1
|
Lee H, Takamizu A, Nishizaki Y, Yanagisawa N, Nojiri S, Itakura A, Yin N, Liu Z, Wang L, Ran Y, Chen J, Leimert KB, Makino S, Takeda S, Qi H, Takeda J, Olson DM. Activation of peripheral leukocyte migration before spontaneous labor at term. Am J Obstet Gynecol 2024; 231:539.e1-539.e13. [PMID: 39442996 DOI: 10.1016/j.ajog.2024.02.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Leukocytes are induced to migrate into the uterus at parturition, releasing cytokines and chemokines that activate it for delivery. A specific chemotactic signal is required for these actions, and published evidence suggests that it comes from the human fetal membranes and has a time-dependent component (ie, cells obtained at term in labor migrate more than cells obtained at term not yet in labor). The hypothesis that the fetal membrane chemoattractants activate the leukocytes to become responsive for migration was tested. OBJECTIVE This study aimed to: (1) examine the changes in leukocyte migration-responsiveness longitudinally from the late third trimester, to in labor, to 3 days postpartum; (2) explore the specific week-to-week changes in migration before delivery; (3) define the timing of chemokine receptor expression patterns in leukocytes relative to migration and the changes in cytokine and chemokine concentrations in maternal serum; (4) examine the ability of term fetal membrane-conditioned medium and term maternal serum to increase cell responsiveness; and (5) test the potential of the leukocyte migration assay to predict delivery within 1 week. STUDY DESIGN Leukocyte migration in response to a chemoattractive extract of term human fetal membranes was studied using a modified Boyden chamber. Flow cytometry assessed migrated cell phenotypes. The relationship between the expression of chemokine receptors and migration was tested using quantitative polymerase chain reaction, the bioassay, and regression analyses. Cytokines and chemokines in maternal serum were quantified using multiplex analysis. Conditioned medium from fetal membrane explants and maternal serum were evaluated for their abilities to enhance leukocyte migration using the bioassay. The ability of the bioassay to predict term delivery was assessed using receiver-operating characteristic curve and cost-curve analysis. RESULTS The number of leukocytes that migrated at term delivery was increased relative to the late third trimester, followed by a significant fall in numbers that migrated at 3 days postpartum (P=.002). The largest increase in migrated cells occurred 1 to 2 weeks before delivery. The messenger RNA abundance of several chemokine receptors increased in peripheral leukocytes at term in labor relative to the third trimester, and this correlated with an increase in migrated cells in 5 of 6 cases (R=0.589 to 0.897; P<.03). The concentrations of several chemokines and cytokines in maternal serum increased with labor onset. Fetal membrane explant-conditioned medium and maternal serum obtained at term labor increased the responsiveness of leukocytes to fetal membrane chemoattractive extract. The bioassay was demonstrated to predict delivery within 7 days with excellent performance characteristics using a cohort prevalence of 71.7% (positive predictive value=96.1%; negative predictive value=58.5%; sensitivity=74.2%; specificity=92.3%; positive likelihood ratio=9.25; and negative likelihood ratio=0.28). A single determination was validated to have a high degree of confidence. CONCLUSION Term human fetal membranes release chemoattractants near the end of pregnancy that increase in ability to activate and attract an increasing number of leukocytes as gestation advances.
Collapse
Affiliation(s)
- Han Lee
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Ai Takamizu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Yuji Nishizaki
- Medical Technology Innovation Center, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Naotake Yanagisawa
- Medical Technology Innovation Center, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Shuko Nojiri
- Medical Technology Innovation Center, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Nanlin Yin
- Department of Obstetrics and Gynecology, Chongqing Medical University, Chongqing, China
| | - Zheng Liu
- Department of Obstetrics and Gynecology, Chongqing Medical University, Chongqing, China
| | - Lulu Wang
- Department of Obstetrics and Gynecology, Chongqing Medical University, Chongqing, China
| | - Yuxin Ran
- Department of Obstetrics and Gynecology, Chongqing Medical University, Chongqing, China
| | - Jenelle Chen
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | | - Shintaro Makino
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, Chongqing Medical University, Chongqing, China
| | - Jun Takeda
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - David M Olson
- Departments of Obstetrics and Gynecology and Pediatrics and Physiology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
2
|
Zheng K, Chen M, Xu X, Li P, Yin C, Wang J, Liu B. Chemokine CXCL13-CXCR5 signaling in neuroinflammation and pathogenesis of chronic pain and neurological diseases. Cell Mol Biol Lett 2024; 29:134. [PMID: 39472796 PMCID: PMC11523778 DOI: 10.1186/s11658-024-00653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Chronic pain dramatically affects life qualities of the sufferers. It has posed a heavy burden to both patients and the health care system. However, the current treatments for chronic pain are usually insufficient and cause many unwanted side effects. Chemokine C-X-C motif ligand 13 (CXCL13), formerly recognized as a B cell chemokine, binds with the cognate receptor CXCR5, a G-protein-coupled receptor (GPCR), to participate in immune cell recruitments and immune modulations. Recent studies further demonstrated that CXCL13-CXCR5 signaling is implicated in chronic pain via promoting neuroimmune interaction and neuroinflammation in the sensory system. In addition, some latest work also pointed out the involvement of CXCL13-CXCR5 in the pathogenesis of certain neurological diseases, including ischemic stroke and amyotrophic lateral sclerosis. Therefore, we aim to outline the recent findings in regard to the involvement of CXCL13-CXCR5 signaling in chronic pain as well as certain neurological diseases, with the focus on how this chemokine signaling contributes to the pathogenesis of these neurological diseases via regulating neuroimmune interaction and neuroinflammation. Strategies that can specifically target CXCL13-CXCR5 signaling in distinct locations may provide new therapeutic options for these neurological diseases.
Collapse
Affiliation(s)
- Kaige Zheng
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Muyan Chen
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingjianyuan Xu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peiyi Li
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Wang
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
Hui L, Li Y, Huang MK, Jiang YM, Liu T. CXCL13: a common target for immune-mediated inflammatory diseases. Clin Exp Med 2024; 24:244. [PMID: 39443356 PMCID: PMC11499446 DOI: 10.1007/s10238-024-01508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
CXCL13 is a chemokine that plays an important role in the regulation and development of secondary lymphoid organs. CXCL13 is also involved in the regulation of pathological processes, particularly inflammatory responses, of many diseases. The function of CXCL13 varies depending on the condition of the host. In a healthy condition, CXCL13 is mainly secreted by mouse stromal cells or human follicular helper T cells, whereas in diseases conditions, they are produced by human peripheral helper T cells and macrophages in non-lymphoid tissues; this is termed ectopic expression of CXCL13. Ectopic CXCL13 expression is involved in the pathogenesis of various immune-mediated inflammatory diseases as it regulates the migration of B lymphocytes, T lymphocytes, and other immune cells in inflammatory sites as well as influences the expression of inflammatory factors. Additionally, ectopic expression of CXCL13 plays a key role in ectopic lymphoid organ formation. In this review, we focused on the sources of CXCL13 in different conditions and its regulatory mechanisms in immune-mediated inflammatory diseases, providing novel ideas for further research on targeting CXCL13 for the treatment of immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Lu Hui
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ye Li
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, People's Republic of China
| | - Meng-Ke Huang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong-Mei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, People's Republic of China.
- State Key Laboratory of Biotherapy and Cancer Center/National Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
4
|
Ren J, Ma K, Lu X, Peng H, Wang J, Nasser MI, Liu C. Occurrence and role of Tph cells in various renal diseases. Mol Med 2024; 30:174. [PMID: 39390361 PMCID: PMC11468416 DOI: 10.1186/s10020-024-00919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/31/2024] [Indexed: 10/12/2024] Open
Abstract
A new population of peripheral helper T (Tph) cells has been identified and contributed to various autoimmune diseases. Tph cells can secrete interleukin-21 (IL-21), interferon (IFN) and C-X-C motif chemokine ligand 13 (CXCL13) to moderate renal disease. Moreover, Tph cells can congregate in huge numbers and immerse within inflamed tissue. Compared to Tfh cells, Tph cells express high programmed cell death protein 1 (PD-1), major histocompatibility complex II (MHC-II), C-C chemokine receptor 2 (CCR2) and C-C chemokine receptor 5 (CCR5) but often lack expression of the chemokine receptor C-X-C chemokine receptor 5 (CXCR5). They display features distinct from other T cells, which are uniquely poised to promote responses and antibody production of B cells within pathologically inflamed non-lymphoid tissues and a key feature of Tph cells. In this review, we summarize recent findings on the role of Tph cells in chronic kidney disease, acute kidney injury, kidney transplantation and various renal diseases.
Collapse
Affiliation(s)
- Junyi Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiangheng Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia Wang
- General Practice Center, Sichuan Provincial People's Hospital, Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Chi Liu
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, China.
| |
Collapse
|
5
|
Perrin S, Ladha S, Maragakis N, Rivner MH, Katz J, Genge A, Olney N, Lange D, Heitzman D, Bodkin C, Jawdat O, Goyal NA, Bornstein JD, Mak C, Appel SH, Paganoni S. Safety and tolerability of tegoprubart in patients with amyotrophic lateral sclerosis: A Phase 2A clinical trial. PLoS Med 2024; 21:e1004469. [PMID: 39480764 PMCID: PMC11527214 DOI: 10.1371/journal.pmed.1004469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/28/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND The interaction of CD40L and its receptor CD40 on activated T cells and B cells respectively control pro-inflammatory activation in the pathophysiology of autoimmunity and transplant rejection. Previous studies have implicated signaling pathways involving CD40L (interchangeably referred to as CD154), as well as adaptive and innate immune cell activation, in the induction of neuroinflammation in neurodegenerative diseases. This study aimed to assess the safety, tolerability, and impact on pro-inflammatory biomarker profiles of an anti CD40L antibody, tegoprubart, in individuals with amyotrophic lateral sclerosis (ALS). METHODS AND FINDINGS In this multicenter dose-escalating open-label Phase 2A study, 54 participants with a diagnosis of ALS received 6 infusions of tegoprubart administered intravenously every 2 weeks. The study was comprised of 4 dose cohorts: 1 mg/kg, 2 mg/kg, 4 mg/kg, and 8 mg/kg. The primary endpoint of the study was safety and tolerability. Exploratory endpoints assessed the pharmacokinetics of tegoprubart as well as anti-drug antibody (ADA) responses, changes in disease progression utilizing the Revised ALS Functional Rating Scale (ALSFRS-R), CD154 target engagement, changes in pro-inflammatory biomarkers, and neurofilament light chain (NFL). Seventy subjects were screened, and 54 subjects were enrolled in the study. Forty-nine of 54 subjects completed the study (90.7%) receiving all 6 infusions of tegoprubart and completing their final follow-up visit. The most common treatment emergent adverse events (TEAEs) overall (>10%) were fatigue (25.9%), falls (22.2%), headaches (20.4%), and muscle spasms (11.1%). Mean tegoprubart plasma concentrations increased proportionally with increasing dose with a half-life of approximately 24 days. ADA titers were low and circulating levels of tegoprubart were as predicted for all cohorts. Tegoprubart demonstrated dose dependent target engagement associated and a reduction in 18 pro-inflammatory biomarkers in circulation. CONCLUSIONS Tegoprubart appeared to be safe and well tolerated in adults with ALS demonstrating dose-dependent reduction in pro-inflammatory chemokines and cytokines associated with ALS. These results warrant further clinical studies with sufficient power and duration to assess clinical outcomes as a potential treatment for adults with ALS. TRIAL REGISTRATION Clintrials.gov ID:NCT04322149.
Collapse
MESH Headings
- Humans
- Amyotrophic Lateral Sclerosis/drug therapy
- Amyotrophic Lateral Sclerosis/immunology
- Male
- Middle Aged
- Female
- Aged
- Adult
- CD40 Ligand/blood
- Biomarkers/blood
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Neurofilament Proteins/blood
- Dose-Response Relationship, Drug
- Treatment Outcome
- Disease Progression
- Imidazoles
- Pyrazines
Collapse
Affiliation(s)
- Steven Perrin
- Eledon Pharmaceuticals, Irvine, California, United States of America
| | - Shafeeq Ladha
- Departments of Neurology and Translational Neuroscience, St. Joseph’s Hospital and Medical Center and Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Nicholas Maragakis
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Michael H. Rivner
- Department of Neurology, Augusta University, Augusta, Georgia, United States of America
| | - Jonathan Katz
- California Pacific Medical Center Research Institute and Forbes Norris MDA/ALS Research and Treatment Center, San Francisco, California, United States of America
| | - Angela Genge
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Nicholas Olney
- Providence Portland Medical Center, Providence Brain and Spine Institute, Portland, Oregon, United States of America
| | - Dale Lange
- Department of Neurology, Hospital for Special Surgery, Weill Cornell School of Medicine, New York, New York, United States of America
| | - Daragh Heitzman
- ALS Clinic, Texas Neurology, Dallas, Texas, United States of America
| | - Cynthia Bodkin
- Department of Neurology, University of Indiana, Indianapolis, Indiana, United States of America
| | - Omar Jawdat
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Namita A. Goyal
- Department of Neurology, University of California Irvine School of Medicine, Irvine, California, United States of America
| | | | - Carmen Mak
- Eledon Pharmaceuticals, Irvine, California, United States of America
| | - Stanley H. Appel
- Department of Neurology, Houston Methodist Neurological Institute, Houston, Texas, United States of America
| | - Sabrina Paganoni
- Harvard Medical School, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Nozaki F, Nakanishi Y, Tanino T, Ochi T, In R, Kajiura Y, Kida K, Takei J, Yoshida A, Kanomata N, Kitano A, Yamauchi H, Masuda S. Breast cancer during pregnancy of Luminal A type overexpressed CXCL13. Pathol Int 2024; 74:592-603. [PMID: 39193980 DOI: 10.1111/pin.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Pregnancy-associated breast cancer has been increasing. In this study, we analyzed patients with breast cancer that occurred during pregnancy (PrBC) and compared their genetic profiles with those of patients with breast cancer that did not occur during pregnancy, within 1 year after childbirth nor during lactation (non-PrBC). We performed gene expression analyses of patients with PrBC and non-PrBC using microarrays and qRT-PCR. Microarray analysis showed that 355 genes were upregulated in the luminal-type PrBC group compared to those in the non-PrBC group. The C-X-C motif chemokine ligand 13 (CXCL13) gene was the most upregulated in the PrBC group compared to that in the non-PrBC group, especially in the luminal A-type (p = 0.016). This result was corroborated by the qRT-PCR analysis of microdissected cancer cells (p < 0.001). A negative correlation was observed between CXCL13 and estrogen receptor 1 (ESR1) mRNA expression levels in luminal A-type breast carcinoma (p < 0.001). Our results provide clues for a better understanding of breast cancer pathogenesis during pregnancy.
Collapse
Affiliation(s)
- Fumi Nozaki
- Department of Pathology and Microbiology, Division of Oncologic Pathology, Nihon University School of Medicine, Tokyo, Japan
| | - Yoko Nakanishi
- Department of Pathology and Microbiology, Division of Oncologic Pathology, Nihon University School of Medicine, Tokyo, Japan
| | - Tomoyuki Tanino
- Department of Pathology and Microbiology, Division of Oncologic Pathology, Nihon University School of Medicine, Tokyo, Japan
| | - Tomohiro Ochi
- Department of Breast Surgical Oncology, St. Luke's International Hospital, Tokyo, Japan
| | - Reika In
- Department of Breast Surgical Oncology, St. Luke's International Hospital, Tokyo, Japan
- Mammaria Tsukiji, Tokyo, Japan
| | - Yuka Kajiura
- Department of Breast Surgical Oncology, St. Luke's International Hospital, Tokyo, Japan
| | - Kumiko Kida
- Department of Breast Surgical Oncology, St. Luke's International Hospital, Tokyo, Japan
| | - Junko Takei
- Department of Breast Surgical Oncology, St. Luke's International Hospital, Tokyo, Japan
| | - Atsushi Yoshida
- Department of Breast Surgical Oncology, St. Luke's International Hospital, Tokyo, Japan
| | - Naoki Kanomata
- Department of Pathology, St. Luke's International Hospital, Tokyo, Japan
| | - Atsuko Kitano
- Department of Medical Oncology, St Luke's International Hospital, Tokyo, Japan
| | - Hideko Yamauchi
- Department of Breast Surgical Oncology, St. Luke's International Hospital, Tokyo, Japan
| | - Shinobu Masuda
- Department of Pathology and Microbiology, Division of Oncologic Pathology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Zabihi MR, Zangooie A, Piroozkhah M, Harirchian MH, Salehi Z. From Multiple Sclerosis to Organ-Specific Autoimmune Disorders: Insights into the Molecular and Clinical Implications of Comorbidity. Mol Neurobiol 2024:10.1007/s12035-024-04458-0. [PMID: 39287744 DOI: 10.1007/s12035-024-04458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder that affects the central nervous system. Although the pathological mechanisms of MS have been extensively studied, its association with other autoimmune diseases, known as comorbidities, remains unclear. In this comprehensive review article, we aim to clarify the cellular and molecular relationship between MS and the incidence of organ-specific autoimmune comorbidities by summarizing former studies. We will explore the commonalities and possible differences between the immune response mechanisms in MS and other autoimmune diseases and provide an overview of the current understanding of the pathophysiological processes involved in the co-occurrence of MS and other organ-specific autoimmune comorbidities. Through this review, we aim to contribute to the development of effective therapeutic strategies that can improve the quality of life of MS patients with comorbidities.
Collapse
Affiliation(s)
- Mohammad Reza Zabihi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Zangooie
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mobin Piroozkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Harirchian
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Di Filippo M, Gaetani L, Centonze D, Hegen H, Kuhle J, Teunissen CE, Tintoré M, Villar LM, Willemse EA, Zetterberg H, Parnetti L. Fluid biomarkers in multiple sclerosis: from current to future applications. THE LANCET REGIONAL HEALTH. EUROPE 2024; 44:101009. [PMID: 39444698 PMCID: PMC11496979 DOI: 10.1016/j.lanepe.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Multiple sclerosis (MS) is an immune-mediated inflammatory and degenerative disorder of the central nervous system (CNS) with heterogeneous clinical manifestations. In the last decade, the landscape of cerebrospinal fluid (CSF) and blood biomarkers as potential key tools for MS diagnosis, prognosis and treatment monitoring has evolved considerably, alongside magnetic resonance imaging (MRI). CSF analysis has the potential not only to provide information on the underlying immunopathology of the disease and exclude differential diagnoses, but also to predict the risk of future relapses and disability accrual, guide therapeutic decisions and thus improve patient outcomes. This Series article overviews the biological framework and current applicability of fluid biomarkers for MS, exploring their potential role in the molecular characterisation of the disease. We discuss recent advances in the field of neurochemistry that enabled the detection of brain-derived proteins in blood, opening the door to much more efficient longitudinal disease monitoring. Furthermore, we identify the current challenges in the application of fluid biomarkers for MS in a real-world setting, while offering recommendations for harnessing their full potential as key paraclinical tools to improve patient management and personalise treatment.
Collapse
Affiliation(s)
- Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Diego Centonze
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Barcelona, Spain
| | - Luisa M. Villar
- Departments of Immunology and Neurology, Multiple Sclerosis Unit, Hospital Ramon y Cajal, (IRYCIS), Madrid, Spain
| | - Eline A.J. Willemse
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
9
|
Lee NY, Ture HY, Lee EJ, Jang JA, Kim G, Nam EJ. Syndecan-1 Plays a Role in the Pathogenesis of Sjögren's Disease by Inducing B-Cell Chemotaxis through CXCL13-Heparan Sulfate Interaction. Int J Mol Sci 2024; 25:9375. [PMID: 39273320 PMCID: PMC11394922 DOI: 10.3390/ijms25179375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
In Sjögren's disease (SjD), the salivary glandular epithelial cells can induce the chemotaxis of B cells by secreting B-cell chemokines such as C-X-C motif chemokine ligand 13 (CXCL13). Syndecan-1 (SDC-1) is a major transmembrane heparan sulfate proteoglycan (HSPG) predominantly expressed on epithelial cells that binds to and regulates heparan sulfate (HS)-binding molecules, including chemokines. We aimed to determine whether SDC-1 plays a role in the pathogenesis of SjD by acting on the binding of HS to B-cell chemokines. To assess changes in glandular inflammation and SDC-1 concentrations in the submandibular gland (SMG) and blood, female NOD/ShiLtJ and sex- and age-matched C57BL/10 mice were used. In the SMG of NOD/ShiLtJ mice, inflammatory responses were identified at 8 weeks of age, but increased SDC-1 concentrations in the SMG and blood were observed at 6 weeks of age, when inflammation had not yet started. As the inflammation of the SMG worsened, the SDC-1 concentrations in the SMG and blood increased. The expression of the CXCL13 and its receptor C-X-C chemokine receptor type 5 (CXCR5) began to increase in the SMG at 6 weeks of age and continued until 12 weeks of age. Immunofluorescence staining in SMG tissue and normal murine mammary gland cells confirmed the co-localization of SDC-1 and CXCL13, and SDC-1 formed a complex with CXCL13 in an immunoprecipitation assay. Furthermore, NOD/ShiLtJ mice were treated with 5 mg/kg HS intraperitoneally thrice per week for 6-10 weeks of age, and the therapeutic effects in the SMG were assessed at the end of 10 weeks of age. NOD/ShiLtJ mice treated with HS showed attenuated salivary gland inflammation with reduced B-cell infiltration, germinal center formation and CXCR5 expression. These findings suggest that SDC-1 plays a pivotal role in the pathogenesis of SjD by binding to CXCL13 through the HS chain.
Collapse
Affiliation(s)
- Nan Young Lee
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
| | - Hirut Yadeta Ture
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
| | - Eun Ju Lee
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu 41199, Republic of Korea
| | - Ji Ae Jang
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu 41199, Republic of Korea
| | - Gunwoo Kim
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu 41199, Republic of Korea
| | - Eon Jeong Nam
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
| |
Collapse
|
10
|
Shen J, Ye Q, Luo F, Yu T, Miao J, Wang W, Yuan H. Causal relationship between multiple sclerosis and primary Sjögren's syndrome: a two-sample mendelian randomization study. Metab Brain Dis 2024; 39:1109-1115. [PMID: 39017967 PMCID: PMC11349781 DOI: 10.1007/s11011-024-01379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
This study aims to investigate the causal relationship between primary Sjögren's syndrome (SS) and multiple sclerosis (MS) using a two-sample Mendelian randomization (MR) analysis to provide insights into their common mechanisms and implications for therapeutic strategies. We utilized data from Genome-Wide Association Studies (GWAS) for primary SS (1,290 cases and 213,145 controls) and MS (4,888 cases and 10,395 controls), restricted to European ancestry. Instrumental variables (IVs) were selected based on genetic variants associated with primary SS. The primary MR method was Inverse Variance Weighted (IVW), supplemented by MR Egger, Weighted Median, Simple Mode, and Weighted Mode algorithms to assess the bidirectional causal relationships between MS and primary SS. Sensitivity analyses, including MR-PRESSO and leave-one-out analysis, were conducted to ensure the robustness of our findings. After excluding SNPs with pleiotropic effects, 42 and 5 SNPs were identified as robust IVs for primary SS and MS, respectively. Our analysis revealed a significant protective effect of MS on primary SS, with IVW showing an OR of 0.896 (95% CI: 0.841-0.954, P = 0.001). No significant heterogeneity or horizontal pleiotropy was detected, supporting the reliability of the results. Our findings suggest a potential protective effect of MS against primary SS, indicating a negative causal association between these two autoimmune diseases. This adds valuable genetic evidence to the understanding of the complex interplay between primary SS and MS, offering new avenues for research and therapeutic interventions.
Collapse
Affiliation(s)
- Jie Shen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Qiao Ye
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Fang Luo
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Tianhang Yu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Jinli Miao
- The Yangtze River Delta Biological Medicine Research and Development Center of Zhejiang Province, Yangtze Delta Region Institution of Tsinghua University, Hangzhou, 314006, Zhejiang, China
| | - Wenmin Wang
- The Yangtze River Delta Biological Medicine Research and Development Center of Zhejiang Province, Yangtze Delta Region Institution of Tsinghua University, Hangzhou, 314006, Zhejiang, China
| | - Hui Yuan
- Department of Logistics Support, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, 314000, Zhejiang, China.
| |
Collapse
|
11
|
Abbasifard M, Bagherzadeh K, Khorramdelazad H. The story of clobenpropit and CXCR4: can be an effective drug in cancer and autoimmune diseases? Front Pharmacol 2024; 15:1410104. [PMID: 39070795 PMCID: PMC11272485 DOI: 10.3389/fphar.2024.1410104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Clobenpropit is a histamine H3 receptor antagonist and has developed as a potential therapeutic drug due to its ability to inhibit CXCR4, a chemokine receptor involved in autoimmune diseases and cancer pathogenesis. The CXCL12/CXCR4 axis involves several biological phenomena, including cell proliferation, migration, angiogenesis, inflammation, and metastasis. Accordingly, inhibiting CXCR4 can have promising clinical outcomes in patients with malignancy or autoimmune disorders. Based on available knowledge, Clobenpropit can effectively regulate the release of monocyte-derived inflammatory cytokine in autoimmune diseases such as juvenile idiopathic arthritis (JIA), presenting a potential targeted target with possible advantages over current therapeutic approaches. This review summarizes the intricate interplay between Clobenpropit and CXCR4 and the molecular mechanisms underlying their interactions, comprehensively analyzing their impact on immune regulation. Furthermore, we discuss preclinical and clinical investigations highlighting the probable efficacy of Clobenpropit for managing autoimmune diseases and cancer. Through this study, we aim to clarify the immunomodulatory role of Clobenpropit and its advantages and disadvantages as a novel therapeutic opportunity.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
12
|
Zhi Y, Zhang P, Luo Y, Sun Y, Li J, Zhang M, Li Y. CXC chemokine receptor type 5 may induce trophoblast dysfunction and participate in the processes of unexplained missed abortion, wherein p-ERK and interleukin-6 may be involved. Heliyon 2024; 10:e31465. [PMID: 38882363 PMCID: PMC11176800 DOI: 10.1016/j.heliyon.2024.e31465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Chemokines regulate the trophoblast dysfunction involved in the occurrence and development of pathological pregnancy, including missed abortions. In particular, CXC chemokine receptor type 5 mediates cell proliferation, migration, and inflammation; nonetheless, its role in missed abortions remains unclear. This study aimed to examine the expression of CXC chemokine receptor type 5 in missed abortions and to investigate the effects of CXC chemokine receptor type 5 on the biological behaviour of trophoblasts, as well as the underlying mechanisms. Our results indicated that CXC chemokine receptor type 5 was upregulated in the villi of women who experienced unexplained missed abortions, as compared with those who had normal pregnancies. CXC chemokine receptor type 5 inhibited the proliferation and migration of human first-trimester trophoblast/simian virus cells but promoted cell apoptosis. With respect to its mechanisms, CXC chemokine receptor type 5 activated the extracellular signal-regulated protein kinase 1/2 signalling pathway and upregulated the secretion of interleukin-6; however, it had no effect on the secretion of tumour necrosis factor-α. In conclusion, our findings suggest that CXC chemokine receptor type 5 induces trophoblast dysfunction and participates in the processes of unexplained missed abortions, wherein p-ERK and interleukin-6 may be involved.
Collapse
Affiliation(s)
- Yanan Zhi
- Department of Reproductive and Genetics, Hebei General Hospital, Shijiazhuang, Hebei, PR China
- Second Ward of Gynecology, Dingzhou People's Hospital, Baoding, Hebei, PR China
| | - Pingping Zhang
- Department of Reproductive and Genetics, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Yan Luo
- Department of Reproductive and Genetics, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Yanmei Sun
- Department of Reproductive and Genetics, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Juan Li
- Department of Reproductive and Genetics, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Mingming Zhang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Yali Li
- Department of Reproductive and Genetics, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| |
Collapse
|
13
|
Xu J, Zhai J, Zhao J. Pathogenic roles of follicular helper T cells in IgG4-related disease and implications for potential therapy. Front Immunol 2024; 15:1413860. [PMID: 38911857 PMCID: PMC11190345 DOI: 10.3389/fimmu.2024.1413860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
IgG4-related disease (IgG4-RD) is a recently described autoimmune disorder characterized by elevated serum IgG4 levels and tissue infiltration of IgG4+ plasma cells in multiple organ systems. Recent advancements have significantly enhanced our understanding of the pathological mechanism underlying this immune-mediated disease. T cell immunity plays a crucial role in the pathogenesis of IgG4-RD, and follicular helper T cells (Tfh) are particularly important in germinal center (GC) formation, plasmablast differentiation, and IgG4 class-switching. Apart from serum IgG4 concentrations, the expansion of circulating Tfh2 cells and plasmablasts may also serve as novel biomarkers for disease diagnosis and activity monitoring in IgG4-RD. Further exploration into the pathogenic roles of Tfh in IgG4-RD could potentially lead to identifying new therapeutic targets that offer more effective alternatives for treating this condition. In this review, we will focus on the current knowledge regarding the pathogenic roles Tfh cells play in IgG4-RD and outline potential therapeutic targets for future clinical intervention.
Collapse
Affiliation(s)
- Jingyi Xu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Jiayu Zhai
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
- Center for Rare Disease, Peking University Third Hospital, Beijing, China
| | - Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
- Center for Rare Disease, Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
Noor AAM, Nor AKCM, Redzwan NM. The immunological understanding on germinal center B cells in psoriasis. J Cell Physiol 2024; 239:e31266. [PMID: 38578060 DOI: 10.1002/jcp.31266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/16/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
The development of psoriasis is mainly driven by the dysregulation of T cells within the skin, marking a primary involvement of these cells in the pathogenesis. Although B cells are integral components of the immune system, their role in the initiation and progression of psoriasis is not as pivotal as that of T cells. The paradox of B cell suggests that, while it is crucial for adaptive immunity, B cells may contribute to the exacerbation of psoriasis. Numerous ideas proposed that there are potential relationships between psoriasis and B cells especially within germinal centers (GCs). Recent research projected that B cells might be triggered by autoantigens which then induced molecular mimicry to alter B cells activity within GC and generate autoantibodies and pro-inflammatory cytokines, form ectopic GC, and dysregulate the proliferation of keratinocytes. Hence, in this review, we gathered potential evidence indicating the participation of B cells in psoriasis within the context of GC, aiming to enhance our comprehension and advance treatment strategies for psoriasis thus inviting many new researchers to investigate this issue.
Collapse
Affiliation(s)
- Aina Akmal Mohd Noor
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Abdah Karimah Che Md Nor
- Central Research Laboratory, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Norhanani Mohd Redzwan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
15
|
Qi WH, Hu LF, Gu YJ, Zhang XY, Jiang XM, Li WJ, Qi JS, Xiao GS, Jie H. Integrated mRNA-miRNA transcriptome profiling of blood immune responses potentially related to pulmonary fibrosis in forest musk deer. Front Immunol 2024; 15:1404108. [PMID: 38873601 PMCID: PMC11169664 DOI: 10.3389/fimmu.2024.1404108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 06/15/2024] Open
Abstract
Background Forest musk deer (FMD, Moschus Berezovskii) is a critically endangered species world-widely, the death of which can be caused by pulmonary disease in the farm. Pulmonary fibrosis (PF) was a huge threat to the health and survival of captive FMD. MicroRNAs (miRNAs) and messenger RNAs (mRNAs) have been involved in the regulation of immune genes and disease development. However, the regulatory profiles of mRNAs and miRNAs involved in immune regulation of FMD are unclear. Methods In this study, mRNA-seq and miRNA-seq in blood were performed to constructed coexpression regulatory networks between PF and healthy groups of FMD. The hub immune- and apoptosis-related genes in the PF blood of FMD were explored through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Further, protein-protein interaction (PPI) network of immune-associated and apoptosis-associated key signaling pathways were constructed based on mRNA-miRNA in the PF blood of the FMD. Immune hub DEGs and immune hub DEmiRNAs were selected for experimental verification using RT-qPCR. Results A total of 2744 differentially expressed genes (DEGs) and 356 differentially expressed miRNAs (DEmiRNAs) were identified in the PF blood group compared to the healthy blood group. Among them, 42 DEmiRNAs were negatively correlated with 20 immune DEGs from a total of 57 correlations. The DEGs were significantly associated with pathways related to CD molecules, immune disease, immune system, cytokine receptors, T cell receptor signaling pathway, Th1 and Th2 cell differentiation, cytokine-cytokine receptor interaction, intestinal immune network for IgA production, and NOD-like receptor signaling pathway. There were 240 immune-related DEGs, in which 186 immune-related DEGs were up-regulated and 54 immune-related DEGs were down-regulated. In the protein-protein interaction (PPI) analysis of immune-related signaling pathway, TYK2, TLR2, TLR4, IL18, CSF1, CXCL13, LCK, ITGB2, PIK3CB, HCK, CD40, CD86, CCL3, CCR7, IL2RA, TLR3, and IL4R were identified as the hub immune genes. The mRNA-miRNA coregulation analysis showed that let-7d, miR-324-3p, miR-760, miR-185, miR-149, miR-149-5p, and miR-1842-5p are key miRNAs that target DEGs involved in immune disease, immune system and immunoregulation. Conclusion The development and occurrence of PF were significantly influenced by the immune-related and apoptosis-related genes present in PF blood. mRNAs and miRNAs associated with the development and occurrence of PF in the FMD.
Collapse
Affiliation(s)
- Wen-Hua Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Li-Fan Hu
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yu-Jiawei Gu
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | | | - Xue-Mei Jiang
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Wu-Jiao Li
- Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jun-Sheng Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Guo-Sheng Xiao
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Hang Jie
- Jinfo Mountain Forest Ecosystem Field Scientific Observation and Research Station of Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| |
Collapse
|
16
|
Wang Y, Huang X, Luo G, Xu Y, Deng X, Lin Y, Wang Z, Zhou S, Wang S, Chen H, Tao T, He L, Yang L, Yang L, Chen Y, Jin Z, He C, Han Z, Zhang X. The aging lung: microenvironment, mechanisms, and diseases. Front Immunol 2024; 15:1383503. [PMID: 38756780 PMCID: PMC11096524 DOI: 10.3389/fimmu.2024.1383503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
With the development of global social economy and the deepening of the aging population, diseases related to aging have received increasing attention. The pathogenesis of many respiratory diseases remains unclear, and lung aging is an independent risk factor for respiratory diseases. The aging mechanism of the lung may be involved in the occurrence and development of respiratory diseases. Aging-induced immune, oxidative stress, inflammation, and telomere changes can directly induce and promote the occurrence and development of lung aging. Meanwhile, the occurrence of lung aging also further aggravates the immune stress and inflammatory response of respiratory diseases; the two mutually affect each other and promote the development of respiratory diseases. Explaining the mechanism and treatment direction of these respiratory diseases from the perspective of lung aging will be a new idea and research field. This review summarizes the changes in pulmonary microenvironment, metabolic mechanisms, and the progression of respiratory diseases associated with aging.
Collapse
Affiliation(s)
- Yanmei Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Xuewen Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunying Xu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiqian Deng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Haoran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Tao
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Lei He
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Luchuan Yang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Li Yang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi Jin
- Department of Anesthesiology and Pain Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Chengshi He
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Zhang
- Department of Emergency Medicine Center, Sichuan Province People’s Hospital University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Canderan G, Muehling LM, Kadl A, Ladd S, Bonham C, Cross CE, Lima SM, Yin X, Sturek JM, Wilson JM, Keshavarz B, Bryant N, Murphy DD, Cheon IS, McNamara CA, Sun J, Utz PJ, Dolatshahi S, Irish JM, Woodfolk JA. Distinct Type 1 Immune Networks Underlie the Severity of Restrictive Lung Disease after COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587929. [PMID: 38617217 PMCID: PMC11014603 DOI: 10.1101/2024.04.03.587929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The variable etiology of persistent breathlessness after COVID-19 have confounded efforts to decipher the immunopathology of lung sequelae. Here, we analyzed hundreds of cellular and molecular features in the context of discrete pulmonary phenotypes to define the systemic immune landscape of post-COVID lung disease. Cluster analysis of lung physiology measures highlighted two phenotypes of restrictive lung disease that differed by their impaired diffusion and severity of fibrosis. Machine learning revealed marked CCR5+CD95+ CD8+ T-cell perturbations in mild-to-moderate lung disease, but attenuated T-cell responses hallmarked by elevated CXCL13 in more severe disease. Distinct sets of cells, mediators, and autoantibodies distinguished each restrictive phenotype, and differed from those of patients without significant lung involvement. These differences were reflected in divergent T-cell-based type 1 networks according to severity of lung disease. Our findings, which provide an immunological basis for active lung injury versus advanced disease after COVID-19, might offer new targets for treatment.
Collapse
|
18
|
Ding Y, Zhou Q, Ding B, Zhang Y, Shen Y. Transcriptome analysis reveals the clinical significance of CXCL13 in Pan-Gyn tumors. J Cancer Res Clin Oncol 2024; 150:116. [PMID: 38459390 PMCID: PMC10923744 DOI: 10.1007/s00432-024-05619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/09/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Gynecologic and breast tumors (Pan-Gyn) exhibit similar characteristics, and the role of CXCL13 in anti-tumor immunity and it's potential as a biomarker for immune checkpoint blockade (ICB) therapy have been gradually revealed. However, the precise role of CXCL13 in Pan-Gyn remains unclear, lacking a systematic analysis. METHODS We analyzed 2497 Pan-Gyn samples from the TCGA database, categorizing them into high and low CXCL13 expression groups. Validation was conducted using tumor expression datasets sourced from the GEO database. Correlation between CXCL13 and tumor immune microenvironment (TIME) was evaluated using multiple algorithms. Finally, we established nomograms for 3-year and 5-year mortality. RESULTS High expression of CXCL13 in Pan-Gyn correlates with a favorable clinical prognosis, increased immune cell infiltration, and reduced intra-tumor heterogeneity. Model was assessed using the C-index [BRCA: 0.763 (0.732-0.794), UCEC: 0.821 (0.793-0.849), CESC: 0.736 (0.684-0.788), and OV: 0.728 (0.707-0.749)], showing decent prediction of discrimination and calibration. CONCLUSION Overall, this study provides comprehensive insights into the commonalities and differences of CXCL13 in Pan-Gyn, potentially opening new avenues for personalized treatment.
Collapse
Affiliation(s)
- Yue Ding
- Zhongda Hospital Southeast University, Nanjing, China
| | - Quan Zhou
- Zhongda Hospital Southeast University, Nanjing, China
| | - Bo Ding
- Zhongda Hospital Southeast University, Nanjing, China
| | - Yang Zhang
- Department of Obstetrics and Gynecology, First People's Hospital of Lianyungang, No. 6 East Zhenhua Road, Haizhou, Lianyungang, China
| | - Yang Shen
- Zhongda Hospital Southeast University, Nanjing, China.
| |
Collapse
|
19
|
Zhang Z, Schaefer C, Jiang W, Lu Z, Lee J, Sziraki A, Abdulraouf A, Wick B, Haeussler M, Li Z, Molla G, Satija R, Zhou W, Cao J. A Panoramic View of Cell Population Dynamics in Mammalian Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.583001. [PMID: 38496474 PMCID: PMC10942312 DOI: 10.1101/2024.03.01.583001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
To elucidate the aging-associated cellular population dynamics throughout the body, here we present PanSci, a single-cell transcriptome atlas profiling over 20 million cells from 623 mouse tissue samples, encompassing a range of organs across different life stages, sexes, and genotypes. This comprehensive dataset allowed us to identify more than 3,000 unique cellular states and catalog over 200 distinct aging-associated cell populations experiencing significant depletion or expansion. Our panoramic analysis uncovered temporally structured, organ- and lineage-specific shifts of cellular dynamics during lifespan progression. Moreover, we investigated aging-associated alterations in immune cell populations, revealing both widespread shifts and organ-specific changes. We further explored the regulatory roles of the immune system on aging and pinpointed specific age-related cell population expansions that are lymphocyte-dependent. The breadth and depth of our 'cell-omics' methodology not only enhance our comprehension of cellular aging but also lay the groundwork for exploring the complex regulatory networks among varied cell types in the context of aging and aging-associated diseases.
Collapse
Affiliation(s)
- Zehao Zhang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Chloe Schaefer
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Weirong Jiang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Ziyu Lu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Jasper Lee
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Andras Sziraki
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Abdulraouf Abdulraouf
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The Tri-Institutional M.D-Ph.D Program, New York, NY, USA
| | - Brittney Wick
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | | | - Zhuoyan Li
- New York Genome Center, New York, NY, USA
| | | | - Rahul Satija
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Wei Zhou
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Junyue Cao
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
20
|
Liu Z, Zhao Z, Xie H, Lu N, Liu J, Jiao Q. CXCR5 +TIM-3 -PD-1 + stem-like cytotoxic CD8 + T cells: elevated in chronic rhinosinusitis and associated with disease severity. Front Immunol 2024; 15:1295309. [PMID: 38426098 PMCID: PMC10902131 DOI: 10.3389/fimmu.2024.1295309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Background Chronic rhinosinusitis (CRS) is a chronic inflammatory disease with an autoimmune background. Altered expression levels of T cell immunoglobulin and mucin-domain containing-3 (TIM-3), C-X-C chemokine receptor type 5 (CXCR5), and programmed cell death protein 1 (PD-1) are implicated in the progression of inflammatory and autoimmune diseases. Moreover, CXCR5+TIM-3-PD-1+ stem-like cytotoxic T cells function as memory stem cells during chronic disease processes and retain cytotoxicity-related gene networks. Objectives To explore the expressions of CXCR5, TIM-3, and PD-1 on T cells and their correlation with clinical parameters in CRS. Methods Flow cytometry was used to assess the expressions and co-expressions of CXCR5, TIM-3, and PD-1 on T cells in the tissues of the paranasal sinus and peripheral blood of patients with CRS as well as healthy controls. Immunofluorescence was used to assess the co-localization of TIM-3, CXCR5, and PD-1 with T cells. The disease severity of our patients with CRS was evaluated using the Lund-Mackay score. A complete blood count was also performed for the patients with CRS. Results Expression levels of CXCR5 and PD-1 on T cells were significantly increased in the nasal tissues of patients with CRS. Compared with those in healthy controls, patients with CRS had high percentages of CXCR5+TIM-3-PD-1+ CD8+ and CD4+ T cells in nasal tissues, while no significant difference was observed in peripheral blood levels. Patients with CRS had a higher density of nasal CXCR5+TIM-3-PD-1+ T cells than that in healthy controls. CXCR5+TIM-3-PD-1+ CD8+ T cell levels in the nasal polyps of patients with CRS were negatively correlated with the patients' Lund-Mackay scores. The levels of CXCR5+TIM-3-PD-1+ T cells in nasal tissues were also negatively associated with disease duration and positively associated with the chronic inflammatory state of CRS. Conclusions The level of CXCR5+TIM-3-PD-1+ stem cell-like T cells, especially CXCR5+TIM-3-PD-1+ CD8+ T cells, is increased in CRS. Therefore, inducing CXCR5+TIM-3-PD-1+ T cell exhaustion may be an effective immunotherapy for CRS.
Collapse
Affiliation(s)
- Zhichen Liu
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zixuan Zhao
- The First Clinical Medicine School, Suzhou Medical College, Suzhou University, Suzhou, China
| | - Huanxia Xie
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ning Lu
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jisheng Liu
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingqing Jiao
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
21
|
Choi J, Crotty S, Choi YS. Cytokines in Follicular Helper T Cell Biology in Physiologic and Pathologic Conditions. Immune Netw 2024; 24:e8. [PMID: 38455461 PMCID: PMC10917579 DOI: 10.4110/in.2024.24.e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 03/09/2024] Open
Abstract
Follicular helper T cells (Tfh) play a crucial role in generating high-affinity antibodies (Abs) and establishing immunological memory. Cytokines, among other functional molecules produced by Tfh, are central to germinal center (GC) reactions. This review focuses on the role of cytokines, including IL-21 and IL-4, in regulating B cell responses within the GC, such as differentiation, affinity maturation, and plasma cell development. Additionally, this review explores the impact of other cytokines like CXCL13, IL-10, IL-9, and IL-2 on GC responses and their potential involvement in autoimmune diseases, allergies, and cancer. This review highlights contributions of Tfh-derived cytokines to both protective immunity and immunopathology across a spectrum of diseases. A deeper understanding of Tfh cytokine biology holds promise for insights into biomedical conditions.
Collapse
Affiliation(s)
- Jinyong Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Shane Crotty
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Transplantation Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
22
|
Lin X, Zhao X, Chen Y, Yang R, Dai Z, Li W, Lin C, Cao W. CXC ligand 13 orchestrates an immunoactive microenvironment and enhances immunotherapy response in head and neck squamous cell carcinoma. Int J Immunopathol Pharmacol 2024; 38:3946320241227312. [PMID: 38252495 PMCID: PMC10807398 DOI: 10.1177/03946320241227312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Objectives: This study aims to systematically explore the role of chemokine CXC ligand 13 (CXCL13) in head and neck squamous cell carcinoma (HNSCC). Methods: The Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases provided the RNA-seq data for cancer and normal tissues, respectively. Gene set enrichment analysis was applied to search the cancer hallmarks associated with CXCL13 expression. TIMER2.0 was the main platform used to investigate the immune cell infiltration related to CXCL13. Immunohistochemistry was applied to explore the relationship between CXCL13 and patients' prognosis and the relationship between CXCL13 and tertiary lymphoid structures (TLSs). Results: The expression of CXCL13 was upregulated in most tumors, including HNSCC. The higher expression of CXCL13 was closely related to the positive prognosis of HNSCC. CXCL13 was mainly expressed in B cells and CD8 + T cells, revealing the relationship between its expression and immune activation in the tumor microenvironment. Furthermore, immunohistochemistry and multiple fluorescence staining analysis of HNSCC samples showed a powerful correlation between CXCL13 expression, TLSs formation, and positive prognosis. Finally, CXCL13 significantly increased the response to cancer immunotherapy. Conclusions: CXCL13 may function as a potential biomarker for predicting prognosis and immunotherapy response and associate with TLSs in HNSCC.
Collapse
Affiliation(s)
- Xiaohu Lin
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiaomei Zhao
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yiming Chen
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Rong Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhenlin Dai
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Li
- Xuchang Central Hospital, Henan, China
| | - Chengzhong Lin
- Department of Oral Maxillofacial Surgery, Zhongshan Hospital, Fu Dan University, Shanghai, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
23
|
Lindblom J, Beretta L, Borghi MO, Alarcón-Riquelme ME, Parodis I. Serum profiling identifies CCL8, CXCL13, and IL-1RA as markers of active disease in patients with systemic lupus erythematosus. Front Immunol 2023; 14:1257085. [PMID: 38098483 PMCID: PMC10720584 DOI: 10.3389/fimmu.2023.1257085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease that presents a challenge for clinicians. To identify potential biomarkers for diagnosis and disease activity in SLE, we investigated a selected yet broad panel of cytokines and autoantibodies in patients with SLE, healthy controls (HC), and patients with other autoimmune diseases (AIDs). Methods Serum samples from 422 SLE patients, 546 HC, and 1223 other AIDs were analysed within the frame of the European PRECISESADS project (NTC02890121). Cytokine levels were determined using Luminex panels, and autoantibodies using different immunoassays. Results Of the 83 cytokines analysed, 29 differed significantly between patients with SLE and HC. Specifically, CCL8, CXCL13, and IL-1RA levels were elevated in patients with active, but not inactive, SLE versus HC, as well as in patients with SLE versus other AIDs. The levels of these cytokines also correlated with SLE Disease Activity Index 2000 (SLEDAI-2K) scores, among five other cytokines. Overall, the occurrence of autoantibodies was similar across SLEDAI-2K organ domains, and the correlations between autoantibodies and activity in different organ domains were weak. Discussion Our findings suggest that, upon validation, CCL8, CXCL13, and IL-1RA could serve as promising serum biomarkers of activity in SLE.
Collapse
Affiliation(s)
- Julius Lindblom
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Maria Orietta Borghi
- IRCCS Istituto Auxologico Italiano, Immunorheumatology Research Laboratory, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marta E. Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada/Andalusian Regional Government, Medical Genomics, Granada, Spain
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
24
|
Xi Z, Yang T, Huang T, Zhou J, Yang P. Identification and Preliminary Clinical Validation of Key Extracellular Proteins as the Potential Biomarkers in Hashimoto's Thyroiditis by Comprehensive Analysis. Biomedicines 2023; 11:3127. [PMID: 38137348 PMCID: PMC10740579 DOI: 10.3390/biomedicines11123127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/04/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Hashimoto's thyroiditis (HT) is an autoimmune disruption manifested by immune cell infiltration in thyroid tissue and the production of antibodies against thyroid-specific antigens, such as the thyroid peroxidase antibody (TPOAb) and thyroglobulin antibody (TGAb). TPOAb and TGAb are commonly used in clinical tests; however, handy indicators of the diagnosis and progression of HT are still scarce. Extracellular proteins are glycosylated and are likely to enter body fluids and become readily available and detectable biomarkers. Our research aimed to discover extracellular biomarkers and potential treatment targets associated with HT through integrated bioinformatics analysis and clinical sample validations. A total of 19 extracellular protein-differentially expressed genes (EP-DEGs) were screened by the GSE138198 dataset from the Gene Expression Omnibus (GEO) database and protein annotation databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the function and pathway of EP-DEGs. STRING, Cytoscape, MCODE, and Cytohubba were used to construct a protein-protein interaction (PPI) network and screen key EP-DEGs. Six key EP-DEGs (CCL5, GZMK, CXCL9, CXCL10, CXCL11, and CXCL13) were further validated in the GSE29315 dataset and the diagnostic curves were evaluated, which all showed high diagnostic accuracy (AUC > 0.95) for HT. Immune profiling revealed the correlation of the six key EP-DEGs and the pivotal immune cells in HT, such as CD8+ T cells, dendritic cells, and Th2 cells. Further, we also confirmed the key EP-DEGs in clinical thyroid samples. Our study may provide bioinformatics and clinical evidence for revealing the pathogenesis of HT and improving the potential diagnosis biomarkers and therapeutic strategies for HT.
Collapse
Affiliation(s)
| | | | | | - Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Yang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
25
|
Zhong C, Yang D, Zhong L, Xie W, Sun G, Jin D, Li Y. Single-cell and bulk RNA sequencing reveals Anoikis related genes to guide prognosis and immunotherapy in osteosarcoma. Sci Rep 2023; 13:20203. [PMID: 37980450 PMCID: PMC10657454 DOI: 10.1038/s41598-023-47367-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
Anoikis resistance, a notable factor in osteosarcoma, plays a significant role in tumor invasion and metastasis. This study seeks to identify a distinct gene signature that is specifically associated with the anoikis subcluster in osteosarcoma. Clinical, single-cell, and transcriptional data from TARGET and GEO datasets were used to develop a gene signature for osteosarcoma based on the anoikis subcluster. Univariate Cox and LASSO regression analyses were employed. The signature's predictive value was evaluated using time-dependent ROC and Kaplan-Meier analyses. Functional enrichment analyses and drug sensitivity analyses were conducted. Validation of three modular genes was performed using RT-qPCR and Western blotting. Signature (ZNF583, CGNL1, CXCL13) was developed to predict overall survival in osteosarcoma patients, targeting the anoikis subcluster. The signature demonstrated good performance in external validation. Stratification based on the signature revealed significantly different prognoses. The signature was an independent prognostic factor. The low-risk group showed enhanced immune cell infiltration and improved immune function. Drug sensitivity analysis indicated efficacy of chemotherapy agents. Prognostic nomograms incorporating the signature provided greater predictive accuracy and clinical utility. Signatures related to the anoikis subcluster play a significant role in osteosarcoma progression. Incorporating these findings into clinical decision-making can improve osteosarcoma treatment and patient outcomes.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Orthopedics, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 515000, China
- Department of Orthopedics, Jiangmen Hospital of Traditional Chinese Medicine Affiliated to Jinan University, Jiangmen, 529000, China
| | - Dongliang Yang
- Department of Orthopedics, Tai Shan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Jiangmen, 529000, China
| | - Liping Zhong
- Department of Cardiothoracic Surgery, Jiangmen Hospital of Traditional Chinese Medicine Affiliated to Jinan University, Jiangmen, 529000, China
| | - Weixing Xie
- Department of Orthopedics, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 515000, China
| | - Guodong Sun
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Daxiang Jin
- Department of Orthopedics, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 515000, China.
| | - Yuming Li
- Department of Orthopedics, Jiangmen Hospital of Traditional Chinese Medicine Affiliated to Jinan University, Jiangmen, 529000, China.
| |
Collapse
|
26
|
Xie W, Jiang H, Chen Y, Zhang H, Song Y, Yu Z, Gu H, Xu H, Han S, Li S, Liu N, Han S. Association between systemic lupus erythematosus and inflammatory bowel disease in European and East Asian populations: a two-sample Mendelian randomization study. Front Immunol 2023; 14:1199896. [PMID: 38022503 PMCID: PMC10654968 DOI: 10.3389/fimmu.2023.1199896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Previous studies have shown a coexistence phenomenon between systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), but the causal relationship between them is still unclear. Therefore, we conducted a two-sample Mendelian randomization (MR) analysis using publicly available summary statistics data to evaluate whether there was a causal relationship between the two diseases. Methods Summary statistics for SLE and IBD were downloaded from the Open Genome-Wide Association Study and the International Inflammatory Bowel Disease Genetics Consortium. European and East Asian populations were included in this MR work. We adopted a series of methods to select instrumental variables that are closely related to SLE and IBD. To make the conclusion more reliable, we applied a variety of different analysis methods, among which the inverse variance-weighted (IVW) method was the main method. In addition, heterogeneity, pleiotropy, and sensitivity were assessed to make the conclusions more convincing. Results In the European population, a negative causal relationship was observed between SLE and overall IBD (OR = 0.94; 95% CI = 0.90, 0.98; P < 0.004) and ulcerative colitis (UC) (OR = 0.93; 95% CI = 0.88, 0.98; P = 0.006). After removing outliers with Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO), the results remained consistent with IVW. However, there was no causal relationship between SLE and Crohn's disease. In the East Asian population, no causal relationship was found between SLE and IBD. Conclusion Our results found that genetic susceptibility to SLE was associated with lower overall IBD risk and UC risk in European populations. In contrast, no association between SLE and IBD was found in East Asian populations. This work might enrich the previous research results, and it may provide some references for research in the future.
Collapse
Affiliation(s)
- Weidong Xie
- Department of The Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haojie Jiang
- Department of The Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Chen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Graduate School, Zhejiang University, Hangzhou, China
| | | | - Yaoyu Song
- Wenzhou Medical University, Wenzhou, China
| | - Zhaojie Yu
- Wenzhou Medical University, Wenzhou, China
| | - Huayan Gu
- Department of Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongkai Xu
- Department of The Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saiyi Han
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou people’s Hospital, Quzhou, China
| | - Sen Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Naxin Liu
- Department of The Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shaoliang Han
- Department of The Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Harada T, Kikushige Y, Miyamoto T, Uno K, Niiro H, Kawakami A, Koga T, Akashi K, Yoshizaki K. Peripheral helper-T-cell-derived CXCL13 is a crucial pathogenic factor in idiopathic multicentric Castleman disease. Nat Commun 2023; 14:6959. [PMID: 37907518 PMCID: PMC10618253 DOI: 10.1038/s41467-023-42718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Castleman disease (CD) is a rare lymphoproliferative disorder. Among subtypes of CD, idiopathic multicentric CD-not otherwise specified (iMCD-NOS) has a poor prognosis and its pathogenesis is largely unknown. Here we present a xenotransplantation model of iMCD-NOS pathogenesis. Immunodeficient mice, transplanted with lymph node (LN) cells from iMCD-NOS patients, develop iMCD-like lethal inflammation, while mice transplanted with LN cells from non-iMCD patients without inflammation serve as negative control. Grafts depleted of human CD3+ T cells fail to induce inflammation in vivo. Upon engraftment, peripheral helper T (Tph) cells expand and levels of human CXCL13 substantially increase in the sera of mice. A neutralizing antibody against human CXCL13 blocks development of inflammation and improves survival in the recipient mice. Our study thus indicates that Tph cells, producing CXCL13 play a critical role in the pathogenesis of iMCD-NOS, and establishes iMCD-NOS as an immunoregulatory disorder.
Collapse
Affiliation(s)
- Takuya Harada
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Toshihiro Miyamoto
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Kazuko Uno
- Luis Pasteur Center for Medical Research, Kyoto, Japan
| | - Hiroaki Niiro
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan.
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan.
| | - Kazuyuki Yoshizaki
- The Institute of Scientific and Industrial Research, SANKEN, Osaka University, Osaka, Japan.
- Medical corporation of Tokushukai, Osaka, Japan.
| |
Collapse
|
28
|
Wang Q, Li CL, Wu L, Hu JY, Yu Q, Zhang SX, He PF. Distinct molecular subtypes of systemic sclerosis and gene signature with diagnostic capability. Front Immunol 2023; 14:1257802. [PMID: 37849750 PMCID: PMC10577296 DOI: 10.3389/fimmu.2023.1257802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
Background As Systemic Sclerosis (SSc) is a connective tissue ailment that impacts various bodily systems. The study aims to clarify the molecular subtypes of SSc, with the ultimate objective of establishing a diagnostic model that can inform clinical treatment decisions. Methods Five microarray datasets of SSc were retrieved from the GEO database. To eliminate batch effects, the combat algorithm was applied. Immune cell infiltration was evaluated using the xCell algorithm. The ConsensusClusterPlus algorithm was utilized to identify SSc subtypes. Limma was used to determine differential expression genes (DEGs). GSEA was used to determine pathway enrichment. A support vector machine (SVM), Random Forest(RF), Boruta and LASSO algorithm have been used to select the feature gene. Diagnostic models were developed using SVM, RF, and Logistic Regression (LR). A ROC curve was used to evaluate the performance of the model. The compound-gene relationship was obtained from the Comparative Toxicogenomics Database (CTD). Results The identification of three immune subtypes in SSc samples was based on the expression profiles of immune cells. The utilization of 19 key intersectional DEGs among subtypes facilitated the classification of SSc patients into three robust subtypes (gene_ClusterA-C). Gene_ClusterA exhibited significant enrichment of B cells, while gene_ClusterC showed significant enrichment of monocytes. Moderate activation of various immune cells was observed in gene_ClusterB. We identified 8 feature genes. The SVM model demonstrating superior diagnostic performance. Furthermore, correlation analysis revealed a robust association between the feature genes and immune cells. Eight pertinent compounds, namely methotrexate, resveratrol, paclitaxel, trichloroethylene, formaldehyde, silicon dioxide, benzene, and tetrachloroethylene, were identified from the CTD. Conclusion The present study has effectively devised an innovative molecular subtyping methodology for patients with SSc and a diagnostic model based on machine learning to aid in clinical treatment. The study has identified potential molecular targets for therapy, thereby offering novel perspectives for the treatment and investigation of SSc.
Collapse
Affiliation(s)
- Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
| | - Chen-Long Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
| | - Li Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Anesthesiology , Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Jing-Yi Hu
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Pei-Feng He
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
29
|
Pogoda-Wesołowska A, Dziedzic A, Maciak K, Stȩpień A, Dziaduch M, Saluk J. Neurodegeneration and its potential markers in the diagnosing of secondary progressive multiple sclerosis. A review. Front Mol Neurosci 2023; 16:1210091. [PMID: 37781097 PMCID: PMC10535108 DOI: 10.3389/fnmol.2023.1210091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Approximately 70% of relapsing-remitting multiple sclerosis (RRMS) patients will develop secondary progressive multiple sclerosis (SPMS) within 10-15 years. This progression is characterized by a gradual decline in neurological functionality and increasing limitations of daily activities. Growing evidence suggests that both inflammation and neurodegeneration are associated with various pathological processes throughout the development of MS; therefore, to delay disease progression, it is critical to initiate disease-modifying therapy as soon as it is diagnosed. Currently, a diagnosis of SPMS requires a retrospective assessment of physical disability exacerbation, usually over the previous 6-12 months, which results in a delay of up to 3 years. Hence, there is a need to identify reliable and objective biomarkers for predicting and defining SPMS conversion. This review presents current knowledge of such biomarkers in the context of neurodegeneration associated with MS, and SPMS conversion.
Collapse
Affiliation(s)
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Karina Maciak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Adam Stȩpień
- Clinic of Neurology, Military Institute of Medicine–National Research Institute, Warsaw, Poland
| | - Marta Dziaduch
- Medical Radiology Department of Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
30
|
Luo R, Chang D, Zhang N, Cheng Y, Ge S, Xu G. T Follicular Helper Cells in Tertiary Lymphoid Structure Contribute to Renal Fibrosis by IL-21. Int J Mol Sci 2023; 24:12535. [PMID: 37628716 PMCID: PMC10454845 DOI: 10.3390/ijms241612535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Tertiary lymphoid structure (TLS) represents lymphocyte clusters in non-lymphoid organs. The formation and maintenance of TLS are dependent on follicular helper T (TFH) cells. However, the role of TFH cells during renal TLS formation and the renal fibrotic process has not been comprehensively elucidated in chronic kidney disease. Here, we detected the circulating TFH cells from 57 IgAN patients and found that the frequency of TFH cells was increased in IgA nephropathy patients with renal TLS and also increased in renal tissues from the ischemic-reperfusion-injury (IRI)-induced TLS model. The inducible T-cell co-stimulator (ICOS) is one of the surface marker molecules of TFH. Remarkably, the application of an ICOS-neutralizing antibody effectively prevented the upregulation of TFH cells and expression of its canonical functional mediator IL-21, and also reduced renal TLS formation and renal fibrosis in IRI mice in vivo. In the study of this mechanism, we found that recombinant IL-21 could directly promote renal fibrosis and the expression of p65. Furthermore, BAY 11-7085, a p65 selective inhibitor, could effectively alleviate the profibrotic effect induced by IL-21 stimulation. Our results together suggested that TFH cells contribute to TLS formation and renal fibrosis by IL-21. Targeting the ICOS-signaling pathway network could reduce TFH cell infiltration and alleviate renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Shuwang Ge
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.L.)
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.L.)
| |
Collapse
|
31
|
Feng J, Hsu PF, Esteva E, Labella R, Wang Y, Khodadadi-Jamayran A, Pucella J, Liu CZ, Arbini AA, Tsirigos A, Kousteni S, Reizis B. Haplodeficiency of the 9p21 tumor suppressor locus causes myeloid disorders driven by the bone marrow microenvironment. Blood 2023; 142:460-476. [PMID: 37267505 DOI: 10.1182/blood.2022018512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
The chromosome 9p21 locus comprises several tumor suppressor genes including MTAP, CDKN2A, and CDKN2B, and its homo- or heterozygous deletion is associated with reduced survival in multiple cancer types. We report that mice with germ line monoallelic deletion or induced biallelic deletion of the 9p21-syntenic locus (9p21s) developed a fatal myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN)-like disease associated with aberrant trabecular bone formation and/or fibrosis in the bone marrow (BM). Reciprocal BM transfers and conditional targeting of 9p21s suggested that the disease originates in the BM stroma. Single-cell analysis of 9p21s-deficient BM stroma revealed the expansion of chondrocyte and osteogenic precursors, reflected in increased osteogenic differentiation in vitro. It also showed reduced expression of factors maintaining hematopoietic stem/progenitor cells, including Cxcl12. Accordingly, 9p21s-deficient mice showed reduced levels of circulating Cxcl12 and concomitant upregulation of the profibrotic chemokine Cxcl13 and the osteogenesis- and fibrosis-related multifunctional glycoprotein osteopontin/Spp1. Our study highlights the potential of mutations in the BM microenvironment to drive MDS/MPN-like disease.
Collapse
Affiliation(s)
- Jue Feng
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Pei-Feng Hsu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Eduardo Esteva
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Rossella Labella
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
- Edward P. Evans Center for Myelodysplastic Syndromes, Columbia University Medical Center, New York, NY
| | - Yueyang Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY
| | - Joseph Pucella
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Cynthia Z Liu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Arnaldo A Arbini
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY
| | - Stavroula Kousteni
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
- Edward P. Evans Center for Myelodysplastic Syndromes, Columbia University Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
32
|
Pike SC, Gilli F, Pachner AR. The CXCL13 Index as a Predictive Biomarker for Activity in Clinically Isolated Syndrome. Int J Mol Sci 2023; 24:11050. [PMID: 37446228 DOI: 10.3390/ijms241311050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a clinically heterogenous disease. Currently, we cannot identify patients with more active disease who may potentially benefit from earlier interventions. Previous data from our lab identified the CXCL13 index (ICXCL13), a measure of intrathecal production of CXCL13, as a potential biomarker to predict future disease activity in MS patients two years after diagnosis. Patients with clinically isolated syndrome (CIS) or radiologically isolated syndrome (RIS) underwent a lumbar puncture and blood draw, and the ICXCL13 was determined. They were then followed for at least 5 years for MS activity. Patients with high ICXCL13 were more likely to convert to clinically definite MS (82.4%) compared to those with low ICXCL13 (10.0%). The data presented below demonstrate that this predictive ability holds true in CIS and RIS patients, and for at least five years compared to our initial two-year follow-up study. These data support the concept that ICXCL13 has the potential to be used to guide immunomodulatory therapy in MS.
Collapse
Affiliation(s)
- Steven C Pike
- Department of Neurology, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
- Integrative Neuroscience at Dartmouth, Guarini School of Graduate and Advanced Studies, Hanover, NH 03755, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Francesca Gilli
- Department of Neurology, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
- Integrative Neuroscience at Dartmouth, Guarini School of Graduate and Advanced Studies, Hanover, NH 03755, USA
| | - Andrew R Pachner
- Department of Neurology, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| |
Collapse
|
33
|
Shi Y, Chang C, Xu L, Jiang P, Wei K, Zhao J, Xu L, Jin Y, Zhang R, Wang H, Qian Y, Qin Y, Ding Q, Jiang T, Guo S, Wang R, He D. Circulating DNA methylation level of CXCR5 correlates with inflammation in patients with rheumatoid arthritis. Immun Inflamm Dis 2023; 11:e902. [PMID: 37382265 PMCID: PMC10288483 DOI: 10.1002/iid3.902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
OBJECTIVES To assess the differences in circulating DNA methylation levels of CXCR5 between rheumatoid arthritis (RA) and osteoarthritis (OA) and healthy controls (HC), and the correlation of methylation changes with clinical characteristics of RA patients. METHODS Peripheral blood samples were collected from 239 RA patients, 30 patients with OA, and 29 HC. Target region methylation sequencing to the promoter region of CXCR5 was achieved using MethylTarget. The methylation level of cg04537602 and methylation haplotype were compared among the three groups, and the correlation between methylation levels and clinical characteristics of RA patients was performed by Spearman's rank correlation analysis. RESULTS The methylation level of cg04537602 was significantly higher in the peripheral blood of RA patients compared with OA patients (p = 1.3 × 10-3 ) and in the HC group (p = 5.5 × 10- 4 ). The sensitivity was enhanced when CXCR5 methylation level combined with rheumatoid factor and anti-cyclic citrullinated peptide with area under curve (AUC) of 0.982 (95% confidence interval 0.970-0.995). The methylation level of cg04537602 in RA was positively correlated with C-reactive protein (CRP) (r = .16, p = .01), and in RA patients aged 60 years and above, cg04537602 methylation levels were positively correlated with CRP (r = .31, p = 4.7 × 10- 4 ), tender joint count (r = .21, p = .02), visual analog scales score (r = .21, p = .02), Disease Activity Score in 28 joints (DAS28) using the CRP level DAS28-CRP (r = .27, p = 2.1 × 10- 3 ), and DAS28-ESR (r = .22, p = .01). We also observed significant differences of DNA methylation haplotypes in RA patients compared with OA patients and HC, which was consistent with single-loci-based CpG methylation measurement. CONCLUSION The methylation level of CXCR5 was significantly higher in RA patients than in OA and HC, and correlated with the level of inflammation in RA patients, our study establishes a link between CXCR5 DNA methylation and clinical features that may help in the diagnosis and disease management of RA patients.
Collapse
Affiliation(s)
- Yiming Shi
- Department of Rheumatology, Shanghai Guanghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Cen Chang
- Department of Rheumatology, Shanghai Guanghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Lingxia Xu
- Department of Rheumatology, Shanghai Guanghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Ping Jiang
- Department of Rheumatology, Shanghai Guanghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Kai Wei
- Department of Rheumatology, Shanghai Guanghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Linshuai Xu
- Department of Rheumatology, Shanghai Guanghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Yehua Jin
- Department of Rheumatology, Shanghai Guanghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Runrun Zhang
- Department of RheumatologyThe Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Huijuan Wang
- Department of Rheumatology, Shanghai Guanghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Yi Qian
- Department of Rheumatology, Shanghai Guanghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Yingying Qin
- Department of Rheumatology, Shanghai Guanghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Qin Ding
- Department of Rheumatology, Shanghai Guanghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Ting Jiang
- Department of Rheumatology, Shanghai Guanghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Shicheng Guo
- Computation and Informatics in Biology and MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Medical Genetics, School of Medicine and Public HealthUniversity of Wisconsin‐ MadisonMadisonWisconsinUSA
| | - Rongsheng Wang
- Department of Rheumatology, Shanghai Guanghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Guanghua Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Arthritis Research in Integrative MedicineShanghai Academy of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
34
|
Trunfio M, Mighetto L, Napoli L, Atzori C, Nigra M, Guastamacchia G, Bonora S, Di Perri G, Calcagno A. Cerebrospinal Fluid CXCL13 as Candidate Biomarker of Intrathecal Immune Activation, IgG Synthesis and Neurocognitive Impairment in People with HIV. J Neuroimmune Pharmacol 2023; 18:169-182. [PMID: 37166552 DOI: 10.1007/s11481-023-10066-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
Plasma C-X-C-motif chemokine ligand-13 (CXCL13) has been linked to disease progression and mortality in people living with HIV (PLWH) and is a candidate target for immune-based strategies for HIV cure. Its role in central nervous system (CNS) of PLWH has not been detailed. We described CSF CXCL13 levels and its potential associations with neurological outcomes. Cross-sectional study enrolling PLWH without confounding for CXCL13 production. Subjects were divided according to CSF HIV-RNA in undetectable (< 20 cp/mL) and viremics. CSF CXCL13, and biomarkers of blood-brain barrier (BBB) impairment, intrathecal synthesis, and immune activation were measured by commercial immunoturbidimetric and ELISA assays. All subjects underwent neurocognitive assessment. Sensitivity analyses were conducted in subjects with intact BBB only. 175 participants were included. Detectable CSF CXCL13 was more common in the viremic (31.4%) compared to the undetectable group (13.5%; OR 2.9 [1.4-6.3], p = 0.006), but median levels did not change (15.8 [8.2-91.0] vs 10.0 [8.1-14.2] pg/mL). In viremics (n = 86), CXCL13 associated with higher CSF HIV-RNA, proteins, neopterin, intrathecal synthesis and BBB permeability. In undetectable participants (n = 89), CXCL13 associated with higher CD4+T-cells count, CD4/CD8 ratio, CSF proteins, neopterin, and intrathecal synthesis. The presence of CXCL13 in the CSF of undetectable participants was associated with increased odds of HIV-associated neurocognitive disorders (58.3% vs 28.6%, p = 0.041). Sensitivity analyses confirmed all these findings. CXCL13 is detectable in the CSF of PLWH that show increased intrathecal IgG synthesis and immune activation. In PLWH with CSF viral suppression, CXCL13 was also associated with neurocognitive impairment.
Collapse
Affiliation(s)
- Mattia Trunfio
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy.
- HIV Neurobehavioral Research Center (HNRC), Department of Psychiatry, University of California San Diego, San Diego, CA, 92093, USA.
| | - Lorenzo Mighetto
- Diagnostic Laboratory Unit, Maria Vittoria Hospital, ASL Città di Torino, Torino, 10144, Italy
| | - Laura Napoli
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy
| | - Cristiana Atzori
- Unit of Neurology, Maria Vittoria Hospital, ASL Città di Torino, Torino, 10144, Italy
| | - Marco Nigra
- Diagnostic Laboratory Unit, Maria Vittoria Hospital, ASL Città di Torino, Torino, 10144, Italy
| | - Giulia Guastamacchia
- Unit of Neurology, Maria Vittoria Hospital, ASL Città di Torino, Torino, 10144, Italy
| | - Stefano Bonora
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy
| | - Giovanni Di Perri
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy
| | - Andrea Calcagno
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy
| |
Collapse
|
35
|
Xu H, Lin S, Zhou Z, Li D, Zhang X, Yu M, Zhao R, Wang Y, Qian J, Li X, Li B, Wei C, Chen K, Yoshimura T, Wang JM, Huang J. New genetic and epigenetic insights into the chemokine system: the latest discoveries aiding progression toward precision medicine. Cell Mol Immunol 2023:10.1038/s41423-023-01032-x. [PMID: 37198402 DOI: 10.1038/s41423-023-01032-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Over the past thirty years, the importance of chemokines and their seven-transmembrane G protein-coupled receptors (GPCRs) has been increasingly recognized. Chemokine interactions with receptors trigger signaling pathway activity to form a network fundamental to diverse immune processes, including host homeostasis and responses to disease. Genetic and nongenetic regulation of both the expression and structure of chemokines and receptors conveys chemokine functional heterogeneity. Imbalances and defects in the system contribute to the pathogenesis of a variety of diseases, including cancer, immune and inflammatory diseases, and metabolic and neurological disorders, which render the system a focus of studies aiming to discover therapies and important biomarkers. The integrated view of chemokine biology underpinning divergence and plasticity has provided insights into immune dysfunction in disease states, including, among others, coronavirus disease 2019 (COVID-19). In this review, by reporting the latest advances in chemokine biology and results from analyses of a plethora of sequencing-based datasets, we outline recent advances in the understanding of the genetic variations and nongenetic heterogeneity of chemokines and receptors and provide an updated view of their contribution to the pathophysiological network, focusing on chemokine-mediated inflammation and cancer. Clarification of the molecular basis of dynamic chemokine-receptor interactions will help advance the understanding of chemokine biology to achieve precision medicine application in the clinic.
Collapse
Affiliation(s)
- Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China
| | - Ziyun Zhou
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Duoduo Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xiting Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Muhan Yu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Ruoyi Zhao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Yiheng Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Junru Qian
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xinyi Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Bohan Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Chuhan Wei
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Teizo Yoshimura
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Jiaqiang Huang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China.
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China.
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| |
Collapse
|
36
|
Jhun J, Moon J, Kwon JY, Cho KH, Lee SY, Na HS, Cho ML, Min JK. Small heterodimer partner interacting leucine zipper protein (SMILE) ameliorates autoimmune arthritis via AMPK signaling pathway and the regulation of B cell activation. Cell Commun Signal 2023; 21:98. [PMID: 37143079 PMCID: PMC10161652 DOI: 10.1186/s12964-023-01054-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/16/2023] [Indexed: 05/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes joint swelling and inflammation and can involve the entire body. RA is characterized by the increase of pro-inflammatory cytokines such as interleukin (IL) and tumor necrosis factor, and the over-activation of T lymphocytes and B lymphocytes, which may lead to severe chronic inflammation of joints. However, despite numerous studies the pathogenesis and treatment of RA remain unresolved. This study investigated the use of small heterodimer partner-interacting leucine zipper protein (SMILE) overexpression to treat a mouse model of RA. SMILE is an insulin-inducible corepressor through adenosine monophosphate-activated kinase (AMPK) signaling pathway. The injection of a SMILE overexpression vector to mice with collagen induced-arthritis resulted in a milder clinical pathology and a reduced incidence of arthritis, less joint tissue damage, and lower levels of Th17 cells and plasma B cells in the spleen. Immunohistochemistry of the joint tissue showed that SMILE decreased B-cell activating factor (BAFF) receptor (BAFF-R), mTOR, and STAT3 expression but increased AMPK expression. In SMILE-overexpressing transgenic mice with collagen antibody-induced arthritis (CAIA), a decrease in the arthritis score and reductions in tissue damage, the number of B cells, and antibody production were observed. The treatment of immune cells in vitro with curcumin, a known SMILE-inducing agent, led to decreases in plasma B cells, germinal center B cells, IL-17-producing B cells, and BAFF-R-positive B cells. Taken together, our findings demonstrate the therapeutic potential of SMILE in RA, based on its inhibition of B cell activation mediated by the AMPK/mTOR and STAT3 signaling pathway and BAFF-R expression. Video abstract.
Collapse
Affiliation(s)
- JooYeon Jhun
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jeonghyeon Moon
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, 06511, CT, USA
| | - Ji Ye Kwon
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
| | - Keun-Hyung Cho
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seang Yoon Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hyun Sik Na
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Mi-La Cho
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea.
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Jun-Ki Min
- Department of Internal Medicine, The Clinical Medicine Research Institute of Bucheon St. Mary's Hospital, Bucheon-si, South Korea.
| |
Collapse
|
37
|
Naguib M, El Sawy S, Rashed L, AlHelf M, Abdelgwad M. Long non-coding RNA maternally expressed gene 3, miR-125a-5p, CXCL13, and NF-kB in patients with immune thrombocytopenia. Genes Immun 2023; 24:108-115. [PMID: 37045944 PMCID: PMC10110462 DOI: 10.1038/s41435-023-00200-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 04/14/2023]
Abstract
The main aim of this study was to assess the expression level of circulating long non-coding RNA maternally expressed gene 3 (lncRNA-MEG3), microRNA (miR-125a-5P), the chemokine C-X-C motif ligand13 (CXCL13), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) in immune thrombocytopenia (ITP) cases and to study its relation to the disease severity and treatment response. This case-control study included 45 patients newly diagnosed as ITP and 45 healthy subjects. We assessed complete blood count, antinuclear antibodies, hepatitis B and C virus serology, lncRNA-MEG3, miR-125a-5P, and CXCL13 expression in serum by real-time PCR and NF-kb protein by ELISA. In ITP patients compared to control, lncRNA-MEG3 was significantly increased, and miRNA-125a-5P was decreased, and this was associated with higher CXCL13 and NF-kB levels (P < 0.001, for all).There was a significant negative correlation between platelet count and lncRNA-MEG3, CXCL13, and NF-kb, while a positive correlation with miR-125a-5p in ITP patients. Patients who responded to steroids had significantly higher miR-125a-5p (P = 0.016) and significantly lower lncRNA-MEG3 (P < 0.001), CXCL13 (P = 0.005), and NF-kb (p = 0.002). Based on the ROC curves, lncRNA-MEG3 displayed the highest area under the curve (AUC) in the identification of organ bleeding (AUC = 0.805), the response to steroids (AUC = 0.853), and the need for splenectomy (AUC = 0.75).
Collapse
Affiliation(s)
- Mervat Naguib
- Internal Medicine Department, Faculty of Medicine Kasr Al-Ainy Hospital, Cairo University, Cairo, Egypt.
| | - Shereen El Sawy
- Internal Medicine Department, Faculty of Medicine Kasr Al-Ainy Hospital, Cairo University, Cairo, Egypt
| | - Laila Rashed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha AlHelf
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Biotechnology School, Nile University, Giza, Egypt
| | - Marwa Abdelgwad
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
38
|
Zhang F, Gao X, Liu J, Zhang C. Biomarkers in autoimmune diseases of the central nervous system. Front Immunol 2023; 14:1111719. [PMID: 37090723 PMCID: PMC10113662 DOI: 10.3389/fimmu.2023.1111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/16/2023] [Indexed: 04/09/2023] Open
Abstract
The autoimmune diseases of the central nervous system (CNS) represent individual heterogeneity with different disease entities. Although clinical and imaging features make it possible to characterize larger patient cohorts, they may not provide sufficient evidence to detect disease activity and response to disease modifying drugs. Biomarkers are becoming a powerful tool due to their objectivity and easy access. Biomarkers may indicate various aspects of biological processes in healthy and/or pathological states, or as a response to drug therapy. According to the clinical features described, biomarkers are usually classified into predictive, diagnostic, monitoring and safety biomarkers. Some nerve injury markers, humoral markers, cytokines and immune cells in serum or cerebrospinal fluid have potential roles in disease severity and prognosis in autoimmune diseases occurring in the CNS, which provides a promising approach for clinicians to early intervention and prevention of future disability. Therefore, this review mainly summarizes the potential biomarkers indicated in autoimmune disorders of the CNS.
Collapse
Affiliation(s)
- Fenghe Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Gao
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jia Liu
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
- Centers of Neuroimmunology and Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chao Zhang,
| |
Collapse
|
39
|
Sato S, Zhang XK, Matsuoka N, Sumichika Y, Saito K, Yoshida S, Matsumoto H, Temmoku J, Fujita Y, Asano T, Migita K. Transcription factor Fli-1 impacts the expression of CXCL13 and regulates immune cell infiltration into the kidney in MRL/lpr mouse. Lupus Sci Med 2023; 10:10/1/e000870. [PMID: 37094946 PMCID: PMC10152041 DOI: 10.1136/lupus-2022-000870] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE Friend leukaemia virus integration 1 (Fli-1) regulates chemokine/cytokine expression and thus plays an important role in the development of lupus nephritis. Chemokine CXC ligand 13 (CXCL13) is a chemokine that promotes the formation of ectopic lymphoid structures and has been reported to be associated with the pathogenesis of lupus nephritis. The relationship between Fli-1 and CXCL13 is unknown. This study aims to elucidate whether Fli-1 impacts CXCL13 expression and contributes to the progression of lupus-like nephritis in adult MRL/lpr mouse. METHODS Serum CXCL13 levels were measured in adult wild-type (WT) MRL/lpr mice and Fli-1 heterozygote knockout (Fli-1+/-) MRL/lpr mice (4 months old or older) using ELISA. Renal mRNA expression (CXCL13 and related molecules) was measured using real-time PCR method. Kidneys were removed, stained and evaluated using a pathology scoring system. The grade of CXCL13 or CXC-chemokine receptor type 5 (CXCR5)-positive immune cell infiltration into the kidney was evaluated using immunostaining with anti-CXCL13 or anti-CXCR5 antibodies. We also used immunofluorescence staining with CXCL13- and CD11b-specific antibodies to detect the infiltration of CXCL13/CD11b double-positive immune cells. RESULTS Serum CXCL13 levels in Fli-1+/- MRL/lpr mice were significantly lower than that in WT MRL/lpr mice (545.5 and 960.5 pg/mL, p=0.02). Renal expression of CXCL13 mRNA and SRY-related HMG box4 (Sox4) (an important factor for B-cell development) levels were significantly lower in Fli-1+/- MRL/lpr mice. Renal histology scores in WT MRL/lpr mice revealed significantly increased glomerular inflammation. Despite similar interstitial immune cell infiltration into the kidney, the number of CXCL13- and CXCR5-positive cells was significantly lower in Fli-1+/- MRL/lpr mice than in WT mice. Furthermore, immunofluorescence staining revealed that Fli-1+/-MRL/lpr mice had significantly fewer CXCL13/CD11b double-positive immune cells. CONCLUSION Fli-1 regulates renal Sox4 mRNA expression and infiltration of CXCR5-positive cells as well as CXCL13/CD11b double-positive immune cells into the kidney, which affects CXCL13 expression and lupus-like nephritis.
Collapse
Affiliation(s)
- Shuzo Sato
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Xian K Zhang
- Department of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Naoki Matsuoka
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuya Sumichika
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kenji Saito
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shuhei Yoshida
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Haruki Matsumoto
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Jumpei Temmoku
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuya Fujita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
40
|
郑 雅, 蒋 莉. [Recent research on cytokines associated with anti-N-methyl-D-aspartate receptor encephalitis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:321-327. [PMID: 36946170 PMCID: PMC10032080 DOI: 10.7499/j.issn.1008-8830.2211125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023]
Abstract
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune inflammatory disease of the central nervous system, and little is known about its immune mechanism at present. There is a lack of disease-related biomarkers in cerebrospinal fluid except anti-NMDAR antibody, which leads to delayed diagnosis and treatment in some patients. Therefore, there has been an increasing number of studies on related cytokines in recent years to assess whether they can be used as new biomarkers for evaluating disease conditions and assisting diagnosis and treatment. Current studies have shown that some cytokines may be associated with the progression of anti-NMDAR encephalitis, and this article reviews the research advances in such cytokines associated with anti-NMDAR encephalitis.
Collapse
|
41
|
Badarinza M, Serban O, Maghear L, Pelea MA, Rosca RI, Fodor D, Stancu B. Diagnostic role of CXCL13 biomarker in primary Sjogren's syndrome patients with parotid non-Hodgkin's lymphoma complication. Med Clin (Barc) 2023:S0025-7753(23)00094-5. [PMID: 37005121 DOI: 10.1016/j.medcli.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 04/03/2023]
Abstract
INTRODUCTION Serum biomarkers are important predictive factors for development of parotid non-Hodgkin's lymphoma (NHL) complication in primary Sjogren's syndrome (pSS) patients. The aim was to evaluate the diagnostic accuracy of serum CXCL13 chemokine in pSS patients with parotid NHL complication. MATERIAL AND METHODS Serum CXCL13 chemokine was assessed in 33 patients with pSS [7 with parotid NHL complication (pSS+NHL subgroup) and 26 without NHL (pSS-NHL subgroup)] and 30 healthy subjects. RESULTS The serum CXCL13 levels in pSS+NHL subgroup [175.2 (107.9-220.4) pg/ml] were significantly higher comparing to the healthy subjects group (p=0.018) and the pSS-NHL subgroup (p=0.048). A cut-off value of 123.45pg/ml (Se=71.4%, Sp=80.8%, AUROC=0.747) was established for parotid lymphoma diagnosis. CONCLUSION The serum CXCL13 biomarker could be considered a valuable tool for the diagnosis of parotid NHL complication in pSS patients.
Collapse
|
42
|
Revisiting the Role of the CXCL13/CXCR5-Associated Immune Axis in Melanoma: Potential Implications for Anti-PD-1-Related Biomarker Research. Life (Basel) 2023; 13:life13020553. [PMID: 36836910 PMCID: PMC9958642 DOI: 10.3390/life13020553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
CXCL13 is a potent chemoattractant cytokine that promotes the migration of cells expressing its cognate receptor, CXCR5. Accordingly, T follicular helper cells and B cells migrate towards B cell follicles in lymph nodes, where the resulting spatial proximity promotes B cell/T cell interaction and antibody formation. Moreover, effector cells of the CXCL13/CXCR5-associated immune axis express PD-1, with corresponding circulating cells occurring in the blood. The formation of so-called ectopic or tertiary lymphoid structures, recently detected in different cancer types, represents an integral part of this axis, particularly in the context of its emerging role in anti-tumor defense. These aspects of the CXCL13/CXCR5-associated immune axis are highlighted in this review, which focuses on cutaneous malignant melanoma. Specifically, we elaborate on the role of this important immune axis as a possible ancillary target of immune checkpoint inhibition with anti-PD-1 antibodies in different therapeutic settings and as a potential source of predictive biomarkers regarding treatment efficacy.
Collapse
|
43
|
Liu T, Liu Y, Liu CX, Jiang YM. CXCL13 is elevated in inflammatory bowel disease in mice and humans and is implicated in disease pathogenesis. Front Immunol 2022; 13:997862. [PMID: 36172372 PMCID: PMC9510369 DOI: 10.3389/fimmu.2022.997862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
CXCL13 is a chemokine that is widely involved in the pathogenesis of autoimmune diseases, tumors and inflammatory diseases. In this study, we investigate the role of CXCL13 in the pathogenesis of inflammatory bowel disease using both clinical specimens and animal models. We found that the serum CXCL13 concentration in IBD patients was significantly higher than that in healthy controls, and correlated with that of CRP, neutrophils counts and hemoglobin. The increase of CXCL13 in IBD patients might be related to the significant decrease of circulating CD4+CXCR5+ T cells, the increase of CD19+CD5+ B cells and the enhancement of humoral immunity. In mice colitis model, we also found elevated levels of CXCL13 in colon tissue. Cxcl13-/- knockout mice exhibited a mild, self-limiting form of disease. Additionally, CXCL13 deficiency restricted CD4+CXCR5+ T cells migration in mesenteric lymph nodes, resulting locally regulatory B cells increased in colon. In conclusion, our findings raise the possibility that CXCL13 plays a critical role in the pathogenesis of IBD. We believe that our findings will contribute to the understanding of the etiology, and that antagonizing or inhibiting CXCL13 may work as a potential adjunctive therapy strategy for patients with IBD.
Collapse
Affiliation(s)
- Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecolohic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center/National Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Yu Liu
- State Key Laboratory of Biotherapy and Cancer Center/National Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chen-xi Liu
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecolohic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Yong-mei Jiang, ; Chen-xi Liu,
| | - Yong-mei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecolohic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Yong-mei Jiang, ; Chen-xi Liu,
| |
Collapse
|
44
|
Harrer C, Otto F, Radlberger RF, Moser T, Pilz G, Wipfler P, Harrer A. The CXCL13/CXCR5 Immune Axis in Health and Disease—Implications for Intrathecal B Cell Activities in Neuroinflammation. Cells 2022; 11:cells11172649. [PMID: 36078057 PMCID: PMC9454489 DOI: 10.3390/cells11172649] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The chemokine C-X-C- ligand 13 (CXCL13) is a major B cell chemoattractant to B cell follicles in secondary lymphoid organs (SLO) that proposedly recruits B cells to the cerebrospinal fluid (CSF) during neuroinflammation. CXCR5, the cognate receptor of CXCL13, is expressed on B cells and certain T cell subsets, in particular T follicular helper cells (Tfh cells), enabling them to follow CXCL13 gradients towards B cell follicles for spatial proximity, a prerequisite for productive T cell–B cell interaction. Tfh cells are essential contributors to B cell proliferation, differentiation, and high-affinity antibody synthesis and are required for germinal center formation and maintenance. Circulating Tfh cells (cTfh) have been observed in the peripheral blood and CSF. Furthermore, CXCL13/CXCR5-associated immune activities organize and shape adaptive B cell-related immune responses outside of SLO via the formation of ectopic lymphoid structures in inflamed tissues, including the central nervous system (CNS). This review summarizes the recent advances in our understanding of the CXCL13/CXCR5 immune axis and its role in vaccination, autoimmunity, and infection with a special focus on its relevance for intrathecal B cell activities in inflammatory CNS diseases.
Collapse
Affiliation(s)
- Christine Harrer
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
- Clinical Division of Social Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Ferdinand Otto
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Richard Friedrich Radlberger
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Tobias Moser
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Georg Pilz
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Peter Wipfler
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Andrea Harrer
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
- Department of Dermatology and Allergology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Correspondence:
| |
Collapse
|