1
|
da Silva KN, Marim FM, Rocha GV, Costa-Ferro ZSM, França LSDA, Nonaka CKV, Paredes BD, Rossi EA, Loiola EC, Adanho CSA, Cunha RS, Silva MMAD, Cruz FF, Costa VV, Zanette DL, Rocha CAG, Aguiar RS, Rocco PRM, Souza BSDF. Functional heterogeneity of mesenchymal stem cells and their therapeutic potential in the K18-hACE2 mouse model of SARS-CoV-2 infection. Stem Cell Res Ther 2025; 16:15. [PMID: 39849557 PMCID: PMC11756204 DOI: 10.1186/s13287-024-04086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/28/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Despite many years of investigation into mesenchymal stem cells (MSCs) and their potential for treating inflammatory conditions such as COVID-19, clinical outcomes remain variable due to factors like donor variability, different tissue sources, and diversity within MSC populations. Variations in MSCs' secretory and proliferation profiles, and their proteomic and transcriptional characteristics significantly influence their therapeutic potency, highlighting the need for enhanced characterization methods to better predict their efficacy. This study aimed to evaluate the biological characteristics of MSCs from different tissue origins, selecting the most promising line for further validation in a K18-hACE2 mouse model of SARS-CoV-2 infection. METHODS We studied nine MSC lines sourced from either bone marrow (hBMMSC), dental pulp (hDPMSC), or umbilical cord tissue (hUCMSC). The cells were assessed for their proliferative capacity, immunophenotype, trilineage differentiation, proteomic profile, and in vitro immunomodulatory potential by co-culture with activated lymphocytes. The most promising MSC line was selected for further experimental validation using the K18-hACE2 mouse model of SARS-CoV-2 infection. RESULTS The analyzed cells met the minimum criteria for defining MSCs, including the expression of surface molecules and differentiation capacity, showing genetic stability and proliferative potential. Proteomic analysis revealed distinct protein profiles that correlate with the tissue origin of MSCs. The immunomodulatory response exhibited variability, lacking a discernible pattern associated with their origin. In co-culture assays with lymphocytes activated with anti-CD3/CD28 beads, all MSC lines demonstrated the ability to inhibit TNF-α, to induce TGF-β and Indoleamine 2,3-dioxygenase (IDO), with varying degrees of inhibition observed for IFN-γ and IL-6, or induction of IL-10 expression. A module of proteins was found to statistically correlate with the potency of IL-6 modulation, leading to the selection of one of the hUCMSCs as the most promising line. Administration of hUCMSC to SARS-CoV-2-infected K18 mice expressing hACE2 was effective in improving lung histology and modulating of a panel of cytokines. CONCLUSIONS Our study assessed MSCs derived from various tissues, uncovering significant variability in their characteristics and immunomodulatory capacities. Particularly, hUCMSCs demonstrated potential in mitigating lung pathology in a SARS-CoV-2 infection model, suggesting their promising therapeutic efficacy.
Collapse
Affiliation(s)
- Kátia Nunes da Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Fernanda Martins Marim
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gisele Vieira Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | | | | | | | | | - Erik Aranha Rossi
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Erick Correia Loiola
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | | | - Rachel Santana Cunha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Mayck Medeiros Amaral da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian Vasconcelos Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Clarissa Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Renato Santana Aguiar
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil.
| |
Collapse
|
2
|
Farnesi-de-Assunção TS, Oliveira-Scussel ACDM, Rodrigues WF, Matos BS, da Silva DAA, de Andrade E Silva LE, Mundim FV, Helmo FR, Bernardes E Borges AV, Desidério CS, Trevisan RO, Obata MMS, Barbosa LM, Lemes MR, Costa-Madeira JC, Barbosa RM, Cunha ACCH, Pereira LQ, Tanaka SCSV, de Vito FB, Monteiro IB, Ferreira YM, Machado GH, Moraes-Souza H, Rodrigues DBR, de Oliveira CJF, da Silva MV, Júnior VR. COVID-19 Inflammatory Syndrome: Lessons from TNFRI and CRP about the Risk of Death in Severe Disease. Biomedicines 2024; 12:2138. [PMID: 39335653 PMCID: PMC11428742 DOI: 10.3390/biomedicines12092138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Cytokine storm in severe COVID-19 is responsible for irreversible tissue damage and death. Soluble mediators from the TNF superfamily, their correlation with clinical outcome, and the use of TNF receptors as a potent predictor for clinical outcome were evaluated. Methods: Severe COVID-19 patients had the levels of soluble mediators from the TNF superfamily quantified and categorized according to the clinical outcome (death versus survival). Statistical modeling was performed to predict clinical outcomes. Results: COVID-19 patients have elevated serum levels from the TNF superfamily. Regardless of sex and age, the sTNFRI levels were observed to be significantly higher in deceased patients from the first weeks following the onset of symptoms. We analyzed hematological parameters and inflammatory markers, and there was a difference between the groups for the following factors: erythrocytes, hemoglobin, hematocrit, leukocytes, neutrophils, band cells, lymphocytes, monocytes, CRP, IL-8, IFN-γ, IL-10, IL-6, IL-4, IL-2, leptin MIF sCD40L, and sTNFRI (p < 0.05). A post hoc analysis showed an inferential capacity over 70% for some hematological markers, CRP, and inflammatory mediators in deceased patients. sTNFRI was strongly associated with death, and the sTNFRI/sTNFRII ratio differed between outcomes (p < 0.001; power above 90%), highlighting the impact of these proteins on clinical results. The final logistic model, including sTNFRI/sTNFRII and CRP, indicated high sensitivity, specificity, accuracy, and an eight-fold higher odds ratio for an unfavorable outcome. Conclusions: The joint use of the sTNFRI/sTNFRII ratio with CRP proves to be a promising tool to assist in the clinical management of patients hospitalized for COVID-19.
Collapse
Affiliation(s)
| | | | - Wellington Francisco Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Beatriz Sodré Matos
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Djalma Alexandre Alves da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Leonardo Eurípedes de Andrade E Silva
- Clinical Analysis and Pathological Anatomy Laboratory, Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Fabiano Vilela Mundim
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Fernanda Rodrigues Helmo
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | | | - Chamberttan Souza Desidério
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Rafael Obata Trevisan
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Malu Mateus Santos Obata
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Laís Milagres Barbosa
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Marcela Rezende Lemes
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Juliana Cristina Costa-Madeira
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Rafaela Miranda Barbosa
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | | | - Loren Queli Pereira
- Hematological Research Laboratory, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | | | | | - Ivan Borges Monteiro
- UNIMED São Domingos Hospital, Uberaba 38025-110, MG, Brazil
- Alencar Gomes da Silva Regional Hospital, Uberaba 38060-200, MG, Brazil
| | | | | | - Hélio Moraes-Souza
- Hematological Research Laboratory, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Denise Bertulucci Rocha Rodrigues
- Centro de Formação Especial em Saúde (CEFORES), Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
- Department of Immunology, Medical School, University of Uberaba, Uberaba 38010-200, MG, Brazil
| | - Carlo José Freire de Oliveira
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Virmondes Rodrigues Júnior
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| |
Collapse
|
3
|
Cho HC, Kim Y, Cho YI, Park J, Choi KS. Evaluation of bovine coronavirus in Korean native calves challenged through different inoculation routes. Vet Res 2024; 55:74. [PMID: 38863015 PMCID: PMC11165853 DOI: 10.1186/s13567-024-01331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine coronavirus (BCoV) is a pneumoenteric virus that can infect the digestive and respiratory tracts of cattle, resulting in economic losses. Despite its significance, information regarding BCoV pathogenesis is limited. Hence, we investigated clinical signs, patterns of viral shedding, changes in antibody abundance, and cytokine/chemokine production in calves inoculated with BCoV via intranasal and oral. Six clinically healthy Korean native calves (< 30 days old), initially negative for BCoV, were divided into intranasal and oral groups and monitored for 15 days post-infection (dpi). BCoV-infected calves exhibited clinical signs such as nasal discharge and diarrhea, starting at 3 dpi and recovering by 12 dpi, with nasal discharge being the most common symptoms. Viral RNA was detected in nasal and fecal samples from all infected calves. Nasal shedding occurred before fecal shedding regardless of the inoculation route; however, fecal shedding persisted longer. Although the number of partitions was very few, viral RNA was identified in the blood of two calves in the oral group at 7 dpi and 9 dpi using digital RT-PCR analysis. The effectiveness of maternal antibodies in preventing viral replication and shedding appeared limited. Our results showed interleukin (IL)-8 as the most common and highly induced chemokine. During BCoV infection, the levels of IL-8, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1β were significantly affected, suggesting that these emerge as potential and reliable biomarkers for predicting BCoV infection. This study underscores the importance of BCoV as a major pathogen causing diarrhea and respiratory disease.
Collapse
Affiliation(s)
- Hyung-Chul Cho
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Youngjun Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk University, Iksan, 54596, Republic of Korea
- Department of Animal Hospital, Hanwoo (Korean indigenous cattle) Genetic Improvement Center, National Agricultural Cooperative Federation, Seosan, 31948, Republic of Korea
| | - Yong-Il Cho
- Department of Animal Science and Technology, College of Bio-Industry Science, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jinho Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk University, Iksan, 54596, Republic of Korea.
| | - Kyoung-Seong Choi
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
4
|
Megasari NLA, Khairunisa SQ, Arizandy RY, Wijaksana IKE, Wungu CDK. Cytokine profiles of mild-to-moderate SARS-CoV-2 infected and recovered pre-vaccinated individuals residing in Indonesia. PeerJ 2024; 12:e17257. [PMID: 38646483 PMCID: PMC11032655 DOI: 10.7717/peerj.17257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
Background Accumulating evidence suggests the involvement of cytokine-mediated inflammation, in clinical severity and death related to SARS-CoV-2 infection, especially among pre-vaccinated individuals. An increased risk of death was also described among SARS-CoV-2 recovered individuals, which might be correlated with prolonged inflammatory responses. Despite being among the countries with the highest cumulative deaths due to COVID-19, evidence regarding cytokine profiles among SARS-CoV-2 infected and recovered pre-vaccinated individuals in Indonesia is scarce. Thus, this study aimed to describe the cytokines profiles of pre-vaccinated individuals residing in Indonesia, with mild-to-moderate SARS-CoV-2 infection and those who recovered. Methods Sixty-one sera from 24 hospitalized patients with mild-to-moderate SARS-CoV-2 infection, 24 individuals recovered from asymptomatic-to-moderate SARS-CoV-2 infection, and 13 healthy controls unexposed to SARS-CoV-2 were used in this study. Quantification of serum cytokine levels, including IL-6, IL-8, IP-10, TNF-α, CCL-2, CCL-3, CCL-4, and CXCL-13, was performed using a Luminex multi-analyte-profiling (xMAP)-based assay. Results The levels of IL-8 along with CCL-2 and CCL-4, were significantly higher (p ≤ 0.01) in hospitalized patients with mild-to-moderate SARS-CoV-2 infection and recovered individuals compared to healthy controls. However, no significant difference was observed in these cytokine levels between infected and recovered individuals. On the other hand, there were no significant differences in several other cytokine levels, including IL-6, IL-10, TNF-α, CCL-3, and CXCL-13, among all groups. Conclusion IL-8, CCL-2, and CCL-4 were significantly elevated in pre-vaccinated Indonesian individuals with mild-to-moderate SARS-CoV-2 infection and those who recovered. The cytokine profiles described in this study might indicate inflammatory responses not only among SARS-CoV-2 infected, but also recovered individuals.
Collapse
Affiliation(s)
- Ni Luh Ayu Megasari
- Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
- Postgraduate School, Airlangga University, Surabaya, Indonesia
| | | | | | - I. Komang Evan Wijaksana
- Department of Periodontology, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Citrawati Dyah Kencono Wungu
- Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
5
|
de Nooijer AH, Pickkers P, Netea MG, Kox M. Inflammatory biomarkers to predict the prognosis of acute bacterial and viral infections. J Crit Care 2023; 78:154360. [PMID: 37343422 DOI: 10.1016/j.jcrc.2023.154360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Mortality in acute infections is mostly associated with sepsis, defined as 'life-threatening organ dysfunction caused by a dysregulated host response to infection'. It remains challenging to identify the patients with increased mortality risk due to the high heterogeneity in the dysregulated host immune response and disease progression. Biomarkers reflecting different pathways involved in the inflammatory response might improve prediction of mortality risk (prognostic enrichment) among patients with acute infections by reducing heterogeneity of the host response, as well as suggest novel strategies for patient stratification and treatment (predictive enrichment) through precision medicine approaches. The predictive value of inflammatory biomarkers has been extensively investigated in bacterial infections and the recent COVID-19 pandemic caused an increased interest in inflammatory biomarkers in this viral infection. However, limited research investigated whether the prognostic potential of these biomarkers differs between bacterial and viral infections. In this narrative review, we provide an overview of the value of various inflammatory biomarkers for the prediction of mortality in bacterial and viral infections.
Collapse
Affiliation(s)
- Aline H de Nooijer
- Department of Internal Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Intensive Care Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Ruytinx P, Vandormael P, Fraussen J, Pieters Z, Thonissen S, Hellings N, Stinissen P, Callebaut I, Penders J, Vanhove K, Kieffer D, Rummens JL, Valkenborgh T, Messiaen P, Stessel B, Mesotten D, Somers V. Comprehensive antibody and cytokine profiling in hospitalized COVID-19 patients in relation to clinical outcomes in a large Belgian cohort. Sci Rep 2023; 13:19322. [PMID: 37935729 PMCID: PMC10630327 DOI: 10.1038/s41598-023-46421-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
The immune response in patients with Coronavirus Disease 2019 (COVID-19) is highly variable and is linked to disease severity and mortality. However, antibody and cytokine responses in the early disease stage and their association with disease course and outcome are still not completely understood. In this large, multi-centre cohort study, blood samples of 434 Belgian COVID-19 hospitalized patients with different disease severities (ranging from asymptomatic/mild to critically ill) from the first wave of the COVID-19 pandemic were obtained. Baseline antibody and cytokine responses were characterized and associations with several clinical outcome parameters were determined. Anti-spike immunoglobulin (Ig)G and IgM levels were elevated in patients with a more severe disease course. This increased baseline antibody response however was associated with decreased odds for hospital mortality. Levels of the pro-inflammatory cytokines IL-6, IP-10 and IL-8, the anti-inflammatory cytokine IL-10 and the antiviral cytokines IFN-α, IFN-β and IFN-λ1 were increased with disease severity. Remarkably, we found significantly lower levels of IFN-λ2,3 in critically ill patients compared to patients of the moderate and severe disease category. Finally, levels of IL-8, IL-6, IP-10, IL-10, IFN-α, IFN-β, IFN-γ and IFN-λ1 at baseline were positively associated with mortality, whereas higher IFN-λ2,3 levels were negatively associated with mortality.
Collapse
Affiliation(s)
- Pieter Ruytinx
- Department of Immunology and Infection, UHasselt, Biomedical Research Institute, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Patrick Vandormael
- Department of Immunology and Infection, UHasselt, Biomedical Research Institute, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Judith Fraussen
- Department of Immunology and Infection, UHasselt, Biomedical Research Institute, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Zoë Pieters
- Data Science Institute, UHasselt, I-BioStat, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Stef Thonissen
- Faculty of Medicine and Life Sciences, UHasselt, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Niels Hellings
- Department of Immunology and Infection, UHasselt, Biomedical Research Institute, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Piet Stinissen
- Department of Immunology and Infection, UHasselt, Biomedical Research Institute, Martelarenlaan 42, 3500, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, UHasselt, LCRC, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Ina Callebaut
- Faculty of Medicine and Life Sciences, UHasselt, LCRC, Martelarenlaan 42, 3500, Hasselt, Belgium
- Department of Intensive Care and Anesthesiology, Jessa Hospital, Hasselt, Belgium
| | - Joris Penders
- Faculty of Medicine and Life Sciences, UHasselt, LCRC, Martelarenlaan 42, 3500, Hasselt, Belgium
- Department of Laboratory Medicine, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Karolien Vanhove
- Faculty of Medicine and Life Sciences, UHasselt, LCRC, Martelarenlaan 42, 3500, Hasselt, Belgium
- Department of Respiratory Medicine, AZ Vesalius Hospital, Hazelereik 51, 3700, Tongeren, Belgium
| | - Davy Kieffer
- Department of Clinical Biology, Sint-Trudo Hospital, Diestersteenweg 100, 3800, Sint-Truiden, Belgium
| | - Jean-Luc Rummens
- Faculty of Medicine and Life Sciences, UHasselt, Martelarenlaan 42, 3500, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, UHasselt, LCRC, Martelarenlaan 42, 3500, Hasselt, Belgium
- Department of Laboratory Medicine, Jessa Hospital, 3500, Hasselt, Belgium
- UHasselt, University Biobank Limburg (UBiLim), Jessa Hospital, 3500, Hasselt, Belgium
| | - Tom Valkenborgh
- Department of Anesthesiology and Intensive Care, Noorderhart Pelt, Belgium
| | - Peter Messiaen
- Faculty of Medicine and Life Sciences, UHasselt, LCRC, Martelarenlaan 42, 3500, Hasselt, Belgium
- Department of Infectious Diseases and Immunity, Jessa Hospital, 3500, Hasselt, Belgium
| | - Björn Stessel
- Faculty of Medicine and Life Sciences, UHasselt, LCRC, Martelarenlaan 42, 3500, Hasselt, Belgium
- Department of Intensive Care and Anesthesiology, Jessa Hospital, Hasselt, Belgium
| | - Dieter Mesotten
- Faculty of Medicine and Life Sciences, UHasselt, LCRC, Martelarenlaan 42, 3500, Hasselt, Belgium
- Department of Anesthesiology, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Veerle Somers
- Department of Immunology and Infection, UHasselt, Biomedical Research Institute, Martelarenlaan 42, 3500, Hasselt, Belgium.
- Faculty of Medicine and Life Sciences, UHasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| |
Collapse
|
7
|
Palermo A, Li S, Ten Hoeve J, Chellappa A, Morris A, Dillon B, Ma F, Wang Y, Cao E, Shabane B, Acín-Perez R, Petcherski A, Lusis AJ, Hazen S, Shirihai OS, Pellegrini M, Arumugaswami V, Graeber TG, Deb A. A ketogenic diet can mitigate SARS-CoV-2 induced systemic reprogramming and inflammation. Commun Biol 2023; 6:1115. [PMID: 37923961 PMCID: PMC10624922 DOI: 10.1038/s42003-023-05478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
The ketogenic diet (KD) has demonstrated benefits in numerous clinical studies and animal models of disease in modulating the immune response and promoting a systemic anti-inflammatory state. Here we investigate the effects of a KD on systemic toxicity in mice following SARS-CoV-2 infection. Our data indicate that under KD, SARS-CoV-2 reduces weight loss with overall improved animal survival. Muted multi-organ transcriptional reprogramming and metabolism rewiring suggest that a KD initiates and mitigates systemic changes induced by the virus. We observed reduced metalloproteases and increased inflammatory homeostatic protein transcription in the heart, with decreased serum pro-inflammatory cytokines (i.e., TNF-α, IL-15, IL-22, G-CSF, M-CSF, MCP-1), metabolic markers of inflammation (i.e., kynurenine/tryptophane ratio), and inflammatory prostaglandins, indicative of reduced systemic inflammation in animals infected under a KD. Taken together, these data suggest that a KD can alter the transcriptional and metabolic response in animals following SARS-CoV-2 infection with improved mice health, reduced inflammation, and restored amino acid, nucleotide, lipid, and energy currency metabolism.
Collapse
Affiliation(s)
- Amelia Palermo
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- UCLA Metabolomics Center, University of California, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA
| | - Shen Li
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences, University of California, Los Angeles, CA, 90095, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Genetics, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Johanna Ten Hoeve
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- UCLA Metabolomics Center, University of California, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA
| | - Akshay Chellappa
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Alexandra Morris
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Barbara Dillon
- Department of Environment, Health and Safety, University of California, Los Angeles, CA, 90095, USA
| | - Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Yijie Wang
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences, University of California, Los Angeles, CA, 90095, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Genetics, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Edward Cao
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences, University of California, Los Angeles, CA, 90095, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Genetics, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Byourak Shabane
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Rebeca Acín-Perez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Anton Petcherski
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - A Jake Lusis
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Stanley Hazen
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Orian S Shirihai
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences, University of California, Los Angeles, CA, 90095, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA.
- UCLA Metabolomics Center, University of California, Los Angeles, CA, 90095, USA.
- Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA.
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA.
| | - Arjun Deb
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA.
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences, University of California, Los Angeles, CA, 90095, USA.
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Bekbossynova M, Tauekelova A, Sailybayeva A, Kozhakhmetov S, Mussabay K, Chulenbayeva L, Kossumov A, Khassenbekova Z, Vinogradova E, Kushugulova A. Unraveling Acute and Post-COVID Cytokine Patterns to Anticipate Future Challenges. J Clin Med 2023; 12:5224. [PMID: 37629267 PMCID: PMC10455949 DOI: 10.3390/jcm12165224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The aims of this study were to analyze cytokine profiles in patients with COVID-19, gain insights into the immune response during acute infection, identify cytokines associated with disease severity and post-COVID complications, and explore potential biomarkers for prognosis and therapeutic targets. Using a multiplex analysis, we studied the cytokine pattern in 294 acute COVID-19 and post-COVID patients with varying severities of infection. Our findings revealed that disease severity was associated with elevated levels of IL-15, IL-8, and fractalkine. Severe/extremely severe forms in comparison with mild/moderate disease were associated with MCP-1, IFNa2, IL-7, IL-15, EGF, IP-10, IL-8, Eotaxin, FGF-2, GROa, sCD40L, and IL-10. The key cytokines of post-COVID are FGF-2, VEGF-A, EGF, IL-12(p70), IL-13, and IL-6. By the sixth month after recovering from a coronavirus infection, regardless of disease severity, some patients may develop complications such as arterial hypertension, type 2 diabetes mellitus, glucose intolerance, thyrotoxicosis, atherosclerosis, and rapid progression of previously diagnosed conditions. Each complication is characterized by distinct cytokine profiles. Importantly, these complications can also be predicted during the acute phase of the coronavirus infection. Understanding cytokine patterns can aid in predicting disease progression, identifying high-risk patients, and developing targeted interventions to improve the outcomes of COVID-19.
Collapse
Affiliation(s)
- Makhabbat Bekbossynova
- National Research Cardiac Surgery Center, Astana 020000, Kazakhstan; (M.B.); (A.T.); (A.S.)
| | - Ainur Tauekelova
- National Research Cardiac Surgery Center, Astana 020000, Kazakhstan; (M.B.); (A.T.); (A.S.)
| | - Aliya Sailybayeva
- National Research Cardiac Surgery Center, Astana 020000, Kazakhstan; (M.B.); (A.T.); (A.S.)
| | - Samat Kozhakhmetov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (L.C.); (A.K.); (E.V.)
| | - Karakoz Mussabay
- Department of Microbiology and Virology Named after Sh.I.Sarbasova, Astana Medical University, Astana 010000, Kazakhstan;
| | - Laura Chulenbayeva
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (L.C.); (A.K.); (E.V.)
| | - Alibek Kossumov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (L.C.); (A.K.); (E.V.)
| | - Zhanagul Khassenbekova
- Department of General Pharmacology, Astana Medical University, Astana 010000, Kazakhstan;
| | - Elizaveta Vinogradova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (L.C.); (A.K.); (E.V.)
| | - Almagul Kushugulova
- National Research Cardiac Surgery Center, Astana 020000, Kazakhstan; (M.B.); (A.T.); (A.S.)
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (L.C.); (A.K.); (E.V.)
- Almagul Kushugulova, Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave., 53, Block S1, Office 303, Astana 010000, Kazakhstan
| |
Collapse
|
9
|
Trofin F, Nastase EV, Roșu MF, Bădescu AC, Buzilă ER, Miftode EG, Manciuc DC, Dorneanu OS. Inflammatory Response in COVID-19 Depending on the Severity of the Disease and the Vaccination Status. Int J Mol Sci 2023; 24:ijms24108550. [PMID: 37239895 DOI: 10.3390/ijms24108550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of this study was to analyze the serum concentration of interleukin-6 (IL-6), C-reactive protein (CRP), D-dimer, lactate dehydrogenase (LDH), ferritin, and procalcitonin in COVID-19 patients with different forms of the disease. We performed a prospective cohort study on 137 COVID-19 consecutive patients, divided into four groups according to the severity of the disease as follows: 30 patients in the mild form group, 49 in the moderate form group, 28 in the severe form group, and 30 in the critical form group. The tested parameters were correlated with COVID-19 severity. Significant differences were registered between the form of COVID-19 depending on the vaccination status, between LDH concentrations depending on the virus variant, and in IL-6, CRP, and ferritin concentrations and vaccination status depending on the gender. ROC analysis revealed that D-dimer best predicted COVID-19 severe forms and LDH predicted the virus variant. Our findings confirmed the interdependence relationships observed between inflammation markers in relation to the clinical severity of COVID-19, with all the tested biomarkers increasing in severe and critical COVID-19. IL-6, CRP, ferritin, LDH, and D-dimer were increased in all COVID-19 forms. These inflammatory markers were lower in Omicron-infected patients. The unvaccinated patients developed more severe forms compared to the vaccinated ones, and a higher proportion of them needed hospitalization. D-dimer could predict a severe form of COVID-19, while LDH could predict the virus variant.
Collapse
Affiliation(s)
- Felicia Trofin
- Microbiology Department, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
- Clinical Hospital of Infectious Diseases "Sfânta Parascheva", 700116 Iasi, Romania
| | - Eduard Vasile Nastase
- Clinical Hospital of Infectious Diseases "Sfânta Parascheva", 700116 Iasi, Romania
- Infectious Diseases Department, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Manuel Florin Roșu
- Clinical Hospital of Infectious Diseases "Sfânta Parascheva", 700116 Iasi, Romania
- Department of Dento-Alveolar Surgery, Anesthesia, Sedation, and Medical-Surgical Emergencies, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Aida Corina Bădescu
- Microbiology Department, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
- Clinical Hospital of Infectious Diseases "Sfânta Parascheva", 700116 Iasi, Romania
| | - Elena Roxana Buzilă
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Egidia Gabriela Miftode
- Clinical Hospital of Infectious Diseases "Sfânta Parascheva", 700116 Iasi, Romania
- Infectious Diseases Department, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Doina Carmen Manciuc
- Clinical Hospital of Infectious Diseases "Sfânta Parascheva", 700116 Iasi, Romania
- Infectious Diseases Department, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Olivia Simona Dorneanu
- Microbiology Department, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
- Clinical Hospital of Infectious Diseases "Sfânta Parascheva", 700116 Iasi, Romania
| |
Collapse
|
10
|
Th-1, Th-2, Th-9, Th-17, Th-22 type cytokine concentrations of critical COVID-19 patients after treatment with Remdesivir. Immunobiology 2023; 228:152378. [PMID: 37058846 PMCID: PMC10036294 DOI: 10.1016/j.imbio.2023.152378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly spread around the world causing a pandemic known as coronavirus disease 2019 (COVID-19). Cytokine storm was directly correlated with severity of COVID-19 syndromes. We evaluated the levels of 13 cytokines in ICU hospitalized COVID-19 patients (n=29) before, and after treatment with Remdesivir as well as in healthy controls (n=29). Blood samples were obtained from ICU patients during ICU admission (before treatment) and 5 days after treatment with Remdesivir. A group of 29 age- and gender-matched healthy controls was also studied. Cytokine levels were evaluated by multiplex immunoassay method using a fluorescence labeled cytokine panel. In comparison to cytokine levels measured at ICU admission, serum levels were reduced of IL-6 (134.75 pg/mL vs. 20.73 pg/mL, P< 0.0001), TNF-α (121.67 pg/mL vs. 10.15 pg/mL, P< 0.0001) and IFN-γ (29.69 pg/mL vs. 22.27 pg/mL, P= 0.005), whereas serum level was increased of IL-4 (8.47 pg/mL vs. 12.44 pg/mL, P= 0.002) within 5 days after Remdesivir treatment. Comparing with before treatment, Remdesivir significantly reduced the levels of inflammatory (258.98 pg/mL vs. 37.43 pg/mL, P< 0.0001), Th1-type (31.24 pg/mL vs. 24.46 pg/mL, P= 0.007), and Th17-type (36.79 pg/mL vs. 26.22 pg/mL, P< 0.0001) cytokines in critical COVID-19 patients. However, after Remdesivir treatment, the concentrations of Th2-type cytokines were significantly higher than before treatment (52.69 pg/mL vs. 37.09 pg/mL, P< 0.0001). In conclusion, Remdesivir led to decrease levels of Th1-type and Th17-type cytokines and increase Th2-type cytokines in critical COVID-19 patients 5 days after treatment.
Collapse
|
11
|
Narang J, Jatana S, Ponti AK, Musich R, Gallop J, Wei AH, Seck S, Johnson J, Kokoczka L, Nowacki AS, McBride JD, Mireles-Cabodevila E, Gordon S, Cooper K, Fernandez AP, McDonald C. Abnormal thrombosis and neutrophil activation increase hospital-acquired sacral pressure injuries and morbidity in COVID-19 patients. Front Immunol 2023; 14:1031336. [PMID: 37026002 PMCID: PMC10070761 DOI: 10.3389/fimmu.2023.1031336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
Hospitalized patients have an increased risk of developing hospital-acquired sacral pressure injury (HASPI). However, it is unknown whether SARS-CoV-2 infection affects HASPI development. To explore the role of SARS-CoV-2 infection in HASPI development, we conducted a single institution, multi-hospital, retrospective study of all patients hospitalized for ≥5 days from March 1, 2020 to December 31, 2020. Patient demographics, hospitalization information, ulcer characteristics, and 30-day-related morbidity were collected for all patients with HASPIs, and intact skin was collected from HASPI borders in a patient subset. We determined the incidence, disease course, and short-term morbidity of HASPIs in COVID-19(+) patients, and characterized the skin histopathology and tissue gene signatures associated with HASPIs in COVID-19 disease. COVID-19(+) patients had a 63% increased HASPI incidence rate, HASPIs of more severe ulcer stage (OR 2.0, p<0.001), and HASPIs more likely to require debridement (OR 3.1, p=0.04) compared to COVID-19(-) patients. Furthermore, COVID-19(+) patients with HASPIs had 2.2x increased odds of a more severe hospitalization course compared to COVID-19(+) patients without HASPIs. HASPI skin histology from COVID-19(+) patients predominantly showed thrombotic vasculopathy, with the number of thrombosed vessels being significantly greater than HASPIs from COVID-19(-) patients. Transcriptional signatures of a COVID-19(+) sample subset were enriched for innate immune responses, thrombosis, and neutrophil activation genes. Overall, our results suggest that immunologic dysregulation secondary to SARS-CoV-2 infection, including neutrophil dysfunction and abnormal thrombosis, may play a pathogenic role in development of HASPIs in patients with severe COVID-19.
Collapse
Affiliation(s)
- Jatin Narang
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Samreen Jatana
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - András K. Ponti
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ryan Musich
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Joshua Gallop
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Angela H. Wei
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Sokhna Seck
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jessica Johnson
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Lynne Kokoczka
- Medical Intensive Care Unit, Cleveland Clinic, Cleveland, OH, United States
| | - Amy S. Nowacki
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Jeffrey D. McBride
- Department of Dermatology, The University of Oklahoma College of Medicine, Oklahoma City, OK, United States
| | | | - Steven Gordon
- Department of Infectious Disease, Cleveland Clinic, Cleveland, OH, United States
| | - Kevin Cooper
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Anthony P. Fernandez
- Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Anatomic Pathology, Pathology and Lab Medicine, Cleveland Clinic, Cleveland, OH, United States
| | - Christine McDonald
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
12
|
Bukreieva T, Svitina H, Nikulina V, Vega A, Chybisov O, Shablii I, Ustymenko A, Nemtinov P, Lobyntseva G, Skrypkina I, Shablii V. Treatment of Acute Respiratory Distress Syndrome Caused by COVID-19 with Human Umbilical Cord Mesenchymal Stem Cells. Int J Mol Sci 2023; 24:ijms24054435. [PMID: 36901868 PMCID: PMC10003440 DOI: 10.3390/ijms24054435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
This study aimed to identify the impact of mesenchymal stem cell transplantation on the safety and clinical outcomes of patients with severe COVID-19. This research focused on how lung functional status, miRNA, and cytokine levels changed following mesenchymal stem cell transplantation in patients with severe COVID-19 pneumonia and their correlation with fibrotic changes in the lung. This study involved 15 patients following conventional anti-viral treatment (Control group) and 13 patients after three consecutive doses of combined treatment with MSC transplantation (MCS group). ELISA was used to measure cytokine levels, real-time qPCR for miRNA expression, and lung computed tomography (CT) imaging to grade fibrosis. Data were collected on the day of patient admission (day 0) and on the 7th, 14th, and 28th days of follow-up. A lung CT assay was performed on weeks 2, 8, 24, and 48 after the beginning of hospitalization. The relationship between levels of biomarkers in peripheral blood and lung function parameters was investigated using correlation analysis. We confirmed that triple MSC transplantation in individuals with severe COVID-19 was safe and did not cause severe adverse reactions. The total score of lung CT between patients from the Control and MSC groups did not differ significantly on weeks 2, 8, and 24 after the beginning of hospitalization. However, on week 48, the CT total score was 12 times lower in patients in the MSC group (p ≤ 0.05) compared to the Control group. In the MSC group, this parameter gradually decreased from week 2 to week 48 of observation, whereas in the Control group, a significant drop was observed up to week 24 and remained unchanged afterward. In our study, MSC therapy improved lymphocyte recovery. The percentage of banded neutrophils in the MSC group was significantly lower in comparison with control patients on day 14. Inflammatory markers such as ESR and CRP decreased more rapidly in the MSC group in comparison to the Control group. The plasma levels of surfactant D, a marker of alveocyte type II damage, decreased after MSC transplantation for four weeks in contrast to patients in the Control group, in whom slight elevations were observed. We first showed that MSC transplantation in severe COVID-19 patients led to the elevation of the plasma levels of IP-10, MIP-1α, G-CSF, and IL-10. However, the plasma levels of inflammatory markers such as IL-6, MCP-1, and RAGE did not differ between groups. MSC transplantation had no impact on the relative expression levels of miR-146a, miR-27a, miR-126, miR-221, miR-21, miR-133, miR-92a-3p, miR-124, and miR-424. In vitro, UC-MSC exhibited an immunomodulatory impact on PBMC, increasing neutrophil activation, phagocytosis, and leukocyte movement, activating early T cell markers, and decreasing effector and senescent effector T cell maturation.
Collapse
Affiliation(s)
- Tetiana Bukreieva
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
| | - Hanna Svitina
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
| | - Viktoriia Nikulina
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
| | - Alyona Vega
- Department of Infectious Diseases, Shupyk National Healthcare University of Ukraine, 04112 Kyiv, Ukraine
| | - Oleksii Chybisov
- Endoscopic Unit, CNE Kyiv City Clinical Hospital # 4, 03110 Kyiv, Ukraine
| | - Iuliia Shablii
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
| | - Alina Ustymenko
- Laboratory of Cell and Tissue Cultures, Department of Cell and Tissue Technologies, Institute of Genetic and Regenerative Medicine, State Institution, 04114 Kyiv, Ukraine
- National Scientific Center “Institute of Cardiology, Clinical and Regenerative Medicine n.a. M. D. Strazhesko”, National Academy of Medical Sciences of Ukraine, 03680 Kyiv, Ukraine
- Laboratory of Pathophysiology and Immunology, D. F. Chebotarev State Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, 04114 Kyiv, Ukraine
| | - Petro Nemtinov
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
- Coordination Center for Transplantation of Organs, Tissues and Cells, Ministry of Health of Ukraine, 01021 Kyiv, Ukraine
| | - Galyna Lobyntseva
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
| | - Inessa Skrypkina
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
- Correspondence: (I.S.); (V.S.)
| | - Volodymyr Shablii
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
- Correspondence: (I.S.); (V.S.)
| |
Collapse
|
13
|
Zamani B, Momen-Heravi M, Erami M, Motedayyen H, ArefNezhad R. Impacts of IL-27 and IL-32 in the pathogenesis and outcome of COVID-19 associated mucormycosis. J Immunoassay Immunochem 2023; 44:242-255. [PMID: 36602425 DOI: 10.1080/15321819.2022.2164506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Changes in the immune system participate in the pathogenesis and development of infectious diseases. Previous studies have indicated immune dysregulation in patients suffering from COVID-19 and mucormycosis. Therefore, this study investigated whether interleukin-27 (IL-27) and interleukin-32 (IL-32) levels may participate in the development and outcome of COVID-19 associated mucormycosis (CAM). The blood samples were obtained from 79 patients suffering from COVID-19 and mucormycosis and 25 healthy subjects. The serum samples were isolated from the whole blood and frequencies of some immune cells were measured by a cell counter. The levels of IL-27 and IL-32 were assessed by enzyme-linked immunosorbent assay. IL-27 and IL-32 levels were significantly lower in patients with COVID-19 and mucormycosis than healthy subjects (P < .05), although there was no significant difference in IL-27 between patients with COVID-19 and CAM. IL-27 level was significantly higher in severe COVID-19 survivors than dead cases (P < .01). Patients with CAM had significant increases in NLR compared to COVID-19 patients and healthy individuals (P < .0001-0.01). NLR was significantly associated with COVID-19 outcome (P < .05). Severe COVID-19 survivors had a significant reduction in NLR compared to non-survivors (P < .05). Changes in IL-27 and IL-32 levels may contribute to the pathogenesis of CAM. IL-27 may relate to the pathogenesis and outcomes of mucormycosis in COVID-19 patients.
Collapse
Affiliation(s)
- Batool Zamani
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mansooreh Momen-Heravi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahzad Erami
- Kashan Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | |
Collapse
|
14
|
Körper S, Grüner B, Zickler D, Wiesmann T, Wuchter P, Blasczyk R, Zacharowski K, Spieth P, Tonn T, Rosenberger P, Paul G, Pilch J, Schwäble J, Bakchoul T, Thiele T, Knörlein J, Dollinger MM, Krebs J, Bentz M, Corman VM, Kilalic D, Schmidtke-Schrezenmeier G, Lepper PM, Ernst L, Wulf H, Ulrich A, Weiss M, Kruse JM, Burkhardt T, Müller R, Klüter H, Schmidt M, Jahrsdörfer B, Lotfi R, Rojewski M, Appl T, Mayer B, Schnecko P, Seifried E, Schrezenmeier H. One-year follow-up of the CAPSID randomized trial for high-dose convalescent plasma in severe COVID-19 patients. J Clin Invest 2022; 132:e163657. [PMID: 36326824 PMCID: PMC9753994 DOI: 10.1172/jci163657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUNDResults of many randomized trials on COVID-19 convalescent plasma (CCP) have been reported, but information on long-term outcome after CCP treatment is limited. The objectives of this extended observation of the randomized CAPSID trial are to assess long-term outcome and disease burden in patients initially treated with or without CCP.METHODSOf 105 randomized patients, 50 participated in the extended observation. Quality of life (QoL) was assessed by questionnaires and a structured interview. CCP donors (n = 113) with asymptomatic to moderate COVID-19 were included as a reference group.RESULTSThe median follow-up of patients was 396 days, and the estimated 1-year survival was 78.7% in the CCP group and 60.2% in the control (P = 0.08). The subgroup treated with a higher cumulative amount of neutralizing antibodies showed a better 1-year survival compared with the control group (91.5% versus 60.2%, P = 0.01). Medical events and QoL assessments showed a consistent trend for better results in the CCP group without reaching statistical significance. There was no difference in the increase in neutralizing antibodies after vaccination between the CCP and control groups.CONCLUSIONThe trial demonstrated a trend toward better outcome in the CCP group without reaching statistical significance. A predefined subgroup analysis showed a significantly better outcome (long-term survival, time to discharge from ICU, and time to hospital discharge) among those who received a higher amount of neutralizing antibodies compared with the control group. A substantial long-term disease burden remains after severe COVID-19.Trial registrationEudraCT 2020-001310-38 and ClinicalTrials.gov NCT04433910.FundingBundesministerium für Gesundheit (German Federal Ministry of Health).
Collapse
Affiliation(s)
- Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Beate Grüner
- Division of Infectious Diseases, University Hospital and Medical Center Ulm, Ulm, Germany
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Wiesmann
- Department of Anesthesiology and Intensive Care Medicine, Phillips-University Marburg, Marburg, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Kai Zacharowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University, Germany
| | - Peter Spieth
- Department of Anesthesiology and Critical Care Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Torsten Tonn
- Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden and German Red Cross Blood Donation Service North-East gGmbH, Dresden, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Gregor Paul
- Department of Gastroenterology, Hepatology, Pneumology and Infectious Diseases, Klinikum Stuttgart, Stuttgart, Germany
| | - Jan Pilch
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University Hospital, Homburg/Saar, Germany
| | - Joachim Schwäble
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen, Frankfurt, Germany
| | - Tamam Bakchoul
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Thiele
- Institute of Transfusion Medicine, University Hospital Greifswald, Greifswald, Germany
| | - Julian Knörlein
- Clinic of Anesthesiology and Intensive Care Medicine, University Medical Center of Freiburg, Freiburg, Germany
| | | | - Jörg Krebs
- Clinic for Anesthesiology and Surgical Intensive Care Medicine, University of Mannheim, Mannheim, Germany
| | - Martin Bentz
- Department of Internal Medicine III, Hospital of Karlsruhe, Karlsruhe, Germany
| | - Victor M. Corman
- Institute of Virology, Charité - University Medicine Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and German Centre for Infection Research, Berlin, Germany
| | - Dzenan Kilalic
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | | | - Philipp M. Lepper
- Department of Internal Medicine V – Pneumology, Allergology, Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Lucas Ernst
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hinnerk Wulf
- Department of Anesthesiology and Intensive Care Medicine, Phillips-University Marburg, Marburg, Germany
| | - Alexandra Ulrich
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Manfred Weiss
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Jan Matthias Kruse
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Burkhardt
- Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden and German Red Cross Blood Donation Service North-East gGmbH, Dresden, Germany
| | - Rebecca Müller
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Michael Schmidt
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen, Frankfurt, Germany
| | - Bernd Jahrsdörfer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Markus Rojewski
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Thomas Appl
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | | | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen, Frankfurt, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
15
|
Gushchin VA, Pochtovyi AA, Kustova DD, Ogarkova DA, Tarnovetskii IY, Belyaeva ED, Divisenko EV, Vasilchenko LA, Shidlovskaya EV, Kuznetsova NA, Tkachuk AP, Slutskiy EA, Speshilov GI, Komarov AG, Tsibin AN, Zlobin VI, Logunov DY, Gintsburg AL. Dynamics of SARS-CoV-2 Major Genetic Lineages in Moscow in the Context of Vaccine Prophylaxis. Int J Mol Sci 2022; 23:14670. [PMID: 36498998 PMCID: PMC9736394 DOI: 10.3390/ijms232314670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
Findings collected over two and a half years of the COVID-19 pandemic demonstrated that the level immunity resulting from vaccination and infection is insufficient to stop the circulation of new genetic variants. The short-term decline in morbidity was followed by a steady increase. The early identification of new genetic lineages that will require vaccine adaptation in the future is an important research target. In this study, we summarised data on the variability of genetic line composition throughout the COVID-19 pandemic in Moscow, Russia, and evaluated the virological and epidemiological features of dominant variants in the context of selected vaccine prophylaxes. The prevalence of the Omicron variant highlighted the low effectiveness of the existing immune layer in preventing infection, which points to the necessity of optimising the antigens used in vaccines in Moscow. Logistic growth curves showing the rate at which the new variant displaces the previously dominant variants may serve as early indicators for selecting candidates for updated vaccines, along with estimates of efficacy, reduced viral neutralising activity against the new strains, and viral load in previously vaccinated patients.
Collapse
Affiliation(s)
- Vladimir A. Gushchin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrei A. Pochtovyi
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Daria D. Kustova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Darya A. Ogarkova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | | | - Elizaveta D. Belyaeva
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Elizaveta V. Divisenko
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Lyudmila A. Vasilchenko
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Elena V. Shidlovskaya
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Nadezhda A. Kuznetsova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Artem P. Tkachuk
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | | | | | | | | | - Vladimir I. Zlobin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Denis Y. Logunov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Alexander L. Gintsburg
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
- Department of Infectiology and Virology, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov, First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
16
|
Körper S, Schrezenmeier EV, Rincon-Arevalo H, Grüner B, Zickler D, Weiss M, Wiesmann T, Zacharowski K, Kalbhenn J, Bentz M, Dollinger MM, Paul G, Lepper PM, Ernst L, Wulf H, Zinn S, Appl T, Jahrsdörfer B, Rojewski M, Lotfi R, Dörner T, Jungwirth B, Seifried E, Fürst D, Schrezenmeier H. Cytokine levels associated with favorable clinical outcome in the CAPSID randomized trial of convalescent plasma in patients with severe COVID-19. Front Immunol 2022; 13:1008438. [PMID: 36275695 PMCID: PMC9582990 DOI: 10.3389/fimmu.2022.1008438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives To determine the profile of cytokines in patients with severe COVID-19 who were enrolled in a trial of COVID-19 convalescent plasma (CCP). Methods Patients were randomized to receive standard treatment and 3 CCP units or standard treatment alone (CAPSID trial, ClinicalTrials.gov NCT04433910). The primary outcome was a dichotomous composite outcome (survival and no longer severe COVID-19 on day 21). Time to clinical improvement was a key secondary endpoint. The concentrations of 27 cytokines were measured (baseline, day 7). We analyzed the change and the correlation between serum cytokine levels over time in different subgroups and the prediction of outcome in receiver operating characteristics (ROC) analyses and in multivariate models. Results The majority of cytokines showed significant changes from baseline to day 7. Some were strongly correlated amongst each other (at baseline the cluster IL-1ß, IL-2, IL-6, IL-8, G-CSF, MIP-1α, the cluster PDGF-BB, RANTES or the cluster IL-4, IL-17, Eotaxin, bFGF, TNF-α). The correlation matrix substantially changed from baseline to day 7. The heatmaps of the absolute values of the correlation matrix indicated an association of CCP treatment and clinical outcome with the cytokine pattern. Low levels of IP-10, IFN-γ, MCP-1 and IL-1ß on day 0 were predictive of treatment success in a ROC analysis. In multivariate models, low levels of IL-1ß, IFN-γ and MCP-1 on day 0 were significantly associated with both treatment success and shorter time to clinical improvement. Low levels of IP-10, IL-1RA, IL-6, MCP-1 and IFN-γ on day 7 and high levels of IL-9, PDGF and RANTES on day 7 were predictive of treatment success in ROC analyses. Low levels of IP-10, MCP-1 and high levels of RANTES, on day 7 were associated with both treatment success and shorter time to clinical improvement in multivariate models. Conclusion This analysis demonstrates a considerable dynamic of cytokines over time, which is influenced by both treatment and clinical course of COVID-19. Levels of IL-1ß and MCP-1 at baseline and MCP-1, IP-10 and RANTES on day 7 were associated with a favorable outcome across several endpoints. These cytokines should be included in future trials for further evaluation as predictive factors.
Collapse
Affiliation(s)
- Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Eva Vanessa Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Charité Universitätsmedizin Berlin, Berlin Institute of Health (BIH) Academy, Berlin, Germany
| | - Hector Rincon-Arevalo
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Beate Grüner
- Division of Infectious Diseases, University Hospital and Medical Center Ulm, Ulm, Germany
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Manfred Weiss
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Thomas Wiesmann
- Department of Anaesthesiology and Intensive Care Medicine, Phillips-University Marburg, Marburg, Germany
| | - Kai Zacharowski
- Clinic of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Johannes Kalbhenn
- Clinic of Anesthesiology and Intensive Care Medicine University Medical Center of Freiburg, Freiburg, Germany
| | - Martin Bentz
- Department of Internal Medicine III, Hospital of Karlsruhe, Karlsruhe, Germany
| | | | - Gregor Paul
- Department of Gastroenterology, Hepatology, Pneumology and Infectious Diseases, Klinikum Stuttgart, Stuttgart, Germany
| | - Philipp M. Lepper
- Department of Internal Medicine V – Pneumology, Allergology, Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Lucas Ernst
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hinnerk Wulf
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Sebastian Zinn
- Department of Anaesthesiology and Intensive Care Medicine, Phillips-University Marburg, Marburg, Germany
| | - Thomas Appl
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Markus Rojewski
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Bettina Jungwirth
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen, Frankfurt, Germany
| | - Daniel Fürst
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- *Correspondence: Hubert Schrezenmeier,
| |
Collapse
|
17
|
Latorre D. Autoimmunity and SARS-CoV-2 infection: Unraveling the link in neurological disorders. Eur J Immunol 2022; 52:1561-1571. [PMID: 35833748 PMCID: PMC9350097 DOI: 10.1002/eji.202149475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/14/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022]
Abstract
According to the World Health Organization, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already infected more than 400 million people and caused over 5 million deaths globally. The infection is associated with a wide spectrum of clinical manifestations, ranging from no signs of illness to severe pathological complications that go beyond the typical respiratory symptoms. On this note, new-onset neurological and neuropsychiatric syndromes have been increasingly reported in a large fraction of COVID-19 patients, thus potentially representing a significant public health threat. Although the underlying pathophysiological mechanisms remain elusive, a growing body of evidence suggests that SARS-CoV-2 infection may trigger an autoimmune response, which could potentially contribute to the establishment and/or exacerbation of neurological disorders in COVID-19 patients. Shedding light on this aspect is urgently needed for the development of effective therapeutic intervention. This review highlights the current knowledge of the immune responses occurring in Neuro-COVID patients and discusses potential immune-mediated mechanisms by which SARS-CoV-2 infection may trigger neurological complications.
Collapse
|
18
|
Nicotine in Combination with SARS-CoV-2 Affects Cells Viability, Inflammatory Response and Ultrastructural Integrity. Int J Mol Sci 2022; 23:ijms23169488. [PMID: 36012747 PMCID: PMC9409480 DOI: 10.3390/ijms23169488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
The aims of our study are to: (i) investigate the ability of nicotine to modulate the expression level of inflammatory cytokines in A549 cells infected with SARS-CoV-2; (ii) elucidate the ultrastructural features caused by the combination nicotine+SARS-CoV-2; and (iii) demonstrate the mechanism of action. In this study, A549 cells pretreated with nicotine were either exposed to LPS or poly(I:C), or infected with SARS-CoV-2. Treated and untreated cells were analyzed for cytokine production, cytotoxicity, and ultrastructural modifications. Vero E6 cells were used as a positive reference. Cells pretreated with nicotine showed a decrease of IL6 and TNFα in A549 cells induced by LPS or poly(I:C). In contrast, cells exposed to SARS-CoV-2 showed a high increase of IL6, IL8, IL10 and TNFα, high cytopathic effects that were dose- and time-dependent, and profound ultrastructural modifications. These modifications were characterized by membrane ruptures and fragmentation, the swelling of cytosol and mitochondria, the release of cytoplasmic content in extracellular spaces (including osmiophilic granules), the fragmentation of endoplasmic reticulum, and chromatin disorganization. Nicotine increased SARS-CoV-2 cytopathic effects, elevating the levels of inflammatory cytokines, and inducing severe cellular damage, with features resembling pyroptosis and necroptosis. The protective role of nicotine in COVID-19 is definitively ruled out.
Collapse
|
19
|
Ponciano-Gómez A, Valle-Solis MI, Campos-Aguilar M, Jijón-Lorenzo R, Herrera-Cogco EDLC, Ramos-Alor R, Bazán-Mendez CI, Cervantes GAPG, Ávila-García R, Aguilar AG, Texale MGS, Tapia-Sánchez WD, Duarte-Martínez CL, Olivas-Quintero S, Sigrist-Flores SC, Gallardo-Ortíz IA, Villalobos-Molina R, Méndez-Cruz AR, Jimenez-Flores R, Santos-Argumedo L, Luna-Arias JP, Romero-Ramírez H, Rosales-García VH, Avendaño-Borromeo B. High baseline expression of IL-6 and IL-10 decreased CCR7 B cells in individuals with previous SARS-CoV-2 infection during BNT162b2 vaccination. Front Immunol 2022; 13:946770. [PMID: 36052060 PMCID: PMC9425053 DOI: 10.3389/fimmu.2022.946770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/22/2022] [Indexed: 01/09/2023] Open
Abstract
The current pandemic generated by SARS-CoV-2 has led to mass vaccination with different biologics that have shown wide variations among human populations according to the origin and formulation of the vaccine. Studies evaluating the response in individuals with a natural infection before vaccination have been limited to antibody titer analysis and evaluating a few humoral and cellular response markers, showing a more rapid and intense humoral response than individuals without prior infection. However, the basis of these differences has not been explored in depth. In the present work, we analyzed a group of pro and anti-inflammatory cytokines, antibody titers, and cell populations in peripheral blood of individuals with previous SARS-CoV-2 infection using BNT162b2 biologic. Our results suggest that higher antibody concentration in individuals with an earlier disease could be generated by higher production of plasma cells to the detriment of the presence of memory B cells in the bloodstream, which could be related to the high baseline expression of cytokines (IL-6 and IL-10) before vaccination.
Collapse
Affiliation(s)
- Alberto Ponciano-Gómez
- Laboratorio de Inmunología, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Martha Iris Valle-Solis
- Secretaría de Salud de Veracruz, Servicios de Salud de Veracruz, SESVER, Xalapa Veracruz, Mexico
| | - Myriam Campos-Aguilar
- Laboratorio de Inmunología, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Rafael Jijón-Lorenzo
- Secretaría de Salud de Veracruz, Servicios de Salud de Veracruz, SESVER, Xalapa Veracruz, Mexico
| | | | - Roberto Ramos-Alor
- Secretaría de Salud de Veracruz, Servicios de Salud de Veracruz, SESVER, Xalapa Veracruz, Mexico
| | | | | | - Ricardo Ávila-García
- Secretaría de Salud de Veracruz, Servicios de Salud de Veracruz, SESVER, Xalapa Veracruz, Mexico
| | - Abdiel González Aguilar
- Secretaría de Salud de Veracruz, Servicios de Salud de Veracruz, SESVER, Xalapa Veracruz, Mexico
| | | | - Wilfrido David Tapia-Sánchez
- Laboratorio de Citometría de Flujo y Hematología, Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Gustavo A. Madero, Ciudad de Mexico, Mexico
| | - Carlos Leonardo Duarte-Martínez
- Laboratorio de Citometría de Flujo y Hematología, Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Gustavo A. Madero, Ciudad de Mexico, Mexico
| | - Sandra Olivas-Quintero
- Department of Health Sciences, Autonomus University of Occident, Culiacan, Sinaloa, Mexico
| | - Santiago Cristobal Sigrist-Flores
- Laboratorio de Inmunología, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Itzell Alejandrina Gallardo-Ortíz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Rafael Villalobos-Molina
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Adolfo Rene Méndez-Cruz
- Laboratorio de Inmunología, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Rafael Jimenez-Flores
- Laboratorio de Inmunología, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Hector Romero-Ramírez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Victor Hugo Rosales-García
- Laboratorio de Citometría de Flujo y Hematología, Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Gustavo A. Madero, Ciudad de Mexico, Mexico
- Laboratorios Nacionales de Servicios Experimentales, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | |
Collapse
|
20
|
Rovito R, Augello M, Ben-Haim A, Bono V, d'Arminio Monforte A, Marchetti G. Hallmarks of Severe COVID-19 Pathogenesis: A Pas de Deux Between Viral and Host Factors. Front Immunol 2022; 13:912336. [PMID: 35757770 PMCID: PMC9231592 DOI: 10.3389/fimmu.2022.912336] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Two years into Coronavirus Disease 2019 (COVID-19) pandemic, a comprehensive characterization of the pathogenesis of severe and critical forms of COVID-19 is still missing. While a deep dysregulation of both the magnitude and functionality of innate and adaptive immune responses have been described in severe COVID-19, the mechanisms underlying such dysregulations are still a matter of scientific debate, in turn hampering the identification of new therapies and of subgroups of patients that would most benefit from individual clinical interventions. Here we review the current understanding of viral and host factors that contribute to immune dysregulation associated with COVID-19 severity in the attempt to unfold and broaden the comprehension of COVID-19 pathogenesis and to define correlates of protection to further inform strategies of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Assaf Ben-Haim
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Antonella d'Arminio Monforte
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
21
|
Messina NL, Germano S, McElroy R, Rudraraju R, Bonnici R, Pittet LF, Neeland MR, Nicholson S, Subbarao K, Curtis N. Off-target effects of bacillus Calmette-Guérin vaccination on immune responses to SARS-CoV-2: implications for protection against severe COVID-19. Clin Transl Immunology 2022; 11:e1387. [PMID: 35573165 PMCID: PMC9028103 DOI: 10.1002/cti2.1387] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Background and objectives Because of its beneficial off‐target effects against non‐mycobacterial infectious diseases, bacillus Calmette–Guérin (BCG) vaccination might be an accessible early intervention to boost protection against novel pathogens. Multiple epidemiological studies and randomised controlled trials (RCTs) are investigating the protective effect of BCG against coronavirus disease 2019 (COVID‐19). Using samples from participants in a placebo‐controlled RCT aiming to determine whether BCG vaccination reduces the incidence and severity of COVID‐19, we investigated the immunomodulatory effects of BCG on in vitro immune responses to SARS‐CoV‐2. Methods This study used peripheral blood taken from participants in the multicentre RCT and BCG vaccination to reduce the impact of COVID‐19 on healthcare workers (BRACE trial). The whole blood taken from BRACE trial participants was stimulated with γ‐irradiated SARS‐CoV‐2‐infected or mock‐infected Vero cell supernatant. Cytokine responses were measured by multiplex cytokine analysis, and single‐cell immunophenotyping was made by flow cytometry. Results BCG vaccination, but not placebo vaccination, reduced SARS‐CoV‐2‐induced secretion of cytokines known to be associated with severe COVID‐19, including IL‐6, TNF‐α and IL‐10. In addition, BCG vaccination promoted an effector memory phenotype in both CD4+ and CD8+ T cells, and an activation of eosinophils in response to SARS‐CoV‐2. Conclusions The immunomodulatory signature of BCG’s off‐target effects on SARS‐CoV‐2 is consistent with a protective immune response against severe COVID‐19.
Collapse
Affiliation(s)
- Nicole L Messina
- Infectious Diseases Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia.,Department of Paediatrics The University of Melbourne Parkville VIC Australia
| | - Susie Germano
- Infectious Diseases Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia
| | - Rebecca McElroy
- Infectious Diseases Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Parkville VIC Australia
| | - Rhian Bonnici
- Infectious Diseases Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia
| | - Laure F Pittet
- Infectious Diseases Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia.,Department of Paediatrics The University of Melbourne Parkville VIC Australia.,Paediatric Infectious Diseases Unit Faculty of Medicine Geneva University Hospitals Geneva Switzerland
| | - Melanie R Neeland
- Department of Paediatrics The University of Melbourne Parkville VIC Australia.,Molecular Immunity Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory The Royal Melbourne Hospital The Peter Doherty Institute for Infection and Immunity Parkville VIC Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Parkville VIC Australia.,WHO Collaborating Centre for Reference and Research on Influenza Peter Doherty Institute for Infection and Immunity Parkville VIC Australia
| | - Nigel Curtis
- Infectious Diseases Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia.,Department of Paediatrics The University of Melbourne Parkville VIC Australia.,Infectious Diseases The Royal Children's Hospital Melbourne Parkville VIC Australia
| | | |
Collapse
|
22
|
Ebner B, Volz Y, Mumm JN, Stief CG, Magistro G. The COVID-19 pandemic - what have urologists learned? Nat Rev Urol 2022; 19:344-356. [PMID: 35418709 PMCID: PMC9007269 DOI: 10.1038/s41585-022-00586-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 12/18/2022]
Abstract
On 11 March 2020, the WHO declared the coronavirus disease 2019 (COVID-19) outbreak a pandemic and COVID-19 emerged as one of the biggest challenges in public health and economy in the twenty-first century. The respiratory tract has been the centre of attention, but COVID-19-associated complications affecting the genitourinary tract are reported frequently, raising concerns about possible long-term damage in these organs. The angiotensin-converting enzyme 2 (ACE2) receptor, which has a central role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invasion, is highly expressed in the genitourinary tract, indicating that these organs could be at a high risk of cell damage. The detection of SARS-CoV-2 in urine and semen is very rare; however, COVID-19 can manifest through urological symptoms and complications, including acute kidney injury (AKI), which is associated with poor survival, severe structural changes in testes and impairment of spermatogenesis, and hormonal imbalances (mostly secondary hypogonadism). The effect of altered total testosterone levels or androgen deprivation therapy on survival of patients with COVID-19 was intensively debated at the beginning of the pandemic; however, androgen inhibition did not show any effect in preventing or treating COVID-19 in a clinical study. Thus, urologists have a crucial role in detecting and managing damage of the genitourinary tract caused by COVID-19.
Collapse
Affiliation(s)
- Benedikt Ebner
- Department of Urology, Ludwig-Maximilians-University, Munich, Germany
| | - Yannic Volz
- Department of Urology, Ludwig-Maximilians-University, Munich, Germany
| | - Jan-Niclas Mumm
- Department of Urology, Ludwig-Maximilians-University, Munich, Germany
| | - Christian G Stief
- Department of Urology, Ludwig-Maximilians-University, Munich, Germany
| | - Giuseppe Magistro
- Department of Urology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|