1
|
Benarroch E. What Is the Role of Dispanins in the Nervous System? Neurology 2025; 104:e210236. [PMID: 39680818 DOI: 10.1212/wnl.0000000000210236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 12/18/2024] Open
|
2
|
Sun J, Xu H, Li B, Deng W, Han X, Zhong X, Zhu J, Jiang Y, Wang Z, Zhang D, Sun G. IFITM1 aggravates ConA-Induced autoimmune hepatitis by promoting NKT cell activation through increased AMPK-Dependent mitochondrial function. Int Immunopharmacol 2025; 144:113692. [PMID: 39602958 DOI: 10.1016/j.intimp.2024.113692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Although interferon-induced transmembrane 1 (IFITM1) is known for its crucial role in antiviral immunity, its involvement in autoimmune hepatitis (AIH) remains largely unexplored. In this study, we observed that IFITM1 expression is markedly upregulated in a Concanavalin A (ConA)-induced AIH model, with particularly high and markedly elevated expression in natural killer T (NKT) cells. To further understand the role of IFITM1, we examined the responses of IFITM1-/- mice in a model of ConA-induced liver injury. In comparison to wild-type mice, IFITM1-/- mice exhibited reduced sensitivity in this model, as evidenced by significantly ameliorated necrosis areas, lower serum aminotransferase levels, a reduced number of intrahepatic NKT cells, and decreased expression of inflammatory factors, such as IL-1β, IL-6, IFN-γ and TNF-α. Notably, by using IFITM1-GFP mice and IFITM1-/- mice, we demonstrated that IFITM1 expression in NKT cells is crucial for their proliferation, proinflammatory cytokine production, and cytotoxic functions. Furthermore, analysis of single-cell RNA sequencingdata revealed that IFITM1 is essential for mitochondrial function, which is mediated by the AMP-activated protein kinase (AMPK) pathway. We also validated the importance of IFITM1 for the AMPK pathway and mitochondrial ATP synthesis in vivo. Together, our findings elucidate that IFITM1 could regulate NKT cell activation and survival by promoting mitochondrial function during AIH.
Collapse
Affiliation(s)
- Jie Sun
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Haozhe Xu
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Buer Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wanqing Deng
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaotong Han
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xinjie Zhong
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jingjing Zhu
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuan Jiang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zeyu Wang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Dong Zhang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Guangyong Sun
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
3
|
Angel MR, Séguin B, Löhr CV, Beer TM, Feliciano J, Ramsey SA, Thomas GV. Comparative Transcriptomes of Canine and Human Prostate Cancers Identify Mediators of Castration Resistance. Vet Comp Oncol 2024; 22:629-640. [PMID: 39375962 DOI: 10.1111/vco.13017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
Prostate cancer continues to be one of the most lethal cancers in men. While androgen deprivation therapy is initially effective in treating prostate cancer, most cases of advanced prostate cancer eventually progress to castration-resistant prostate cancer (CRPC), which is incurable. Similarly, the most aggressive form of prostatic carcinoma occurs in dogs that have been castrated. To identify molecular similarities between canine prostate cancer and human CRPC, we performed a comparative analysis of gene expression profiles. Through this transcriptomic analysis, we found that prostatic carcinoma in castrated dogs demonstrates an androgen-indifferent phenotype, characterised by low-androgen receptor and neuroendocrine-associated genes. Notably, we identified two genes, ISG15 and AZGP1, that were consistently up- and down-regulated, respectively, in both canine prostatic carcinoma and human CRPC. Additionally, we identified several other genes, including GPX3, S100P and IFITM1, that exhibited similar expression patterns in both species. Protein-protein interaction network analysis demonstrated that these five genes were part of a larger network of interferon-induced genes, suggesting that they may act together in signalling pathways that are disrupted in prostate cancer. Accordingly, our findings suggest that the interferon pathway may play a role in the development and progression of CRPC in both dogs and humans and chart a new therapeutic approach.
Collapse
Affiliation(s)
- Marcela Riveros Angel
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Bernard Séguin
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| | - Christiane V Löhr
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - John Feliciano
- Veterinary Diagnostics & Imaging Consultants, Tualatin, Oregon, USA
| | - Stephen A Ramsey
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
- College of Engineering, Oregon State University, Corvallis, Oregon, USA
| | - George V Thomas
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
4
|
Muthusamy M, Nagarajan M, Karuppusamy S, Ramasamy KT, Ramasamy A, Kalaivanan R, Thippicettipalayam Ramasamy GKM, Aranganoor Kannan T. "Unveiling the genetic symphony: Diversity and expression of chicken IFITM genes in Aseel and Kadaknath breeds". Heliyon 2024; 10:e37729. [PMID: 39315180 PMCID: PMC11417226 DOI: 10.1016/j.heliyon.2024.e37729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
In this investigation, single nucleotide variants (SNVs) within the chicken interferon-inducible transmembrane protein (chIFITM) genes were explored in Aseel and Kadaknath breeds. Comparative analysis with the GRCg6a reference genome revealed 9 and 16 SNVs in the chIFITM locus for Aseel and Kadaknath breeds, respectively. When referencing the Genome Reference Consortium GRCg7b, Kadaknath exhibited 10 variants, contrasting with none in Aseel. Notably, 17, 8, 2, and 5 SNVs were identified in chIFITM1, chIFITM2, chIFITM3, and chIFITM5 genes, with chIFITM1 showing the highest polymorphism in Kadaknath, featuring 10 intronic variants, including three SNVs (rs16457112, rs16457111, and rs313341707) common to both breeds. Two synonymous exonic variants (g.1817767C > A and g.1819102C > T) were also noted in chIFITM1. Although chIFITM protein sequences were generally conserved, genetic variations clustered predominantly in UTR and intronic regions. Examination of immune response dynamics in live embryos uncovered notable variations in chIFITM gene expression across diverse organs and chicken breeds. Specifically, chIFITM1 mRNA was abundant in cecal tonsils for both breeds and bursa of Aseel (7.61 folds), but it was absent in the heart and lung tissues of both breeds. Conversely, chIFITM3 consistently exhibited heightened expression, particularly in bursa of Aseel (10.23 folds). Whereas mRNA of the chIFITM2 gene was found to be abundant in the heart of Kadaknath (11.03 folds) and lung of both breeds. Furthermore, the expression pattern of chIFITM5 diverged between the two breeds, the heart of Kadaknath chickens showed highest (10.45 folds). The study discovered that breed-specific genetic variants within these genes present a potential pathway for selection and breeding to improve disease resistance in chicken. The observed genetic variation among chicken populations highlights the critical importance of these variants in reinforcing virus resistance, exhibiting applicability across a wide range of breeds.
Collapse
Affiliation(s)
- Malarmathi Muthusamy
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, 637 002, India
| | - Murali Nagarajan
- Alambadi Cattle Breed Research Centre, Tamil Nadu Veterinary and Animal Sciences University, Dharmapuri, 635 111, India
| | - Sivakumar Karuppusamy
- Faculty of Food and Agriculture, The University of the West Indies, St Augustine, Trinidad and Tobago
| | | | - Amutha Ramasamy
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, 637 002, India
| | - Ramya Kalaivanan
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, 637 002, India
| | | | | |
Collapse
|
5
|
Xie Q, Wang L, Liao X, Huang B, Luo C, Liao G, Yuan L, Liu X, Luo H, Shu Y. Research Progress into the Biological Functions of IFITM3. Viruses 2024; 16:1543. [PMID: 39459876 PMCID: PMC11512382 DOI: 10.3390/v16101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are upregulated by interferons. They are not only highly conserved in evolution but also structurally consistent and have almost identical structural domains and functional domains. They are all transmembrane proteins and have multiple heritable variations in genes. The IFITM protein family is closely related to a variety of biological functions, including antiviral immunity, tumor formation, bone metabolism, cell adhesion, differentiation, and intracellular signal transduction. The progress of the research on its structure and related functions, as represented by IFITM3, is reviewed.
Collapse
Affiliation(s)
- Qian Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Liangliang Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China
| | - Xinzhong Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Bi Huang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Guancheng Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Lifang Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Xuejie Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| |
Collapse
|
6
|
Ortega-Prieto AM, Jimenez-Guardeño JM. Interferon-stimulated genes and their antiviral activity against SARS-CoV-2. mBio 2024; 15:e0210024. [PMID: 39171921 PMCID: PMC11389394 DOI: 10.1128/mbio.02100-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic remains an international health problem caused by the recent emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of May 2024, SARS-CoV-2 has caused more than 775 million cases and over 7 million deaths globally. Despite current vaccination programs, infections are still rapidly increasing, mainly due to the appearance and spread of new variants, variations in immunization rates, and limitations of current vaccines in preventing transmission. This underscores the need for pan-variant antivirals and treatments. The interferon (IFN) system is a critical element of the innate immune response and serves as a frontline defense against viruses. It induces a generalized antiviral state by transiently upregulating hundreds of IFN-stimulated genes (ISGs). To gain a deeper comprehension of the innate immune response to SARS-CoV-2, its connection to COVID-19 pathogenesis, and the potential therapeutic implications, this review provides a detailed overview of fundamental aspects of the diverse ISGs identified for their antiviral properties against SARS-CoV-2. It emphasizes the importance of these proteins in controlling viral replication and spread. Furthermore, we explore methodological approaches for the identification of ISGs and conduct a comparative analysis with other viruses. Deciphering the roles of ISGs and their interactions with viral pathogens can help identify novel targets for antiviral therapies and enhance our preparedness to confront current and future viral threats.
Collapse
Affiliation(s)
- Ana Maria Ortega-Prieto
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Jose M Jimenez-Guardeño
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
7
|
Serrero MC, Paludan SR. Restriction factors regulating human herpesvirus infections. Trends Immunol 2024; 45:662-677. [PMID: 39198098 DOI: 10.1016/j.it.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Herpesviruses are DNA viruses and the cause of diseases ranging from mild skin conditions to severe brain diseases. Mammalian antiviral host defense comprises an array of mechanisms, including restriction factors (RFs), which block specific steps in viral replication cycles. In recent years, knowledge of RFs that contribute to controlling herpesvirus infections has expanded significantly, along with a new understanding of viral evasion mechanisms and disease pathogenesis. By integrating findings from human genetics, murine models, and cellular studies, this review provides a current view of RF control of herpesvirus infections. We also explore the regulation of RF expression, discuss the roles of RFs in diseases, and point towards their growing potential as candidate therapeutic targets.
Collapse
Affiliation(s)
- Manutea C Serrero
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus, Denmark.
| |
Collapse
|
8
|
Sun DERS, Yoon JS, Kim YS, Won HS. P53 Status Influences the Anti-proliferative Effect Induced by IFITM1 Inhibition in Estrogen Receptor-positive Breast Cancer Cells. Cancer Genomics Proteomics 2024; 21:511-522. [PMID: 39191497 PMCID: PMC11363922 DOI: 10.21873/cgp.20468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND/AIM Interferon-induced trans-membrane protein 1 (IFITM1) is known to be involved in breast cancer progression. We aimed to investigate its role in estrogen receptor (ER)-positive breast cancer cells with wild-type p53 and tamoxifen-resistant breast cancer cells. MATERIALS AND METHODS The ER-positive breast cancer cell lines, MCF-7 with wild-type p53 and T47D with mutant p53, were used. We established an MCF-7-derived tamoxifen-resistant cell line (TamR) by long-term culture of MCF-7 cells with 4-hydroxytamoxifen. RESULTS IFITM1 inhibition in MCF-7 cells significantly decreased cell growth and migration. MCF-7 cells with suppression of IFITM1 using siRNA or ruxolitinib showed reduced cell viability after tamoxifen treatment compared with that in the control MCF-7 cells. Unexpectedly, mRNA and protein levels of IFITM1 were decreased in TamR cells compared with those in MCF-7 cells. TamR cells with suppression of IFITM1 using siRNA or ruxolitinib showed no change in cell viability after treatment with tamoxifen. P53 knockdown using siRNA reduced the mRNA levels of IRF9 and increased mRNA and protein levels of SOCS3 in MCF-7 cells, suggesting that loss or mutation of p53 can affect the induction of IFITM1 via the JAK/STAT signaling pathway in breast cancer. Furthermore, MCF-7 cells with p53 knockdown using siRNA showed no decrease in cell viability after tamoxifen treatment or IFITM1 inhibition, indicating that p53 status may be important for cell death after tamoxifen treatment or IFITM1 inhibition. CONCLUSION IFITM1 inhibition may enhance the sensitivity to tamoxifen based on p53-dependent enhancement of IFN signaling in wild-type p53, ER-positive breast cancer cells.
Collapse
Affiliation(s)
- DER Sheng Sun
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung-Sook Yoon
- Clinical Research Laboratory, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong-Seok Kim
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Sung Won
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea;
| |
Collapse
|
9
|
Otálora-Otálora BA, Payán-Gómez C, López-Rivera JJ, Pedroza-Aconcha NB, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Global transcriptomic network analysis of the crosstalk between microbiota and cancer-related cells in the oral-gut-lung axis. Front Cell Infect Microbiol 2024; 14:1425388. [PMID: 39228892 PMCID: PMC11368877 DOI: 10.3389/fcimb.2024.1425388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
Background The diagnosis and treatment of lung, colon, and gastric cancer through the histologic characteristics and genomic biomarkers have not had a strong impact on the mortality rates of the top three global causes of death by cancer. Methods Twenty-five transcriptomic analyses (10 lung cancer, 10 gastric cancer, and 5 colon cancer datasets) followed our own bioinformatic pipeline based on the utilization of specialized libraries from the R language and DAVID´s gene enrichment analyses to identify a regulatory metafirm network of transcription factors and target genes common in every type of cancer, with experimental evidence that supports its relationship with the unlocking of cell phenotypic plasticity for the acquisition of the hallmarks of cancer during the tumoral process. The network's regulatory functional and signaling pathways might depend on the constant crosstalk with the microbiome network established in the oral-gut-lung axis. Results The global transcriptomic network analysis highlighted the impact of transcription factors (SOX4, TCF3, TEAD4, ETV4, and FOXM1) that might be related to stem cell programming and cancer progression through the regulation of the expression of genes, such as cancer-cell membrane receptors, that interact with several microorganisms, including human T-cell leukemia virus 1 (HTLV-1), the human papilloma virus (HPV), the Epstein-Barr virus (EBV), and SARS-CoV-2. These interactions can trigger the MAPK, non-canonical WNT, and IFN signaling pathways, which regulate key transcription factor overexpression during the establishment and progression of lung, colon, and gastric cancer, respectively, along with the formation of the microbiome network. Conclusion The global transcriptomic network analysis highlights the important interaction between key transcription factors in lung, colon, and gastric cancer, which regulates the expression of cancer-cell membrane receptors for the interaction with the microbiome network during the tumorigenic process.
Collapse
Affiliation(s)
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz, Colombia
| | - Juan Javier López-Rivera
- Grupo de Investigación INPAC, Specialized Laboratory, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá, Colombia
| | | | - Claudia Aristizábal-Guzmán
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá, Colombia
| | - Mario Arturo Isaza-Ruget
- Keralty, Sanitas International Organization, Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá, Colombia
| | | |
Collapse
|
10
|
Deuis JR, Klasfauseweh T, Walker L, Vetter I. The 'dispanins' and related proteins in physiology and neurological disease. Trends Neurosci 2024; 47:622-634. [PMID: 39025729 DOI: 10.1016/j.tins.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/15/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024]
Abstract
The dispanins are a family of 15 transmembrane proteins that have diverse and often unclear physiological functions. Many dispanins, including synapse differentiation induced gene 1 (SynDIG1), proline-rich transmembrane protein 1 (PRRT1)/SynDIG4, and PRRT2, are expressed in the central nervous system (CNS), where they are involved in the development of synapses, regulation of neurotransmitter release, and interactions with ion channels, including AMPA receptors (AMPARs). Others, including transmembrane protein 233 (TMEM233) and trafficking regulator of GLUT4-1 (TRARG1), are expressed in the peripheral nervous system (PNS); however, the function of these dispanins is less clear. Recently, a family of neurotoxins isolated from the giant Australian stinging tree was shown to target TMEM233 to modulate the function of voltage-gated sodium (NaV) channels, suggesting that the dispanins are inherently druggable. Here, we review current knowledge about the structure and function of the dispanins, in particular TMEM233 and its two most closely related homologs PRRT2 and TRARG1, which may be drug targets involved in neurological disease.
Collapse
Affiliation(s)
- Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Tabea Klasfauseweh
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Lucinda Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
11
|
Nekulová M, Wyszkowska M, Friedlová N, Uhrík L, Zavadil Kokáš F, Hrabal V, Hernychová L, Vojtěšek B, Hupp TR, Szymański MR. Biochemical evidence for conformational variants in the anti-viral and pro-metastatic protein IFITM1. Biol Chem 2024; 405:311-324. [PMID: 38379409 DOI: 10.1515/hsz-2023-0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Interferon induced transmembrane proteins (IFITMs) play a dual role in the restriction of RNA viruses and in cancer progression, yet the mechanism of their action remains unknown. Currently, there is no data about the basic biochemical features or biophysical properties of the IFITM1 protein. In this work, we report on description and biochemical characterization of three conformational variants/oligomeric species of recombinant IFITM1 protein derived from an Escherichia coli expression system. The protein was extracted from the membrane fraction, affinity purified, and separated by size exclusion chromatography where two distinct oligomeric species were observed in addition to the expected monomer. These species remained stable upon re-chromatography and were designated as "dimer" and "oligomer" according to their estimated molecular weight. The dimer was found to be less stable compared to the oligomer using circular dichroism thermal denaturation and incubation with a reducing agent. A two-site ELISA and HDX mass spectrometry suggested the existence of structural motif within the N-terminal part of IFITM1 which might be significant in oligomer formation. Together, these data show the unusual propensity of recombinant IFITM1 to naturally assemble into very stable oligomeric species whose study might shed light on IFITM1 anti-viral and pro-oncogenic functions in cells.
Collapse
Affiliation(s)
- Marta Nekulová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Marta Wyszkowska
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, 80-307 Gdansk, Poland
| | - Nela Friedlová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lukáš Uhrík
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Filip Zavadil Kokáš
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Václav Hrabal
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lenka Hernychová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Bořivoj Vojtěšek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Ted R Hupp
- Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR Edinburgh, UK
| | - Michał R Szymański
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, 80-307 Gdansk, Poland
| |
Collapse
|
12
|
Liu L, Peng S, Shi B, Yu G, Liang Y, Zhang Y, Xiao W, Xu R. Bioinformatic analysis and identification of macrophage polarization-related genes in intervertebral disc degeneration. Am J Transl Res 2024; 16:1891-1906. [PMID: 38883390 PMCID: PMC11170579 DOI: 10.62347/hbdy5086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/18/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND The relationship between macrophage polarization-related genes (MPRGs) and intervertebral disc degeneration (IDD) is unclear. The purpose of this study was to identify biomarkers associated with IDD. METHODS Three transcriptome sequencing datasets, GSE124272, GSE70362 and GSE56081 were included in this study. Differential expressed genes (DEGs) were obtained by overlapping DEGs1 from the GSE124272 and DEGs2 from the GSE70362. The key module genes associated with the score of MPRGs were identified by weighted gene co-expression network analysis (WGCNA) in GSE12472. Differentially expressed (DE)-MPRGs were acquired by overlapping key module genes and DEGs. Candidate genes were obtained by SVM-RFE algorithm. Biomarkers were obtained by expression level analysis. In addition, immune analysis, enrichment analysis and construction of a ceRNA network were completed. The blood samples from 9 IDD patients (IDD group) and 9 healthy individuals (Control group) were used to verify the expression levels of these biomarkers through RT-qPCR. RESULTS A sum of 39 DEGs were obtained by overlapping DEGs1 and DEGs2, and 1,633 key module genes were obtained by WGCNA. 9 DE-MPRGs were obtained by overlapping DEGs and key module genes, and ST6GALNAC2, SMIM3, and IFITM2 were identified as biomarkers. These biomarkers were enriched in KEGG_RIBOSOME pathway. Check-point, Cytolytic_activity, T_cell_co-stimulation, Neutrophils, Th2_cells and TIL differed between IDD and control groups. Some relationships such as SMIM3-hsa-miR-107-LINC02381 were identified in the network. Moreover, the functional analysis results of biomarkers showed that FITM2 and SMIM3 could predict IDD and nociceptive pain. The RT-qPCR showed that ST6GALNAC2 and IFITM2 were significantly expressed in IDD group in contrast to the control group. CONCLUSION The macrophage polarization related biomarkers (ST6GALNAC2, SMIM3 and IFITM2) were associated with IDD, among which IFITM2 could be considered as a key gene for IDD. This may provide a new direction for the biological treatment and mechanism research into IDD.
Collapse
Affiliation(s)
- Lei Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University Tianjin, China
- Department of Painology, The First Affiliated Hospital of Shandong First Medical University Jinan, Shandong, China
| | - Shengxin Peng
- School of Rehabilitation Medicine of Binzhou Medical University Yantai, Shandong, China
| | - Bin Shi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University Jinan, Shandong, China
| | - Gongchang Yu
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University Jinan, Shandong, China
| | | | | | - Wenshan Xiao
- Shandong First Medical University Jinan, Shandong, China
| | - Rui Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University Tianjin, China
| |
Collapse
|
13
|
Wang J, Luo Y, Katiyar H, Liang C, Liu Q. The Antiviral Activity of Interferon-Induced Transmembrane Proteins and Virus Evasion Strategies. Viruses 2024; 16:734. [PMID: 38793616 PMCID: PMC11125860 DOI: 10.3390/v16050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Interferons (IFNs) are antiviral cytokines that defend against viral infections by inducing the expression of interferon-stimulated genes (ISGs). Interferon-inducible transmembrane proteins (IFITMs) 1, 2, and 3 are crucial ISG products and members of the CD225 protein family. Compelling evidence shows that IFITMs restrict the infection of many unrelated viruses by inhibiting the virus-cell membrane fusion at the virus entry step via the modulation of lipid composition and membrane properties. Meanwhile, viruses can evade IFITMs' restrictions by either directly interacting with IFITMs via viral glycoproteins or by altering the native entry pathway. At the same time, cumulative evidence suggests context-dependent and multifaceted roles of IFITMs in modulating virus infections and cell signaling. Here, we review the diverse antiviral mechanisms of IFITMs, the viral antagonizing strategies, and the regulation of IFITM activity in host cells. The mechanisms behind the antiviral activity of IFITMs could aid the development of broad-spectrum antivirals and enhance preparedness for future pandemics.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; (J.W.); (Y.L.)
| | - Yuhang Luo
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; (J.W.); (Y.L.)
| | - Harshita Katiyar
- McGill Center for Viral Diseases, Lady Davis Institute, Montreal, QC H3T 1E2, Canada; (H.K.); (C.L.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Chen Liang
- McGill Center for Viral Diseases, Lady Davis Institute, Montreal, QC H3T 1E2, Canada; (H.K.); (C.L.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Qian Liu
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; (J.W.); (Y.L.)
- McGill Center for Viral Diseases, Lady Davis Institute, Montreal, QC H3T 1E2, Canada; (H.K.); (C.L.)
| |
Collapse
|
14
|
Del Carpio-Cano F, Mao G, Goldfinger LE, Wurtzel J, Guan L, Alam MA, Lee K, Poncz M, Rao AK. Altered platelet-megakaryocyte endocytosis and trafficking of albumin and fibrinogen in RUNX1 haplodeficiency. Blood Adv 2024; 8:1699-1714. [PMID: 38330198 PMCID: PMC10997914 DOI: 10.1182/bloodadvances.2023011098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
ABSTRACT Platelet α-granules have numerous proteins, some synthesized by megakaryocytes (MK) and others not synthesized but incorporated by endocytosis, an incompletely understood process in platelets/MK. Germ line RUNX1 haplodeficiency, referred to as familial platelet defect with predisposition to myeloid malignancies (FPDMMs), is associated with thrombocytopenia, platelet dysfunction, and granule deficiencies. In previous studies, we found that platelet albumin, fibrinogen, and immunoglobulin G (IgG) were decreased in a patient with FPDMM. We now show that platelet endocytosis of fluorescent-labeled albumin, fibrinogen, and IgG is decreased in the patient and his daughter with FPDMM. In megakaryocytic human erythroleukemia (HEL) cells, small interfering RNA RUNX1 knockdown (KD) increased uptake of these proteins over 24 hours compared with control cells, with increases in caveolin-1 and flotillin-1 (2 independent regulators of clathrin-independent endocytosis), LAMP2 (a lysosomal marker), RAB11 (a marker of recycling endosomes), and IFITM3. Caveolin-1 downregulation in RUNX1-deficient HEL cells abrogated the increased uptake of albumin, but not fibrinogen. Albumin, but not fibrinogen, partially colocalized with caveolin-1. RUNX1 KD resulted in increased colocalization of albumin with flotillin and fibrinogen with RAB11, suggesting altered trafficking of both proteins. The increased uptake of albumin and fibrinogen, as well as levels of caveolin-1, flotillin-1, LAMP2, and IFITM3, were recapitulated by short hairpin RNA RUNX1 KD in CD34+-derived MK. To our knowledge, these studies provide first evidence that platelet endocytosis of albumin and fibrinogen is impaired in some patients with RUNX1-haplodeficiency and suggest that megakaryocytes have enhanced endocytosis with defective trafficking, leading to loss of these proteins by distinct mechanisms. This study provides new insights into mechanisms governing endocytosis and α-granule deficiencies in RUNX1-haplodeficiency.
Collapse
Affiliation(s)
- Fabiola Del Carpio-Cano
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Guangfen Mao
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Lawrence E. Goldfinger
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Jeremy Wurtzel
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Liying Guan
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Mohammad Afaque Alam
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Kiwon Lee
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Seoul, Korea
| | - Mortimer Poncz
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - A. Koneti Rao
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
15
|
Zhang F, Huang B, Utturkar SM, Luo W, Cresswell G, Herr SA, Zheng S, Napoleon JV, Jiang R, Zhang B, Liu M, Lanman N, Srinivasarao M, Ratliff TL, Low PS. Tumor-specific activation of folate receptor beta enables reprogramming of immune cells in the tumor microenvironment. Front Immunol 2024; 15:1354735. [PMID: 38384467 PMCID: PMC10879311 DOI: 10.3389/fimmu.2024.1354735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Folate receptors can perform folate transport, cell adhesion, and/or transcription factor functions. The beta isoform of the folate receptor (FRβ) has attracted considerable attention as a biomarker for immunosuppressive macrophages and myeloid-derived suppressor cells, however, its role in immunosuppression remains uncharacterized. We demonstrate here that FRβ cannot bind folate on healthy tissue macrophages, but does bind folate after macrophage incubation in anti-inflammatory cytokines or cancer cell-conditioned media. We further show that FRβ becomes functionally active following macrophage infiltration into solid tumors, and we exploit this tumor-induced activation to target a toll-like receptor 7 agonist specifically to immunosuppressive myeloid cells in solid tumors without altering myeloid cells in healthy tissues. We then use single-cell RNA-seq to characterize the changes in gene expression induced by the targeted repolarization of tumor-associated macrophages and finally show that their repolarization not only changes their own phenotype, but also induces a proinflammatory shift in all other immune cells of the same tumor mass, leading to potent suppression of tumor growth. Because this selective reprogramming of tumor myeloid cells is accompanied by no systemic toxicity, we propose that it should constitute a safe method to reprogram the tumor microenvironment.
Collapse
Affiliation(s)
- Fenghua Zhang
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Bo Huang
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Sagar M. Utturkar
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Weichuan Luo
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Gregory Cresswell
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Seth A. Herr
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Suilan Zheng
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - John V. Napoleon
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Rina Jiang
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Boning Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Muyi Liu
- University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, United States
- Department of Computer Sciences, Purdue University, West Lafayette, IN, United States
| | - Nadia Lanman
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Timothy L. Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Philip S. Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
16
|
Xu S, Wu Z, Chen H. Construction and evaluation of immune-related diagnostic model in patients with heart failure caused by idiopathic dilated cardiomyopathy. BMC Cardiovasc Disord 2024; 24:92. [PMID: 38321374 PMCID: PMC10845749 DOI: 10.1186/s12872-023-03666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/09/2023] [Indexed: 02/08/2024] Open
Abstract
OBJECTIVE The purpose of the study was to construct the potential diagnostic model of immune-related genes during the development of heart failure caused by idiopathic dilated cardiomyopathy. METHOD GSE5406 and GSE57338 were downloaded from the GEO website ( https://www.ncbi.nlm.nih.gov/geo/ ). CIBERSORT was used for the evaluation of immune infiltration in idiopathic dilated cardiomyopathy (DCM) of GSE5406. Differently expressed genes were calculated by the limma R package and visualized by the volcano plot. The immune-related genes were downloaded from Immport, TISIDB, and InnateDB. Then the immune-related differential genes (IRDGs) were acquired from the intersection. Protein-protein interaction network (PPI) and Cytoscape were used to visualize the hub genes. Three machine learning methods such as random forest, logical regression, and elastic network regression model were adopted to construct the prediction model. The diagnostic value was also validated in GSE57338. RESULTS Our study demonstrated the obvious different ratio of T cell CD4 memory activated, T cell regulatory Tregs, and neutrophils between DCM and control donors. As many as 2139 differential genes and 274 immune-related different genes were identified. These genes were mainly enriched in lipid and atherosclerosis, human cytomegalovirus infection, and cytokine-cytokine receptor interaction. At the same time, as many as fifteen hub genes were identified as the IRDGs (IFITM3, IFITM2, IFITM1, IFIT3, IFIT1, HLA-A, HLA-B, HLA-C, ADAR, STAT1, SAMHD1, RSAD2, MX1, ISG20, IRF2). Moreover, we also discovered that the elastic network and logistic regression models had a higher diagnostic value than that of random forest models based on these hub genes. CONCLUSION Our study demonstrated the pivotal role of immune function during the development of heart failure caused by DCM. This study may offer new opportunities for the detection and intervention of immune-related DCM.
Collapse
Affiliation(s)
- Sichi Xu
- Department of Cardiology, The Central Hospital of Wuhan, Tong Ji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tong Ji Medica College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zhaogui Wu
- Department of Cardiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Haihua Chen
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
17
|
Hoyer A, Chakraborty S, Lilienthal I, Konradsen JR, Katayama S, Söderhäll C. The functional role of CST1 and CCL26 in asthma development. Immun Inflamm Dis 2024; 12:e1162. [PMID: 38270326 PMCID: PMC10797655 DOI: 10.1002/iid3.1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Asthma is the most common chronic disease in children with an increasing prevalence. Its development is caused by genetic and environmental factors and allergic sensitization is a known trigger. Dog allergens affect up to 30% of all children and dog dander-sensitized children show increased expression of cystatin-1 (CST1) and eotaxin-3 (CCL26) in nasal epithelium. The aim of our study was to investigate the functional mechanism of CST1 and CCL26 in the alveolar basal epithelial cell line A549. METHODS A549 cells were transfected with individual overexpression vectors for CST1 and CCL26 and RNA sequencing was performed to examine the transcriptomics. edgeR was used to identify differentially expressed genes (= DEG, |log2 FC | ≥ 2, FDR < 0.01). The protein expression levels of A549 cells overexpressing CST1 and CCL26 were analyzed using the Target 96 inflammation panel from OLINK (antibody-mediated proximity extension-based assay; OLINK Proteomics). Differentially expressed proteins were considered with a |log2 FC| ≥ 1, p < .05. RESULTS The overexpression of CST1 resulted in a total of 27 DEG (1 upregulated and 26 downregulated) and the overexpression of CCL26 in a total of 137 DEG (0 upregulated and 137 downregulated). The gene ontology enrichment analysis showed a significant downregulation of type I and III interferon signaling pathway genes as well as interferon-stimulated genes. At the protein level, overexpression of CST1 induced a significantly increased expression of CCL3, whereas CCL26 overexpression led to increased expression of HGF, and a decrease of CXCL11, CCL20, CCL3 and CXCL10. CONCLUSION Our results indicate that an overexpression of CST1 and CCL26 cause a downregulation of interferon related genes and inflammatory proteins. It might cause a higher disease susceptibility, mainly for allergic asthma, as CCL26 is an agonist for CCR-3-carrying cells, such as eosinophils and Th2 lymphocytes, mostly active in allergic asthma.
Collapse
Affiliation(s)
- Angela Hoyer
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Sandip Chakraborty
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Ingrid Lilienthal
- Childhood Cancer Research Unit, Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
| | - Jon R. Konradsen
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Shintaro Katayama
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Stem Cells and Metabolism Research ProgramUniversity of HelsinkiHelsinkiFinland
- Folkhälsan Research CenterHelsinkiFinland
| | - Cilla Söderhäll
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| |
Collapse
|
18
|
Verma S, Chen YC, Marin M, Gillespie SE, Melikyan GB. IFITM1 and IFITM3 Proteins Inhibit the Infectivity of Progeny HIV-1 without Disrupting Envelope Glycoprotein Clusters. Viruses 2023; 15:2390. [PMID: 38140631 PMCID: PMC10748374 DOI: 10.3390/v15122390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Human interferon-induced transmembrane (IFITM) proteins inhibit the fusion of a broad spectrum of enveloped viruses, both when expressed in target cells and when present in infected cells. Upon expression in infected cells, IFITMs incorporate into progeny virions and reduce their infectivity by a poorly understood mechanism. Since only a few envelope glycoproteins (Envs) are present on HIV-1 particles, and Env clustering has been proposed to be essential for optimal infectivity, we asked if IFITM protein incorporation modulates HIV-1 Env clustering. The incorporation of two members of the IFITM family, IFITM1 and IFITM3, into HIV-1 pseudoviruses correlated with a marked reduction of infectivity. Super-resolution imaging of Env distribution on single HIV-1 pseudoviruses did not reveal significant effects of IFITMs on Env clustering. However, IFITM3 reduced the Env processing and incorporation into virions relative to the control and IFITM1-containing viruses. These results show that, in addition to interfering with the Env function, IFITM3 restricts HIV-1 Env cleavage and incorporation into virions. The lack of notable effect of IFITMs on Env clustering supports alternative restriction mechanisms, such as modification of the properties of the viral membrane.
Collapse
Affiliation(s)
- Smita Verma
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
| | - Yen-Cheng Chen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
| | - Mariana Marin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
- Children’s Hospital of Atlanta, Atlanta, GA 30322, USA
| | - Scott E. Gillespie
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
| | - Gregory B. Melikyan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
- Children’s Hospital of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
19
|
Carpio-Cano FD, Mao G, Goldfinger LE, Wurtzel J, Guan L, Alam AM, Lee K, Poncz ME, Rao AK. Altered Platelet-Megakaryocyte Endocytosis and Trafficking of Albumin and Fibrinogen in RUNX1 Haplodeficiency. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.23.23297335. [PMID: 37961544 PMCID: PMC10635164 DOI: 10.1101/2023.10.23.23297335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Platelet α-granules have numerous proteins, some synthesized by megakaryocytes (MK) and others not synthesized but incorporated by endocytosis, an incompletely understood process in platelets/MK. Germline RUNX1 haplodeficiency, referred to as familial platelet defect with predisposition to myeloid malignancies (FPDMM), is associated with thrombocytopenia, platelet dysfunction and granule deficiencies. In previous studies, we found that platelet albumin, fibrinogen and IgG levels were decreased in a FPDMM patient. We now show that platelet endocytosis of fluorescent-labeled albumin, fibrinogen and IgG is decreased in the patient and his daughter with FPDMM. In megakaryocytic human erythroleukemia (HEL) cells, siRNA RUNX1 knockdown (KD) increased uptake of these proteins over 24 hours compared to control cells, with increases in caveolin-1 and flotillin-1 (two independent regulators of clathrin-independent endocytosis), LAMP2 (a lysosomal marker), RAB11 (a marker of recycling endosomes) and IFITM3. Caveolin-1 downregulation in RUNX1-deficient HEL cells abrogated the increased uptake of albumin, but not fibrinogen. Albumin, but not fibrinogen, partially colocalized with caveolin-1. RUNX1 knockdown increased colocalization of albumin with flotillin and of fibrinogen with RAB11 suggesting altered trafficking of both. The increased albumin and fibrinogen uptake and levels of caveolin-1, flotillin-1, LAMP2 and IFITM3 were recapitulated by shRNA RUNX1 knockdown in CD34 + -derived MK. These studies provide the first evidence that in RUNX1- haplodeficiency platelet endocytosis of albumin and fibrinogen is impaired and that megakaryocytes have enhanced endocytosis with defective trafficking leading to loss of these proteins by distinct mechanisms. They provide new insights into mechanisms governing endocytosis and α-granule deficiencies in RUNX1- haplodeficiency. Key points Platelet content and endocytosis of α-granule proteins, albumin, fibrinogen and IgG, are decreased in germline RUNX1 haplodeficiency. In RUNX1 -deficient HEL cells and primary MK endocytosis is enhanced with defective trafficking leading to decreased protein levels.
Collapse
|
20
|
Degrelle SA, Buchrieser J, Dupressoir A, Porrot F, Loeuillet L, Schwartz O, Fournier T. IFITM1 inhibits trophoblast invasion and is induced in placentas associated with IFN-mediated pregnancy diseases. iScience 2023; 26:107147. [PMID: 37434700 PMCID: PMC10331461 DOI: 10.1016/j.isci.2023.107147] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/05/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are restriction factors that block many viruses from entering cells. High levels of type I interferon (IFN) are associated with adverse pregnancy outcomes, and IFITMs have been shown to impair the formation of syncytiotrophoblast. Here, we examine whether IFITMs affect another critical step of placental development, extravillous cytotrophoblast (EVCT) invasion. We conducted experiments using in vitro/ex vivo models of EVCT, mice treated in vivo with the IFN-inducer poly (I:C), and human pathological placental sections. Cells treated with IFN-β demonstrated upregulation of IFITMs and reduced invasive abilities. Transduction experiments confirmed that IFITM1 contributed to the decreased cell invasion. Similarly, migration of trophoblast giant cells, the mouse equivalent of human EVCTs, was significantly reduced in poly (I:C)-treated mice. Finally, analysis of CMV- and bacterial-infected human placentas revealed upregulated IFITM1 expression. These data demonstrate that high levels of IFITM1 impair trophoblast invasion and could explain the placental dysfunctions associated with IFN-mediated disorders.
Collapse
Affiliation(s)
- Séverine A. Degrelle
- Université Paris Cité, INSERM, UMR-S1139, Pathophysiology & Pharmacotoxicology of the Human Placenta, Pre- & Post-natal Microbiota (3PHM), 75006 Paris, France
- Inovarion, 75005 Paris, France
| | - Julian Buchrieser
- Virus and Immunity Unit, Institut Pasteur, 75015 Paris, France
- CNRS-UMR3569, 75015 Paris, France
| | - Anne Dupressoir
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Hôpital Gustave Roussy, 94805 Villejuif, France
- UMR 9196, Université Paris-Sud, 91405 Orsay, France
| | - Françoise Porrot
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Hôpital Gustave Roussy, 94805 Villejuif, France
- UMR 9196, Université Paris-Sud, 91405 Orsay, France
| | - Laurence Loeuillet
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, AP-HP, 75015 Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, 75015 Paris, France
- CNRS-UMR3569, 75015 Paris, France
- Vaccine Research Institute, 94010 Créteil, France
| | - Thierry Fournier
- Université Paris Cité, INSERM, UMR-S1139, Pathophysiology & Pharmacotoxicology of the Human Placenta, Pre- & Post-natal Microbiota (3PHM), 75006 Paris, France
| |
Collapse
|
21
|
Ismailov ZB, Belykh ES, Chernykh AA, Udoratina AM, Kazakov DV, Rybak AV, Kerimova SN, Velegzhaninov IO. Systematic review of comparative transcriptomic studies of cellular resistance to genotoxic stress. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108467. [PMID: 37657754 DOI: 10.1016/j.mrrev.2023.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
The development of resistance by tumor cells to various types of therapy is a significant problem that decreases the effectiveness of oncology treatments. For more than two decades, comparative transcriptomic studies of tumor cells with different sensitivities to ionizing radiation and chemotherapeutic agents have been conducted in order to identify the causes and mechanisms underlying this phenomenon. However, the results of such studies have little in common and often contradict each other. We have assumed that a systematic analysis of a large number of such studies will provide new knowledge about the mechanisms of development of therapeutic resistance in tumor cells. Our comparison of 123 differentially expressed gene (DEG) lists published in 98 papers suggests a very low degree of consistency between the study results. Grouping the data by type of genotoxic agent and tumor type did not increase the similarity. The most frequently overexpressed genes were found to be those encoding the transport protein ABCB1 and the antiviral defense protein IFITM1. We put forward a hypothesis that the role played by the overexpression of the latter in the development of resistance may be associated not only with the stimulation of proliferation, but also with the limitation of exosomal communication and, as a result, with a decrease in the bystander effect. Among down regulated DEGs, BNIP3 was observed most frequently. The expression of BNIP3, together with BNIP3L, is often suppressed in cells resistant to non-platinum genotoxic chemotherapeutic agents, whereas it is increased in cells resistant to ionizing radiation. These observations are likely to be mediated by the binary effects of these gene products on survival, and regulation of apoptosis and autophagy. The combined data also show that even such obvious mechanisms as inhibition of apoptosis and increase of proliferation are not universal but show multidirectional changes.
Collapse
Affiliation(s)
- Z B Ismailov
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia
| | - E S Belykh
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia
| | - A A Chernykh
- Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 50 Pervomaiskaya St., Syktyvkar 167982, Russia
| | - A M Udoratina
- Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603022, Russia
| | - D V Kazakov
- Institute of Physics and Mathematics of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 4 Oplesnina St., Syktyvkar 167982, Russia
| | - A V Rybak
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia
| | - S N Kerimova
- State Medical Institution Komi Republican Oncology Center, 46 Nyuvchimskoe highway, Syktyvkar 167904, Russia
| | - I O Velegzhaninov
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia.
| |
Collapse
|
22
|
Malarmathi M, Murali N, Selvaraju M, Sivakumar K, Gowthaman V, Raghavendran VB, Raja A, Peters SO, Thiruvenkadan AK. In Vitro Characterization of chIFITMs of Aseel and Kadaknath Chicken Breeds against Newcastle Disease Virus Infection. BIOLOGY 2023; 12:919. [PMID: 37508350 PMCID: PMC10376314 DOI: 10.3390/biology12070919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023]
Abstract
Newcastle disease (ND) is highly contagious and usually causes severe illness that affects Aves all over the world, including domestic poultry. Depending on the virus's virulence, it can impact the nervous, respiratory, and digestive systems and cause up to 100% mortality. The chIFITM genes are activated in response to viral infection. The current study was conducted to quantify the mRNA of chIFITM genes in vitro in response to ND viral infection. It also examined its ability to inhibit ND virus replication in chicken embryo fibroblast (CEF) cells of the Aseel and Kadaknath breeds. Results from the study showed that the expression of all chIFITM genes was significantly upregulated throughout the period in the infected CEF cells of both breeds compared to uninfected CEF cells. In CEF cells of the Kadaknath breed, elevated levels of expression of the chIFITM3 gene dramatically reduced ND viral growth, and the viral load was 60% lower than in CEF cells of the Aseel breed. The expression level of the chIFITMs in Kadaknath ranged from 2.39 to 11.68 log2 folds higher than that of control CEFs and was consistently (p < 0.01) higher than Aseel CEFs. Similar to this, theIFN-γ gene expresses strongly quickly and peaks at 13.9 log2 fold at 48 hpi. Based on these cellular experiments, the Kadaknath breed exhibits the potential for greater disease tolerance than Aseel. However, to gain a comprehensive understanding of disease resistance mechanisms in chickens, further research involving in vivo investigations is crucial.
Collapse
Affiliation(s)
- Muthusamy Malarmathi
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal 637 002, India
| | - Nagarajan Murali
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal 637 002, India
| | - Mani Selvaraju
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal 637 002, India
| | - Karuppusamy Sivakumar
- Faculty of Food and Agriculture, The University of the West Indies, St Augustine 999183, Trinidad and Tobago
| | - Vasudevan Gowthaman
- Poultry Disease Diagnosis and Surveillance Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Namakkal 637 002, India
| | | | - Angamuthu Raja
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal 637 002, India
| | - Sunday O Peters
- Department of Animal Science, Berry College, Mount Berry, GA 30149, USA
| | | |
Collapse
|
23
|
Prikryl D, Marin M, Desai TM, Du Y, Fu H, Melikyan GB. Cyclosporines Antagonize the Antiviral Activity of IFITMProteins by Redistributing Them toward the Golgi Apparatus. Biomolecules 2023; 13:937. [PMID: 37371517 PMCID: PMC10296495 DOI: 10.3390/biom13060937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) block the fusion of diverse enveloped viruses, likely through increasing the cell membrane's rigidity. Previous studies have reported that the antiviral activity of the IFITM family member, IFITM3, is antagonized by cell pretreatment with rapamycin derivatives and cyclosporines A and H (CsA and CsH) that promote the degradation of IFITM3. Here, we show that CsA and CsH potently enhance virus fusion with IFITM1- and IFITM3-expressing cells by inducing their rapid relocalization from the plasma membrane and endosomes, respectively, towards the Golgi. This relocalization is not associated with a significant degradation of IFITMs. Although prolonged exposure to CsA induces IFITM3 degradation in cells expressing low endogenous levels of this protein, its levels remain largely unchanged in interferon-treated cells or cells ectopically expressing IFITM3. Importantly, the CsA-mediated redistribution of IFITMs to the Golgi occurs on a much shorter time scale than degradation and thus likely represents the primary mechanism of enhancement of virus entry. We further show that rapamycin also induces IFITM relocalization toward the Golgi, albeit less efficiently than cyclosporines. Our findings highlight the importance of regulation of IFITM trafficking for its antiviral activity and reveal a novel mechanism of the cyclosporine-mediated modulation of cell susceptibility to enveloped virus infection.
Collapse
Affiliation(s)
- David Prikryl
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mariana Marin
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Tanay M. Desai
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
- Carl Zeiss Microscopy, White Plains, NY 10601, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Gregory B. Melikyan
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
24
|
Son Y, Lee CG, Kim JS, Lee HJ. Low-dose-rate ionizing radiation affects innate immunity protein IFITM3 in a mouse model of Alzheimer's disease. Int J Radiat Biol 2023; 99:1649-1659. [PMID: 37162420 DOI: 10.1080/09553002.2023.2211142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE Although the adverse health risks associated with low-dose radiation (LDR) are highly debated, relevant data on neuronal function following chronic LDR exposure are still lacking. MATERIALS AND METHODS To confirm the effect of chronic LDR on the progression of Alzheimer's disease (AD), we investigated changes in behavior and neuroinflammation after radiation exposure in wild-type (WT) and 5xFAD (TG) mice, an animal model of AD. WT and TG mice, classified by genotyping, were exposed to low-dose-rate radiation for 112 days, with cumulative doses of 0, 0.1, and 0.3 Gy, then evaluated using the open-field and Y-maze behavioral function tests. Changes in the levels of APP processing- and neuroinflammation-related genes were also investigated. RESULTS No apparent change was evident in either non-spatial memory function or locomotor activity, as examined by the Y-maze and open field tests, respectively. Although chronic LDR did not affect the levels of APP processing, gliosis (Iba1 and GFAP), or inflammatory cytokines (IL-1β, IL-6, and TNF-α), the levels of IFN-γ were significantly downregulated in TG mice following LDR exposure. In an additional analysis, we examined the genes related to IFN signaling and found that the levels of interferon induced transmembrane protein 3 (IFITM3) were decreased significantly in TG mice following LDR with 0.1 or 0.3 Gy. CONCLUSIONS Therefore, this study revealed the possibility that LDR could affect the progression of AD, which may be associated with decreased IFN-related signaling, especially IFITM3. Our findings suggest that further studies are required regarding the potential role of LDR in the progression of AD.
Collapse
Affiliation(s)
- Yeonghoon Son
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Chang Geun Lee
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Joong Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| |
Collapse
|
25
|
Basile A, Zannella C, De Marco M, Sanna G, Franci G, Galdiero M, Manzin A, De Laurenzi V, Chetta M, Rosati A, Turco MC, Marzullo L. Spike-mediated viral membrane fusion is inhibited by a specific anti-IFITM2 monoclonal antibody. Antiviral Res 2023; 211:105546. [PMID: 36669656 DOI: 10.1016/j.antiviral.2023.105546] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
The early steps of viral infection involve protein complexes and structural lipid rearrangements which characterize the peculiar strategies of each virus to invade permissive host cells. Members of the human immune-related interferon-induced transmembrane (IFITM) protein family have been described as inhibitors of the entry of a broad range of viruses into the host cells. Recently, it has been shown that SARS-CoV-2 is able to hijack IFITM2 for efficient infection. Here, we report the characterization of a newly generated specific anti-IFITM2 mAb able to impair Spike-mediated internalization of SARS-CoV-2 in host cells and, consequently, to reduce the SARS-CoV-2 cytopathic effects and syncytia formation. Furthermore, the anti-IFITM2 mAb reduced HSVs- and RSV-dependent cytopathic effects, suggesting that the IFITM2-mediated mechanism of host cell invasion might be shared with other viruses besides SARS-CoV-2. These results show the specific role of IFITM2 in mediating viral entry into the host cell and its candidacy as a cell target for antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Anna Basile
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy; FIBROSYS s.r.l., University of Salerno, Baronissi, SA, 84081, Italy
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, 09042, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, 09042, Italy
| | - Vincenzo De Laurenzi
- FIBROSYS s.r.l., University of Salerno, Baronissi, SA, 84081, Italy; Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Chieti, Italy
| | - Massimiliano Chetta
- U.O.C. Medical and Laboratory Genetics, A.O.R.N, Cardarelli, Naples, 80131, Italy
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy; FIBROSYS s.r.l., University of Salerno, Baronissi, SA, 84081, Italy.
| | - Maria Caterina Turco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy; FIBROSYS s.r.l., University of Salerno, Baronissi, SA, 84081, Italy
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy; FIBROSYS s.r.l., University of Salerno, Baronissi, SA, 84081, Italy
| |
Collapse
|
26
|
Azzarito G, Henry M, Rotshteyn T, Leeners B, Dubey RK. Transcriptomic and Functional Evidence That miRNA193a-3p Inhibits Lymphatic Endothelial Cell (LEC) and LEC + MCF-7 Spheroid Growth Directly and by Altering MCF-7 Secretome. Cells 2023; 12:cells12030389. [PMID: 36766731 PMCID: PMC9913637 DOI: 10.3390/cells12030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
MicroRNA 193a-3p (miR193a-3p) is a short non-coding RNA with tumor suppressor properties. Breast cancer (BC) progression is governed by active interaction between breast cancer cells, vascular (V)/lymphatic (L) endothelial cells (ECs), and BC secretome. We have recently shown that miR193a-3p, a tumor suppressor miRNA, inhibits MCF-7 BC cell-driven growth of VECs via direct antimitogenic actions and alters MCF-7 secretome. Since LEC-BC cross-talk plays a key role in BC progression, we investigated the effects of miR193a-3p on MCF-7 secretome and estradiol-mediated growth effects in LECs and LEC + MCF-7 spheroids, and delineated the underlying mechanisms. Transfection of LECs with miR193a-3p, as well as secretome from MCF-7 transfected cells, inhibited LEC growth, and these effects were mimicked in LEC + MCF-7 spheroids. Moreover, miR193a-3p inhibited ERK1/2 and Akt phosphorylation in LECs and LEC + MCF-7 spheroids, which are importantly involved in promoting cancer development and metastasis. Treatment of LECs and LEC + MCF-7 spheroids with estradiol (E2)-induced growth, as well as ERK1/2 and Akt phosphorylation, and was abrogated by miR193a-3p and secretome from MCF-7 transfected cells. Gene expression analysis (GEA) in LEC + MCF-7 spheroids transfected with miR193a-3p showed significant upregulation of 54 genes and downregulation of 73 genes. Pathway enrichment analysis of regulated genes showed significant modulation of several pathways, including interferon, interleukin/cytokine-mediated signaling, innate immune system, ERK1/2 cascade, apoptosis, and estrogen receptor signaling. Transcriptomic analysis showed downregulation in interferon and anti-apoptotic and pro-growth molecules, such as IFI6, IFIT1, OSA1/2, IFITM1, HLA-A/B, PSMB8/9, and PARP9, which are known to regulate BC progression. The cytokine proteome array of miR193a-3p transfected MCF secretome and confirmed the upregulation of several growth inhibitory cytokines, including IFNγ, Il-1a, IL-1ra, IL-32, IL-33, IL-24, IL-27, cystatin, C-reactive protein, Fas ligand, MIG, and sTIM3. Moreover, miR193a-3p alters factors in MCF-7 secretome, which represses ERK1/2 and Akt phosphorylation, induces pro-apoptotic protein and apoptosis in LECs, and downregulates interferon-associated proteins known to promote cancer growth and metastasis. In conclusion, miR193a-3p can potentially modify the tumor microenvironment by altering pro-growth BC secretome and inhibiting LEC growth, and may represent a therapeutic molecule to target breast tumors/cancer.
Collapse
Affiliation(s)
- Giovanna Azzarito
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Margit Henry
- Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Tamara Rotshteyn
- Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|