviral vectors. Therefore, we evaluated the potential of Flt3 signaling to enhance the immunogenicity of arenaviral vaccines encoding SIV immunogens (SIVSME543 Gag, Env, and Pol) in rhesus macaques, with a rhesus-specific engineered Flt3L-Fc fusion protein. In healthy animals, administration of Flt3L-Fc led to a 10- to 100-fold increase in type 1 dendritic cells 7 days after dosing, with no antidrug antibody (ADA) generation after repeated dosing. We observed that administration of Flt3L-Fc fusion protein 7 days before arenaviral vaccine increased the frequency and activation of innate immune cells and enhanced T-cell activation with no treatment-related adverse events. Flt3L-Fc administration induced early innate immune activation, leading to a significant enhancement in magnitude, breadth, and polyfunctionality of vaccine-induced T-cell responses. The Flt3L-Fc enhancement in vaccine immunogenicity was comparable to a combination with αCTLA-4 and supports the use of safe and effective variants of Flt3L to augment therapeutic vaccine-induced T-cell responses.IMPORTANCEInduction of a robust human immunodeficiency virus (HIV)-specific CD4+ and CD8+ T-cell response through therapeutic vaccination is considered essential for HIV cure. Arenaviral vaccine vectors encoding simian immunodeficiency virus (SIV) immunogens have demonstrated strong immunogenicity and efficacy in nonhuman primates. Here, we demonstrate that the immunogenicity of arenaviral vectors encoding SIV immunogens can be enhanced by administration of Flt3L-Fc fusion protein 7 days before vaccination. Flt3L-Fc-mediated increase in dendritic cells led to robust improvements in vaccine-induced T- and B-cell responses compared with vaccine alone, and Flt3L-Fc dosing was not associated with any treatment-related adverse events. Importantly, immune modulation by either Flt3L-Fc or αCTLA-4 led to comparable enhancement in vaccine response. These results indicate that the addition of Flt3L-Fc fusion protein before vaccine administration can significantly enhance vaccine immunogenicity. Thus, safe and effective Flt3L variants could be utilized as part of a combination therapy for HIV cure.
Collapse
Affiliation(s)
| | | | - Janette Sung
- Drug Metabolism, Gilead Sciences, Inc., Foster, California, USA
| | | | - Debi Jin
- Protein Therapeutics, Gilead Sciences, Inc., Foster, California, USA
| | - Bhawna Sharma
- Discovery Virology, Gilead Sciences, Inc., Foster, California, USA
| | - Sarah Ng
- Oncology, Gilead Sciences, Inc., Foster, California, USA
| | - Sabrina Lu
- Protein Therapeutics, Gilead Sciences, Inc., Foster, California, USA
| | | | - Silpa Suthram
- Bioinformatics, Gilead Sciences, Inc., Foster, California, USA
| | | | - Henning Lauterbach
- Global Research and Development, Hookipa Pharma Inc., New York, New York, USA
| | - Klaus K. Orlinger
- Global Research and Development, Hookipa Pharma Inc., New York, New York, USA
| | - Magdeleine Hung
- Protein Therapeutics, Gilead Sciences, Inc., Foster, California, USA
| | - Brian Carr
- Drug Metabolism, Gilead Sciences, Inc., Foster, California, USA
| | | | - Romas Geleziunas
- Clinical Virology, Gilead Sciences, Inc., Foster, California, USA
| | - Michelle Kuhne
- Oncology, Gilead Sciences, Inc., Foster, California, USA
| | - Sarah Schmidt
- Virology, Hookipa Pharma Inc., New York, New York, USA
| | - Brie Falkard
- Clinical Virology, Gilead Sciences, Inc., Foster, California, USA
| |
Collapse
|
3
|
Almuqrin AM, Alotaibi BA, Aldali JA, Alshalani A, AlSudais H, Aldali HJ. Assessing the impact of COVID-19 on acute leukemia patients: a comparative analysis of hematological and biochemical parameters. BMC Infect Dis 2024; 24:576. [PMID: 38862891 PMCID: PMC11167824 DOI: 10.1186/s12879-024-09485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND The impact of COVID-19 infection on the blood system remains to be investigated, especially with those encountering hematological malignancies. It was found that a high proportion of cancer patients are at an elevated risk of encountering COVID-19 infection. Leukemic patients are often suppressed and immunocompromised, which would impact the pathology following COVID-19 infection. Therefore, this research aims to bring valuable insight into the mechanism by which COVID-19 infection influences the hematological and biochemical parameters of patients with acute leukemia. METHODS This retrospective investigation uses repeated measures to examine changes in hematological and biochemical parameters among patients with acute leukemia before and after COVID-19 infection at a major Saudi tertiary center. The investigation was conducted at the Ministry of National Guard-Health Affairs in Riyadh, Saudi Arabia, on 24 acute leukemia patients with COVID-19 between April 2020 and July 2023. The impact of COVID-19 on clinical parameters, comorbidities, and laboratory values was evaluated using data obtained from the electronic health records at four designated time intervals. The relative importance of comorbidities, testing preferences, and significant predictors of survival was ascertained. RESULTS The majority of leukemic COVID-19-infected patients, primarily detected through PCR tests, were diagnosed with acute lymphoblastic leukemia (70.8%). The hematological and biochemical parameters exhibited stability, except for a brief increase in ALT and a sustained rise in AST. These changes were not statistically significant, and parameters remained normal at all time points. Additionally, an increase in monocyte count was shown at time point-3, as well as platelet counts at time point 2. CONCLUSION While this study did not detect statistically significant effects of COVID-19 on biochemical and hematological parameters in acute leukemia patients, further investigation is needed to fully understand the potential adverse reactions and modifications following COVID-19 infection.
Collapse
Affiliation(s)
- Abdulaziz M Almuqrin
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Badi A Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, 11481, Saudi Arabia.
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Jehad A Aldali
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317, Saudi Arabia
| | - Abdulrahman Alshalani
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Hamood AlSudais
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Hamzah J Aldali
- Cellular and Molecular Medicine, College of Biomedical Science, University of Bristol, Bristol, BS8 1QU, UK
| |
Collapse
|
4
|
Jame-Chenarboo Z, Gray TE, Macauley MS. Advances in understanding and exploiting Siglec-glycan interactions. Curr Opin Chem Biol 2024; 80:102454. [PMID: 38631213 DOI: 10.1016/j.cbpa.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Sialic-acid-binding immunoglobulin-type lectins (Siglecs) are a family of cell-surface immunomodulatory receptors that recognize sialic-acid-containing glycans. The majority of Siglecs have an inhibitory motif in their intercellular domain and can regulate the cellular activation of immune cells. Importantly, the immunomodulatory role of Siglecs is regulated by engagement with distinct sialoglycan ligands. However, there are still many unanswered questions about the precise ligand(s) recognized by individual Siglec family members. New tools and approaches to study Siglec-ligand interactions are rapidly filling this knowledge gap. This review provides an overview of recent advances in discovering Siglec ligands as well as the development of approaches to modulate the function of Siglecs. In both aspects, chemical biology approaches are emphasized with a discussion on how these are complementing biochemical and genetic strategies.
Collapse
Affiliation(s)
| | - Taylor E Gray
- Department of Chemistry, University of Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Canada.
| |
Collapse
|
5
|
Galati D, Mallardo D, Nicastro C, Zanotta S, Capitelli L, Lombardi C, Baino B, Cavalcanti E, Sale S, Labonia F, Boenzi R, Atripaldi L, Ascierto PA, Bocchino M. The Dysregulation of the Monocyte-Dendritic Cell Interplay Is Associated with In-Hospital Mortality in COVID-19 Pneumonia. J Clin Med 2024; 13:2481. [PMID: 38731010 PMCID: PMC11084469 DOI: 10.3390/jcm13092481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Background: The monocyte-phagocyte system (MPS), including monocytes/macrophages and dendritic cells (DCs), plays a key role in anti-viral immunity. We aimed to analyze the prognostic value of the MPS components on in-hospital mortality in a cohort of 58 patients (M/F; mean age ± SD years) with COVID-19 pneumonia and 22 age- and sex-matched healthy controls. Methods: We measured frequencies and absolute numbers of peripheral blood CD169+ monocytes, conventional CD1c+ and CD141+ (namely cDC2 and cDC1), and plasmacytoid CD303+ DCs by means of multi-parametric flow cytometry. A gene profile analysis of 770 immune-inflammatory-related human genes and 20 SARS-CoV-2 genes was also performed. Results: Median frequencies and absolute counts of CD169-expressing monocytes were significantly higher in COVID-19 patients than in controls (p 0.04 and p 0.01, respectively). Conversely, percentages and absolute numbers of all DC subsets were markedly depleted in patients (p < 0.0001). COVID-19 cases with absolute counts of CD169+ monocytes above the median value of 114.68/μL had significantly higher in-hospital mortality (HR 4.96; 95% CI: 1.42-17.27; p = 0.02). Interleukin (IL)-6 concentrations were significantly increased in COVID-19 patients (p < 0.0001 vs. controls), and negatively correlated with the absolute counts of circulating CD1c+ cDC2 (r = -0.29, p = 0.034) and CD303+ pDC (r = -0.29, p = 0.036) subsets. Viral genes were upregulated in patients with worse outcomes along with inflammatory mediators such as interleukin (IL)-1 beta, tumor necrosis-α (TNF-α) and the anticoagulant protein (PROS1). Conversely, surviving patients had upregulated genes related to inflammatory and anti-viral-related pathways along with the T cell membrane molecule CD4. Conclusions: Our results suggest that the dysregulated interplay between the different components of the MPS along with the imbalance between viral gene expression and host anti-viral immunity negatively impacts COVID-19 outcomes. Although the clinical scenario of COVID-19 has changed over time, a deepening of its pathogenesis remains a priority in clinical and experimental research.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Innovative Diagnostics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.G.); (S.Z.)
| | - Domenico Mallardo
- Unit of Melanoma and Innovative Therapy, Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.M.); (P.A.A.)
| | - Carmine Nicastro
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Serena Zanotta
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Innovative Diagnostics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.G.); (S.Z.)
| | - Ludovica Capitelli
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| | - Carmen Lombardi
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| | - Bianca Baino
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| | - Ernesta Cavalcanti
- Laboratory Medicine Unit, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (E.C.)
| | - Silvia Sale
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Francesco Labonia
- Laboratory Medicine Unit, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (E.C.)
| | - Rita Boenzi
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Luigi Atripaldi
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Paolo Antonio Ascierto
- Unit of Melanoma and Innovative Therapy, Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.M.); (P.A.A.)
| | - Marialuisa Bocchino
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| |
Collapse
|
6
|
López-Cerdá S, Molinaro G, Tello RP, Correia A, Künig S, Steinberger P, Jeltsch M, Hirvonen JT, Barreto G, Stöckl J, Santos HA. Study of the Synergistic Immunomodulatory and Antifibrotic Effects of Dual-Loaded Budesonide and Serpine1 siRNA Lipid-Polymer Nanoparticles Targeting Macrophage Dysregulation in Tendinopathy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18643-18657. [PMID: 38564504 DOI: 10.1021/acsami.4c02363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Musculoskeletal diseases involving tissue injury comprise tendon, ligament, and muscle injury. Recently, macrophages have been identified as key players in the tendon repair process, but no therapeutic strategy involving dual drug delivery and gene delivery to macrophages has been developed for targeting the two main dysregulated aspects of macrophages in tendinopathy, i.e., inflammation and fibrosis. Herein, the anti-inflammatory and antifibrotic effects of dual-loaded budesonide and serpine1 siRNA lipid-polymer hybrid nanoparticles (LPNs) are evaluated in murine and human macrophage cells. The modulation of the gene and protein expression of factors associated with inflammation and fibrosis in tendinopathy is demonstrated by real time polymerase chain reaction and Western blot. Macrophage polarization to the M2 phenotype and a decrease in the production of pro-inflammatory cytokines are confirmed in macrophage cell lines and primary cells. The increase in the activity of a matrix metalloproteinase involved in tissue remodelling is proven, and studies evaluating the interactions of LPNs with T cells proved that dual-loaded LPNs act specifically on macrophages and do not induce any collateral effects on T cells. Overall, these dual-loaded LPNs are a promising combinatorial therapeutic strategy with immunomodulatory and antifibrotic effects in dysregulated macrophages in the context of tendinopathy.
Collapse
Affiliation(s)
- Sandra López-Cerdá
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Giuseppina Molinaro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Rubén Pareja Tello
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Sarojinidevi Künig
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Steinberger
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Jeltsch
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
- Wihuri Research Institute, Helsinki FI-00014, Finland
- Helsinki One Health, University of Helsinki, Helsinki FI-00014, Finland
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Goncalo Barreto
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
- Orton Orthopedic Hospital, Tenholantie 10, Helsinki 00280, Finland
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
7
|
Guo M, Guo H, Zhu J, Wang F, Chen J, Wan C, Deng Y, Wang F, Xu L, Chen Y, Li R, Liu S, Zhang L, Wang Y, Zhou J, Li S. A novel subpopulation of monocytes with a strong interferon signature indicated by SIGLEC-1 is present in patients with in recent-onset type 1 diabetes. Diabetologia 2024; 67:623-640. [PMID: 38349399 DOI: 10.1007/s00125-024-06098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 03/01/2024]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is a T cell-mediated autoimmune disease characterised by pancreatic beta cell destruction. In this study, we explored the pathogenic immune responses in initiation of type 1 diabetes and new immunological targets for type 1 diabetes prevention and treatment. METHODS We obtained peripheral blood samples from four individuals with newly diagnosed latent autoimmune diabetes in adults (LADA) and from four healthy control participants. Single-cell RNA-sequencing (scRNA-seq) was performed on peripheral blood mononuclear cells to uncover transcriptomic profiles of early LADA. Validation was performed through flow cytometry in a cohort comprising 54 LADA, 17 adult-onset type 2 diabetes, and 26 healthy adults, matched using propensity score matching (PSM) based on age and sex. A similar PSM method matched 15 paediatric type 1 diabetes patients with 15 healthy children. Further flow cytometry analysis was performed in both peripheral blood and pancreatic tissues of non-obese diabetic (NOD) mice. Additionally, cell adoptive transfer and clearance assays were performed in NOD mice to explore the role of this monocyte subset in islet inflammation and onset of type 1 diabetes. RESULTS The scRNA-seq data showed that upregulated genes in peripheral T cells and monocytes from early-onset LADA patients were primarily enriched in the IFN signalling pathway. A new cluster of classical monocytes (cluster 4) was identified, and the proportion of this cluster was significantly increased in individuals with LADA compared with healthy control individuals (11.93% vs 5.93%, p=0.017) and that exhibited a strong IFN signature marked by SIGLEC-1 (encoding sialoadhesin). These SIGLEC-1+ monocytes expressed high levels of genes encoding C-C chemokine receptors 1 or 2, as well as genes for chemoattractants for T cells and natural killer cells. They also showed relatively low levels of genes for co-stimulatory and HLA molecules. Flow cytometry analysis verified the elevated levels of SIGLEC-1+ monocytes in the peripheral blood of participants with LADA and paediatric type 1 diabetes compared with healthy control participants and those with type 2 diabetes. Interestingly, the proportion of SIGLEC-1+ monocytes positively correlated with disease activity and negatively with disease duration in the LADA patients. In NOD mice, the proportion of SIGLEC-1+ monocytes in the peripheral blood was highest at the age of 6 weeks (16.88%), while the peak occurred at 12 weeks in pancreatic tissues (23.65%). Adoptive transfer experiments revealed a significant acceleration in diabetes onset in the SIGLEC-1+ group compared with the SIGLEC-1- or saline control group. CONCLUSIONS/INTERPRETATION Our study identified a novel group of SIGLEC-1+ monocytes that may serve as an important indicator for early diagnosis, activity assessment and monitoring of therapeutic efficacy in type 1 diabetes, and may also be a novel target for preventing and treating type 1 diabetes. DATA AVAILABILITY RNA-seq data have been deposited in the GSA human database ( https://ngdc.cncb.ac.cn/gsa-human/ ) under accession number HRA003649.
Collapse
Affiliation(s)
- Mengqi Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Han Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jingjing Zhu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fei Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianni Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chuan Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yujie Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ying Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ran Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Qingdao, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Jing Zhou
- Institute of Immunology, Third Military Medical University, Chongqing, China.
| | - Shufa Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
8
|
Xu L, Huang C, Zheng X, Gao H, Zhang S, Zhu M, Dai X, Wang G, Wang J, Chen H, Zhu H, Chen Z. Elevated CD169 expressing monocyte/macrophage promotes systemic inflammation and disease progression in cirrhosis. Clin Exp Med 2024; 24:45. [PMID: 38413535 PMCID: PMC10899294 DOI: 10.1007/s10238-024-01305-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/27/2024] [Indexed: 02/29/2024]
Abstract
Systemic inflammation is related to disease progression and prognosis in patients with advanced cirrhosis. However, the mechanisms underlying the initiation of inflammation are still not fully understood. The role of CD169+ monocyte/macrophage in cirrhotic systemic inflammation was undetected. Flow cytometry analysis was used to detect the percentage and phenotypes of CD169+ monocytes as well as their proinflammatory function in patient-derived cirrhotic tissue and blood. Transcriptome differences between CD169+ and CD169- monocytes were also compared. Additionally, a mouse model with specific depletion of CD169+ monocytes/macrophages was utilized to define their role in liver injury and fibrosis. We observed increased CD169 expression in monocytes from cirrhotic patients, which was correlated with inflammatory cytokine production and disease progression. CD169+ monocytes simultaneously highly expressed M1- and M2-like markers and presented immune-activated profiles. We also proved that CD169+ monocytes robustly prevented neutrophil apoptosis. Depletion of CD169+ monocytes/macrophages significantly inhibited inflammation and liver necrosis in acute liver injury, but the spontaneous fibrin resolution after repeated liver injury was impaired. Our results indicate that CD169 defines a subset of inflammation-associated monocyte that correlates with disease development in patients with cirrhosis. This provides a possible therapeutic target for alleviating inflammation and improving survival in cirrhosis.
Collapse
Affiliation(s)
- Lichen Xu
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Chunhong Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiaoping Zheng
- Department of Pathology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, People's Republic of China
| | - Hainv Gao
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, People's Republic of China
| | - Sainan Zhang
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, People's Republic of China
| | - Mengfei Zhu
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, People's Republic of China
| | - Xiahong Dai
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, People's Republic of China
| | - Gang Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People's Republic of China
| | - Jie Wang
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Haolu Chen
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.
| |
Collapse
|
9
|
Akshay A, Katoch M, Shekarchizadeh N, Abedi M, Sharma A, Burkhard FC, Adam RM, Monastyrskaya K, Gheinani AH. Machine Learning Made Easy (MLme): a comprehensive toolkit for machine learning-driven data analysis. Gigascience 2024; 13:giad111. [PMID: 38206587 PMCID: PMC10783149 DOI: 10.1093/gigascience/giad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Machine learning (ML) has emerged as a vital asset for researchers to analyze and extract valuable information from complex datasets. However, developing an effective and robust ML pipeline can present a real challenge, demanding considerable time and effort, thereby impeding research progress. Existing tools in this landscape require a profound understanding of ML principles and programming skills. Furthermore, users are required to engage in the comprehensive configuration of their ML pipeline to obtain optimal performance. RESULTS To address these challenges, we have developed a novel tool called Machine Learning Made Easy (MLme) that streamlines the use of ML in research, specifically focusing on classification problems at present. By integrating 4 essential functionalities-namely, Data Exploration, AutoML, CustomML, and Visualization-MLme fulfills the diverse requirements of researchers while eliminating the need for extensive coding efforts. To demonstrate the applicability of MLme, we conducted rigorous testing on 6 distinct datasets, each presenting unique characteristics and challenges. Our results consistently showed promising performance across different datasets, reaffirming the versatility and effectiveness of the tool. Additionally, by utilizing MLme's feature selection functionality, we successfully identified significant markers for CD8+ naive (BACH2), CD16+ (CD16), and CD14+ (VCAN) cell populations. CONCLUSION MLme serves as a valuable resource for leveraging ML to facilitate insightful data analysis and enhance research outcomes, while alleviating concerns related to complex coding scripts. The source code and a detailed tutorial for MLme are available at https://github.com/FunctionalUrology/MLme.
Collapse
Affiliation(s)
- Akshay Akshay
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Mitali Katoch
- Institute of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Navid Shekarchizadeh
- Department of Medical Data Science, Leipzig University Medical Centre, 04107 Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, 04105 Leipzig, Germany
| | - Masoud Abedi
- Department of Medical Data Science, Leipzig University Medical Centre, 04107 Leipzig, Germany
| | - Ankush Sharma
- KG Jebsen Centre for B-cell Malignancies, Institute for Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Fiona C Burkhard
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, 02115 Boston, MA, USA
- Department of Surgery, Harvard Medical School, 02115 Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, 02142 MA, USA
| | - Katia Monastyrskaya
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
| | - Ali Hashemi Gheinani
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
- Urological Diseases Research Center, Boston Children's Hospital, 02115 Boston, MA, USA
- Department of Surgery, Harvard Medical School, 02115 Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, 02142 MA, USA
| |
Collapse
|
10
|
Jha A, Joseph J, Prabhu SB, Chaudhary A, Yadav B, Mathew J. Utility of peripheral blood monocyte subsets, circulating immune complexes and serum cytokines in assessment of SLE activity: an observational, cross-sectional study. Clin Rheumatol 2024; 43:209-217. [PMID: 38040877 DOI: 10.1007/s10067-023-06832-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
INTRODUCTION SLE disease measurements by current standards are less than perfect. Monocytes and their subsets are part of innate immunity, and one of our objectives was to look at their role in SLE disease activity. We also looked at the common serum cytokines and the role of circulating immune complex (CIC) estimation in the assessment of disease activity. METHODS We conducted a single-centre observational cross-sectional study of SLE patients with active and inactive disease as the comparison arms. Blood samples were collected for (a) peripheral blood monocyte separation and flowcytometric analysis of monocyte subsets based on CD14 and CD16 surface markers, and (b) ELISA for serum cytokines and CIC estimation. Results were analysed in terms of the difference in medians between the active and inactive disease groups using the Mann-Whitney U test (non-normally distributed data). RESULTS The absolute monocyte count was lower in the active group than the inactive group (median (IQR) of 329 (228.5) vs. 628 (257)/microliter, p = 0.001). The frequency (%) of the intermediate monocyte subset showed a trend towards an increase in active disease (median (IQR) of 15.10% (9.65) vs. 11.85% (8.00), p = 0.09). It also had a significant positive correlation to the SLEDAI scores (r = 0.33, p = 0.046). The mean fluorescence intensity (MFI) of CD163, expressed primarily by intermediate subsets, was increased, and CD11c MFI was reduced in active disease. Serum TNF-a level was elevated in active disease (median (IQR) of 38 (48.5) pg/ml vs. 9 (48.5) pg/ml, p = 0.042). CIC ELISA at an optimal cut-off of 10 meq/ml provided an area under the curve (AUC) of 0.85 for detecting active SLE. CONCLUSION Peripheral blood monocytes are depleted in active disease. The intermediate monocyte subset may have a role in disease activity. TNF-alpha correlated modestly with disease activity. CIC estimation by ELISA may be used in addition to or as an alternative to current standards of laboratory tests for the serological assessment of activity.
Collapse
Affiliation(s)
- Avanish Jha
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, Tamil Nadu, India.
| | - Josna Joseph
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Savit B Prabhu
- Wellcome trust research laboratory, Christian Medical College, Vellore, Tamil Nadu, India
| | - Anita Chaudhary
- Wellcome trust research laboratory, Christian Medical College, Vellore, Tamil Nadu, India
| | - Bijesh Yadav
- Department of Biostatistics, Christian Medical College, Vellore, Tamil Nadu, India
| | - John Mathew
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
11
|
Fanelli M, Petrone V, Maracchioni C, Chirico R, Cipriani C, Coppola L, Malagnino V, Teti E, Sorace C, Zordan M, Vitale P, Iannetta M, Balestrieri E, Rasi G, Grelli S, Malergue F, Sarmati L, Minutolo A, Matteucci C. Persistence of circulating CD169+monocytes and HLA-DR downregulation underline the immune response impairment in PASC individuals: the potential contribution of different COVID-19 pandemic waves. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100215. [PMID: 38187999 PMCID: PMC10767315 DOI: 10.1016/j.crmicr.2023.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
The use of CD169 as a marker of viral infection has been widely discussed in the context of COVID-19, and in particular, its crucial role in the early detection of SARS-CoV-2 infection and its association with the severity and clinical outcome of COVID-19 were demonstrated. COVID-19 patients show relevant systemic alteration and immunological dysfunction that persists in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC). It is critical to implement the characterization of the disease, focusing also on the possible impact of the different COVID-19 waves and the consequent effects found after infection. On this basis, we evaluated by flow cytometry the expression of CD169 and HLA-DR on monocytes from COVID-19 patients and PASC individuals to better elucidate their involvement in immunological dysfunction, also evaluating the possible impact of different pandemic waves. The results confirm CD169 RMFI is a good marker of viral infection. Moreover, COVID-19 patients and PASC individuals showed high percentage of CD169+ monocytes, but low percentage of HLA-DR+ monocytes and the alteration of systemic inflammatory indices. We have also observed alterations of CD169 and HLA-DR expression and indices of inflammation upon different COVID-19 waves. The persistence of specific myeloid subpopulations suggests a role of CD169+ monocytes and HLA-DR in COVID-19 disease and chronic post-infection inflammation, opening new opportunities to evaluate the impact of specific pandemic waves on the immune response impairment and systemic alterations with the perspective to provide new tools to monitoring new variants and diseases associated to emerging respiratory viruses.
Collapse
Affiliation(s)
- Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Christian Maracchioni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Rossella Chirico
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Luigi Coppola
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Vincenzo Malagnino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Elisabetta Teti
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Chiara Sorace
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Marta Zordan
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Pietro Vitale
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Marco Iannetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Guido Rasi
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
- Virology Unit, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Fabrice Malergue
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, 13009, France
| | - Loredana Sarmati
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| |
Collapse
|
12
|
King HAD, Pokkali S, Kim D, Brammer D, Song K, McCarthy E, Lehman C, Todd JP, Foulds KE, Darrah PA, Seder RA, Bolton DL, Roederer M. Immune Activation Profiles Elicited by Distinct, Repeated TLR Agonist Infusions in Rhesus Macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1643-1655. [PMID: 37861342 PMCID: PMC10656433 DOI: 10.4049/jimmunol.2300424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
TLR agonists are a promising class of immune system stimulants investigated for immunomodulatory applications in cancer immunotherapy and viral diseases. In this study, we sought to characterize the safety and immune activation achieved by different TLR agonists in rhesus macaques (Macaca mulatta), a useful preclinical model of complex immune interactions. Macaques received one of three TLR agonists, followed by plasma cytokine, immune cell subset representation, and blood cell activation measurements. The TLR4 agonist LPS administered i.v. induced very transient immune activation, including TNF-α expression and monocyte activation. The TLR7/8 agonist 2BXy elicited more persistent cytokine expression, including type I IFN, IL-1RA, and the proinflammatory IL-6, along with T cell and monocyte activation. Delivery of 2BXy i.v. and i.m. achieved comparable immune activation, which increased with escalating dose. Finally, i.v. bacillus Calmette-Guérin (BCG) vaccination (which activates multiple TLRs, especially TLR2/4) elicited the most pronounced and persistent innate and adaptive immune response, including strong induction of IFN-γ, IL-6, and IL-1RA. Strikingly, monocyte, T cell, and NK cell expression of the proliferation marker Ki67 increased dramatically following BCG vaccination. This aligned with a large increase in total and BCG-specific cells measured in the lung. Principal component analysis of the combined cytokine expression and cellular activation responses separated animals by treatment group, indicating distinct immune activation profiles induced by each agent. In sum, we report safe, effective doses and routes of administration for three TLR agonists that exhibit discrete immunomodulatory properties in primates and may be leveraged in future immunotherapeutic strategies.
Collapse
Affiliation(s)
- Hannah A. D. King
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Supriya Pokkali
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - Dohoon Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Daniel Brammer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - Kaimei Song
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | | | - Chelsea Lehman
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - John-Paul Todd
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | | | - Robert A. Seder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | - Diane L. Bolton
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| |
Collapse
|
13
|
Zwart ES, van Ee T, Affandi AJ, Boyd LNC, Rodriguez E, den Haan JMM, Farina A, van Grieken NCT, Meijer LL, van Kooyk Y, Mebius RE, Kazemier G. Spatial immune composition of tumor microenvironment in patients with pancreatic cancer. Cancer Immunol Immunother 2023; 72:4385-4397. [PMID: 37938368 PMCID: PMC10700423 DOI: 10.1007/s00262-023-03573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
Abstract
This study examined the composition of the immune microenvironment at different sites within resected pancreas specimens from patients with pancreatic ductal adenocarcinoma (PDAC). Therefore, single-cell suspensions were made from fresh tumor and non-tumorous tissue. Fourteen patients were included from whom twelve PDAC and five non-tumorous samples were obtained. These samples were analyzed with a nineteen marker panel on the Aurora spectral flow cytometer. Furthermore, slides from formalin-fixed paraffine PDACs of eight additional patients were stained with eight markers and analyzed by multispectral imaging. These corresponded to central tumor, periphery of the tumor, i.e., invasive front and resected lymph node and were divided into tumor and adjacent tissue. In the single-cell suspension, a decreased ratio between lymphoid and myeloid cells and between M1 and M2 macrophages was observed in the tumor tissue compared to non-tumorous tissue. Furthermore, an increase in CD169 + macrophages in patients undergoing neoadjuvant therapy was found. Using immunofluorescence, more macrophages compared to T cells were observed, as well as a lower ratio of CD8 to M2 macrophage, a higher ratio of CD4-CD8 T cells and a higher ratio of immune-suppressive cells to pro-inflammatory cells in the PDAC area compared to the adjacent non-tumorous tissue. Finally, there were more immune-suppressive cells in the central tumor area compared to the invasive front. In conclusion, we show a gradient in the immune-suppressive environment in PDAC from most suppressive in the central tumor to least suppressive in distant non-tumorous tissue.
Collapse
Affiliation(s)
- Eline S Zwart
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Thomas van Ee
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Alsya J Affandi
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Lenka N C Boyd
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ernesto Rodriguez
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Joke M M den Haan
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Arantza Farina
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole C T van Grieken
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Laura L Meijer
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Reina E Mebius
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Geert Kazemier
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Wijfjes Z, van Dalen FJ, Le Gall CM, Verdoes M. Controlling Antigen Fate in Therapeutic Cancer Vaccines by Targeting Dendritic Cell Receptors. Mol Pharm 2023; 20:4826-4847. [PMID: 37721387 PMCID: PMC10548474 DOI: 10.1021/acs.molpharmaceut.3c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Antigen-presenting cells (APCs) orchestrate immune responses and are therefore of interest for the targeted delivery of therapeutic vaccines. Dendritic cells (DCs) are professional APCs that excel in presentation of exogenous antigens toward CD4+ T helper cells, as well as cytotoxic CD8+ T cells. DCs are highly heterogeneous and can be divided into subpopulations that differ in abundance, function, and phenotype, such as differential expression of endocytic receptor molecules. It is firmly established that targeting antigens to DC receptors enhances the efficacy of therapeutic vaccines. While most studies emphasize the importance of targeting a specific DC subset, we argue that the differential intracellular routing downstream of the targeted receptors within the DC subset should also be considered. Here, we review the mouse and human receptors studied as target for therapeutic vaccines, focusing on antibody and ligand conjugates and how their targeting affects antigen presentation. We aim to delineate how targeting distinct receptors affects antigen presentation and vaccine efficacy, which will guide target selection for future therapeutic vaccine development.
Collapse
Affiliation(s)
- Zacharias Wijfjes
- Chemical
Immunology group, Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Floris J. van Dalen
- Chemical
Immunology group, Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Camille M. Le Gall
- Chemical
Immunology group, Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Martijn Verdoes
- Chemical
Immunology group, Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
15
|
Akshay A, Katoch M, Shekarchizadeh N, Abedi M, Sharma A, Burkhard FC, Adam RM, Monastyrskaya K, Gheinani AH. Machine Learning Made Easy (MLme): A Comprehensive Toolkit for Machine Learning-Driven Data Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.546825. [PMID: 37461685 PMCID: PMC10349995 DOI: 10.1101/2023.07.04.546825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Background Machine learning (ML) has emerged as a vital asset for researchers to analyze and extract valuable information from complex datasets. However, developing an effective and robust ML pipeline can present a real challenge, demanding considerable time and effort, thereby impeding research progress. Existing tools in this landscape require a profound understanding of ML principles and programming skills. Furthermore, users are required to engage in the comprehensive configuration of their ML pipeline to obtain optimal performance. Results To address these challenges, we have developed a novel tool called Machine Learning Made Easy (MLme) that streamlines the use of ML in research, specifically focusing on classification problems at present. By integrating four essential functionalities, namely Data Exploration, AutoML, CustomML, and Visualization, MLme fulfills the diverse requirements of researchers while eliminating the need for extensive coding efforts. To demonstrate the applicability of MLme, we conducted rigorous testing on six distinct datasets, each presenting unique characteristics and challenges. Our results consistently showed promising performance across different datasets, reaffirming the versatility and effectiveness of the tool. Additionally, by utilizing MLme's feature selection functionality, we successfully identified significant markers for CD8+ naive (BACH2), CD16+ (CD16), and CD14+ (VCAN) cell populations. Conclusion MLme serves as a valuable resource for leveraging machine learning (ML) to facilitate insightful data analysis and enhance research outcomes, while alleviating concerns related to complex coding scripts. The source code and a detailed tutorial for MLme are available at https://github.com/FunctionalUrology/MLme.
Collapse
Affiliation(s)
- Akshay Akshay
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Mitali Katoch
- Institute of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Navid Shekarchizadeh
- Department of Medical Data Science, Leipzig University Medical Centre, 04107 Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, 04105 Leipzig, Germany
| | - Masoud Abedi
- Department of Medical Data Science, Leipzig University Medical Centre, 04107 Leipzig, Germany
| | - Ankush Sharma
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Fiona C. Burkhard
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
| | - Rosalyn M. Adam
- Urological Diseases Research Center, Boston Children’s Hospital, MA, USA
- Harvard Medical School, Boston, Department of Surgery MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Katia Monastyrskaya
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
| | - Ali Hashemi Gheinani
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
- Urological Diseases Research Center, Boston Children’s Hospital, MA, USA
- Harvard Medical School, Boston, Department of Surgery MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
16
|
Russo E, Corrao S, Di Gaudio F, Alberti G, Caprnda M, Kubatka P, Kruzliak P, Miceli V, Conaldi PG, Borlongan CV, La Rocca G. Facing the Challenges in the COVID-19 Pandemic Era: From Standard Treatments to the Umbilical Cord-Derived Mesenchymal Stromal Cells as a New Therapeutic Strategy. Cells 2023; 12:1664. [PMID: 37371134 DOI: 10.3390/cells12121664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which counts more than 650 million cases and more than 6.6 million of deaths worldwide, affects the respiratory system with typical symptoms such as fever, cough, sore throat, acute respiratory distress syndrome (ARDS), and fatigue. Other nonpulmonary manifestations are related with abnormal inflammatory response, the "cytokine storm", that could lead to a multiorgan disease and to death. Evolution of effective vaccines against SARS-CoV-2 provided multiple options to prevent the infection, but the treatment of the severe forms remains difficult to manage. The cytokine storm is usually counteracted with standard medical care and anti-inflammatory drugs, but researchers moved forward their studies on new strategies based on cell therapy approaches. The perinatal tissues, such as placental membranes, amniotic fluid, and umbilical cord derivatives, are enriched in mesenchymal stromal cells (MSCs) that exert a well-known anti-inflammatory role, immune response modulation, and tissue repair. In this review, we focused on umbilical-cord-derived MSCs (UC-MSCs) used in in vitro and in vivo studies in order to evaluate the weakening of the severe symptoms, and on recent clinical trials from different databases, supporting the favorable potential of UC-MSCs as therapeutic strategy.
Collapse
Affiliation(s)
- Eleonora Russo
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Simona Corrao
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy
| | | | - Giusi Alberti
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University, University Hospital Bratislava, 81499 Bratislava, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03649 Martin, Slovakia
| | - Peter Kruzliak
- Research and Development Services, Pradlacka 18, 61300 Brno, Czech Republic
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy
| | - Cesario Venturina Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Giampiero La Rocca
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
17
|
Georgoulis V, Papoudou-Bai A, Makis A, Kanavaros P, Hatzimichael E. Unraveling the Immune Microenvironment in Classic Hodgkin Lymphoma: Prognostic and Therapeutic Implications. BIOLOGY 2023; 12:862. [PMID: 37372147 PMCID: PMC10294989 DOI: 10.3390/biology12060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Classic Hodgkin lymphoma (cHL) is a lymphoid neoplasm composed of rare neoplastic Hodgkin and Reed-Sternberg (HRS) cells surrounded by a reactive tumor microenvironment (TME) with suppressive properties against anti-tumor immunity. TME is mainly composed of T cells (CD4 helper, CD8 cytotoxic and regulatory) and tumor-associated macrophages (TAMs), but the impact of these cells on the natural course of the disease is not absolutely understood. TME contributes to the immune evasion of neoplastic HRS cells through the production of various cytokines and/or the aberrant expression of immune checkpoint molecules in ways that have not been fully understood yet. Herein, we present a comprehensive review of findings regarding the cellular components and the molecular features of the immune TME in cHL, its correlation with treatment response and prognosis, as well as the potential targeting of the TME with novel therapies. Among all cells, macrophages appear to be a most appealing target for immunomodulatory therapies, based on their functional plasticity and antitumor potency.
Collapse
Affiliation(s)
- Vasileios Georgoulis
- Department of Hematology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| | - Alexandra Papoudou-Bai
- Department of Pathology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| | - Alexandros Makis
- Department of Child Health, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 000 Ioannina, Greece;
| | - Eleftheria Hatzimichael
- Department of Hematology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| |
Collapse
|
18
|
Tadepalli S, Clements DR, Saravanan S, Hornero RA, Lüdtke A, Blackmore B, Paulo JA, Gottfried-Blackmore A, Seong D, Park S, Chan L, Kopecky BJ, Liu Z, Ginhoux F, Lavine KJ, Murphy JP, Mack M, Graves EE, Idoyaga J. Rapid recruitment and IFN-I-mediated activation of monocytes dictate focal radiotherapy efficacy. Sci Immunol 2023; 8:eadd7446. [PMID: 37294749 PMCID: PMC10340791 DOI: 10.1126/sciimmunol.add7446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/18/2023] [Indexed: 06/11/2023]
Abstract
The recruitment of monocytes and their differentiation into immunosuppressive cells is associated with the low efficacy of preclinical nonconformal radiotherapy (RT) for tumors. However, nonconformal RT (non-CRT) does not mimic clinical practice, and little is known about the role of monocytes after RT modes used in patients, such as conformal RT (CRT). Here, we investigated the acute immune response induced by after CRT. Contrary to non-CRT approaches, we found that CRT induces a rapid and robust recruitment of monocytes to the tumor that minimally differentiate into tumor-associated macrophages or dendritic cells but instead up-regulate major histocompatibility complex II and costimulatory molecules. We found that these large numbers of infiltrating monocytes are responsible for activating effector polyfunctional CD8+ tumor-infiltrating lymphocytes that reduce tumor burden. Mechanistically, we show that monocyte-derived type I interferon is pivotal in promoting monocyte accumulation and immunostimulatory function in a positive feedback loop. We also demonstrate that monocyte accumulation in the tumor microenvironment is hindered when RT inadvertently affects healthy tissues, as occurs in non-CRT. Our results unravel the immunostimulatory function of monocytes during clinically relevant modes of RT and demonstrate that limiting the exposure of healthy tissues to radiation has a positive therapeutic effect on the overall antitumor immune response.
Collapse
Affiliation(s)
- Sirimuvva Tadepalli
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Derek R. Clements
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sanjana Saravanan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Rebeca Arroyo Hornero
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Anja Lüdtke
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Beau Blackmore
- Department of Biology, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andres Gottfried-Blackmore
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Redwood City, CA 94063, USA
| | - David Seong
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
| | - Soyoon Park
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Leslie Chan
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Benjamin J. Kopecky
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institut Gustave Roussy, INSERM U1015, Bâtiment de Médecine Moléculaire, Villejuif 94800, France
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Republic of Singapore
| | - Kory J. Lavine
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John Patrick Murphy
- Department of Biology, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg 93053, Germany
| | - Edward E. Graves
- Department of Radiation Oncology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| |
Collapse
|
19
|
Park J, Dean LS, Jiyarom B, Gangcuangco LM, Shah P, Awamura T, Ching LL, Nerurkar VR, Chow DC, Igno F, Shikuma CM, Devendra G. Elevated circulating monocytes and monocyte activation in COVID-19 convalescent individuals. Front Immunol 2023; 14:1151780. [PMID: 37077911 PMCID: PMC10106598 DOI: 10.3389/fimmu.2023.1151780] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Background Monocytes and macrophages play a pivotal role in inflammation during acute SARS-CoV-2 infection. However, their contribution to the development of post-acute sequelae of SARS-CoV-2 infection (PASC) are not fully elucidated. Methods A cross-sectional study was conducted comparing plasma cytokine and monocyte levels among three groups: participants with pulmonary PASC (PPASC) with a reduced predicted diffusing capacity for carbon monoxide [DLCOc, <80%; (PG)]; fully recovered from SARS-CoV-2 with no residual symptoms (recovered group, RG); and negative for SARS-CoV-2 (negative group, NG). The expressions of cytokines were measured in plasma of study cohort by Luminex assay. The percentages and numbers of monocyte subsets (classical, intermediate, and non-classical monocytes) and monocyte activation (defined by CD169 expression) were analyzed using flow cytometry analysis of peripheral blood mononuclear cells. Results Plasma IL-1Ra levels were elevated but FGF levels were reduced in PG compared to NG. Circulating monocytes and three subsets were significantly higher in PG and RG compared to NG. PG and RG exhibited higher levels of CD169+ monocyte counts and higher CD169 expression was detected in intermediate and non-classical monocytes from RG and PG than that found in NG. Further correlation analysis with CD169+ monocyte subsets revealed that CD169+ intermediate monocytes negatively correlated with DLCOc%, and CD169+ non-classical monocytes positively correlated with IL-1α, IL-1β, MIP-1α, Eotaxin, and IFN-γ. Conclusion This study present evidence that COVID convalescents exhibit monocyte alteration beyond the acute COVID-19 infection period even in convalescents with no residual symptoms. Further, the results suggest that monocyte alteration and increased activated monocyte subsets may impact pulmonary function in COVID-19 convalescents. This observation will aid in understanding the immunopathologic feature of pulmonary PASC development, resolution, and subsequent therapeutic interventions.
Collapse
Affiliation(s)
- Juwon Park
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Logan S. Dean
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Boonyanudh Jiyarom
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Louie Mar Gangcuangco
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Parthav Shah
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, United States
| | - Thomas Awamura
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Lauren L. Ching
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Vivek R. Nerurkar
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Dominic C. Chow
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Fritzie Igno
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Cecilia M. Shikuma
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Gehan Devendra
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- Department of Pulmonary and Critical Care, Queen’s Medical Center, Honolulu, HI, United States
| |
Collapse
|
20
|
Varricchio L, Geer EB, Martelli F, Mazzarini M, Funnell A, Bieker JJ, Papayannopoulou T, Migliaccio AR. Patients with hypercortisolemic Cushing disease possess a distinct class of hematopoietic progenitor cells leading to erythrocytosis. Haematologica 2023; 108:1053-1067. [PMID: 35861015 PMCID: PMC10071118 DOI: 10.3324/haematol.2021.280542] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Although human cell cultures stimulated with dexamethasone suggest that the glucocorticoid receptor (GR) activates stress erythropoiesis, the effects of GR activation on erythropoiesis in vivo remain poorly understood. We characterized the phenotype of a large cohort of patients with Cushing disease, a rare condition associated with elevated cortisol levels. Results from hypercortisolemic patients with active Cushing disease were compared with those obtained from eucortisolemic patients after remission and from volunteers without the disease. Patients with active Cushing disease exhibited erythrocytosis associated with normal hemoglobin F levels. In addition, their blood contained elevated numbers of GR-induced CD163+ monocytes and a unique class of CD34+ cells expressing CD110, CD36, CD133 and the GR-target gene CXCR4. When cultured, these CD34+ cells generated similarly large numbers of immature erythroid cells in the presence and absence of dexamethasone, with raised expression of the GR-target gene GILZ. Of interest, blood from patients with Cushing disease in remission maintained high numbers of CD163+ monocytes and, although their CD34+ cells had a normal phenotype, these cells were unresponsive to added dexamethasone. Collectively, these results indicate that chronic exposure to excess glucocorticoids in vivo leads to erythrocytosis by generating erythroid progenitor cells with a constitutively active GR. Although remission rescues the erythrocytosis and the phenotype of the circulating CD34+ cells, a memory of other prior changes is maintained in remission.
Collapse
Affiliation(s)
- Lilian Varricchio
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eliza B Geer
- Multidisciplinary Pituitary and Skull Base Tumor Center, Departments of Medicine and Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome
| | - Maria Mazzarini
- Department of Biomedical and Neuromotorial Sciences, Alma Mater Studiorum University, Bologna, Italy; Altius Institute for Biomedical Sciences, Seattle, WA
| | | | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Anna Rita Migliaccio
- Altius Institute for Biomedical Sciences, Seattle, WA, USA; Center for Integrated Biomedical Research, Campus Bio-medico, Rome.
| |
Collapse
|
21
|
Guglietta S, Krieg C. Phenotypic and functional heterogeneity of monocytes in health and cancer in the era of high dimensional technologies. Blood Rev 2023; 58:101012. [PMID: 36114066 DOI: 10.1016/j.blre.2022.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022]
Abstract
Monocytes have been traditionally classified in three discrete subsets, which can participate in the immune responses as effector cells or as precursors of myeloid-derived cells in circulation and tissues. However, recent advances in single-cell omics have revealed unprecedented phenotypic and functional heterogeneity that goes well beyond the three conventional monocytic subsets and propose a more fluid differentiation model. This novel concept does not only apply to the monocytes in circulation but also at the tissue site. Consequently, the binary model proposed for differentiating monocyte into M1 and M2 macrophages has been recently challenged by a spectrum model that more realistically mirrors the heterogeneous cues in inflammatory conditions. This review describes the latest results on the high dimensional characterization of monocytes and monocyte-derived myeloid cells in steady state and cancer. We discuss how environmental cues and monocyte-intrinsic properties may affect their differentiation toward specific functional and phenotypic subsets, the causes of monocyte expansion and reduction in cancer, their metabolic requirements, and the potential effect on tumor immunity.
Collapse
Affiliation(s)
- Silvia Guglietta
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina (MUSC), 173 Ashley Avenue, CRI609, Charleston, SC 29425, USA.
| | - Carsten Krieg
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina (MUSC), 68 President Street, BE415, Charleston, SC 29425, USA; Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
22
|
Hu X, Li S, Shi Z, Lin WJ, Yang Y, Li Y, Li H, Xu Y, Zhou M, Tang Y. Partial Ablation of Astrocytes Exacerbates Cerebral Infiltration of Monocytes and Neuronal Loss After Brain Stab Injury in Mice. Cell Mol Neurobiol 2023; 43:893-905. [PMID: 35437650 DOI: 10.1007/s10571-022-01224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/31/2022] [Indexed: 11/03/2022]
Abstract
In traumatic brain injury (TBI), mechanical injury results in instantaneous tissue damages accompanied by subsequent pro-inflammatory cascades composed of microgliosis and astrogliosis. However, the interactive roles between microglia and astrocytes during the pathogenesis of TBI remain unclear and sometimes debatable. In this study, we used a forebrain stab injury mouse model to investigate the pathological role of reactive astrocytes in cellular and molecular changes of inflammatory response following TBI. In the ipsilateral hemisphere of stab-injured brain, monocyte infiltration and neuronal loss, as well as increased elevated astrogliosis, microglia activation and inflammatory cytokines were observed. To verify the role of reactive astrocytes in TBI, local and partial ablation of astrocytes was achieved by stereotactic injection of diphtheria toxin in the forebrain of Aldh1l1-CreERT2::Ai9::iDTR transgenic mice which expressed diphtheria toxin receptor (DTR) in astrocytes after tamoxifen induction. This strategy achieved about 20% of astrocytes reduction at the stab site as validated by immunofluorescence co-staining of GFAP with tdTomato-positive astrocytes. Interestingly, reduction of astrocytes showed increased microglia activation and monocyte infiltration, accompanied with increased severity in stab injury-induced neuronal loss when compared with DTR-/- mice, together with elevation of inflammatory chemokines such as CCL2, CCL5 and CXCL10 in astrogliosis-reduced mice. Collectively, our data verified the interactive role of astrocytes as an immune modulator in suppressing inflammatory responses in the injured brain. Schematic diagram shows monocyte infiltration and neuronal loss, as well as increased elevated astrogliosis, microglia activation and chemokines were observed in the injured site after stab injury. Local and partial ablation of astrocytes led to increased microglia activation and monocyte infiltration, accompanied with increased severity in neuronal loss together with elevation of inflammatory chemokines as compared with control mice subjected stab injury.
Collapse
Affiliation(s)
- Xia Hu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shaojian Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, 510120, China
| | - Zhongshan Shi
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, 510120, China
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuhua Yang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, 510120, China
| | - Yi Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, 510120, China
| | - Honghong Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, 510120, China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, 510120, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, 510120, China. .,Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
23
|
Reproducing extracellular matrix adverse remodelling of non-ST myocardial infarction in a large animal model. Nat Commun 2023; 14:995. [PMID: 36813782 PMCID: PMC9945840 DOI: 10.1038/s41467-023-36350-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023] Open
Abstract
The rising incidence of non-ST-segment elevation myocardial infarction (NSTEMI) and associated long-term high mortality constitutes an urgent clinical issue. Unfortunately, the study of possible interventions to treat this pathology lacks a reproducible pre-clinical model. Indeed, currently adopted small and large animal models of MI mimic only full-thickness, ST-segment-elevation (STEMI) infarcts, and hence cater only for an investigation into therapeutics and interventions directed at this subset of MI. Thus, we develop an ovine model of NSTEMI by ligating the myocardial muscle at precise intervals parallel to the left anterior descending coronary artery. Upon histological and functional investigation to validate the proposed model and comparison with STEMI full ligation model, RNA-seq and proteomics show the distinctive features of post-NSTEMI tissue remodelling. Transcriptome and proteome-derived pathway analyses at acute (7 days) and late (28 days) post-NSTEMI pinpoint specific alterations in cardiac post-ischaemic extracellular matrix. Together with the rise of well-known markers of inflammation and fibrosis, NSTEMI ischaemic regions show distinctive patterns of complex galactosylated and sialylated N-glycans in cellular membranes and extracellular matrix. Identifying such changes in molecular moieties accessible to infusible and intra-myocardial injectable drugs sheds light on developing targeted pharmacological solutions to contrast adverse fibrotic remodelling.
Collapse
|
24
|
CD169 + Macrophages in Primary Breast Tumors Associate with Tertiary Lymphoid Structures, T regs and a Worse Prognosis for Patients with Advanced Breast Cancer. Cancers (Basel) 2023; 15:cancers15041262. [PMID: 36831605 PMCID: PMC9954705 DOI: 10.3390/cancers15041262] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The presence of CD169+ macrophages in the draining lymph nodes of cancer patients is, for unknown reasons, associated with a beneficial prognosis. We here investigated the prognostic impact of tumor-infiltrating CD169+ macrophages in primary tumors (PTs) and their spatial relation to tumor-infiltrating B and T cells. Using two breast cancer patient cohorts, we show that CD169+ macrophages were spatially associated with the presence of B and T cell tertiary lymphoid-like structures (TLLSs) in both PTs and lymph node metastases (LNMs). While co-infiltration of CD169+/TLLS in PTs correlated with a worse prognosis, the opposite was found when present in LNMs. RNA sequencing of breast tumors further confirmed that SIGLEC1 (CD169) expression was associated with mature tertiary lymphoid structure (TLS), and Treg and Breg signatures. We propose that the negative prognostic value related to CD169+ macrophages in PTs is a consequence of an immunosuppressive tumor environment rich in TLSs, Tregs and Bregs.
Collapse
|
25
|
Vangeti S, Falck-Jones S, Yu M, Österberg B, Liu S, Asghar M, Sondén K, Paterson C, Whitley P, Albert J, Johansson N, Färnert A, Smed-Sörensen A. Human influenza virus infection elicits distinct patterns of monocyte and dendritic cell mobilization in blood and the nasopharynx. eLife 2023; 12:77345. [PMID: 36752598 PMCID: PMC9977282 DOI: 10.7554/elife.77345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
During respiratory viral infections, the precise roles of monocytes and dendritic cells (DCs) in the nasopharynx in limiting infection and influencing disease severity are incompletely described. We studied circulating and nasopharyngeal monocytes and DCs in healthy controls (HCs) and in patients with mild to moderate infections (primarily influenza A virus [IAV]). As compared to HCs, patients with acute IAV infection displayed reduced DC but increased intermediate monocytes frequencies in blood, and an accumulation of most monocyte and DC subsets in the nasopharynx. IAV patients had more mature monocytes and DCs in the nasopharynx, and higher levels of TNFα, IL-6, and IFNα in plasma and the nasopharynx than HCs. In blood, monocytes were the most frequent cellular source of TNFα during IAV infection and remained responsive to additional stimulation with TLR7/8L. Immune responses in older patients skewed towards increased monocyte frequencies rather than DCs, suggesting a contributory role for monocytes in disease severity. In patients with other respiratory virus infections, we observed changes in monocyte and DC frequencies in the nasopharynx distinct from IAV patients, while differences in blood were more similar across infection groups. Using SomaScan, a high-throughput aptamer-based assay to study proteomic changes between patients and HCs, we found differential expression of innate immunity-related proteins in plasma and nasopharyngeal secretions of IAV and SARS-CoV-2 patients. Together, our findings demonstrate tissue-specific and pathogen-specific patterns of monocyte and DC function during human respiratory viral infections and highlight the importance of comparative investigations in blood and the nasopharynx.
Collapse
Affiliation(s)
- Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Sara Falck-Jones
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Björn Österberg
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Sang Liu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Muhammad Asghar
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | | | | | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetStockholmSweden
- Department of Clinical Microbiology, Karolinska University HospitalStockholmSweden
| | - Niclas Johansson
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| |
Collapse
|
26
|
Fosado R, Soto-Hernández JE, Núñez-Anita RE, Aceves C, Berumen LC, Mendieta I. Neuroendocrine Differentiation of Lung Cancer Cells Impairs the Activation of Antitumor Cytotoxic Responses in Mice. Int J Mol Sci 2023; 24:ijms24020990. [PMID: 36674504 PMCID: PMC9865473 DOI: 10.3390/ijms24020990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Lung cancer has the highest mortality among all types of cancer; during its development, cells can acquire neural and endocrine properties that affect tumor progression by releasing several factors, some acting as immunomodulators. Neuroendocrine phenotype correlates with invasiveness, metastasis, and low survival rates. This work evaluated the effect of neuroendocrine differentiation of adenocarcinoma on the mouse immune system. A549 cells were treated with FSK (forskolin) and IBMX (3-Isobutyl-1-methylxanthine) for 96 h to induce neuroendocrine differentiation (NED). Systemic effects were assessed by determining changes in circulating cytokines and immune cells of BALB/c mice immunized with PBS, undifferentiated A549 cells, or neuroendocrine A549NED cells. A549 cells increased circulating monocytes, while CD4+CD8- and CD4+CD8+ T cells increased in mice immunized with neuroendocrine cells. IL-2 and IL-10 increased in mice that received untreated A549 cells, suggesting that the immune system mounts a regulated response against adenocarcinoma, which did not occur with A549NED cells. Cocultures demonstrated the cytotoxic capacity of PBMCs when confronted with A549 cells, while in the presence of neuroendocrine cells they not only were unable to show cytolytic activity, but also lost viability. Neuroendocrine differentiation seems to mount less of an immune response when injected in mice, which may contribute to the poor prognosis of cancer patients affected by this pathology.
Collapse
Affiliation(s)
- Ricardo Fosado
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
| | - Jazmín E. Soto-Hernández
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
| | - Rosa Elvira Núñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro 58893, Mexico
| | - Carmen Aceves
- Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, Mexico
| | - Laura C. Berumen
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
| | - Irasema Mendieta
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, Mexico
- Correspondence: ; Tel.: +52-442-192-12-00 (ext. 5529)
| |
Collapse
|
27
|
Takahama S, Ishige K, Nogimori T, Yasutomi Y, Appay V, Yamamoto T. Model for predicting age-dependent safety and immunomodulatory effects of STING ligands in non-human primates. Mol Ther Methods Clin Dev 2022; 28:99-115. [PMID: 36620070 PMCID: PMC9813482 DOI: 10.1016/j.omtm.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Stimulator of interferon genes (STING) is a cytoplasmic dinucleotide sensor used as an immunomodulatory agent for cancer treatment. The efficacy of the STING ligand (STING-L) against various tumors has been evaluated in mouse models; however, its safety and efficacy in non-human primates have not been reported. We examined the effects of escalating doses of cyclic-di-adenosine monophosphate (c-di-AMP) or cyclic [G (3',5')pA (3',5'p] (3'-3'-cGAMP) administered intramuscularly or intravenously to cynomolgus macaques. Both ligands induced transient local and systemic inflammatory responses and systemic immunomodulatory responses, including the upregulation of interferon-α (IFN-α) and IFN-γ expression and the activation of multiple immunocompetent cell subsets. Better immunological responses were observed in animals that received c-di-AMP compared with those that received 3'-3'-cGAMP. Multi-parameter analysis using a dataset obtained before administering the ligands predicted the efficacy outcome partially. Importantly, the efficacy of these ligands was reduced in older macaques. We propose that 0.5 mg/kg c-di-AMP via intramuscular administration should be the optimal starting point for clinical studies. Our study is the first to demonstrate the age-dependent safety and efficacy of STING-L in non-human primates and supports the potential of STING-L use as a direct immunomodulator in vivo.
Collapse
Affiliation(s)
- Shokichi Takahama
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Kazuya Ishige
- Biochemicals Division, Yamasa Corporation, Chiba 288-0056, Japan
| | - Takuto Nogimori
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 305-0843, Japan
| | - Victor Appay
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan,Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
| | - Takuya Yamamoto
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan,Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan,Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan,Laboratory of Translational Cancer Immunology and Biology, Next-generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka 541-8567, Japan,Corresponding author: Takuya Yamamoto, Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan.
| |
Collapse
|
28
|
Mortezaee K, Majidpoor J. Cellular immune states in SARS-CoV-2-induced disease. Front Immunol 2022; 13:1016304. [PMID: 36505442 PMCID: PMC9726761 DOI: 10.3389/fimmu.2022.1016304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
The general immune state plays important roles against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Cells of the immune system are encountering rapid changes during the acute phase of SARS-CoV-2-induced disease. Reduced fraction of functional CD8+ T cells, disrupted cross-talking between CD8+ T cells with dendritic cells (DCs), and impaired immunological T-cell memory, along with the higher presence of hyperactive neutrophils, high expansion of myeloid-derived suppressor cells (MDSCs) and non-classical monocytes, and attenuated cytotoxic capacity of natural killer (NK) cells, are all indicative of low efficient immunity against viral surge within the body. Immune state and responses from pro- or anti-inflammatory cells of the immune system to SARS-CoV-2 are discussed in this review. We also suggest some strategies to enhance the power of immune system against SARS-CoV-2-induced disease.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran,*Correspondence: Keywan Mortezaee, ;
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
29
|
Herzog S, Fragkou PC, Arneth BM, Mkhlof S, Skevaki C. Myeloid CD169/Siglec1: An immunoregulatory biomarker in viral disease. Front Med (Lausanne) 2022; 9:979373. [PMID: 36213653 PMCID: PMC9540380 DOI: 10.3389/fmed.2022.979373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
CD169, also known as Siglec1 or Sialoadhesin (Sn), is a surface adhesion molecule on human myeloid cells. Being part of the Siglec family, it acts as a receptor for sialylated molecular structures, which are found among various pathogenic and non-pathogenic ligands. Recent data suggest that CD169 may represent a promising new biomarker in acute respiratory and non-respiratory viral infections, such as SARS-CoV-2, Respiratory syncytial virus (RSV) and Human immunodeficiency virus (HIV). Therein lies a great potential to sufficiently differentiate viral from bacterial infection, which has been an incessant challenge in the clinical management of infectious disease. CD169 equips myeloid cells with functions, reaching far beyond pathogen elimination. In fact, CD169 seems to crosslink innate and adaptive immunity by antigen presentation and consecutive pathogen elimination, embodying a substantial pillar of immunoregulation. Yet, our knowledge about the kinetics, mechanisms of induction, signaling pathways and its precise role in host-pathogen interaction remains largely obscure. In this review, we describe the role of CD169 as a potentially novel diagnostic biomarker for respiratory viral infection by evaluating its strengths and weaknesses and considering host factors that are involved in pathogenesis of virus infection. Finally, this brief review aims to point out shortcomings of available evidence, thus, guiding future work revolving the topic.
Collapse
Affiliation(s)
- Silva Herzog
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Justus Liebig University Giessen, Giessen, Germany
- The European Society of Clinical Microbiology and Infection (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
| | - Paraskevi C. Fragkou
- The European Society of Clinical Microbiology and Infection (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Borros M. Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Justus Liebig University Giessen, Giessen, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-University Marburg, Marburg, Germany
| | - Samr Mkhlof
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Justus Liebig University Giessen, Giessen, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-University Marburg, Marburg, Germany
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Justus Liebig University Giessen, Giessen, Germany
- The European Society of Clinical Microbiology and Infection (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-University Marburg, Marburg, Germany
- Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
- *Correspondence: Chrysanthi Skevaki,
| |
Collapse
|
30
|
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, orchestrating innate and adaptive immunity during infections, autoimmune diseases, and malignancies. Since the discovery of DCs almost 50 years ago, our understanding of their biology in humans has increased substantially. Here, we review both antitumor and tolerogenic DC responses in cancer and discuss lineage-specific contributions by their functionally specialized subsets, including the conventional DC (cDC) subsets cDC1 and cDC2, the newly described DC3, and the plasmacytoid DCs (pDCs), focusing on the human setting. In addition, we review the lineage-unrestricted "mature DCs enriched in immunoregulatory molecules" (mregDC) state recently described across different human tumors.
Collapse
Affiliation(s)
- Egle Kvedaraite
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore.,Inserm U1015, Gustave Roussy, Villejuif 94800, France.,Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
31
|
Nijen Twilhaar MK, Czentner L, Bouma RG, Olesek K, Grabowska J, Wang AZ, Affandi AJ, Belt SC, Kalay H, van Nostrum CF, van Kooyk Y, Storm G, den Haan JMM. Incorporation of Toll-Like Receptor Ligands and Inflammasome Stimuli in GM3 Liposomes to Induce Dendritic Cell Maturation and T Cell Responses. Front Immunol 2022; 13:842241. [PMID: 35251040 PMCID: PMC8895246 DOI: 10.3389/fimmu.2022.842241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer vaccination aims to activate immunity towards cancer cells and can be achieved by delivery of cancer antigens together with immune stimulatory adjuvants to antigen presenting cells (APC). APC maturation and antigen processing is a subsequent prerequisite for T cell priming and anti-tumor immunity. In order to specifically target APC, nanoparticles, such as liposomes, can be used for the delivery of antigen and adjuvant. We have previously shown that liposomal inclusion of the ganglioside GM3, an endogenous ligand for CD169, led to robust uptake by CD169-expressing APC and resulted in strong immune responses when supplemented with a soluble adjuvant. To minimize the adverse effects related to a soluble adjuvant, immune stimulatory molecules can be incorporated in liposomes to achieve targeted delivery of both antigen and adjuvant. In this study, we incorporated TLR4 (MPLA) or TLR7/8 (3M-052) ligands in combination with inflammasome stimuli, 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC) or muramyl dipeptide (MDP), into GM3 liposomes. Incorporation of TLR and inflammasome ligands did not interfere with the uptake of GM3 liposomes by CD169-expressing cells. GM3 liposomes containing a TLR ligand efficiently matured human and mouse dendritic cells in vitro and in vivo, while inclusion of PGPC or MDP had minor effects on maturation. Immunization with MPLA-containing GM3 liposomes containing an immunogenic synthetic long peptide stimulated CD4+ and CD8+ T cell responses, but additional incorporation of either PGPC or MDP did not translate into stronger immune responses. In conclusion, our study indicates that TLRL-containing GM3 liposomes are effective vectors to induce DC maturation and T cell priming and thus provide guidance for further selection of liposomal components to optimally stimulate anti-cancer immune responses.
Collapse
Affiliation(s)
- Maarten K. Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lucas Czentner
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Rianne G. Bouma
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Katarzyna Olesek
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Aru Zeling Wang
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alsya J. Affandi
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Saskia C. Belt
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
32
|
Bekeschus S, Ispirjan M, Freund E, Kinnen F, Moritz J, Saadati F, Eckroth J, Singer D, Stope MB, Wende K, Ritter CA, Schroeder HWS, Marx S. Gas Plasma Exposure of Glioblastoma Is Cytotoxic and Immunomodulatory in Patient-Derived GBM Tissue. Cancers (Basel) 2022; 14:cancers14030813. [PMID: 35159079 PMCID: PMC8834374 DOI: 10.3390/cancers14030813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Despite treatment advances, glioblastoma multiforme (GBM) remains an often-fatal disease, motivating novel therapeutic avenues. Gas plasma is a technology that has been recently employed in preclinical oncology research and acts primarily via reactive oxygen-species-induced cell death. In addition, the modulation of immune processes and inflammation have been ascribed to gas plasma exposure. This is the first study that extends those observations from in vitro investigations to a set of 16 patient-derived GBM tumor biopsies analyzed after gas plasma treatment ex vivo. Besides cell culture results showing cell cycle arrest and apoptosis induction, an immunomodulatory potential was identified for gas plasma exposure in vitro and cultured GBM tissues. The proapoptotic action shown in this study might be an important step forward to the first clinical observational studies on the future discovery of gas plasma technology’s potential in neurosurgery and neuro-oncology. Abstract Glioblastoma multiforme (GBM) is the most common primary malignant adult brain tumor. Therapeutic options for glioblastoma are maximal surgical resection, chemotherapy, and radiotherapy. Therapy resistance and tumor recurrence demand, however, new strategies. Several experimental studies have suggested gas plasma technology, a partially ionized gas that generates a potent mixture of reactive oxygen species (ROS), as a future complement to the existing treatment arsenal. However, aspects such as immunomodulation, inflammatory consequences, and feasibility studies using GBM tissue have not been addressed so far. In vitro, gas plasma generated ROS that oxidized cells and led to a treatment time-dependent metabolic activity decline and G2 cell cycle arrest. In addition, peripheral blood-derived monocytes were co-cultured with glioblastoma cells, and immunomodulatory surface expression markers and cytokine release were screened. Gas plasma treatment of either cell type, for instance, decreased the expression of the M2-macrophage marker CD163 and the tolerogenic molecule SIGLEC1 (CD169). In patient-derived GBM tissue samples exposed to the plasma jet kINPen ex vivo, apoptosis was significantly increased. Quantitative chemokine/cytokine release screening revealed gas plasma exposure to significantly decrease 5 out of 11 tested chemokines and cytokines, namely IL-6, TGF-β, sTREM-2, b-NGF, and TNF-α involved in GBM apoptosis and immunomodulation. In summary, the immuno-modulatory and proapoptotic action shown in this study might be an important step forward to first clinical observational studies on the future discovery of gas plasma technology’s potential in neurosurgery and neuro-oncology especially in putative adjuvant or combinatory GBM treatment settings.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Correspondence:
| | - Mikael Ispirjan
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Frederik Kinnen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
| | - Juliane Moritz
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Fariba Saadati
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Jacqueline Eckroth
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, Bonn University Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Christoph A. Ritter
- Department of Clinical Pharmaceutics, University of Greifswald, Felix-Hausdorff-Str. 1, 17489 Greifswald, Germany;
| | - Henry W. S. Schroeder
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
| | - Sascha Marx
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
33
|
With great power comes great responsibility: high-dimensional spectral flow cytometry to support clinical trials. Bioanalysis 2021; 13:1597-1616. [PMID: 34708658 DOI: 10.4155/bio-2021-0201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Flow cytometry is a powerful technology used in research, drug development and clinical sample analysis for cell identification and characterization, allowing for the simultaneous interrogation of multiple targets on various cell subsets from limited samples. Recent advancements in instrumentation and fluorochrome availability have resulted in significant increases in the complexity and dimensionality of flow cytometry panels. Though this increase in panel size allows for detection of a broader range of markers and sub-populations, even in restricted biological samples, it also comes with many challenges in panel design, optimization, and downstream data analysis and interpretation. In the current paper we describe the practices we established for development of high-dimensional panels on the Aurora spectral flow cytometer to aid clinical sample analysis.
Collapse
|