1
|
Fu Q, Luo Y, Li J, Zhang P, Tang S, Song X, Fu J, Liu M, Mo R, Wei M, Li H, Liu X, Wang T, Ni G. Improving the efficacy of cancer immunotherapy by host-defence caerin 1.1 and 1.9 peptides. Hum Vaccin Immunother 2024; 20:2385654. [PMID: 39193797 PMCID: PMC11364082 DOI: 10.1080/21645515.2024.2385654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Cancer remains a major global health challenge. Immunotherapy has revolutionized the management of cancer, yet only a limited number of patients respond to such treatments. This is largely attributed to the immunosuppressive tumor microenvironment, which diminishes the effectiveness of immunotherapy. Recent studies have underscored the potential of naturally derived caerin 1 peptides, particularly caerin 1.1 and caerin 1.9, which exhibit strong antitumor effects and enhance the efficacy of immunotherapies in animal models. This review encapsulates the current research aimed at augmenting the effectiveness of immunotherapy, focusing on the role of caerin 1.1 and caerin 1.9 in boosting immunotherapeutic outcomes, elucidating possible mechanisms, and discussing their limitations and challenges.
Collapse
Affiliation(s)
- Quanlan Fu
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Yuandong Luo
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Junjie Li
- R&D Department, Zhongao Bio-pharmaceutical Technology Co., Ltd., Zhongshan, Guangdong Province, China
| | - Pingping Zhang
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Shuxian Tang
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Xinyi Song
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiawei Fu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Mengqi Liu
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Rongmi Mo
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ming Wei
- School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Hejie Li
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, Australia
| | - Xiaosong Liu
- R&D Department, Zhongao Bio-pharmaceutical Technology Co., Ltd., Zhongshan, Guangdong Province, China
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, Australia
| | - Guoying Ni
- R&D Department, Zhongao Bio-pharmaceutical Technology Co., Ltd., Zhongshan, Guangdong Province, China
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Saito S, Nakayama M, Yamazaki K, Miyamoto Y, Hiraishi K, Tomioka D, Takagi‐Maeda S, Usami K, Takahashi N, Nara S, Imai E. Engineering and physicochemical characterization of a novel, stable, symmetric bispecific antibody with dual target-binding using a common light chain. Protein Sci 2024; 33:e5121. [PMID: 39276019 PMCID: PMC11401053 DOI: 10.1002/pro.5121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 09/16/2024]
Abstract
Bispecific antibodies (BsAbs) have emerged as a major class of antibody therapeutics owing to their substantial potential in disease treatment. While several BsAbs have been successfully approved in recent years, ongoing development efforts continue to focus on optimizing various BsAbs tailored to particular antigens and action mechanisms, aiming to achieve favorable physicochemical properties. BsAbs generally encounter challenges due to their unfavorable physicochemical characteristics and poor manufacturing efficiencies, highlighting the need for optimization to achieve reliable productivity and developability. Herein, we describe the development of a novel symmetric BsAb, REGULGENT™ (N-term/C-term), comprising two Fab domains, using a common light chain. The heavy chain fragment encoded two antigen-binding determinants in one chain. The design and production of REGULGENT™ (N-term/C-term) are simple owing to the use of the same light chain, which does not induce heavy and light chain mispairing, frequently observed with the asymmetric BsAb format. REGULGENT™ (N-term/C-term) exhibited high expression and low aggregation characteristics during cell culture and stress treatment under low pH conditions. Differential scanning calorimetric data indicated that REGULGENT™ molecules had high conformational stability, similar to that of stabilized monoclonal antibodies. Surface plasmon resonance data showed that REGULGENT™ (N-term/C-term) could bind to two antigens simultaneously and exhibited a high affinity for two antigens. In summary, the symmetric BsAb format of REGULGENT™ confers its desirable IgG-like physicochemical properties, thus making it an excellent candidate for commercial development. The findings demonstrate a novel BsAb with substantial development potential for clinical applications.
Collapse
Affiliation(s)
- Seiji Saito
- Molecular Analysis Center, R&D DivisionKyowa Kirin Co., Ltd.TokyoJapan
| | - Makoto Nakayama
- Research Core Function Laboratories, R&D DivisionKyowa Kirin Co., Ltd.TokyoJapan
| | - Kaori Yamazaki
- Molecular Analysis Center, R&D DivisionKyowa Kirin Co., Ltd.TokyoJapan
| | - Yuya Miyamoto
- Molecular Analysis Center, R&D DivisionKyowa Kirin Co., Ltd.TokyoJapan
| | - Keiko Hiraishi
- Molecular Analysis Center, R&D DivisionKyowa Kirin Co., Ltd.TokyoJapan
| | - Daisuke Tomioka
- Molecular Analysis Center, R&D DivisionKyowa Kirin Co., Ltd.TokyoJapan
| | | | - Katsuaki Usami
- Modality Research Laboratories, R&D DivisionKyowa Kirin Co., Ltd.TokyoJapan
| | | | - Shinji Nara
- Molecular Analysis Center, R&D DivisionKyowa Kirin Co., Ltd.TokyoJapan
| | - Eiichiro Imai
- Molecular Analysis Center, R&D DivisionKyowa Kirin Co., Ltd.TokyoJapan
| |
Collapse
|
3
|
Herrera M, Pretelli G, Desai J, Garralda E, Siu LL, Steiner TM, Au L. Bispecific antibodies: advancing precision oncology. Trends Cancer 2024; 10:893-919. [PMID: 39214782 DOI: 10.1016/j.trecan.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Bispecific antibodies (bsAbs) are engineered molecules designed to target two different epitopes or antigens. The mechanism of action is determined by the bsAb molecular targets and structure (or format), which can be manipulated to create variable and novel functionalities, including linking immune cells with tumor cells, or dual signaling pathway blockade. Several bsAbs have already changed the treatment landscape of hematological malignancies and select solid cancers. However, the mechanisms of resistance to these agents are understudied and the management of toxicities remains challenging. Herein, we review the principles in bsAb engineering, current understanding of mechanisms of action and resistance, data for clinical application, and provide a perspective on ongoing challenges and future developments in this field.
Collapse
Affiliation(s)
- Mercedes Herrera
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Giulia Pretelli
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jayesh Desai
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Elena Garralda
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Thiago M Steiner
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Lewis Au
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Benboubker V, Ramzy GM, Jacobs S, Nowak-Sliwinska P. Challenges in validation of combination treatment strategies for CRC using patient-derived organoids. J Exp Clin Cancer Res 2024; 43:259. [PMID: 39261955 PMCID: PMC11389238 DOI: 10.1186/s13046-024-03173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Patient-derived organoids (PDOs) established from tissues from various tumor types gave the foundation of ex vivo models to screen and/or validate the activity of many cancer drug candidates. Due to their phenotypic and genotypic similarity to the tumor of which they were derived, PDOs offer results that effectively complement those obtained from more complex models. Yet, their potential for predicting sensitivity to combination therapy remains underexplored. In this review, we discuss the use of PDOs in both validation and optimization of multi-drug combinations for personalized treatment strategies in CRC. Moreover, we present recent advancements in enriching PDOs with diverse cell types, enhancing their ability to mimic the complexity of in vivo environments. Finally, we debate how such sophisticated models are narrowing the gap in personalized medicine, particularly through immunotherapy strategies and discuss the challenges and future direction in this promising field.
Collapse
Affiliation(s)
- Valentin Benboubker
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
| | - George M Ramzy
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Sacha Jacobs
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland.
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland.
| |
Collapse
|
5
|
Raja A, Kasana A, Verma V. Next-Generation Therapeutic Antibodies for Cancer Treatment: Advancements, Applications, and Challenges. Mol Biotechnol 2024:10.1007/s12033-024-01270-y. [PMID: 39222285 DOI: 10.1007/s12033-024-01270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
The field of cancer treatment has evolved significantly over the last decade with the emergence of next-generation therapeutic antibodies. Conventional treatments like chemotherapy pose significant challenges, including adverse side effects. Monoclonal antibodies have paved the way for more targeted and effective interventions. The evolution from chimeric to humanized and fully human antibodies has led to a reduction in immunogenicity and enhanced tolerance in vivo. The advent of next-generation antibodies, including bispecific antibodies, nanobodies, antibody-drug conjugates, glyco-engineered antibodies, and antibody fragments, represents a leap forward in cancer therapy. These innovations offer increased potency, adaptability, and reduced drug resistance. Challenges such as target validation, immunogenicity, and high production costs exist. However, technological advancements in antibody engineering techniques provide optimism for addressing these issues. The future promises a paradigm shift, where ongoing research will propel these powerful antibodies to the forefront, revolutionizing the fight against cancer and creating new preventive and curative treatments. This review provides an overview of three next-generation antibody-based molecules, namely bispecific antibodies, antibody-drug conjugates, and nanobodies that have shown promising results in cancer treatment. It discusses the evolution of antibodies from conventional forms to next-generation molecules, along with their applications in cancer treatment, production methods, and associated challenges. The review aims to offer researchers insights into the evolving landscape of next-generation antibody-based cancer therapeutics and their potential to revolutionize treatment strategies.
Collapse
Affiliation(s)
- Abhavya Raja
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, Uttar Pradesh, India
| | - Abhishek Kasana
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, Uttar Pradesh, India
| | - Vaishali Verma
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, Uttar Pradesh, India.
| |
Collapse
|
6
|
Iliodromitis K, Hoiczyk M, Bimpong-Buta NY, Seyfarth M, Bogossian H. Arrhythmias in oncological patients: a compact overview for the clinician. Herzschrittmacherther Elektrophysiol 2024; 35:177-182. [PMID: 39129002 DOI: 10.1007/s00399-024-01033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024]
Abstract
Chemotherapy is the cornerstone of antineoplastic treatment in patients with malignancies. The cardiotoxic effect of antineoplastic therapy has been known for many decades. Part of chemotherapy-induced cardiotoxicity is the development of heart rhythm disturbances. This short review aims to provide a compact overview for the clinical cardiologist of the dysrhythmic potential created by antineoplastic agents in cancer survivors.
Collapse
Affiliation(s)
- Konstantinos Iliodromitis
- Clinic for Cardiology and Electrophysiology, Evangelical Hospital Hagen-Haspe, Brusebrinkstraße 20, 58135, Hagen, Germany.
- School of Medicine, Witten/Herdecke University, Witten, Germany.
| | - Mathias Hoiczyk
- Department of Gastroenterology, Hematology, Oncology, Diabetology & Rheumatology, Marien-Hospital Wesel, Pastor-Janßen-Straße 8-38, 46483, Wesel, Germany
| | - Nana-Yaw Bimpong-Buta
- Clinic for Cardiology and Electrophysiology, Evangelical Hospital Hagen-Haspe, Brusebrinkstraße 20, 58135, Hagen, Germany
- School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Melchior Seyfarth
- School of Medicine, Witten/Herdecke University, Witten, Germany
- Department of Cardiology, Helios Klinikum Wuppertal, 42283, Wuppertal, Germany
| | - Harilaos Bogossian
- Clinic for Cardiology and Electrophysiology, Evangelical Hospital Hagen-Haspe, Brusebrinkstraße 20, 58135, Hagen, Germany
- School of Medicine, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
7
|
Nelson AD, Wang L, Laffey KG, Becher LRE, Parks CA, Hoffmann MM, Galeano BK, Mangalam A, Teixeiro E, White TA, Schrum AG, Cannon JF, Gil D. Rigid crosslinking of the CD3 complex leads to superior T cell stimulation. Front Immunol 2024; 15:1434463. [PMID: 39281668 PMCID: PMC11392757 DOI: 10.3389/fimmu.2024.1434463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024] Open
Abstract
Functionally bivalent non-covalent Fab dimers (Bi-Fabs) specific for the TCR/CD3 complex promote CD3 signaling on T cells. While comparing functional responses to stimulation with Bi-Fab, F(ab')2 or mAb specific for the same CD3 epitope, we observed fratricide requiring anti-CD3 bridging of adjacent T cells. Surprisingly, anti-CD3 Bi-Fab ranked first in fratricide potency, followed by anti-CD3 F(ab')2 and anti-CD3 mAb. Low resolution structural studies revealed anti-CD3 Bi-Fabs and F(ab')2 adopt similar global shapes with CD3-binding sites oriented outward. However, under molecular dynamic simulations, anti-CD3 Bi-Fabs crosslinked CD3 more rigidly than F(ab')2. Furthermore, molecular modelling of Bi-Fab and F(ab')2 binding to CD3 predicted crosslinking of T cell antigen receptors located in opposing plasma membrane domains, a feature fitting with T cell fratricide observed. Thus, increasing rigidity of Fab-CD3 crosslinking between opposing effector-target pairs may result in stronger T cell effector function. These findings could guide improving clinical performance of bi-specific anti-CD3 drugs.
Collapse
Affiliation(s)
- Alfreda D Nelson
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Liangyu Wang
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Kimberly G Laffey
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Laura R E Becher
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Christopher A Parks
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Michele M Hoffmann
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Belinda K Galeano
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Ashutosh Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Emma Teixeiro
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Tommi A White
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Adam G Schrum
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- Department of Biomedical, Biological and Medical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
| | - John F Cannon
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Diana Gil
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- Department of Biomedical, Biological and Medical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
| |
Collapse
|
8
|
Son A, Park J, Kim W, Lee W, Yoon Y, Ji J, Kim H. Integrating Computational Design and Experimental Approaches for Next-Generation Biologics. Biomolecules 2024; 14:1073. [PMID: 39334841 PMCID: PMC11430650 DOI: 10.3390/biom14091073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Therapeutic protein engineering has revolutionized medicine by enabling the development of highly specific and potent treatments for a wide range of diseases. This review examines recent advances in computational and experimental approaches for engineering improved protein therapeutics. Key areas of focus include antibody engineering, enzyme replacement therapies, and cytokine-based drugs. Computational methods like structure-based design, machine learning integration, and protein language models have dramatically enhanced our ability to predict protein properties and guide engineering efforts. Experimental techniques such as directed evolution and rational design approaches continue to evolve, with high-throughput methods accelerating the discovery process. Applications of these methods have led to breakthroughs in affinity maturation, bispecific antibodies, enzyme stability enhancement, and the development of conditionally active cytokines. Emerging approaches like intracellular protein delivery, stimulus-responsive proteins, and de novo designed therapeutic proteins offer exciting new possibilities. However, challenges remain in predicting in vivo behavior, scalable manufacturing, immunogenicity mitigation, and targeted delivery. Addressing these challenges will require continued integration of computational and experimental methods, as well as a deeper understanding of protein behavior in complex physiological environments. As the field advances, we can anticipate increasingly sophisticated and effective protein therapeutics for treating human diseases.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA;
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Wonseok Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Yoonki Yoon
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Jaeho Ji
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS (Sciences for Panomics), 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
9
|
Ingavat N, Dzulkiflie N, Liew JM, Wang X, Leong E, Loh HP, Ng SK, Yang Y, Zhang W. Investigation on environmental factors contributing to bispecific antibody stability and the reversal of self-associated aggregates. BIORESOUR BIOPROCESS 2024; 11:82. [PMID: 39177850 PMCID: PMC11343937 DOI: 10.1186/s40643-024-00796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
Bispecific antibodies (bsAbs) hold promises for enhanced therapeutic potential surpassing that of their parental monoclonal antibodies. However, bsAbs pose great challenges in their manufacturing, and one of the common reasons is their susceptibility to aggregation. Building on previous studies demonstrating the functionality and potential manufacturability of Fab-scFv format bsAb, this investigation delved into the impact of environmental factors-such as pH, buffer types, ionic strength, protein concentrations, and temperatures-on its stability and the reversal of its self-associated aggregates. Mildly acidic, low-salt conditions were found optimal, ensuring bsAb stability for 30 days even at elevated temperature of 40 °C. Furthermore, these conditions facilitated the reversal of its self-associated aggregates to monomers during the initial 7-day incubation period. Our findings underscore the robustness and resilience of Fab-scFv format bsAb, further confirming its potential manufacturability despite its current absence as commercial products.
Collapse
Affiliation(s)
- Nattha Ingavat
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Nuruljannah Dzulkiflie
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jia Min Liew
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xinhui Wang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Eunice Leong
- Animal Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Han Ping Loh
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Say Kong Ng
- Animal Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuansheng Yang
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
10
|
Hashimoto-Tane A, Bowman EP, Sakuma M, Yoneda N, Yugi K, de Waal Malefyt R, Saito T. Dissociation of LAG-3 inhibitory cluster from TCR microcluster by immune checkpoint blockade. Front Immunol 2024; 15:1444424. [PMID: 39234253 PMCID: PMC11371725 DOI: 10.3389/fimmu.2024.1444424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/24/2024] [Indexed: 09/06/2024] Open
Abstract
Lymphocyte activation gene (Lag)-3 is an inhibitory co-receptor and target of immune checkpoint inhibitor (ICI) therapy for cancer. The dynamic behavior of Lag-3 was analyzed at the immune synapse upon T-cell activation to elucidate the Lag-3 inhibitory mechanism. Lag-3 formed clusters and co-localized with T-cell receptor microcluster (TCR-MC) upon T-cell activation similar to PD-1. Lag-3 blocking antibodies (Abs) inhibited the co-localization between Lag-3 and TCR-MC without inhibiting Lag-3 cluster formation. Lag-3 also inhibited MHC-II-independent stimulation and Lag-3 Ab, which did not block MHC-II binding could still block Lag-3's inhibitory function, suggesting that the Lag-3 Ab blocks the Lag-3 inhibitory signal by dissociating the co-assembly of TCR-MC and Lag-3 clusters. Consistent with the combination benefit of PD-1 and Lag-3 Abs to augment T-cell responses, bispecific Lag-3/PD-1 antagonists effectively inhibited both cluster formation and co-localization of PD-1 and Lag-3 with TCR-MC. Therefore, Lag-3 inhibits T-cell activation at TCR-MC, and the target of Lag-3 ICI is to dissociate the co-localization of Lag-3 with TCR-MC.
Collapse
Affiliation(s)
- Akiko Hashimoto-Tane
- Laboratory of Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Edward P. Bowman
- Department of Oncology, Merck & Co., Inc., Rahway, NJ, United States
| | - Machie Sakuma
- Laboratory of Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Natsumi Yoneda
- Laboratory of Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Katsuyuki Yugi
- Laboratory of Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Takashi Saito
- Laboratory of Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Cell Signaling, Immunology Frontier of Immunology, Osaka University, Suita, Japan
| |
Collapse
|
11
|
Li W, Wang X, Zhang X, Aziz AUR, Wang D. CAR-NK Cell Therapy: A Transformative Approach to Overcoming Oncological Challenges. Biomolecules 2024; 14:1035. [PMID: 39199421 PMCID: PMC11352442 DOI: 10.3390/biom14081035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/27/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
The use of chimeric antigen receptor (CAR) in natural killer (NK) cells for cancer therapy is gaining momentum, marking a significant shift in cancer treatment. This review aims to explore the potential of CAR-NK cell therapy in cancer immunotherapy, providing a fresh perspective. It discusses the innovative approaches in CAR-NK cell design and engineering, particularly targeting refractory or recurrent cancers. By comparing CAR-NK cells with traditional therapies, the review highlights their unique ability to tackle tumor heterogeneity and immune system suppression. Additionally, it explains how novel cytokines and receptors can enhance CAR-NK cell efficacy, specificity, and functionality. This review underscores the advantages of CAR-NK cells, including reduced toxicity, lower cost, and broader accessibility compared to CAR-T cells, along with their potential in treating both blood cancers and solid tumors.
Collapse
Affiliation(s)
- Wangshu Li
- China Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children’s Medical Group, Dalian 116012, China; (W.L.); (X.W.)
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiuying Wang
- China Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children’s Medical Group, Dalian 116012, China; (W.L.); (X.W.)
| | - Xu Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin 151801, China;
| | - Aziz ur Rehman Aziz
- China Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children’s Medical Group, Dalian 116012, China; (W.L.); (X.W.)
| | - Daqing Wang
- China Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children’s Medical Group, Dalian 116012, China; (W.L.); (X.W.)
| |
Collapse
|
12
|
Yu X, Zhang Y, Luo F, Zhou Q, Zhu L. The role of microRNAs in the gastric cancer tumor microenvironment. Mol Cancer 2024; 23:170. [PMID: 39164671 PMCID: PMC11334576 DOI: 10.1186/s12943-024-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the deadliest malignant tumors with unknown pathogenesis. Due to its treatment resistance, high recurrence rate, and lack of reliable early detection techniques, a majority of patients have a poor prognosis. Therefore, identifying new tumor biomarkers and therapeutic targets is essential. This review aims to provide fresh insights into enhancing the prognosis of patients with GC by summarizing the processes through which microRNAs (miRNAs) regulate the tumor microenvironment (TME) and highlighting their critical role in the TME. MAIN TEXT A comprehensive literature review was conducted by focusing on the interactions among tumor cells, extracellular matrix, blood vessels, cancer-associated fibroblasts, and immune cells within the GC TME. The role of noncoding RNAs, known as miRNAs, in modulating the TME through various signaling pathways, cytokines, growth factors, and exosomes was specifically examined. Tumor formation, metastasis, and therapy in GC are significantly influenced by interactions within the TME. miRNAs regulate tumor progression by modulating these interactions through multiple signaling pathways, cytokines, growth factors, and exosomes. Dysregulation of miRNAs affects critical cellular processes such as cell proliferation, differentiation, angiogenesis, metastasis, and treatment resistance, contributing to the pathogenesis of GC. CONCLUSIONS miRNAs play a crucial role in the regulation of the GC TME, influencing tumor progression and patient prognosis. By understanding the mechanisms through which miRNAs control the TME, potential biomarkers and therapeutic targets can be identified to improve the prognosis of patients with GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Sichuan Province, No. 10 Qinyun Nan Street, Chengdu, 610041, People's Republic of China
| | - Yin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qinghua Zhou
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
13
|
Liu Y, Wang C, Chen G, Chen J, Chen W, Lei K, Li J, Pan Y, Li Y, Tang D, Li B, Zhao J, Zeng L. Patient derived cancer organoids model the response to HER2-CD3 bispecific antibody (BsAbHER2) generated from hydroxyapatite gene delivery system. Cancer Lett 2024; 597:217043. [PMID: 38876386 DOI: 10.1016/j.canlet.2024.217043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
HER2-positive cancer is a prevalent subtype of malignancy with poor prognosis, yet current targeted therapies, like Trastuzumab and pyrotinib, have resulted in remission in patients with HER2-positive cancer. This study provides a novel approach for immunotherapy based on a hydroxyapatite (HA) gene delivery system producing a bispecific antibody for HER2-positive cancer treatment. An HA nanocarrier has been synthesized by the classical hydrothermal method. Particularly, the HA-nanoneedle system was able to mediate stable gene expression of minicircle DNA (MC) encoding a humanized anti-CD3/anti-HER2 bispecific antibody (BsAbHER2) in vivo. The produced BsAbs exhibited a potent killing effect not only in HER2-positive cancer cells but also in patient-derived organoids in vitro. This HA-nanoneedle gene delivery system features simple large-scale preparation and clinical applicability. Hence, the HA-nanoneedle gene delivery system combined with minicircle DNA vector encoding BsAbHER2 reported here provides a potential immunotherapy strategy for HER2-positive tumors.
Collapse
Affiliation(s)
- Yuhong Liu
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China; The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Chen Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Guochuang Chen
- Syno Minicircle Biotechnology, Shenzhen, 518055, PR China
| | - Junzong Chen
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Wei Chen
- The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Kefeng Lei
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Jia Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Yihang Pan
- The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - You Li
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Di Tang
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| | - Binbin Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| | - Jing Zhao
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| | - Leli Zeng
- The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| |
Collapse
|
14
|
Cho J, Tae N, Song Y, Kim CW, Lee SJ, Ahn JH, Lee KH, Lee BH, Kim BS, Chang SY, Kim DH, Ko HJ. The expression of PD-L1 on tumor-derived exosomes enhances infiltration and anti-tumor activity of αCD3 × αPD-L1 bispecific antibody-armed T cells. Cancer Immunol Immunother 2024; 73:196. [PMID: 39105814 PMCID: PMC11303351 DOI: 10.1007/s00262-024-03785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Anti-cluster of differentiation (CD) 3 × α programmed death-ligand 1 (PD-L1) bispecific T-cell engager (BsTE)-bound T-cells (BsTE:T) are a promising new cancer treatment agent. However, the mechanisms of action of bispecific antibody-armed activated T-cells are poorly understood. Therefore, this study aimed to investigate the anti-tumor mechanism and efficacy of BsTE:T. The BsTE:T migration was assessed in vivo and in vitro using syngeneic and xenogeneic tumor models, flow cytometry, immunofluorescence staining, transwell migration assays, microfluidic chips, Exo View R100, western blotting, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 technology. In murine B16 melanoma, MC38 colon cancer, and human multiple myeloma cells, BsTE:T exhibited superior tumor elimination relative to that of T-cells or BsTE alone. Moreover, BsTE:T migration into tumors was significantly enhanced owing to the presence of PD-L1 in tumor cells and secretion of PD-L1-containing exosomes. Furthermore, increased infiltration of CD44highCD62Llow effector memory CD8+ T-cells into tumors was closely associated with the anti-tumor effect of BsTE:T. Therefore, BsTE:T is an innovative potential anti-tumor therapy, and exosomal PD-L1 plays a crucial role both in vitro and in vivo in the anti-tumor activity of BsTE:T.
Collapse
Affiliation(s)
- Jaewon Cho
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Nara Tae
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yujeong Song
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Chae-Won Kim
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung-Joo Lee
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Kwang-Ho Lee
- Department of Advanced Material Science and Engineering, College of Engineering, Kangwon National University, Chuncheon, 25561, Korea
| | - Byung-Hyun Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Byung Soo Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, 16499, Korea
| | - Dae Hee Kim
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Innovative Drug Development Research Team for Intractable Diseases (BK21 plus), Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
15
|
Geva R, Vieito M, Ramon J, Perets R, Pedregal M, Corral E, Doger B, Calvo E, Bardina J, Garralda E, Brown RJ, Greger JG, Wu S, Steinbach D, Yao TWS, Cao Y, Lauring J, Chaudhary R, Patel J, Patel B, Moreno V. Safety and clinical activity of JNJ-78306358, a human leukocyte antigen-G (HLA-G) x CD3 bispecific antibody, for the treatment of advanced stage solid tumors. Cancer Immunol Immunother 2024; 73:205. [PMID: 39105878 PMCID: PMC11303617 DOI: 10.1007/s00262-024-03790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND JNJ-78306358 is a bispecific antibody that redirects T cells to kill human leukocyte antigen-G (HLA-G)-expressing tumor cells. This dose escalation study evaluated the safety, pharmacokinetics, pharmacodynamics, and preliminary antitumor activity of JNJ-78306358 in patients with advanced solid tumors. METHODS Adult patients with metastatic/unresectable solid tumors with high prevalence of HLA-G expression were enrolled. Dose escalation was initiated with once-weekly subcutaneous administration with step-up dosing to mitigate cytokine release syndrome (CRS). RESULTS Overall, 39 heavily pretreated patients (colorectal cancer: n = 23, ovarian cancer: n = 10, and renal cell carcinoma: n = 6) were dosed in 7 cohorts. Most patients (94.9%) experienced ≥ 1 treatment-emergent adverse events (TEAEs); 87.2% had ≥ 1 related TEAEs. About half of the patients (48.7%) experienced CRS, which were grade 1/2. Nine patients (23.1%) received tocilizumab for CRS. No grade 3 CRS was observed. Dose-limiting toxicities (DLTs) of increased transaminases, pneumonitis and recurrent CRS requiring a dose reduction were reported in 4 patients, coinciding with CRS. No treatment-related deaths reported. No objective responses were noted, but 2 patients had stable disease > 40 weeks. JNJ-78306358 stimulated peripheral T cell activation and cytokine release. Anti-drug antibodies were observed in 45% of evaluable patients with impact on exposure. Approximately half of archival tumor samples (48%) had expression of HLA-G by immunohistochemistry. CONCLUSION JNJ-78306358 showed pharmacodynamic effects with induction of cytokines and T cell activation. JNJ-78306358 was associated with CRS-related toxicities including increased transaminases and pneumonitis which limited its dose escalation to potentially efficacious levels. Trial registration number ClinicalTrials.gov (No. NCT04991740).
Collapse
Affiliation(s)
- Ravit Geva
- Sourasky Medical Center, Tel-Aviv university, Tel-Aviv, Israel.
| | - Maria Vieito
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jorge Ramon
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Ruth Perets
- Rambam Medical Center, and Technion-Israel Institute of Technology, Haifa, Israel
| | - Manuel Pedregal
- START Madrid-FJD, Hospital Fundacion Jimenez Diaz, Madrid, Spain
| | - Elena Corral
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Bernard Doger
- START Madrid-FJD, Hospital Fundacion Jimenez Diaz, Madrid, Spain
| | - Emiliano Calvo
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Jorge Bardina
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Elena Garralda
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | - Shujian Wu
- Janssen Research and Development, Horsham, PA, USA
| | | | | | - Yu Cao
- Janssen Research and Development, Raritan, NJ, USA
| | - Josh Lauring
- Janssen Research and Development, Spring House, PA, USA
| | | | - Jaymala Patel
- Janssen Research and Development, Spring House, PA, USA
| | - Bharvin Patel
- Janssen Research and Development, Spring House, PA, USA
| | - Victor Moreno
- START Madrid-FJD, Hospital Fundacion Jimenez Diaz, Madrid, Spain
| |
Collapse
|
16
|
Liao X, Qi T, Zhou J, Liu C, Cao Y. Optimizing Clinical Translation of Bispecific T-cell Engagers through Context Unification with a Quantitative Systems Pharmacology Model. Clin Pharmacol Ther 2024; 116:415-425. [PMID: 38751031 PMCID: PMC11251864 DOI: 10.1002/cpt.3302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/30/2024] [Indexed: 07/17/2024]
Abstract
Bispecific T-cell engagers (bsTCEs) have emerged as a promising class of cancer immunotherapy. BsTCEs enable physical connections between T cells and tumor cells to enhance T-cell activity against cancer. Despite several marketing approvals, the development of bsTCEs remains challenging, especially at early clinical translational stages. The intricate design of bsTCEs makes their pharmacologic effects and safety profiles highly dependent on patient's immunological and tumor conditions. Such context-dependent pharmacology introduces considerable uncertainty into translational efforts. In this study, we developed a Quantitative Systems Pharmacology (QSP) model, through context unification, that can facilitate the translation of bsTCEs preclinical data into clinical activity. Through characterizing the formation dynamics of immunological synapse (IS) induced by bsTCEs, this model unifies a broad range of contexts related to target affinity, tumor characteristics, and immunological conditions. After rigorous calibration using both experimental and clinical data, the model enables consistent translation of drug potency observed under diverse experimental conditions into predictable exposure-response relationships in patients. Moreover, the model can help identify optimal target-binding affinities and minimum efficacious concentrations across different clinical contexts. This QSP approach holds significant promise for the future development of bsTCEs.
Collapse
Affiliation(s)
- Xiaozhi Liao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Timothy Qi
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Jiawei Zhou
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Can Liu
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Johnson PC, Bailey A, Ma Q, Milloy N, Biondi E, Quek RGW, Weatherby S, Barlow S. Quality of Life Evaluation in Patients with Follicular Cell Lymphoma: A Real-World Study in Europe and the United States. Adv Ther 2024; 41:3342-3361. [PMID: 38976122 PMCID: PMC11263223 DOI: 10.1007/s12325-024-02882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Follicular lymphoma (FL) is an indolent subtype of non-Hodgkin's lymphoma (NHL), characterized by a long natural course of remissions/relapses. We aimed to evaluate real-world quality of life (QoL) in patients with FL, by line of therapy (LOT), and across countries. METHODS Data were drawn from the Adelphi FL Disease Specific Programme™, a cross-sectional survey of physicians and their patients in Europe [France, Germany, Italy, Spain, the United Kingdom (UK)], and the United States (US) from June 2021 to January 2022. Patients provided demographics and patient-reported outcomes via the European Organisation for Research and Treatment of Cancer QoL questionnaire (EORTC QLQ-C30). Bivariate analysis assessed QoL versus NHL, across LOT [first line (1L), second line (2L), third line or later (3L+)] and country. RESULTS Patients (n = 401) had a mean [standard deviation (SD)] age of 66.0 (9.24) years, 58.1% were male, and 41.9%/22.9% were Ann Arbor stage III/IV. Patients with FL mean EORTC global health status (GHS)/QoL, nausea/vomiting, pain, dyspnea, appetite loss, and diarrhea scores were statistically significantly worse (p < 0.05) versus the NHL reference values. Mean (SD) GHS/QoL worsened from 1L [56.5 (22.21)] to 3L+ [50.4 (20.11)]. Physical and role functioning, fatigue, pain, dyspnea, and diarrhea scores also significantly worsened across later LOTs (p < 0.05). Across all functional domains, mean scores were significantly lower (p < 0.05) and almost all symptom scores (excluding diarrhea) were significantly higher (p < 0.05) for European versus US patients. CONCLUSIONS Patients with FL at later LOTs had significantly worse scores in most QoL aspects than earlier LOTs. European patients had significantly lower functioning and higher symptom burden than in the US. These real-world findings highlight the need for novel FL therapies that alleviate patient burden, positively impacting QoL.
Collapse
Affiliation(s)
| | - Abigail Bailey
- Adelphi Real World, Adelphi Mill, Grimshaw Lane, Bollington, Macclesfield, Cheshire, SK10 5JB, UK
| | - Qiufei Ma
- Health Economics and Outcomes Research, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Neil Milloy
- Adelphi Real World, Adelphi Mill, Grimshaw Lane, Bollington, Macclesfield, Cheshire, SK10 5JB, UK.
| | - Emilia Biondi
- Adelphi Real World, Adelphi Mill, Grimshaw Lane, Bollington, Macclesfield, Cheshire, SK10 5JB, UK
| | - Ruben G W Quek
- Health Economics and Outcomes Research, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Sarah Weatherby
- Adelphi Real World, Adelphi Mill, Grimshaw Lane, Bollington, Macclesfield, Cheshire, SK10 5JB, UK
| | - Sophie Barlow
- Adelphi Real World, Adelphi Mill, Grimshaw Lane, Bollington, Macclesfield, Cheshire, SK10 5JB, UK
| |
Collapse
|
18
|
Saltarella I, Link A, Lamanuzzi A, Reichen C, Robinson J, Altamura C, Melaccio A, Solimando AG, Ria R, Mariggiò MA, Vacca A, Frassanito MA, Desaphy JF. Improvement of daratumumab- or elotuzumab-mediated NK cell activity by the bi-specific 4-1BB agonist, DARPin α-FAPx4-1BB: A preclinical study in multiple myeloma. Biomed Pharmacother 2024; 176:116877. [PMID: 38850654 DOI: 10.1016/j.biopha.2024.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Multiple myeloma (MM) progression is closely dependent on cells in the bone marrow (BM) microenvironment, including fibroblasts (FBs) and immune cells. In their BM niche, MM cells adhere to FBs sustaining immune evasion, drug resistance and the undetectable endurance of tumor cells known as minimal residual disease (MRD). Here, we describe the novel bi-specific designed ankyrin repeat protein (DARPin) α-FAPx4-1BB (MP0310) with FAP-dependent 4-1BB agonistic activity. The α-FAPx4-1BB DARPin simultaneously binds to FAP and 4-1BB overexpressed by activated FBs and immune cells, respectively. Although flow cytometry analysis showed that T and NK cells from MM patients were not activated and did not express 4-1BB, stimulation with daratumumab or elotuzumab, monoclonal antibodies (mAbs) currently used for the treatment of MM, significantly upregulated 4-1BB both in vitro and in MM patients following mAb-based therapy. The mAb-induced 4-1BB overexpression allowed the engagement of α-FAPx4-1BB that acted as a bridge between FAP+FBs and 4-1BB+NK cells. Therefore, α-FAPx4-1BB enhanced both the adhesion of daratumumab-treated NK cells on FBs as well as their activation by improving release of CD107a and perforin, hence MM cell killing via antibody-mediated cell cytotoxicity (ADCC). Interestingly, α-FAPx4-1BB significantly potentiated daratumumab-mediated ADCC in the presence of FBs, suggesting that it may overcome the BM FBs' immunosuppressive effect. Overall, we speculate that treatment with α-FAPx4-1BB may represent a valuable strategy to improve mAb-induced NK cell activity fostering MRD negativity in MM patients through the eradication of latent MRD cells.
Collapse
MESH Headings
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Multiple Myeloma/drug therapy
- Multiple Myeloma/immunology
- Multiple Myeloma/pathology
- Humans
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal/pharmacology
- Cell Line, Tumor
- Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Membrane Proteins/metabolism
- Membrane Proteins/agonists
- Endopeptidases
Collapse
Affiliation(s)
- Ilaria Saltarella
- Section of Pharmacology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | | | - Aurelia Lamanuzzi
- Section of Internal Medicine and Clinical Oncology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | | | | | - Concetta Altamura
- Section of Pharmacology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | | | - Antonio Giovanni Solimando
- Section of Internal Medicine and Clinical Oncology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Roberto Ria
- Section of Internal Medicine and Clinical Oncology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Maria Addolorata Mariggiò
- Section of Clinical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Vacca
- Section of Internal Medicine and Clinical Oncology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy.
| | - Maria Antonia Frassanito
- Section of Clinical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Jean-François Desaphy
- Section of Pharmacology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
19
|
Wang L, Lynch C, Pitroda SP, Piffkó A, Yang K, Huser AK, Liang HL, Weichselbaum RR. Radiotherapy and immunology. J Exp Med 2024; 221:e20232101. [PMID: 38771260 PMCID: PMC11110906 DOI: 10.1084/jem.20232101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
The majority of cancer patients receive radiotherapy during the course of treatment, delivered with curative intent for local tumor control or as part of a multimodality regimen aimed at eliminating distant metastasis. A major focus of research has been DNA damage; however, in the past two decades, emphasis has shifted to the important role the immune system plays in radiotherapy-induced anti-tumor effects. Radiotherapy reprograms the tumor microenvironment, triggering DNA and RNA sensing cascades that activate innate immunity and ultimately enhance adaptive immunity. In opposition, radiotherapy also induces suppression of anti-tumor immunity, including recruitment of regulatory T cells, myeloid-derived suppressor cells, and suppressive macrophages. The balance of pro- and anti-tumor immunity is regulated in part by radiotherapy-induced chemokines and cytokines. Microbiota can also influence radiotherapy outcomes and is under clinical investigation. Blockade of the PD-1/PD-L1 axis and CTLA-4 has been extensively investigated in combination with radiotherapy; we include a review of clinical trials involving inhibition of these immune checkpoints and radiotherapy.
Collapse
Affiliation(s)
- Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Connor Lynch
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Sean P. Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - András Piffkó
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Amy K. Huser
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Hua Laura Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Bose CK, Basu N. Bispecific immunotherapy MEDI5752 or volrustomig and cervical cancer. J Gynecol Oncol 2024; 35:e82. [PMID: 38789395 PMCID: PMC11262897 DOI: 10.3802/jgo.2024.35.e82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/09/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
MEDI5752 is a monovalent bispecific immunotherapy and is strategically unique as it combines both anti programmed cell death 1 and anti cytotoxic T-lymphocyte-associated protein 4 action. This is one of the first of this kind of molecule. The development of this molecule had been very interesting which is not usually described in regular clinical oncology journals thus losing an important piece of history of an upcoming subject. Only some phase I results in such development is published so far and no full report on this is available till now. This effort will try to record the facts and chain of events which actually occurred in inventing and bringing it in phase III trial.
Collapse
Affiliation(s)
- Chinmoy K Bose
- Netaji Subhas Chandra Bose Cancer Hospital, Kolkata, India
- The Central Drugs Standard Control Organisation (CDSCO), Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, New Delhi, India.
| | - Nirban Basu
- Department of Paediatric Surgery, NRS Medical College, Kolkata, India
| |
Collapse
|
21
|
Lopes JA, Garnier NE, Pei Y, Yates JGE, Campbell ESB, Goens MM, Hughes ME, Rghei AD, Stevens BAY, Guilleman MM, Thompson B, Khursigara CM, Susta L, Wootton SK. AAV-vectored expression of monospecific or bispecific monoclonal antibodies protects mice from lethal Pseudomonas aeruginosa pneumonia. Gene Ther 2024; 31:400-412. [PMID: 38678160 DOI: 10.1038/s41434-024-00453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Pseudomonas aeruginosa poses a significant threat to immunocompromised individuals and those with cystic fibrosis. Treatment relies on antibiotics, but persistent infections occur due to intrinsic and acquired resistance of P. aeruginosa towards multiple classes of antibiotics. To date, there are no licensed vaccines for this pathogen, prompting the urgent need for novel treatment approaches to combat P. aeruginosa infection and persistence. Here we validated AAV vectored immunoprophylaxis as a strategy to generate long-term plasma and mucosal expression of highly protective monoclonal antibodies (mAbs) targeting the exopolysaccharide Psl (Cam-003) and the PcrV (V2L2MD) component of the type-III secretion system injectosome either as single mAbs or together as a bispecific mAb (MEDI3902) in a mouse model. When administered intramuscularly, AAV-αPcrV, AAV-αPsl, and AAV-MEDI3902 significantly protected mice challenged intranasally with a lethal dose of P. aeruginosa strains PAO1 and PA14 and reduced bacterial burden and dissemination to other organs. While all AAV-mAbs provided protection, AAV-αPcrV and AAV-MEDI3902 provided 100% and 87.5% protection from a lethal challenge with 4.47 × 107 CFU PAO1 and 87.5% and 75% protection from a lethal challenge with 3 × 107 CFU PA14, respectively. Serum concentrations of MEDI3902 were ~10× lower than that of αPcrV, but mice treated with this vector showed a greater reduction in bacterial dissemination to the liver, lung, spleen, and blood compared to other AAV-mAbs. These results support further investigation into the use of AAV vectored immunoprophylaxis to prevent and treat P. aeruginosa infections and other bacterial pathogens of public health concern for which current treatment strategies are limited.
Collapse
Affiliation(s)
- Jordyn A Lopes
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicole E Garnier
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jacob G E Yates
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Elena S B Campbell
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Melanie M Goens
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Madison E Hughes
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Amira D Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Brenna A Y Stevens
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Matthew M Guilleman
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Brad Thompson
- Avamab Pharma Inc., 120, 4838 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
22
|
Venetsanopoulou AI, Voulgari PV, Drosos AA. Investigational bispecific antibodies for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs 2024; 33:661-670. [PMID: 38698301 DOI: 10.1080/13543784.2024.2351507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/01/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune disorder with a characteristic chronic inflammation of the synovium that may lead to the destruction of the joints in untreated patients. Interestingly, despite the availability of several effective treatments, many patients do not achieve remission or low disease activity or may experience disease relapse.Following the above unmet needs, bispecific antibodies (BsAbs) have emerged as a new approach to improve the disease's treatment. BsAbs are designed to simultaneously target two different proteins involved in RA pathogenesis, leading to enhanced efficacy and reduced side effects compared to traditional monoclonal antibodies (mAbs). AREAS COVERED In this review, we discuss the development of BsAbs for RA treatment, including their mechanism of action, efficacy, and safety profile. We also deal with the challenges and future directions in this field. EXPERT OPINION BsAbs show promise in preclinical and clinical evaluations for treating RA. Further research is needed to optimize design and dosage and identify ideal patient groups. BsAbs can benefit disease management and improve outcomes of RA patients.
Collapse
MESH Headings
- Humans
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/administration & dosage
- Antibodies, Bispecific/adverse effects
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Animals
- Drug Development
- Antirheumatic Agents/pharmacology
- Antirheumatic Agents/adverse effects
- Antirheumatic Agents/administration & dosage
- Antirheumatic Agents/therapeutic use
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Drugs, Investigational/pharmacology
- Drugs, Investigational/administration & dosage
- Drugs, Investigational/adverse effects
Collapse
Affiliation(s)
- Aliki I Venetsanopoulou
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Paraskevi V Voulgari
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Alexandros A Drosos
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
23
|
Li W, Zhao X, Ren C, Gao S, Han Q, Lu M, Li X. The therapeutic role of γδT cells in TNBC. Front Immunol 2024; 15:1420107. [PMID: 38933280 PMCID: PMC11199784 DOI: 10.3389/fimmu.2024.1420107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that presents significant therapeutic challenges due to the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. As a result, conventional hormonal and targeted therapies are largely ineffective, underscoring the urgent need for novel treatment strategies. γδT cells, known for their robust anti-tumor properties, show considerable potential in TNBC treatment as they can identify and eliminate tumor cells without reliance on MHC restrictions. These cells demonstrate extensive proliferation both in vitro and in vivo, and can directly target tumors through cytotoxic effects or indirectly by promoting other immune responses. Studies suggest that expansion and adoptive transfer strategies targeting Vδ2 and Vδ1 γδT cell subtypes have shown promise in preclinical TNBC models. This review compiles and discusses the existing literature on the primary subgroups of γδT cells, their roles in cancer therapy, their contributions to tumor cell cytotoxicity and immune modulation, and proposes potential strategies for future γδT cell-based immunotherapies in TNBC.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Xian Zhao
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Chuanxin Ren
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shang Gao
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Qinyu Han
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Min Lu
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Xiangqi Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| |
Collapse
|
24
|
Kopp A, Guan J, Johnston C, Vance S, Legg J, Galson-Holt L, Thurber GM. Design of Crosslinking Antibodies For T-Cell Activation: Experimental and Computational Analysis of PD-1/CD137 Bispecific Agents. AAPS J 2024; 26:68. [PMID: 38862748 PMCID: PMC11497593 DOI: 10.1208/s12248-024-00937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024] Open
Abstract
Bispecific and multispecific agents have become increasingly utilized in cancer treatment and immunotherapy, yet their complex design parameters present a challenge in developing successful therapeutics. Bispecifics that crosslink receptors on two opposing cells can provide specific activation of a receptor only when these cells are in close spatial proximity, such as an immune cell and cancer cell in a tumor. These agents, including T cell activating bispecifics, can avoid off-tumor toxicity through activation only in the tumor microenvironment by utilizing a tumor target to cluster T-cell receptors for a selective costimulatory signal. Here, we investigate a panel of PD-1/CD137 targeted Humabody VH domains to determine the key factors for T cell activation, such as affinity, valency, expression level, domain orientation, and epitope location. Target expression is a dominant factor determining both specificity and potency of T cell activation. Given an intrinsic expression level, the affinity can be tuned to modulate the level of activation and IC50 and achieve specificity between low and high expression levels. Changing the epitope location and linker length showed minor improvements to activation at low expression levels, but increasing the valency for the target decreased activation at all expression levels. By combining non-overlapping epitopes for the target, we achieved higher receptor activation at low expression levels. A kinetic model was able to capture these trends, offering support for the mechanistic interpretation. This work provides a framework to quantify factors for T cell activation by cell-crosslinking bispecific agents and guiding principles for the design of new agents.
Collapse
Affiliation(s)
- Anna Kopp
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, 48109, USA
| | - Jiakun Guan
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, 48109, USA
| | | | | | | | | | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
25
|
O'Connell RP, Liaw K, Wellhausen N, Chuckran CA, Bhojnagarwala PS, Bordoloi D, Park D, Shupin N, Kulp D, June CH, Weiner D. Format-tuning of in vivo-launched bispecific T cell engager enhances efficacy against renal cell carcinoma. J Immunother Cancer 2024; 12:e008733. [PMID: 38834201 PMCID: PMC11163651 DOI: 10.1136/jitc-2023-008733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Advanced clear cell renal cell carcinoma (ccRCC) is a prevalent kidney cancer for which long-term survival rates are abysmal, though immunotherapies are showing potential. Not yet clinically vetted are bispecific T cell engagers (BTEs) that activate T cell-mediated cancer killing through intercellular synapsing. Multiple BTE formats exist, however, with limited cross-characterizations to help optimize new drug design. Here, we developed BTEs to treat ccRCC by targeting carbonic anhydrase 9 (CA9) while characterizing the persistent BTE (PBTE) format and comparing it to a new format, the persistent multivalent T cell engager (PMTE). These antibody therapies against ccRCC are developed as both recombinant and synthetic DNA (synDNA) medicines. METHODS Antibody formatting effects on binding kinetics were assessed by flow cytometry and intercellular synaptic strength assays while potency was tested using T-cell activation and cytotoxicity assays. Mouse models were used to study antibody plasma and tumor pharmacokinetics, as well as antitumor efficacy as both recombinant and synDNA medicines. Specifically, three models using ccRCC cell line xenografts and human donor T cells in immunodeficient mice were used to support this study. RESULTS Compared with a first-generation BTE, we show that the PBTE reduced avidity, intercellular synaptic strength, cytotoxic potency by as much as 33-fold, and ultimately efficacy against ccRCC tumors in vivo. However, compared with the PBTE, we demonstrate that the PMTE improved cell avidity, restored intercellular synapses, augmented cytotoxic potency by 40-fold, improved tumor distribution pharmacokinetics by 2-fold, and recovered synDNA efficacy in mouse tumor models by 20-fold. All the while, the PMTE displayed a desirable half-life of 4 days in mice compared with the conventional BTE's 2 hours. CONCLUSIONS With impressive efficacy, the CA9-targeted PMTE is a promising new therapy for advanced ccRCC, which can be effectively delivered through synDNA. The highly potent PMTE format itself is a promising new tool for future applications in the multispecific antibody space.
Collapse
Affiliation(s)
- Ryan P O'Connell
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Vaccine & Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kevin Liaw
- Vaccine & Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Nils Wellhausen
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Devivasha Bordoloi
- Vaccine & Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Daniel Park
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Vaccine & Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Nicholas Shupin
- Vaccine & Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Daniel Kulp
- Vaccine & Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David Weiner
- Vaccine & Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Qin X, Ning W, Liu H, Liu X, Luo W, Xia N. Stepping forward: T-cell redirecting bispecific antibodies in cancer therapy. Acta Pharm Sin B 2024; 14:2361-2377. [PMID: 38828136 PMCID: PMC11143529 DOI: 10.1016/j.apsb.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/26/2023] [Accepted: 02/28/2024] [Indexed: 06/05/2024] Open
Abstract
T cell-redirecting bispecific antibodies are specifically designed to bind to tumor-associated antigens, thereby engaging with CD3 on the T cell receptor. This linkage between tumor cells and T cells actively triggers T cell activation and initiates targeted killing of the identified tumor cells. These antibodies have emerged as one of the most promising avenues within tumor immunotherapy. However, despite success in treating hematological malignancies, significant advancements in solid tumors have yet to be explored. In this review, we aim to address the critical challenges associated with T cell-redirecting bispecific antibodies and explore novel strategies to overcome these obstacles, with the ultimate goal of expanding the application of this therapy to include solid tumors.
Collapse
Affiliation(s)
- Xiaojing Qin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Han Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
27
|
Cheng J, Liang T, Xie XQ, Feng Z, Meng L. A new era of antibody discovery: an in-depth review of AI-driven approaches. Drug Discov Today 2024; 29:103984. [PMID: 38642702 DOI: 10.1016/j.drudis.2024.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Given their high affinity and specificity for a range of macromolecules, antibodies are widely used in the treatment of autoimmune diseases, cancers, inflammatory diseases, and Alzheimer's disease (AD). Traditional experimental methods are time-consuming, expensive, and labor-intensive. Recent advances in artificial intelligence (AI) technologies provide complementary methods that can reduce the time and costs required for antibody design by minimizing failures and increasing the success rate of experimental tests. In this review, we scrutinize the plethora of AI-driven methodologies that have been deployed over the past 4 years for modeling antibody structures, predicting antibody-antigen interactions, optimizing antibody affinity, and generating novel antibody candidates. We also briefly address the challenges faced in integrating AI-based models with traditional antibody discovery pipelines and highlight the potential future directions in this burgeoning field.
Collapse
Affiliation(s)
- Jin Cheng
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Tianjian Liang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Li Meng
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| |
Collapse
|
28
|
Li Y, Zhao W, Shen Y, Xu Y, Chen S, Pan L. T Cell Receptor-Directed Bispecific T Cell Engager Targeting MHC-Linked NY-ESO-1 for Tumor Immunotherapy. Biomedicines 2024; 12:776. [PMID: 38672132 PMCID: PMC11048172 DOI: 10.3390/biomedicines12040776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Antibody-based bispecific T cell engagers (TCEs) that redirect T cells to kill tumor cells have shown a promising therapeutic effect on hematologic malignancies. However, tumor-specific targeting is still a challenge for TCEs, impeding the development of TCEs for solid tumor therapy. The major histocompatibility complex (MHC) presents almost all intracellular peptides (including tumor-specific peptides) on the cell surface to be scanned by the TCR on T cells. With the premise of choosing optimal peptides, the final complex peptide-MHC could be the tumor-specific target for TCEs. Here, a novel TCR-directed format of a TCE targeting peptide-MHC was designed named IgG-T-TCE, which was modified from the IgG backbone and prepared in a mammalian cell expression system. The recombinant IgG-T-TCE-NY targeting NY-ESO-1157-165/HLA-A*02:01 could be generated in HEK293 cells with a glycosylated TCR and showed potency in T cell activation and redirecting T cells to specifically kill target tumor cells. We also found that the in vitro activity of IgG-T-TCE-NY could be leveraged by various anti-CD3 antibodies and Fc silencing. The IgG-T-TCE-NY efficiently inhibited tumor growth in a tumor-PBMC co-engrafted mouse model without any obvious toxicities.
Collapse
Affiliation(s)
- Yiming Li
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.L.); (W.Z.); (Y.S.); (Y.X.)
| | - Wenbin Zhao
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.L.); (W.Z.); (Y.S.); (Y.X.)
- Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China
| | - Ying Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.L.); (W.Z.); (Y.S.); (Y.X.)
- Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China
| | - Yingchun Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.L.); (W.Z.); (Y.S.); (Y.X.)
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.L.); (W.Z.); (Y.S.); (Y.X.)
| | - Liqiang Pan
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.L.); (W.Z.); (Y.S.); (Y.X.)
| |
Collapse
|
29
|
Trépanier G, Nykopp T, Rosebush-Mercier R, Gris T, Fadel J, Black PC, Toren P. Circulating Basophils as a Prognostic Marker for Response to Bacillus Calmette-Guérin. Clin Genitourin Cancer 2024; 22:354-359.e1. [PMID: 38185610 DOI: 10.1016/j.clgc.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 01/09/2024]
Abstract
PURPOSE To predict recurrence and progression in non-muscle-invasive bladder cancer (NMIBC) patients receiving bacillus Calmette-Guérin (BCG), we evaluated circulating basophils as a biomarker that could be detected from the complete blood count. PATIENTS AND METHODS We use a pooled cohort of patients from the Centre Hospitalier Universitaire de Québec-Université Laval (2016-2020) and the Vancouver General Hospital (2010-2018) where a complete blood count was available before transurethral resection of bladder tumor (TURBT) of a high-grade NMIBC and subsequent BCG. Descriptive statistics described the cohort based on the dichotomous presence or absence of basophils on the complete blood count. Kaplan-Meier estimates and a log-rank test compared recurrence-free survival (RFS) and progression-free survival (PFS), with multivariable cox regression analysis used to estimate proportional hazard ratios. RESULTS The study cohort included 261 patients, with a median follow-up of 31.5 months (interquartile range 18.1-45.0 months). The median age was 74.0 years and 16.8% were female. Circulating basophils were detectable in 49 (18.9%) patients. Both RFS and PFS were significantly lower in patients with detectable basophils. Multivariable analysis demonstrated detectable basophils were an independent predictor of both recurrence (HR = 1.85; 95% confidence interval [CI] 1.20-2.85; P = .01) and progression (HR = 2.29; 95% CI 1.14-4.60; P = .02). CONCLUSION Our results confirm that baseline levels of circulating basophils are an immunological biomarker to predict recurrence and progression of NMIBC.
Collapse
Affiliation(s)
- Geneviève Trépanier
- Department of Biology, Faculty of Medicine, Université Laval, Quebec City, Canada; Oncology Division, CHU de Québec-Université Laval Research Center, Quebec City, Canada
| | - Timo Nykopp
- Department of Surgery, University of Eastern Finland, Kuopio, Finland; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | - Typhaine Gris
- Oncology Division, CHU de Québec-Université Laval Research Center, Quebec City, Canada
| | - Jonathan Fadel
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Peter C Black
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Paul Toren
- Oncology Division, CHU de Québec-Université Laval Research Center, Quebec City, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Canada.
| |
Collapse
|
30
|
Kim HS, Hariri K, Zhang X, Chen L, Katz BB, Pei H, Louie SG, Zhang Y. Synthesis of site-specific Fab-drug conjugates using ADP-ribosyl cyclases. Protein Sci 2024; 33:e4924. [PMID: 38501590 PMCID: PMC10949397 DOI: 10.1002/pro.4924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 03/20/2024]
Abstract
Targeted delivery of small-molecule drugs via covalent attachments to monoclonal antibodies has proved successful in clinic. For this purpose, full-length antibodies are mainly used as drug-carrying vehicles. Despite their flexible conjugation sites and versatile biological activities, intact immunoglobulins with conjugated drugs, which feature relatively large molecular weights, tend to have restricted tissue distribution and penetration and low fractions of payloads. Linking small-molecule therapeutics to other formats of antibody may lead to conjugates with optimal properties. Here, we designed and synthesized ADP-ribosyl cyclase-enabled fragment antigen-binding (Fab) drug conjugates (ARC-FDCs) by utilizing CD38 catalytic activity. Through rapidly forming a stable covalent bond with a nicotinamide adenine dinucleotide (NAD+ )-based drug linker at its active site, CD38 genetically fused with Fab mediates robust site-specific drug conjugations via enzymatic reactions. Generated ARC-FDCs with defined drug-to-Fab ratios display potent and antigen-dependent cytotoxicity against breast cancer cells. This work demonstrates a new strategy for developing site-specific FDCs. It may be applicable to different antibody scaffolds for therapeutic conjugations, leading to novel targeted agents.
Collapse
Affiliation(s)
- Hyo Sun Kim
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kimia Hariri
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Xiao‐Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Liang‐Chieh Chen
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Benjamin B. Katz
- Department of ChemistryUniversity of California, IrvineIrvineCaliforniaUSA
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Stan G. Louie
- Titus Family Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Chemistry, Dornsife College of Letters, Arts and SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Research Center for Liver DiseasesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
31
|
Kuravsky M, Gibbons GF, Joyce C, Scott-Tucker A, Macpherson A, Lawson ADG. Modular design of bi- and multi-specific knob domain fusions. Front Immunol 2024; 15:1384467. [PMID: 38605965 PMCID: PMC11008599 DOI: 10.3389/fimmu.2024.1384467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction The therapeutic potential of bispecific antibodies is becoming widely recognised, with over a hundred formats already described. For many applications, enhanced tissue penetration is sought, so bispecifics with low molecular weight may offer a route to enhanced potency. Here we report the design of bi- and tri-specific antibody-based constructs with molecular weights as low as 14.5 and 22 kDa respectively. Methods Autonomous bovine ultra-long CDR H3 (knob domain peptide) modules have been engineered with artificial coiled-coil stalks derived from Sin Nombre orthohantavirus nucleocapsid protein and human Beclin-1, and joined in series to produce bi- and tri-specific antibody-based constructs with exceptionally low molecular weights. Results Knob domain peptides with coiled-coil stalks retain high, independent antigen binding affinity, exhibit exceptional levels of thermal stability, and can be readily joined head-to-tail yielding the smallest described multi-specific antibody format. The resulting constructs are able to bind simultaneously to all their targets with no interference. Discussion Compared to existing bispecific formats, the reduced molecular weight of the knob domain fusions may enable enhanced tissue penetration and facilitate binding to cryptic epitopes that are inaccessible to conventional antibodies. Furthermore, they can be easily produced at high yield as recombinant products and are free from the heavy-light chain mispairing issue. Taken together, our approach offers an efficient route to modular construction of minimalistic bi- and multi-specifics, thereby further broadening the therapeutic scope for knob domain peptides.
Collapse
|
32
|
Dankar R, Wehbi J, Refaat MM. Tailoring Treatment in Cardiovascular Diseases: The Role of Targeted Therapies. Pharmaceutics 2024; 16:461. [PMID: 38675122 PMCID: PMC11054164 DOI: 10.3390/pharmaceutics16040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality around the globe. To address this public health burden, innovative therapeutic agents are being developed to specifically target molecular and genetic markers. Various therapeutic modalities have been implemented, including vaccines, monoclonal or bispecific antibodies, and gene-based therapies. Such drugs precisely target the underlying disease pathophysiology, aiming at notable molecules such as lipid metabolism regulators, proinflammatory cytokines, and growth factors. This review focuses on the latest advancements in different targeted therapies. It provides an insightful overview of the current landscape of targeted cardiovascular therapies, highlighting promising strategies with potential to transform the treatment of CVDs into an era of precision medicine.
Collapse
Affiliation(s)
- Razan Dankar
- Department of Biochemistry and Molecular Genetics, American University of Beirut Faculty of Medicine and Medical Center, Beirut P.O. Box 11-0236, Lebanon; (R.D.); (J.W.)
- Department of Internal Medicine, Division of Cardiology, American University of Beirut Faculty of Medicine and Medical Center, Beirut P.O. Box 11-0236, Lebanon
| | - Jad Wehbi
- Department of Biochemistry and Molecular Genetics, American University of Beirut Faculty of Medicine and Medical Center, Beirut P.O. Box 11-0236, Lebanon; (R.D.); (J.W.)
- Department of Internal Medicine, Division of Cardiology, American University of Beirut Faculty of Medicine and Medical Center, Beirut P.O. Box 11-0236, Lebanon
| | - Marwan M. Refaat
- Department of Biochemistry and Molecular Genetics, American University of Beirut Faculty of Medicine and Medical Center, Beirut P.O. Box 11-0236, Lebanon; (R.D.); (J.W.)
- Department of Internal Medicine, Division of Cardiology, American University of Beirut Faculty of Medicine and Medical Center, Beirut P.O. Box 11-0236, Lebanon
| |
Collapse
|
33
|
Jerabek T, Burkhart M, Goetz S, Greck B, Menthe A, Neef R, Otte K. Inefficient transcription is a production bottleneck for artificial therapeutic BiTE® proteins. N Biotechnol 2024; 79:91-99. [PMID: 38154615 DOI: 10.1016/j.nbt.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Antibodies are potent biopharmaceuticals used to treat severe diseases, including cancers. During the past decade, more complex modalities have been developed including bispecific T-cell engager (BiTE®) molecules, e.g. by Amgen. However, non-natural and complex molecule formats often prove to be difficult-to-express (DTE), which is the case for BiTE® molecules. Due to the growing importance of multispecific modalities such as half-life extended (HLE) BiTE® and HLE dual-targeting bispecific T-cell engager (dBiTE) molecules, this artificial class of therapeutic proteins was investigated for molecular bottlenecks in stable production cell lines, by analyzing all relevant steps of recombinant protein production. As a result, drastically reduced intracellular BiTE® molecule-encoding mRNA levels were identified as a potential production bottleneck. Using in vitro transcription (IVT), the transcription rate of the BiTE® molecule-encoding mRNA was identified as the root cause for reduced amounts of intracellular mRNA. In an attempt to improve the transcription rate of a BiTE® molecule, it could be demonstrated that the artificial and special structure of the BiTE® molecule was not the rate limiting step for reduced IVT rate. However, modulation of the primary DNA sequence led to significant improvement of IVT rate. The analyses presented provide insight into the HLE BiTE® / HLE d(BiTE®) class of DTE proteins and perhaps into other classes of DTE proteins, and therefore may lead to identification of further production bottlenecks and optimization strategies to overcome manufacturability challenges associated with various complex therapeutics.
Collapse
Affiliation(s)
- Tobias Jerabek
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400 Biberach an der Riss, Germany.
| | - Madina Burkhart
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400 Biberach an der Riss, Germany
| | - Selina Goetz
- Process Development, Amgen Research (Munich) GmbH, Staffelseestraße 2, 81477 Munich, Germany
| | - Benedikt Greck
- Process Development, Amgen Research (Munich) GmbH, Staffelseestraße 2, 81477 Munich, Germany
| | - Anika Menthe
- Process Development, Amgen Research (Munich) GmbH, Staffelseestraße 2, 81477 Munich, Germany
| | - Ruediger Neef
- Process Development, Amgen Research (Munich) GmbH, Staffelseestraße 2, 81477 Munich, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400 Biberach an der Riss, Germany
| |
Collapse
|
34
|
Ouyang P, Wang L, Wu J, Tian Y, Chen C, Li D, Yao Z, Chen R, Xiang G, Gong J, Bao Z. Overcoming cold tumors: a combination strategy of immune checkpoint inhibitors. Front Immunol 2024; 15:1344272. [PMID: 38545114 PMCID: PMC10965539 DOI: 10.3389/fimmu.2024.1344272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024] Open
Abstract
Immune Checkpoint Inhibitors (ICIs) therapy has advanced significantly in treating malignant tumors, though most 'cold' tumors show no response. This resistance mainly arises from the varied immune evasion mechanisms. Hence, understanding the transformation from 'cold' to 'hot' tumors is essential in developing effective cancer treatments. Furthermore, tumor immune profiling is critical, requiring a range of diagnostic techniques and biomarkers for evaluation. The success of immunotherapy relies on T cells' ability to recognize and eliminate tumor cells. In 'cold' tumors, the absence of T cell infiltration leads to the ineffectiveness of ICI therapy. Addressing these challenges, especially the impairment in T cell activation and homing, is crucial to enhance ICI therapy's efficacy. Concurrently, strategies to convert 'cold' tumors into 'hot' ones, including boosting T cell infiltration and adoptive therapies such as T cell-recruiting bispecific antibodies and Chimeric Antigen Receptor (CAR) T cells, are under extensive exploration. Thus, identifying key factors that impact tumor T cell infiltration is vital for creating effective treatments targeting 'cold' tumors.
Collapse
Affiliation(s)
- Peng Ouyang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Lijuan Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jianlong Wu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yao Tian
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Caiyun Chen
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Dengsheng Li
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zengxi Yao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ruichang Chen
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Guoan Xiang
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Jin Gong
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhen Bao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Hayama M, Riches JC. Taking the Next Step in Double Refractory Disease: Current and Future Treatment Strategies for Chronic Lymphocytic Leukemia. Onco Targets Ther 2024; 17:181-198. [PMID: 38476308 PMCID: PMC10929554 DOI: 10.2147/ott.s443924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a monoclonal B-cell lymphoproliferative disease with a high annual incidence in Western countries. As B-cell receptor (BCR) signaling and intrinsic apoptotic resistance play critical roles in the development and survival of CLL cells, therapeutic approaches targeting these pathways have been extensively investigated to tackle this incurable disease. Over the last decade, several Phase 3 trials have confirmed the superior efficacy of covalent Bruton tyrosine kinase inhibitors (cBTKis) and venetoclax, a selective B-cell lymphoma 2 (BCL2) inhibitor, over chemoimmunotherapy. This has been demonstrated in both the treatment-naïve and relapsed/refractory (RR) settings and includes patients with high-risk molecular features. However, these drugs are not curative, with patients continuing to relapse after treatment with both cBTKis and BCL2is, and the optimal treatment strategy for these patients has not been defined. Several novel agents with distinct mechanisms have recently been developed for CLL which have demonstrated efficacy in patients who have previously received cBTKis and BCL2i. In particular, novel BCR-signaling targeting agents have shown promising efficacy in early-phase clinical trials for RR-CLL. Furthermore, cancer immunotherapies such as bispecific antibodies and chimeric antigen receptor T-cells have also shown anti-tumor activity in patients with heavily pretreated RR-CLL. Personalised approaches with these novel agents and combination strategies based on the understanding of resistance mechanisms have the potential to overcome the clinical challenge of what to do next for a patient who has already had a cBTKi and venetoclax.
Collapse
Affiliation(s)
- Manabu Hayama
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - John C Riches
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
36
|
Sagar, Takhellambam M, Rattan A, Prajapati VK. Unleashing the power of antibodies: Engineering for tomorrow's therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:1-36. [PMID: 38762268 DOI: 10.1016/bs.apcsb.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Antibodies play a crucial role in host defense against various diseases. Antibody engineering is a multidisciplinary field that seeks to improve the quality of life of humans. In the context of disease, antibodies are highly specialized proteins that form a critical line of defense against pathogens and the disease caused by them. These infections trigger the innate arm of immunity by presenting on antigen-presenting cells such as dendritic cells. This ultimately links to the adaptive arm, where antibody production and maturation occur against that particular antigen. Upon binding with their specific antigens, antibodies trigger various immune responses to eliminate pathogens in a process called complement-dependent cytotoxicity and phagocytosis of invading microorganisms by immune cells or induce antibody-dependent cellular cytotoxicity is done by antibodies. These engineered antibodies are being used for various purposes, such as therapeutics, diagnostics, and biotechnology research. Cutting-edge techniques that include hybridoma technology, transgenic mice, display techniques like phage, yeast and ribosome displays, and next-generation sequencing are ways to engineer antibodies and mass production for the use of humankind. Considering the importance of antibodies in protecting from a diverse array of pathogens, investing in research holds great promise to develop future therapeutic targets to combat various diseases.
Collapse
Affiliation(s)
- Sagar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Malemnganba Takhellambam
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Aditi Rattan
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
37
|
Kim JW, Lee JH, Kim HJ, Heo K, Lee Y, Jang HJ, Lee HY, Park JW, Cho YB, Shin HG, Yang HR, Lee HE, Song JY, Lee S. Empowering SARS-CoV-2 variant neutralization with a bifunctional antibody engineered with tandem heptad repeat 2 peptides. J Med Virol 2024; 96:e29506. [PMID: 38445718 DOI: 10.1002/jmv.29506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/28/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
With the global pandemic and the continuous mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the need for effective and broadly neutralizing treatments has become increasingly urgent. This study introduces a novel strategy that targets two aspects simultaneously, using bifunctional antibodies to inhibit both the attachment of SARS-CoV-2 to host cell membranes and viral fusion. We developed pioneering IgG4-(HR2)4 bifunctional antibodies by creating immunoglobulin G4-based and phage display-derived human monoclonal antibodies (mAbs) that specifically bind to the SARS-CoV-2 receptor-binding domain, engineered with four heptad repeat 2 (HR2) peptides. Our in vitro experiments demonstrate the superior neutralization efficacy of these engineered antibodies against various SARS-CoV-2 variants, ranging from original SARS-CoV-2 strain to the recently emerged Omicron variants, as well as SARS-CoV, outperforming the parental mAb. Notably, intravenous monotherapy with the bifunctional antibody neutralizes a SARS-CoV-2 variant in a murine model without causing significant toxicity. In summary, this study unveils the significant potential of HR2 peptide-driven bifunctional antibodies as a potent and versatile strategy for mitigating SARS-CoV-2 infections. This approach offers a promising avenue for rapid development and management in the face of the continuously evolving SARS-CoV-2 variants, holding substantial promise for pandemic control.
Collapse
Affiliation(s)
- Ji Woong Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Kyun Heo
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
| | - Yoonwoo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Hui Jeong Jang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Yea Bin Cho
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hee Eon Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Jin Young Song
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Sacchi de Camargo Correia G, Zhao Y, Manochakian R, Lou Y. The role of immunotherapy sensitizers and novel immunotherapy modalities in the treatment of cancer. Front Oncol 2024; 14:1336546. [PMID: 38476371 PMCID: PMC10928615 DOI: 10.3389/fonc.2024.1336546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
The importance of the immune system in the response against cancer has always been a subject of intense investigation. The advent of immune checkpoint inhibitors has transformed the landscape of oncologic treatments, while expanding the understanding of this disease's pathophysiology. Consequently, many therapies are being investigated, with interventions directed at different steps and pathways of the immune response. Relevantly, immunotherapy sensitizers have arisen as approaches focused on the synergistic effects of immunotherapy combination, or the combination of immunotherapy and other treatment modalities, such as chemotherapy or radiation therapy. Concomitantly, novel immunotherapy modalities are also in development. Approaches focusing from the tumor intrinsic pathways to the tumor microenvironment and ex-vivo interventions, such as CAR-T cell therapies and tumor-infiltrating lymphocytes are important examples. Although many of those interventions were initially envisioned as standalone options, their combination has demonstrated promising results in early-phase in vitro studies and clinical trials. The possibility of coupling different immunotherapy modalities, as well as with other techniques, further strengthen the concept of sensitizers, allowing for deeper and more robust responses in cancer treatment. This review aims to present an overview of the concepts of these sensitizing mechanisms that are the basis for the synergistic effects of immunotherapy combination, or the combination of immunotherapy and a multitude of therapeutic strategies. Novel immunotherapy modalities are also presented, focusing on the potential of combining them with sensitizer interventions. Understanding the complexity underlying these principles may be the key for future breakthroughs and improved patient outcomes.
Collapse
Affiliation(s)
| | - Yujie Zhao
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Rami Manochakian
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Yanyan Lou
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
39
|
Barron N, Dickgiesser S, Fleischer M, Bachmann AN, Klewinghaus D, Hannewald J, Ciesielski E, Kusters I, Hammann T, Krause V, Fuchs SW, Siegmund V, Gross AW, Mueller-Pompalla D, Krah S, Zielonka S, Doerner A. A Generic Approach for Miniaturized Unbiased High-Throughput Screens of Bispecific Antibodies and Biparatopic Antibody-Drug Conjugates. Int J Mol Sci 2024; 25:2097. [PMID: 38396776 PMCID: PMC10889805 DOI: 10.3390/ijms25042097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The toolbox of modern antibody engineering allows the design of versatile novel functionalities exceeding nature's repertoire. Many bispecific antibodies comprise heterodimeric Fc portions recently validated through the approval of several bispecific biotherapeutics. While heterodimerization methodologies have been established for low-throughput large-scale production, few approaches exist to overcome the bottleneck of large combinatorial screening efforts that are essential for the identification of the best possible bispecific antibody. This report presents a novel, robust and miniaturized heterodimerization process based on controlled Fab-arm exchange (cFAE), which is applicable to a variety of heterodimeric formats and compatible with automated high-throughput screens. Proof of applicability was shown for two therapeutic molecule classes and two relevant functional screening read-outs. First, the miniaturized production of biparatopic anti-c-MET antibody-drug conjugates served as a proof of concept for their applicability in cytotoxic screenings on tumor cells with different target expression levels. Second, the automated workflow enabled a large unbiased combinatorial screening of biparatopic antibodies and the identification of hits mediating potent c-MET degradation. The presented workflow utilizes standard equipment and may serve as a facile, efficient and robust method for the discovery of innovative therapeutic agents in many laboratories worldwide.
Collapse
Affiliation(s)
- Nadine Barron
- Protein and Cell Sciences, EMD Serono, 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Stephan Dickgiesser
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Markus Fleischer
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Daniel Klewinghaus
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Jens Hannewald
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Elke Ciesielski
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Ilja Kusters
- Protein Engineering and Antibody Technologies, EMD Serono, 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Til Hammann
- Discovery Pharmacology, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Volker Krause
- Discovery Pharmacology, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Vanessa Siegmund
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Alec W. Gross
- Protein Engineering and Antibody Technologies, EMD Serono, 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Dirk Mueller-Pompalla
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Simon Krah
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Stefan Zielonka
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Achim Doerner
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| |
Collapse
|
40
|
Kopp A, Kwon H, Johnston C, Vance S, Legg J, Galson-Holt L, Thurber GM. Impact of tissue penetration and albumin binding on design of T cell targeted bispecific agents. Neoplasia 2024; 48:100962. [PMID: 38183712 PMCID: PMC10809211 DOI: 10.1016/j.neo.2023.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Bispecific agents are a rapidly growing class of cancer therapeutics, and immune targeted bispecific agents have the potential to expand functionality well beyond monoclonal antibody agents. Humabodies⁎ are fully human single domain antibodies that can be linked in a modular fashion to form multispecific therapeutics. However, the effect of heterogeneous delivery on the efficacy of crosslinking bispecific agents is currently unclear. In this work, we utilize a PSMA-CD137 Humabody with an albumin binding half-life extension (HLE) domain to determine the impact of tissue penetration on T cell activating bispecific agents. Using heterotypic spheroids, we demonstrate that increased tissue penetration results in higher T cell activation at sub-saturating concentrations. Next, we tested the effect of two different albumin binding moieties on tissue distribution using albumin-specific HLE domains with varying affinities for albumin and a non-specific lipophilic dye. The results show that a specific binding mechanism to albumin does not influence tissue penetration, but a non-specific mechanism reduced both spheroid uptake and distribution in the presence of albumin. These results highlight the potential importance of tissue penetration on bispecific agent efficacy and describe how the design parameters including albumin-binding domains can be selected to maximize the efficacy of bispecific agents.
Collapse
Affiliation(s)
- Anna Kopp
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hyeyoung Kwon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | | | | | - James Legg
- Crescendo Biologics, Cambridge, United Kingdom
| | | | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
41
|
Madsen AV, Pedersen LE, Kristensen P, Goletz S. Design and engineering of bispecific antibodies: insights and practical considerations. Front Bioeng Biotechnol 2024; 12:1352014. [PMID: 38333084 PMCID: PMC10850309 DOI: 10.3389/fbioe.2024.1352014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Bispecific antibodies (bsAbs) have attracted significant attention due to their dual binding activity, which permits simultaneous targeting of antigens and synergistic binding effects beyond what can be obtained even with combinations of conventional monospecific antibodies. Despite the tremendous therapeutic potential, the design and construction of bsAbs are often hampered by practical issues arising from the increased structural complexity as compared to conventional monospecific antibodies. The issues are diverse in nature, spanning from decreased biophysical stability from fusion of exogenous antigen-binding domains to antibody chain mispairing leading to formation of antibody-related impurities that are very difficult to remove. The added complexity requires judicious design considerations as well as extensive molecular engineering to ensure formation of high quality bsAbs with the intended mode of action and favorable drug-like qualities. In this review, we highlight and summarize some of the key considerations in design of bsAbs as well as state-of-the-art engineering principles that can be applied in efficient construction of bsAbs with diverse molecular formats.
Collapse
Affiliation(s)
- Andreas V. Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lasse E. Pedersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
42
|
Abou Dalle I, Dulery R, Moukalled N, Ricard L, Stocker N, El-Cheikh J, Mohty M, Bazarbachi A. Bi- and Tri-specific antibodies in non-Hodgkin lymphoma: current data and perspectives. Blood Cancer J 2024; 14:23. [PMID: 38272863 PMCID: PMC10810854 DOI: 10.1038/s41408-024-00989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/29/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Bispecific antibodies (BsAbs) are a new group of targeted therapies that are revolutionizing the treatment landscape of B-cell non-Hodgkin's lymphoma (B-NHL). In the relapsed/refractory setting, salvage chemotherapy and autologous stem cell transplantation are capable of curing 50% of patients, whereas the other half will have a dismal outcome with a median overall survival of less than 12 months. This unmet need reinforced the importance of innovative therapies like the BsAbs and CAR-T cell therapies. In this review, we delve into BsAbs in B-NHL from the preclinical development to clinical data in both refractory and frontline settings, and then discuss future perspectives.
Collapse
Affiliation(s)
- Iman Abou Dalle
- Hematology-Oncology Division, American University of Beirut Medical Center, Beirut, Lebanon
| | - Remy Dulery
- Sorbonne University, Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, INSERM UMRs 938, Paris, France
| | - Nour Moukalled
- Hematology-Oncology Division, American University of Beirut Medical Center, Beirut, Lebanon
| | - Laure Ricard
- Sorbonne University, Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, INSERM UMRs 938, Paris, France
| | - Nicolas Stocker
- Sorbonne University, Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, INSERM UMRs 938, Paris, France
| | - Jean El-Cheikh
- Hematology-Oncology Division, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamad Mohty
- Sorbonne University, Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, INSERM UMRs 938, Paris, France
| | - Ali Bazarbachi
- Hematology-Oncology Division, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
43
|
Logghe T, van Zwol E, Immordino B, Van den Cruys K, Peeters M, Giovannetti E, Bogers J. Hyperthermia in Combination with Emerging Targeted and Immunotherapies as a New Approach in Cancer Treatment. Cancers (Basel) 2024; 16:505. [PMID: 38339258 PMCID: PMC10854776 DOI: 10.3390/cancers16030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Despite significant advancements in the development of novel therapies, cancer continues to stand as a prominent global cause of death. In many cases, the cornerstone of standard-of-care therapy consists of chemotherapy (CT), radiotherapy (RT), or a combination of both. Notably, hyperthermia (HT), which has been in clinical use in the last four decades, has proven to enhance the effectiveness of CT and RT, owing to its recognized potency as a sensitizer. Furthermore, HT exerts effects on all steps of the cancer-immunity cycle and exerts a significant impact on key oncogenic pathways. Most recently, there has been a noticeable expansion of cancer research related to treatment options involving immunotherapy (IT) and targeted therapy (TT), a trend also visible in the research and development pipelines of pharmaceutical companies. However, the potential results arising from the combination of these innovative therapeutic approaches with HT remain largely unexplored. Therefore, this review aims to explore the oncology pipelines of major pharmaceutical companies, with the primary objective of identifying the principal targets of forthcoming therapies that have the potential to be advantageous for patients by specifically targeting molecular pathways involved in HT. The ultimate goal of this review is to pave the way for future research initiatives and clinical trials that harness the synergy between emerging IT and TT medications when used in conjunction with HT.
Collapse
Affiliation(s)
- Tine Logghe
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
| | - Eke van Zwol
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
| | - Benoît Immordino
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, 56017 Pisa, Italy
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | | | - Marc Peeters
- Department of Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Elisa Giovannetti
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, 56017 Pisa, Italy
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Johannes Bogers
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
- Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
44
|
Li R, Dere E, Kwong M, Fei M, Dave R, Masih S, Wang J, McNamara E, Huang H, Liang WC, Schutt L, Kamath AV, Ovacik MA. A Bispecific Modeling Framework Enables the Prediction of Efficacy, Toxicity, and Optimal Molecular Design of Bispecific Antibodies Targeting MerTK. AAPS J 2024; 26:11. [PMID: 38167740 DOI: 10.1208/s12248-023-00881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Inhibiting MerTK on macrophages is a promising therapeutic strategy for augmenting anti-tumor immunity. However, blocking MerTK on retinal pigment epithelial cells (RPEs) results in retinal toxicity. Bispecific antibodies (bsAbs) containing an anti-MerTK therapeutic and anti-PD-L1 targeting arm were developed to reduce drug binding to MerTK on RPEs, since PD-L1 is overexpressed on macrophages but not RPEs. In this study, we present a modeling framework using in vitro receptor occupancy (RO) and pharmacokinetics (PK) data to predict efficacy, toxicity, and therapeutic index (TI) of anti-MerTK bsAbs. We first used simulations and in vitro RO data of anti-MerTK monospecific antibody (msAb) to estimate the required MerTK RO for in vivo efficacy and toxicity. Using these estimated RO thresholds, we employed our model to predict the efficacious and toxic doses for anti-MerTK bsAbs with varying affinities for MerTK. Our model predicted the highest TI for the anti-MerTK/PD-L1 bsAb with an attenuated MerTK binding arm, which was consistent with in vivo efficacy and toxicity observations. Subsequently, we used the model, in combination with sensitivity analysis and parameter scans, to suggest an optimal molecular design of anti-MerTK bsAb with the highest predicted TI in humans. Our prediction revealed that this optimized anti-MerTK bsAb should contain a MerTK therapeutic arm with relatively low affinity, along with a high affinity targeting arm that can bind to a low abundance target with slow turnover rate. Overall, these results demonstrated that our modeling framework can guide the rational design of bsAbs.
Collapse
Affiliation(s)
- Ran Li
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Edward Dere
- Safety Assessment, Genentech Inc., South San Francisco, California, 94080, USA
| | - Mandy Kwong
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, 94080, USA
| | - Mingjian Fei
- Molecular Oncology, Genentech Inc, South San Francisco, California, 94080, USA
| | - Rutwij Dave
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Shabkhaiz Masih
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Joy Wang
- Molecular Oncology, Genentech Inc, South San Francisco, California, 94080, USA
| | - Erin McNamara
- Molecular Oncology, Genentech Inc, South San Francisco, California, 94080, USA
| | - Haochu Huang
- Molecular Oncology, Genentech Inc, South San Francisco, California, 94080, USA
| | - Wei-Ching Liang
- Antibody Engineering, Genentech Inc, South San Francisco, California, 94080, USA
| | - Leah Schutt
- Safety Assessment, Genentech Inc., South San Francisco, California, 94080, USA
| | - Amrita V Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Meric A Ovacik
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| |
Collapse
|
45
|
Ingavat N, Wang X, Liew JM, Mahfut FB, But KP, Kok YJ, Bi X, Yang Y, Shintaro K, Tsoumpra M, Zhang W. Harnessing ceramic hydroxyapatite as an effective polishing strategy to remove product- and process-related impurities in bispecific antibody purification. BIORESOUR BIOPROCESS 2023; 10:93. [PMID: 38647984 PMCID: PMC10992335 DOI: 10.1186/s40643-023-00713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/06/2023] [Indexed: 04/25/2024] Open
Abstract
Bispecific antibody (bsAb), a novel therapeutic modality, provides excellent treatment efficacy, yet poses numerous challenges to downstream process development, which are mainly due to the intricate diversity of bsAb structures and impurity profiles. Ceramic hydroxyapatite (CHT), a mixed-mode medium, allows proteins to interact with its calcium sites (C-sites) through metal affinity and/or its phosphate sites (P-sites) through cation exchange interactions. This dual-binding capability potentially offers unique bind and elute behaviours for different proteins of interest, resulting in optimal product purity when suitable elution conditions are employed. In this study, the effectiveness of CHT as a polishing step for bsAb purification was investigated across three model molecules and benchmarked against the traditional cation exchange chromatography (CEX). For both asymmetric and symmetric IgG-like bsAb post Protein A eluates, at least 97% product purity was achieved after CHT polishing. CHT delivered a superior aggregate clearance to CEX, resulting in low high molecular weight (HMW) impurities (0.5%) and low process-related impurities in the product pools. Moreover, CHT significantly mitigated "chromatography-induced aggregation" whereas eightfold more HMW was generated by CEX. This study illustrated the developability of CHT in effectively eliminating low molecular weight (LMW) impurities through post-load-wash (PLW) optimization, resulting in an additional reduction of up to 48% in LMW impurities. A mechanistic explanation regarding the performance of impurity removal and mitigation of the chromatography-induced aggregation by CHT was proposed, illustrating unique CHT capability is potentially driven by C-site cooperation, of which effectiveness could depend on the bsAb composition and size.
Collapse
Affiliation(s)
- Nattha Ingavat
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xinhui Wang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jia Min Liew
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Farouq Bin Mahfut
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ka Pui But
- Protein Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yee Jiun Kok
- Protein Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xuezhi Bi
- Protein Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuansheng Yang
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kobayashi Shintaro
- Chromatography Media Business Division, HOYA Technosurgical Corporation, Singapore Branch, Singapore
| | - Maria Tsoumpra
- Chromatography Media Business Division, HOYA Technosurgical Corporation, Singapore Branch, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
46
|
Gulyak EL, Alferova VA, Korshun VA, Sapozhnikova KA. Introduction of Carbonyl Groups into Antibodies. Molecules 2023; 28:7890. [PMID: 38067618 PMCID: PMC10707781 DOI: 10.3390/molecules28237890] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Antibodies and their derivatives (scFv, Fabs, etc.) represent a unique class of biomolecules that combine selectivity with the ability to target drug delivery. Currently, one of the most promising endeavors in this field is the development of molecular diagnostic tools and antibody-based therapeutic agents, including antibody-drug conjugates (ADCs). To meet this challenge, it is imperative to advance methods for modifying antibodies. A particularly promising strategy involves the introduction of carbonyl groups into the antibody that are amenable to further modification by biorthogonal reactions, namely aliphatic, aromatic, and α-oxo aldehydes, as well as aliphatic and aryl-alkyl ketones. In this review, we summarize the preparation methods and applications of site-specific antibody conjugates that are synthesized using this approach.
Collapse
Affiliation(s)
| | | | | | - Ksenia A. Sapozhnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (V.A.A.); (V.A.K.)
| |
Collapse
|
47
|
Kim HS, Zhang Y. Generation of Bispecific Antibodies by Functionalized Poly-ADP-Ribose Polymers. Curr Protoc 2023; 3:e958. [PMID: 38147359 PMCID: PMC10754209 DOI: 10.1002/cpz1.958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Bispecific antibodies have drawn considerate research interests for therapeutic development. Numerous genetic and chemical methods are established to produce bispecific antibodies with varied formats. This protocol describes a novel approach to the synthesis of bispecific antibodies by utilizing chemically functionalized poly-ADP-ribose polymers derived from post-translational poly-ADP-ribosylation. Basic Protocol 1 includes experimental procedures for expressing and purifying recombinant full-length human poly-ADP-ribose polymerase 1 (PARP1) as well as monoclonal antibodies targeting T-cell CD3 and breast cancer tumor-associated human epidermal growth factor receptor 2 (HER2) molecules. Basic Protocol 2 details methods for enzymatic preparation of functionalized poly-ADP-ribose polymers by PARP1 and chemical conjugation of antibody molecules for bispecific antibody production. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Expression and purification of PARP1 and antibodies Basic Protocol 2: PARP1 auto-modification and antibody conjugation.
Collapse
Affiliation(s)
- Hyo Sun Kim
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089
- Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
48
|
Qi T, Liao X, Cao Y. Development of bispecific T cell engagers: harnessing quantitative systems pharmacology. Trends Pharmacol Sci 2023; 44:880-890. [PMID: 37852906 PMCID: PMC10843027 DOI: 10.1016/j.tips.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Bispecific T cell engagers (bsTCEs) have emerged as a promising class of cancer immunotherapy. Several bsTCEs have achieved marketing approval; dozens more are under clinical investigation. However, the clinical development of bsTCEs remains rife with challenges, including nuanced pharmacology, limited translatability of preclinical findings, frequent on-target toxicity, and convoluted dosing regimens. In this opinion article we present a distinct perspective on how quantitative systems pharmacology (QSP) can serve as a powerful tool for overcoming these obstacles. Recent advances in QSP modeling have empowered developers of bsTCEs to gain a deeper understanding of their context-dependent pharmacology, bridge gaps in experimental data, guide first-in-human (FIH) dose selection, design dosing regimens with expanded therapeutic windows, and improve long-term treatment outcomes. We use recent case studies to exemplify the potential of QSP techniques to support future bsTCE development.
Collapse
Affiliation(s)
- Timothy Qi
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaozhi Liao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
49
|
Cheng L, Yu J, Hao T, Wang W, Wei M, Li G. Advances in Polymeric Micelles: Responsive and Targeting Approaches for Cancer Immunotherapy in the Tumor Microenvironment. Pharmaceutics 2023; 15:2622. [PMID: 38004600 PMCID: PMC10675796 DOI: 10.3390/pharmaceutics15112622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, to treat a diverse array of cancer forms, considerable advancements have been achieved in the field of cancer immunotherapies. However, these therapies encounter multiple challenges in clinical practice, such as high immune-mediated toxicity, insufficient accumulation in cancer tissues, and undesired off-target reactions. To tackle these limitations and enhance bioavailability, polymer micelles present potential solutions by enabling precise drug delivery to the target site, thus amplifying the effectiveness of immunotherapy. This review article offers an extensive survey of recent progress in cancer immunotherapy strategies utilizing micelles. These strategies include responsive and remodeling approaches to the tumor microenvironment (TME), modulation of immunosuppressive cells within the TME, enhancement of immune checkpoint inhibitors, utilization of cancer vaccine platforms, modulation of antigen presentation, manipulation of engineered T cells, and targeting other components of the TME. Subsequently, we delve into the present state and constraints linked to the clinical utilization of polymeric micelles. Collectively, polymer micelles demonstrate excellent prospects in tumor immunotherapy by effectively addressing the challenges associated with conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Lichun Cheng
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Jiankun Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Tangna Hao
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Wenshuo Wang
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Guiru Li
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| |
Collapse
|
50
|
Abstract
Elranatamab (elranatamab-bcmm; ELREXFIO™) is a bispecific B-cell maturation antigen (BCMA)-directed CD3 T cell engager being developed by Pfizer for the treatment of multiple myeloma (MM). Elranatamab bridges CD3 on T cells with BCMA expressed on multiple myeloma cells, thereby activating T cells to induce T cell-mediated cytotoxicity against myeloma cells. In August 2023, elranatamab received its first approval in the USA for the treatment of adult patients with relapsed or refractory multiple myeloma (RRMM) who have received at least four prior lines of therapy including a proteasome inhibitor, an immunomodulatory agent and an anti-CD38 monoclonal antibody. Elranatamab received accelerated approval for this indication based on response rate and durability of response, and continued approval may be contingent on the demonstration of clinical benefit in a confirmatory trial(s). Elranatamab has also received a positive opinion in the EU for RRMM and is under regulatory review in Japan and several other countries worldwide. Clinical studies of elranatamab are also underway in countries around the world. This article summarizes the milestones in the development of elranatamab leading to this first approval for the treatment of RRMM.
Collapse
Affiliation(s)
- Sohita Dhillon
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| |
Collapse
|