1
|
Qin H, Wang J, Bai L, Ding H, Ding H, Zhang F, Han Y. Aerosol inhalation of rhIL-10 improves acute lung injury in mice by affecting pulmonary neutrophil phenotypes through neutrophil-platelet aggregates. Int Immunopharmacol 2025; 147:113948. [PMID: 39778276 DOI: 10.1016/j.intimp.2024.113948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025]
Abstract
This study investigates the therapeutic effects of recombinant human IL-10 (rhIL-10) administered via aerosol inhalation in acute lung injury (ALI), with a particular focus on neutrophils. It explores how rhIL-10, in the presence of platelets, modulates neutrophil polarization to ameliorate acute lung injury. Initially, the ALI model established in mice demonstrated that aerosol inhalation of rhIL-10 significantly mitigated the cytokine storm in the lungs, reduced pulmonary edema, and alleviated histopathological damage to lung tissue. Additionally, rhIL-10 administration was found to decrease neutrophil infiltration and platelet activation in the lungs of mice, inhibiting the formation of platelet-neutrophil aggregates (PNAs) and promoting the differentiation of neutrophils toward an anti-inflammatory phenotype in the presence of platelets. Subsequently, primary neutrophils and platelets were isolated from mouse bone marrow and blood to explore the underlying mechanisms. The results indicated that rhIL-10 promotes the expression of the signal transducer and activator of transcription 3 (STAT3) and the suppressor of cytokine signaling 3 (SOCS3) in neutrophils while inhibiting the activation of the nuclear factor kappa B (NF-κB) and the NF-κB inhibitor (IκB), which in turn enhances CD40 expression. This interaction facilitates the formation of PNAs and influences neutrophil phenotype differentiation. Furthermore, the application of the STAT3 phosphorylation inhibitor Stattic and CD40 antibody in vivo provided further validation of this potential mechanism. In conclusion, these results indicate that aerosol inhalation of rhIL-10 effectively ameliorates ALI. The underlying mechanism may involve the modulation of the neutrophil STAT/SOCS-IκB/NF-κB-CD40 signaling pathway, promoting interactions between neutrophils and platelets that facilitate the differentiation of neutrophils toward an anti-inflammatory phenotype.
Collapse
Affiliation(s)
- Huan Qin
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiangang Wang
- School of Basic Medicine, Qingdao University, Qingdao, China; Kanglitai Biopharmaceutical (Qingdao) Co. Ltd., Qingdao, China
| | - Luyuan Bai
- Xianyang Hospital of Yan'an University, Xianyang, China
| | - Huiqin Ding
- School of Basic Medicine, Qingdao University, Qingdao, China; Kanglitai Biopharmaceutical (Qingdao) Co. Ltd., Qingdao, China
| | | | | | - Yantao Han
- School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Wang Y, Wang W, Zhang Y, Fleishman JS, Wang H. Targeting ferroptosis offers therapy choice in sepsis-associated acute lung injury. Eur J Med Chem 2025; 283:117152. [PMID: 39657462 DOI: 10.1016/j.ejmech.2024.117152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/06/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Sepsis-associated acute lung injury (SALI) is a common complication of sepsis, consisting of a dysfunctional host response to infection-mediated heterogenous complexes. SALI is reported in up to 50 % of patients with sepsis and causes poor outcomes. Despite high incidence, there is a lack of understanding in its pathogenesis and optimal treatment. A better understanding of the molecular mechanisms underlying SALI may help produce better therapeutics. The effects of altered cell-death mechanisms, such as non-apoptotic regulated cell death (RCD) (i.e., ferroptosis), on the development of SALI are beginning to be discovered, while targeting ferroptosis as a meaningful target in SALI is increasingly being recognized. Here, we outline how a susceptible lung alveoli may develop SALI. Then we discuss the general mechanisms underlying ferroptosis, and how it contributes to SALI. We then outline the chemical structures of the emerging agents or compounds that can protect against SALI by inhibiting ferroptosis, summarizing their potential pharmacological effects. Finally, we highlight key limitations and possible strategies to overcome them. This review suggests that a detailed mechanistic and biological understanding of ferroptosis can foster the development of pharmacological antagonists in the treatment of SALI.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Weixue Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Yi Zhang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| |
Collapse
|
3
|
Mavileti SK, Bila G, Utka V, Bilyy R, Bila E, Butoi E, Gupta S, Balyan P, Kato T, Bilyy R, Pandey SS. Squaraine-Peptide Conjugates as Efficient Reporters of Neutrophil Extracellular Traps-Mediated Chronic Inflammation. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39898628 DOI: 10.1021/acsami.4c20658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The excessive and uncontrolled release of neutrophil extracellular traps (NETs) is increasingly linked to the pathogenesis of various inflammatory diseases, cardiovascular disorders, and cancers. Real-time, non-invasive detection of NETs is crucial for understanding their role in disease progression and developing targeted therapies. Current NETs detection methods often lack the necessary specificity and resolution, particularly in vivo and ex vivo settings. To address this, we have developed novel near-infrared squaraine-peptide conjugates by rational molecular design as reporters of NETosis by targeting the protease activity of neutrophil elastase (NE). These self-quenching, cell-impermeable probes enable the precise real-time detection and imaging of NETs. The Förster resonance energy transfer (FRET)-based probe, Hetero-APA, demonstrated high specificity in detecting NETs in vitro and in vivo, generating strong fluorescence in NETs-rich environments. To overcome the limitations of FRET-based probes for ex vivo imaging, we designed SQ-215-NETP, a non-FRET-based probe that covalently binds to the NE. SQ-215-NETP achieved an unprecedented imaging resolution of 90 nm/pixel in human coronary thrombi, marking the first report of such high resolution with a low molecular weight probe. Additionally, SQ-215-NETP effectively detected NETs by flow cytometry. These results highlight the potential of these probes in NETosis detection, offering promising tools for enhanced diagnostics and therapeutic strategies in managing NET-mediated inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Sai Kiran Mavileti
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196 Kitakyushu, Japan
| | - Galyna Bila
- Lectinotest R&D, Mechanichna Str 2, 79000 Lviv, Ukraine
- Department of Histology, Cytology & Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, 79010 Lviv, Ukraine
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Valentyn Utka
- Lectinotest R&D, Mechanichna Str 2, 79000 Lviv, Ukraine
| | | | - Evgenia Bila
- Lectinotest R&D, Mechanichna Str 2, 79000 Lviv, Ukraine
- Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyrylo and Mefodiy Street 6, 79005 Lviv, Ukraine
| | - Elena Butoi
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Shekhar Gupta
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196 Kitakyushu, Japan
| | - Priyanka Balyan
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196 Kitakyushu, Japan
| | - Tamaki Kato
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196 Kitakyushu, Japan
| | - Rostyslav Bilyy
- Lectinotest R&D, Mechanichna Str 2, 79000 Lviv, Ukraine
- Department of Histology, Cytology & Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, 79010 Lviv, Ukraine
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Shyam S Pandey
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196 Kitakyushu, Japan
| |
Collapse
|
4
|
He W, Yan L, Hu D, Hao J, Liou Y, Luo G. Neutrophil heterogeneity and plasticity: unveiling the multifaceted roles in health and disease. MedComm (Beijing) 2025; 6:e70063. [PMID: 39845896 PMCID: PMC11751288 DOI: 10.1002/mco2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues. This review provides a comprehensive overview of the multidimensional landscape of neutrophil heterogeneity, discussing the various axes along which diversity manifests, including maturation state, density, surface marker expression, and functional polarization. We highlight the molecular mechanisms underpinning neutrophil plasticity, focusing on the complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications that shape neutrophil responses. Furthermore, we explore the implications of neutrophil heterogeneity and plasticity in physiological processes and pathological conditions, including host defense, inflammation, tissue repair, and cancer. By integrating insights from cutting-edge research, this review aims to provide a framework for understanding the multifaceted roles of neutrophils and their potential as therapeutic targets in a wide range of diseases.
Collapse
Affiliation(s)
- Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Dongxue Hu
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| |
Collapse
|
5
|
Wang Z, Zhang Z, Yan T, Wang Y, Li L, Li J, Zhou W. Network pharmacology-based strategy to reveal Acacetin against lipopolysaccharide-induced lung injury. Int Immunopharmacol 2025; 146:113843. [PMID: 39721450 DOI: 10.1016/j.intimp.2024.113843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Acacetin, a flavonoid isolated from Agastache rugosa, exhibits diverse biological activities, such as anti-tumor, anti-inflammatory and antioxidant activities. Its role in treating Lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains incompletely illuminated. OBJECTIVE To explore the potential molecular mechanisms of Acacetin in alleviating ALI. MATERIALS & METHODS The network pharmacological approach was employed to screen the target genes and pathways of Acacetin. Lung injury was analyzed by Hematoxylin-Eosin (H&E) staining. Bronchoalveolar lavage fluid, serum and lung tissues were collected to detect the levels of proinflammatory cytokines and oxidative stress markers. Immunofluorescence and RT-qPCR experiments were used to observe the expression of CD45, COX2, Ly6G, and related-target proteins. In vitro, RAW264.7 macrophages were stimulated with LPS and treated with AMPK siRNA or an AMPK inhibitor Coumpound C to verify the role of AMPK/nuclear factor erythroid 2-related factor 2 (Nrf2)/high-mobility group box 1 (HMGB1) signaling in Acacetin-mediated alleviation of ALI. RESULTS Network data revealed that Acacetin could regulate HMGB1, AMPK, Nrf2, and IL-6. In vivo, Acacetin reversed pathological damage and the release of inflammatory factors, and alleviated oxidative stress and immune cell infiltration in ALI development. Acacetin remarkably upregulated the expression of AMPK and Nrf2, accompanied by HMGB1 downregulation. In vitro, inhibiting AMPK reversed the effects of Acacetin in LPS-treated RAW264.7, due to inactivation of AMPK/Nrf2/HMGB1 pathway. CONCLUSION The combination of network pharmacology and experimental studies revealed the role of Acacetin in improving ALI via the AMPK/Nrf2/HMGB1 signaling axis, which provided new insights into the treatment of ALI with Acacetin as a candidate drug.
Collapse
Affiliation(s)
- Zhisen Wang
- Department of Pharmacy, Zhejiang Hospital, Hangzhou 310013, China
| | - Zhihui Zhang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ting Yan
- Department of Endocrinology, Huai'an Cancer Hospital, Huai'an 223200, China
| | - Yuzhen Wang
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Liucheng Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Jingduo Li
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China.
| | - Wencheng Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China.
| |
Collapse
|
6
|
Wang X, Zhang K, Zhang J, Xu G, Guo Z, Lu X, Liang C, Gu X, Huang L, Liu S, Wang L, Li J. Cordyceps militaris solid medium extract alleviates lipopolysaccharide-induced acute lung injury via regulating gut microbiota and metabolism. Front Immunol 2025; 15:1528222. [PMID: 39902053 PMCID: PMC11788161 DOI: 10.3389/fimmu.2024.1528222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025] Open
Abstract
Acute lung injury (ALI) is a common respiratory disease, Cordycepin has been reported to reduce ALI, which is an effective component in Cordyceps militaris solid medium extract (CMME). Therefore, we aimed to explore the alleviating effect and mechanism of CMME on ALI. This study evaluated the effect of CMME on lipopolysaccharide (LPS)-induced ALI mice by analyzing intestinal flora and metabolomics to explore its potential mechanism. We assessed pulmonary changes, inflammation, oxidative stress, and macrophage and neutrophil activation levels, then we analyzed the gut microbiota through 16S rRNA and analyzed metabolomics profile by UPLC-QTOF/MS. The results showed that CMME treatment improved pulmonary injury, reduced inflammatory factors and oxidative stress levels, and decreased macrophage activation and neutrophil recruitment. The 16S rRNA results revealed that CMME significantly increased gut microbiota richness and diversity and reduced the abundance of Bacteroides compared with Mod group significantly. Metabolic analysis indicated that CMME reversed the levels of differential metabolites and may ameliorate lung injury through purine metabolism, nucleotide metabolism, and bile acid (BA) metabolism, and CMME did reverse the changes of BA metabolites in ALI mice, and BA metabolites were associated with inflammatory factors and intestinal flora. Therefore, CMME may improve lung injury by regulating intestinal flora and correcting metabolic disorders, providing new insights into its mechanism of action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lei Wang
- Traditional Chinese Veterinary Technology Innovation Center of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jianxi Li
- Traditional Chinese Veterinary Technology Innovation Center of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Man C, An Y, Wang GX, Mao EQ, Ma L. Recent Advances in Pathogenesis and Anticoagulation Treatment of Sepsis-Induced Coagulopathy. J Inflamm Res 2025; 18:737-750. [PMID: 39845020 PMCID: PMC11752821 DOI: 10.2147/jir.s495223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
Coagulopathy in sepsis is common and is associated with high mortality. Although immunothrombosis is necessary for infection control, excessive thrombus formation can trigger a systemic thrombo-inflammatory response. Immunothrombosis plays a core role in sepsis-induced coagulopathy, and research has revealed a complex interplay between inflammation and coagulation. Different mechanisms underlying sepsis-related coagulopathy are discussed, including factors contributing to the imbalance of pro- and anticoagulation relevant to endothelial cells. The potential therapeutic implications of anticoagulants on these mechanisms are discussed. This review contributes to our understanding of the pathogenesis of coagulopathy in patients with sepsis. Recent studies suggest that endothelial cells play an important role in immunoregulation and hemostasis. Meanwhile, the non-anticoagulation effects of anticoagulants, especially heparin, which act in the pathogenesis of coagulopathy in septic patients, have been partially revealed. We believe that further insights into the pathogenesis of sepsis-induced coagulopathy will help physicians evaluate patient conditions effectively, leading to advanced early recognition and better decision-making in the treatment of sepsis.
Collapse
Affiliation(s)
- Chit Man
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Yuan An
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Guo-Xin Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - En-Qiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Li Ma
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| |
Collapse
|
8
|
Kan WL, Weekley CM, Nero TL, Hercus TR, Yip KH, Tumes DJ, Woodcock JM, Ross DM, Thomas D, Terán D, Owczarek CM, Liu NW, Martelotto LG, Polo JM, Pant H, Tvorogov D, Lopez AF, Parker MW. The β Common Cytokine Receptor Family Reveals New Functional Paradigms From Structural Complexities. Immunol Rev 2025; 329:e13430. [PMID: 39748163 DOI: 10.1111/imr.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Cytokines are small proteins that are critical for controlling the growth and activity of hematopoietic cells by binding to cell surface receptors and transmitting signals across membranes. The β common (βc) cytokine receptor family, consisting of the granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5 cytokine receptors, is an architype of the heterodimeric cytokine receptor systems. We now know that signaling by cytokine receptors is not always an "all or none" phenomenon. Subtle alterations of the cytokine:receptor complex can result in differential or selective signaling and underpin a variety of diseases including chronic inflammatory conditions and cancers. Structural biology techniques, such as X-ray crystallography and cryo-electron microscopy alongside cell biology studies, are providing detailed insights into cytokine receptor signaling. Recently, we found that the IL-3 receptor ternary complex forms higher-order assemblies, like those found earlier for the GM-CSF receptor, and demonstrated that functionally distinct biological signals arise from different IL-3 receptor oligomeric assemblies. As we enhance our understanding of the structural nuances of cytokine-receptor interactions, we foresee a new era of theranostics whereby structurally guided mechanism-based manipulation of cytokine signaling through rational/targeted protein engineering will harness the full potential of cytokine biology for precision medicine.
Collapse
Affiliation(s)
- Winnie L Kan
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Claire M Weekley
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tracy L Nero
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Timothy R Hercus
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Kwok Ho Yip
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Damon J Tumes
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Joanna M Woodcock
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - David M Ross
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia
- Acute Leukemia Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Daniel Thomas
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia
| | - David Terán
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Catherine M Owczarek
- CSL, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Nora W Liu
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Epigenetics Program, South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Luciano G Martelotto
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Epigenetics Program, South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Jose M Polo
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Epigenetics Program, South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Harshita Pant
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Denis Tvorogov
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Angel F Lopez
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael W Parker
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| |
Collapse
|
9
|
Liu Z, Wang S. A novel biomarker of COVI-19: MMP8 emerged by integrated bulk RNAseq and single-cell sequencing. Sci Rep 2024; 14:31086. [PMID: 39730651 PMCID: PMC11680813 DOI: 10.1038/s41598-024-82227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
COVID-19 has been emerging as the most influential illness which has caused great costs to the heath of population and social economy. Sivelestat sodium (SS) is indicated as an effective cure for lung dysfunction, a characteristic symptom of COVID-19 infection, but its pharmacological target is still unclear. Therefore, a deep understanding of the pathological progression and molecular alteration is an urgent issue for settling the diagnosis and therapy problems of COVID-19. In this study, the bulk ribonucleic acid sequencing (RNA-seq) data of healthy donors and non-severe and severe COVID-19 patients were collected. Then, target differentially expressed genes (DEGs) were screened through integrating sequencing data and the pharmacological database. Besides, with the help of functional and molecular interaction analyses, the potential effect of target gene alteration on COVID-19 progression was investigated. Single-cell sequencing was performed to evaluate the cell distribution of target genes, and the possible interaction of gene-positive cells with other cells was explored by intercellular ligand-receptor pattern analysis. The results showed that matrix metalloproteinase 8 (MMP8) was upregulated in severe COVID-19 patients, which was also identified as a targeting site to SS. Additionally, MMP8 took a core part in the regulatory interaction network of the screened DEGs in COVID-19 and was dramatically correlated with the inflammatory signaling pathway. The further investigations indicated that MMP8 was mainly expressed in myelocytes with a high degree of heterogeneity. MMP8-positive myelocytes interacted with other cell types through RETN-TLR4 and RETN-CAP1 ligand-receptor patterns. These findings emphasize the important role of MMP8 in COVID-19 progression and provide a potential therapeutic target for COVID-19 patients.
Collapse
Affiliation(s)
- Zhenguo Liu
- Department of Intensive Care Unit, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Shunda Wang
- Department of Rehabilitative medicine, Shaanxi Provincial People's Hospital, No.256, Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
10
|
Gadelha FAAF, Cavalcanti RFP, Vieira CID, De Oliveira JB, De Lima LM, Alves AF, Pessoa MMB, Batista LM, Dejani NN, Piuvezam MR. Musa paradisiaca L. Inflorescence Abrogates Neutrophil Activation by Downregulating TLR4/NF-KB Signaling Pathway in LPS-Induced Acute Lung Injury Model. Pharmaceuticals (Basel) 2024; 18:8. [PMID: 39861071 PMCID: PMC11768301 DOI: 10.3390/ph18010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Acute lung injury (ALI) is an inflammatory disorder affecting patients in intensive care with high mortality. No specific pharmacological treatment is available. Musa paradisiaca L. (banana) is a cosmopolitan plant, and homemade syrup from its inflorescence is used in many countries to treat pulmonary inflammation. Therefore, this study analyzed the hydroalcoholic extract (HEM) of the inflorescence on the ALI experimental model. Methods: Swiss mice were challenged with lipopolysaccharide and treated with HEM after 1, 24, and 48 h (five animals/group, three times). Results: The HEM-treated ALI mice presented a decrease in neutrophil migration in the bronchoalveolar lavage fluid (BALF), in the alveolar region, and in the blood, correlating to downregulation of CD18 expression. The HEM treatment also reduced the protein concentration in the BALF, caused lung edema formation, impaired NF-κB activation via inhibition of TLR4 signaling pathway, and decreased IL-1β, TNF-α production, free DNA release, and myeloperoxidase (MPO) activity. However, the extract induced an increased IL-10 in the BALF. Conclusions: Therefore, HEM's anti-inflammatory and immunomodulatory activities in ALI mice are by deactivating neutrophils by decreasing CD18 receptor, free DNA release, and MPO activity and inducing IL-10 production. Thus, this study supports the use of banana inflorescence in folk medicine and suggests its rational use to develop a phytomedicine to treat pulmonary inflammation.
Collapse
Affiliation(s)
- Francisco Allysson Assis Ferreira Gadelha
- Laboratory of Immunopharmacology, Research Institute for Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.F.P.C.); (C.I.D.V.); (J.B.D.O.); (L.M.D.L.); (M.M.B.P.); (L.M.B.)
| | - Raquel Fragoso Pereira Cavalcanti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.F.P.C.); (C.I.D.V.); (J.B.D.O.); (L.M.D.L.); (M.M.B.P.); (L.M.B.)
| | - Cosmo Isaias Duvirgens Vieira
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.F.P.C.); (C.I.D.V.); (J.B.D.O.); (L.M.D.L.); (M.M.B.P.); (L.M.B.)
| | - Joao Batista De Oliveira
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.F.P.C.); (C.I.D.V.); (J.B.D.O.); (L.M.D.L.); (M.M.B.P.); (L.M.B.)
| | - Louíse Mangueira De Lima
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.F.P.C.); (C.I.D.V.); (J.B.D.O.); (L.M.D.L.); (M.M.B.P.); (L.M.B.)
| | - Adriano Francisco Alves
- Department of Phisiology and Phatology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.F.A.); (N.N.D.)
| | - Matheus Marley Bezerra Pessoa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.F.P.C.); (C.I.D.V.); (J.B.D.O.); (L.M.D.L.); (M.M.B.P.); (L.M.B.)
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.F.P.C.); (C.I.D.V.); (J.B.D.O.); (L.M.D.L.); (M.M.B.P.); (L.M.B.)
| | - Naiara Naiana Dejani
- Department of Phisiology and Phatology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.F.A.); (N.N.D.)
| | - Marcia Regina Piuvezam
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.F.P.C.); (C.I.D.V.); (J.B.D.O.); (L.M.D.L.); (M.M.B.P.); (L.M.B.)
- Department of Phisiology and Phatology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (A.F.A.); (N.N.D.)
| |
Collapse
|
11
|
Zaki A, Mohsin M, Khan S, Khan A, Ahmad S, Verma A, Ali S, Fatma T, Syed MA. Vitexin mitigates oxidative stress, mitochondrial damage, pyroptosis and regulates small nucleolar RNA host gene 1/DNA methyltransferase 1/microRNA-495 axis in sepsis-associated acute lung injury. Inflammopharmacology 2024:10.1007/s10787-024-01609-6. [PMID: 39641834 DOI: 10.1007/s10787-024-01609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
AIM OF THE STUDY This study examined vitexin's effect on sepsis-induced acute lung injury. We used network pharmacology and in vivo and in vitro experiments were performed to elucidate vitexin's role in preventing pyroptosis and regulating small nucleolar RNA host gene 1 (SNHG1)/DNA methyltransferase 1 (DNMT1)/microRNA-495 (miR-495 axis. MATERIALS AND METHODS We developed an acute lung injury model using C57BL/6 mice and MLE-12 cells. Through a combination of network pharmacology and in vitro screening, vitexin was identified as the most promising anti-inflammatory compound. Multiple techniques such as western blotting, real-time PCR, Hematoxylin and eosin staining, immunohistochemistry, and TUNEL assay were used. Additionally, immunofluorescence, DCFDA and TMRE staining, flow cytometry, methylation-specific PCR, and gene transfection techniques were performed to elucidate vitexin's potential targets and underlying mechanisms. RESULTS Vitexin treatment significantly reduced lung damage, neutrophil infiltration, and inflammation while improving tight junction integrity. In LPS-treated RAW264.7 macrophages and a septic mouse BALF-induced MLE-12 cell injury model, vitexin demonstrated anti-inflammatory effects, promoted M2 macrophage polarization, and enhanced regenerative markers. It also decreased oxidative stress, mitigated apoptosis and pyroptosis, and improved mitochondrial function. Our research uncovered a novel epigenetic regulatory mechanism involving lncRNA SNHG1, DNMT1, and miR-495. CONCLUSION Vitexin's ability to reduce inflammation, counteract oxidative stress, and modulate epigenetic processes. These findings underscore the promising role of vitexin as a treatment for ALI generated by sepsis. The SNHG1/miR-495 axis, which has been identified, represents a new target for future therapies in acute lung injury.
Collapse
Affiliation(s)
- Almaz Zaki
- Translational Research Lab, Srinivas Ramanujan Block, Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd Mohsin
- Translational Research Lab, Srinivas Ramanujan Block, Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Salman Khan
- Translational Research Lab, Srinivas Ramanujan Block, Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Aman Khan
- Translational Research Lab, Srinivas Ramanujan Block, Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shaniya Ahmad
- Translational Research Lab, Srinivas Ramanujan Block, Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Amit Verma
- Division of Diagnostic Innovation, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Tasneem Fatma
- Department of Biosciences, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mansoor Ali Syed
- Translational Research Lab, Srinivas Ramanujan Block, Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
12
|
Cheng S, Li Y, Sun X, Liu Z, Guo L, Wu J, Yang X, Wei S, Wu G, Xu S, Yang F, Wu J. The impact of glucose metabolism on inflammatory processes in sepsis-induced acute lung injury. Front Immunol 2024; 15:1508985. [PMID: 39712019 PMCID: PMC11659153 DOI: 10.3389/fimmu.2024.1508985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Acute lung injury (ALI) is a prevalent and critical complication of sepsis, marked by high incidence and mortality rates, with its pathogenesis still not being fully elucidated. Recent research has revealed a significant correlation between the metabolic reprogramming of glucose and sepsis-associated ALI (S-ALI). Throughout the course of S-ALI, immune cells, including macrophages and dendritic cells, undergo metabolic shifts to accommodate the intricate demands of immune function that emerge as sepsis advances. Indeed, glucose metabolic reprogramming in S-ALI serves as a double-edged sword, fueling inflammatory immune responses in the initial stages and subsequently initiating anti-inflammatory responses as the disease evolves. In this review, we delineate the current research progress concerning the pathogenic mechanisms linked to glucose metabolic reprogramming in S-ALI, with a focus on the pertinent immune cells implicated. We encapsulate the impact of glucose metabolic reprogramming on the onset, progression, and prognosis of S-ALI. Ultimately, by examining key regulatory factors within metabolic intermediates and enzymes, We have identified potential therapeutic targets linked to metabolic reprogramming, striving to tackle the inherent challenges in diagnosing and treating Severe Acute Lung Injury (S-ALI) with greater efficacy.
Collapse
Affiliation(s)
- Shilei Cheng
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Yufei Li
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan, China
| | - Xiaoliang Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhirui Liu
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Liang Guo
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jueheng Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaohan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Sisi Wei
- Department of Anesthesiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Guanghan Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Shilong Xu
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Fan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jianbo Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| |
Collapse
|
13
|
Mittendorfer M, Pierre L, Huzevka T, Schofield J, Abrams ST, Wang G, Toh CH, Bèchet NB, Caprnja I, Kjellberg G, Aswani A, Olm F, Lindstedt S. Restoring discarded porcine lungs by ex vivo removal of neutrophil extracellular traps. J Heart Lung Transplant 2024; 43:1919-1929. [PMID: 39038563 DOI: 10.1016/j.healun.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/16/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND By causing inflammation and tissue damage, neutrophil extracellular traps (NETs) constitute an underlying mechanism of aspiration-induced lung injury, a major factor of the low utilization of donor lungs in lung transplantation (LTx). METHODS To determine whether NET removal during ex vivo lung perfusion (EVLP) can restore lung function and morphology in aspiration-damaged lungs, gastric aspiration lung injury was induced in 12 pigs. After confirmation of acute respiratory distress syndrome, the lungs were explanted and assigned to NET removal connected to EVLP (treated) (n = 6) or EVLP only (nontreated) (n = 6). Hemodynamic measurements were taken, and blood and tissue samples were collected to assess lung function, morphology, levels of cell-free DNA, extracellular histones, and nucleosomes as markers of NETs, as well as cytokine levels. RESULTS After EVLP and NET removal in porcine lungs, PaO2/FiO2 ratios increased significantly compared to those undergoing EVLP alone (p = 0.0411). Treated lungs had lower cell-free DNA (p = 0.0260) and lower levels of extracellular histones in EVLP perfusate (p= 0.0260) than nontreated lungs. According to histopathology, treated lungs showed less immune cell infiltration and less edema compared with nontreated lungs, which was reflected in decreased levels of proinflammatory cytokines in EVLP perfusate and bronchoalveolar lavage fluid. CONCLUSIONS To conclude, removing NETs during EVLP improved lung function and morphology in aspiration-damaged donor lungs. The ability to remove NETs during EVLP could represent a new therapeutic approach for LTx and potentially expand the donor pool for transplantation.
Collapse
Affiliation(s)
- Margareta Mittendorfer
- Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Lund University Hospital, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden; Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Leif Pierre
- Department of Cardiothoracic Surgery and Transplantation, Lund University Hospital, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden; Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Tibor Huzevka
- Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Lund University Hospital, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden; Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Jeremy Schofield
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Simon T Abrams
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Guozheng Wang
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom; Roald Dahl Haemostasis & Thrombosis Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Nicholas B Bèchet
- Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Lund University Hospital, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden; Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Ilma Caprnja
- Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Lund University Hospital, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden; Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Gunilla Kjellberg
- Department of Thoracic Surgery and Anaesthesiology, Uppsala University Hospital, Uppsala, Sweden
| | - Andrew Aswani
- Department of Critical Care, Guy's and St Thomas's NHS Foundation Trust, London, United Kingdom; Santersus AG, Zurich, Switzerland
| | - Franziska Olm
- Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Lund University Hospital, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden; Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Lund University Hospital, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden; Lund Stem Cell Centre, Lund University, Lund, Sweden.
| |
Collapse
|
14
|
Shao Y, Zheng Q, Zhang X, Li P, Gao X, Zhang L, Xu J, Meng L, Tian Y, Zhang Q, Zhou G. Targeted nuclear degranulation of neutrophils promotes the progression of pneumonia in ulcerative colitis. PRECISION CLINICAL MEDICINE 2024; 7:pbae028. [PMID: 39540022 PMCID: PMC11560370 DOI: 10.1093/pcmedi/pbae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/02/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Background Both intestinal and pulmonary systems are parts of the mucosal immune system, comprising ∼80% of all immune cells. These immune cells migrate or are transported between various mucosal tissues to maintain tissue homeostasis. Methods In this study, we isolated neutrophils from the peripheral blood of patients and utilized immunofluorescence, flow cytometry, and Western blotting to confirm the incidence of "nucleus-directed degranulation" in vitro. Subsequently, we conducted a precise analysis using arivis software. Furthermore, using the DSS mouse model of colitis and tissue clearing technologies, we validated the "targeted nuclear degranulation" of neutrophils and their migration to the lungs in an inflammatory intestinal environment. Result In this study, we found that among patients with ulcerative colitis, the migration of neutrophils with "targeted nuclear degranulation" from the intestinal mucosa to the lungs significantly exacerbates lung inflammation during pulmonary infections. Notably, patients with ulcerative colitis exhibited a higher abundance of neutrophils with targeted nuclear degranulation. Using DSS mice, we observed that neutrophils with targeted nuclear degranulation from the intestinal mucosa migrated to the lung and underwent activation during pulmonary infections. These neutrophils rapidly released a high amount of neutrophil extracellular traps to mediate the progression of lung inflammation. Alterations in the neutrophil cytoskeleton and its interaction with the nuclear membrane represent the primary mechanisms underlying targeted nuclear degranulation. Conclusion This study revealed that neutrophils accelerate lung inflammation progression in colitis, offering new insights and potential treatment targets for lung infections for patients with colitis.
Collapse
Affiliation(s)
- Yiming Shao
- Taishan Scholars Laboratory, Affiliated Hospital of Jining Medical University, Jining 272000, China
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Qibing Zheng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Xiaobei Zhang
- Taishan Scholars Laboratory, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Ping Li
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China
| | - Xingxin Gao
- Department of Burns and Plastic Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Liming Zhang
- Department of Burns and Plastic Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Jiahong Xu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Lingchao Meng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Yanyun Tian
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Qinqin Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Guangxi Zhou
- Taishan Scholars Laboratory, Affiliated Hospital of Jining Medical University, Jining 272000, China
| |
Collapse
|
15
|
Zhang AL, Krupnick A, Rabin J, Lau C. Commentary on: Restoring discarded porcine lungs by ex vivo removal of neutrophil extracellular traps. J Heart Lung Transplant 2024; 43:1930-1931. [PMID: 39265671 DOI: 10.1016/j.healun.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024] Open
Affiliation(s)
- Ashling L Zhang
- University of Maryland, Department of Surgery, Baltimore, Maryland
| | | | - Joseph Rabin
- University of Maryland, Department of Surgery, Baltimore, Maryland
| | - Christine Lau
- University of Maryland, Department of Surgery, Baltimore, Maryland.
| |
Collapse
|
16
|
Huang Z, Wei C, Xie H, Xiao X, Wang T, Zhang Y, Chen Y, Hei Z, Zhao T, Yao W. Treating acute lung injury through scavenging of cell-free DNA by cationic nanoparticles. Mater Today Bio 2024; 29:101360. [PMID: 39687793 PMCID: PMC11648789 DOI: 10.1016/j.mtbio.2024.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome are life-threatening conditions induced by inflammatory responses, in which cell-free DNA (cfDNA) plays a pivotal role. This study investigated the therapeutic potential of biodegradable cationic nanoparticles (cNPs) in alleviating ALI. Using a mouse model of lipopolysaccharide-induced ALI, we examined the impact of intravenously administered cNPs. Our findings indicate that cNPs possess robust DNA binding capability, enhanced accumulation in inflamed lungs, and a favorable safety profile in vivo. Furthermore, cNPs attenuate the inflammatory response in LPS-induced ALI mice by scavenging cfDNA, mainly derived from neutrophil extracellular traps, and activating the macrophage-mediated cGAS-STING pathway. The findings suggest a potential treatment for ALI by targeting cfDNA with cNPs. This approach has demonstrated efficacy in mitigating lung injury and merits further exploration.
Collapse
Affiliation(s)
- Ziyan Huang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Cong Wei
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hanbin Xie
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Xue Xiao
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Tienan Wang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Yihan Zhang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Yongming Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Tianyu Zhao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| |
Collapse
|
17
|
Namin SS, Zhu YP, Croker BA, Tan Z. Turning Neutrophil Cell Death Deadly in the Context of Hypertensive Vascular Disease. Can J Cardiol 2024; 40:2356-2367. [PMID: 39326672 DOI: 10.1016/j.cjca.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Hypertensive vascular disease (HVD) is a major health burden globally and is a comorbidity commonly associated with other metabolic diseases. Many factors are associated with HVD including obesity, diabetes, smoking, chronic kidney disease, and sterile inflammation. Increasing evidence points to neutrophils as an important component of the chronic inflammatory response in HVD. Neutrophils are abundant in the circulation and can respond rapidly upon stimulation to deploy an armament of antimicrobial effector functions. One of the outcomes of neutrophil activation is the generation of neutrophil extracellular traps (NETs), a regulated extrusion of chromatin and proteases. Although neutrophils and NETs are well described as components of the innate immune response to infection, recent evidence implicates them in HVD. Endothelial cell activation can trigger neutrophil adhesion, activation, and production of NETs promoting vascular dysfunction, vessel remodelling, and loss of resistance. The regulated release of NETs can be controlled by the pore-forming activities of distinct cell death pathways. The best characterized pathways in this context are apoptosis, pyroptosis, and necroptosis. In this review, we discuss how inflammatory cell death signalling and NET formation contribute to hypertensive disease. We also examine novel therapeutic approaches to limit NET production and their future potential as therapeutic drugs for cardiovascular disorders.
Collapse
Affiliation(s)
- Sahand Salari Namin
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Yanfang Peipei Zhu
- Department of Biochemistry and Molecular Biology, Immunology Center of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ben A Croker
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Zhehao Tan
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
18
|
He J, Zheng F, Qiu L, Wang Y, Zhang J, Ye H, Zhang Q. Plasma neutrophil extracellular traps in patients with sepsis-induced acute kidney injury serve as a new biomarker to predict 28-day survival outcomes of disease. Front Med (Lausanne) 2024; 11:1496966. [PMID: 39629231 PMCID: PMC11611547 DOI: 10.3389/fmed.2024.1496966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Background There is currently no accurate, readily available, or validated biomarker for assessing disease severity and survival outcomes in sepsis-induced acute kidney injury (SAKI), which limits the ability to conduct effective therapeutic interventions. The neutrophil extracellular traps (NETs) may be involved in the pathophysiology of SAKI. The present study investigated the predictive value of plasma NETs for the survival outcome of patients with SAKI. Methods This observational study included 136 SAKI patients, all of whom underwent a 28-day follow-up. According to the follow-up records, SAKI patients were divided into two groups: the non-survivor group (60 subjects) and the survivor group (76 subjects). Blood samples were collected after the diagnosis of AKI to measure three NET markers and 12 inflammatory indices. Correlation analysis, logistic regression analysis, receiver operating characteristic curve analysis, and survival analysis were performed. Results Compared to survivors, non-survivors among SAKI patients exhibited significantly higher levels of three plasma NET markers (all p < 0.001). Meanwhile, in SAKI patients, plasma levels of NET markers were significantly associated with serum levels of inflammatory indices. Additionally, serum interleukin (IL)-2, IL-8, IL-10, and tumor necrosis factor-alpha showed an interactive effect with plasma NET markers on the survival of SAKI patients. Furthermore, the combination of three plasma NET markers could identify SAKI patients with a poor 28-day survival with better accuracy (area under the curve = 0.857). Finally, plasma NET markers may independently predict the 28-day survival in SAKI patients. Conclusion Plasma NET markers were elevated in SAKI patients with poor outcomes and served as biomarkers for predicting 28-day survival in SAKI patients.
Collapse
Affiliation(s)
| | | | | | | | - Jing Zhang
- Department of Intensive Care Unit, First People’s Hospital of Changshu City, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu, China
| | - Hongwei Ye
- Department of Intensive Care Unit, First People’s Hospital of Changshu City, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu, China
| | - Qian Zhang
- Department of Intensive Care Unit, First People’s Hospital of Changshu City, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu, China
| |
Collapse
|
19
|
Chen R, Yao Z, Jiang L. Risk signature of NETosis-related subtype predicts prognosis and evaluates immunotherapy effectiveness in gastric cancer. Transl Cancer Res 2024; 13:5165-5177. [PMID: 39525014 PMCID: PMC11543040 DOI: 10.21037/tcr-24-377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024]
Abstract
Background Gastric cancer (GC) has a high incidence and mortality rate with a poor prognosis, so it is crucial to search for new biomarkers. The role of NETosis, a newly identified type of programmed cell death, in GC and its underlying mechanisms have yet to be explored and still require thorough investigation. Our research seeks to enhance our comprehension of NETosis and may offer novel approaches for treating GC. Methods Utilizing The Cancer Genome Atlas-stomach adenocarcinoma (TCGA-STAD) dataset for training and the GSE84433 dataset for validation, our study delved into the associations between NETosis-related genes and the clinical risk of GC. Through comprehensive clustering, enrichment, and immune infiltration analyses, we evaluated the prognostic relevance of these NETosis genes in vivo. Furthermore, we devised a NETosis-related risk signature (NRRS) to assess its implications in risk stratification, survival prognosis, immune infiltration, and drug sensitivity. The NRRS's accuracy was validated by immunohistochemical staining. Results By applying consensus clustering to data from 62 NETosis-related genes, we categorized patients into two distinct subgroups, C1 and C2. These subgroups demonstrated significant differences. Following this, we developed the NRRS using the least absolute shrinkage and selection operator (LASSO) regression analysis. This process involved the selection of the following genes: CXCR4, NRP1, PDCD1, CTLA4, AKR1B1, SERPINE1, RGS2, SLCO2A1, TNFAIP2, RNASE1, DOC2B, APOD, ENTPD2, and CCL24. High-risk and low-risk groups can be accurately distinguished. We further verify in the verification set. These results suggest that NETosis is related to the microenvironment of GC. Our designed NRRS can predict the survival of patients with GC. Conclusions We emphasized the relationship between NETosis and GC. We built and validated the value of NRRS. This contributes to deepening our view of NETosis and potentially provides new strategies for GC treatment.
Collapse
Affiliation(s)
- Ruyue Chen
- Medical College, Qingdao University, Qingdao, China
| | - Zengwu Yao
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Shandong University, Yantai, China
| | - Lixin Jiang
- Medical College, Qingdao University, Qingdao, China
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Shandong University, Yantai, China
- Department of General Surgery, Yantai Yeda Hospital, Yantai, China
| |
Collapse
|
20
|
Ma Y, Hou Y, Han Y, Liu Y, Han N, Yin Y, Wang X, Jin P, He Z, Sun J, Hao Y, Guo J, Wang T, Feng W, Qi H, Jia Z. Ameliorating lipopolysaccharide induced acute lung injury with Lianhua Qingke: focus on pulmonary endothelial barrier protection. J Thorac Dis 2024; 16:6899-6917. [PMID: 39552861 PMCID: PMC11565356 DOI: 10.21037/jtd-24-700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/16/2024] [Indexed: 11/19/2024]
Abstract
Background Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) has long posed challenges in clinical practice, lacking established preventive and therapeutic approaches. Lianhua Qingke (LHQK), a patented traditional Chinese medicine (TCM), has been found to have anti-inflammatory effects for ameliorating ALI/ARDS induced by lipopolysaccharide (LPS). This study aimed to investigate the effects and potential mechanisms of LHQK on endothelial protection in LPS-induced ALI/ARDS in vivo and in LPS-induced human pulmonary microvascular endothelial cells (HPMECs) injury in vitro. Methods In the animal experiment, we induced an ALI/ARDS model by intratracheal injection of LPS (5 mg/mL). LHQK (3.7 g/kg/d for low dose and 7.4 g/kg/d for high dose) or dexamethasone (DEX) (5 mg/kg/d) was administered to mice 3 days prior to LPS treatment. In the in vitro experiments, HPMECs were pretreated with LHQK at concentrations of 125 and 250 µg/mL for 2 hours before being stimulated with LPS (10 µg/mL). We employed lung function test, measurement of lung index, hematoxylin and eosin (H&E) staining, bronchoalveolar lavage fluid (BALF) cell counts, and inflammatory cytokine levels to assess the therapeutic effect of LHQK. Additionally, the extravasation assay of fluorescein isothiocyanate-dextran (FITC-dextran) dye and the transmembrane electrical resistance (TEER) assay were used to evaluate endothelial barrier. Barrier integrity and relevant protein validation were assessed using immunofluorescence (IF) and Western blot analyses. Furthermore, network pharmacology analysis and cellular level screening were employed to predict and screen the active ingredients of LHQK. Results Compared to the LPS group, LHQK significantly improved lung function, mitigated lung pathological injuries, reduced inflammatory cells and inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6] levels in BALF, and inhibited the expression of vascular cell adhesion molecule-1 (VCAM-1), attenuated LPS-induced pulmonary oedema and FITC-dextran permeability, and enhanced the expression of vascular endothelial-cadherin (VE-cadherin) and occludin. In vitro, LHQK attenuated LPS-induced HPMECs injury by elevating TEER values and enhancing VE-cadherin and occludin protein levels. Finally, network pharmacology analysis and cellular level validation identified potential active ingredients of LHQK. Conclusions In summary, LHQK can mitigate LPS-induced inflammatory infiltration, pulmonary edema, and pulmonary vascular endothelial barrier dysfunction in the context of ALI/ARDS. This is achieved by decreasing the levels of VCAM-1, and increasing the expression levels of barrier-associated junctions, such as VE-cadherin and occludin. Consequently, LHQK exhibits promising therapeutic potential in preventing the progression of ALI/ARDS.
Collapse
Affiliation(s)
- Yan Ma
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yunlong Hou
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Yu Han
- Department of Pharmacy, Hebei Children’s Hospital, Shijiazhuang, China
| | - Yi Liu
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Ningxin Han
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Yujie Yin
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Xiaoqi Wang
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Peipei Jin
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhuo He
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jiemeng Sun
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuanjie Hao
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Jing Guo
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Tongxing Wang
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Wei Feng
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Zhenhua Jia
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- Department of Respiratory, Affiliated Yiling Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
21
|
Liu L, Zheng C, Xu Z, Wang Z, Zhong Y, He Z, Zhang W, Zhang Y. Intranasal administration of Clostridium butyricum and its derived extracellular vesicles alleviate LPS-induced acute lung injury. Microbiol Spectr 2024; 12:e0210824. [PMID: 39472001 PMCID: PMC11619349 DOI: 10.1128/spectrum.02108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/03/2024] [Indexed: 12/08/2024] Open
Abstract
Acute lung injury (ALI) is associated with high morbidity and mortality rates. However, its clinical treatment is limited. Currently, the treatment of lung diseases by regulating the lung microbiota has become a research hotspot. In this study, we investigated the protective effects of the intranasal administration of Clostridium butyricum and its derived extracellular vesicles (EVs) against lipopolysaccharide (LPS)-induced ALI. The results demonstrated that compared with the LPS group, the pre-treatment group with C. butyricum and its EVs reduced the expression of pro-inflammatory cytokines and alleviated the symptoms in ALI mice by inhibiting the TLR4/MyD88 signaling pathway. Moreover, C. butyricum and its derived EVs inhibited the expression of apoptosis-related proteins and increased the expression of lung barrier proteins. Additionally, the intervention of C. butyricum changed the composition of the pulmonary microbiota. At the species level, LPS significantly increased the relative abundance of Acinetobacter johnsonii, while C. butyricum reversed this effect. In conclusion, these data demonstrate that intranasal administration of C. butyricum and its EVs can prevent LPS-induced ALI by reducing inflammation, inhibiting apoptosis, and improving lung barrier function. Additionally, C. butyricum regulated the pulmonary microbiota of mice to alleviate LPS-induced ALI.IMPORTANCEThe disorder of pulmonary microbiota plays an important role in the progression of acute lung injury (ALI). However, very few studies have been conducted to treat ALI by modulating pulmonary microbiota. In this study, the diversity and composition of pulmonary microbiota were altered in lipopolysaccharide (LPS)-induced ALI mice, but the ecological balance of the pulmonary microbiota was restored by intranasal administration of Clostridium butyricum. Moreover, the study reported the mechanism of C. butyricum and its derived extracellular vesicles for the treatment of LPS-induced ALI. These results reveal the importance of pulmonary microbiota in ALI disease. It provides a new approach for the treatment of ALI with new-generation probiotics.
Collapse
Affiliation(s)
- Li Liu
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Cihua Zheng
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhenyang Xu
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Zhuoya Wang
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Yuchun Zhong
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Zhidong He
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Wenming Zhang
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yuanbing Zhang
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
22
|
Li H, Nie Y, Hui H, Jiang X, Xie Y, Fu C. Activation of the AMPK/Nrf2 pathway ameliorates LPS-induced acute lung injury by inhibiting oxidative stress and reducing inflammation. J Cardiothorac Surg 2024; 19:568. [PMID: 39354500 PMCID: PMC11443896 DOI: 10.1186/s13019-024-03020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Numerous diseases-related acute lung injury (ALI) contributed to high mortality. Currently, the therapeutic effect of ALI was still poor. The detailed mechanism of ALI remained elusive and this study aimed to elucidate the mechanism of ALI. METHOD This study was performed to expose the molecular mechanisms of AMPK/Nrf2 pathway regulating oxidative stress in LPS-induced AMI mice. The mouse ALI model was established via intraperitoneal injection of LPS, then the lung tissue and blood samples were obtained, followed by injection with Dimethyl fumarate (DMF). Finally, Western blot, HE staining, injury score, lung wet/dry ratio, reactive oxygen species (ROS) and ELISA were used to elucidate the mechanism of AMPK/Nrf2 pathway in LPS -induced acute lung injury by mediating oxidative stress. RESULTS The lung tissue injury score was evaluated, showing higher scores in the model group compared to the AMPK activator and control groups. DCFH-DA indicated that LPS increased ROS production, while AMPK activator DMF reduced it, with the model group exhibiting higher ROS levels than the control and AMPK activator groups. The lung wet/dry ratio was also higher in the model group. Western blot analysis revealed LPS reduced AMPK and Nrf2 protein levels, but DMF reversed this effect. ELISA results showed elevated IL-6 and IL-1β levels in the model group compared to the AMPK activator and control groups. CONCLUSION CONCLUSION: Activating the AMPK/Nrf2 pathway can improve LPS-induced acute lung injury by down-regulation of the oxidative stress and corresponding inflammatory factor level.
Collapse
Affiliation(s)
- Haoxuan Li
- Department of Critical Care Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Yiting Nie
- Department of Critical Care Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Hongyu Hui
- Department of Critical Care Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xinxin Jiang
- Department of Nephrology, Jing'an District Central Hospital, Shanghai, 200040, China
| | - Yuanyuan Xie
- Department of Critical Care Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Cong Fu
- Department of Critical Care Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| |
Collapse
|
23
|
Kim HI, Han Y, Kim MH, Boo M, Cho KJ, Kim HL, Lee IS, Jung JH, Kim W, Um JY, Park J, Ko SG. The multi-herbal decoction SH003 alleviates LPS-induced acute lung injury by targeting inflammasome and extracellular traps in neutrophils. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155926. [PMID: 39128302 DOI: 10.1016/j.phymed.2024.155926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/07/2024] [Accepted: 07/28/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a devastating condition caused by sepsis, pneumonia, trauma, and more recently, COVID-19. SH003, an herbal formula consisted of Astragalus membranaceus, Angelica gigas and Trichosanthes kirilowii, is known for its effects on cancer and immunoregulation. HYPOTHESIS/PURPOSE Previous studies show SH003 exerts a promising anti-inflammatory effect. This study investigates the effect of modified SH003 on ALI using in silico, in vivo, and in vitro models. STUDY DESIGN AND METHODS We performed in silico-based analysis of SH003 on ALI-related pathways. C57BL/6 mice were intraperitoneally subjected to lipopolysaccharide (LPS) to induce septic ALI, followed by oral administration of SH003 for 2 weeks. Dexamethasone was used as the positive control. Human peripheral blood-derived polymorphonuclear neutrophils (PMN) were used to investigate the effect and mechanisms of SH003 on neutrophil extracellular trap (NET) formation. RESULTS Network pharmacology analysis suggested SH003 regulates lung inflammation by modulating NET formation. SH003 significantly reduced mortality in sepsis in vivo by inhibiting local and systemic inflammation, likely via nuclear factor kappa B and mitogen-activated protein kinase pathways-mediated inflammasome suppression. SH003 also decreased NET-related markers in lung tissues and inhibited LPS- and phorbol myristate acetate-induced NET formation in PMN. Cytometry time-of-flight analysis confirmed regulation of NETosis-related pathways by SH003. CONCLUSION SH003 effectively inhibits excessive immune responses in the lung by suppressing inflammasome activation and NET formation. These findings suggest SH003 as a potential therapeutic agent for septic ALI.
Collapse
Affiliation(s)
- Hyo In Kim
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yohan Han
- Department of Microbiology and Sarcopenia Total Solution Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Mi-Hye Kim
- College of Korean Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Mina Boo
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang-Jin Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hye-Lin Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - In-Seon Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Hoon Jung
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woojin Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinbong Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, Kyung Hee University, Seoul, Republic of Korea.
| | - Seong-Gyu Ko
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Wang K, Huang Z, He J, Kong L, Chen M. Impact of acute stress disorder on surfactant protein D levels in acute lung injury. J Mol Histol 2024; 55:793-801. [PMID: 39110365 DOI: 10.1007/s10735-024-10231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/19/2024] [Indexed: 10/10/2024]
Abstract
Many people sustain acute lung injuries in road traffic collisions, but few studies have dealt with such injuries in live models. This study aimed to explore the basic pathophysiological and inflammatory changes in adult rabbits following acute thoracic trauma. We randomly assigned 50 rabbits to control and injury groups. Rabbits in the injury group were subjected to right chest pressure (2600 g) using a Hopkinson bar. Measurements were taken in the control group and 0, 24, 48, and 72 h after injury in the injury group. Injury severity was evaluated in gross view; with haematoxylin and eosin (H&E) staining; and through the serum changes of tumor necrosis factor alpha (TNF-α), surfactant protein D (SP-D), and neutrophils. Secretion changes in SP-D in right lung injured tissues were estimated by western blotting and qPCR. Serum TNF-α levels increased rapidly immediately after injury, gradually recovering after 24, 48, and 72 h (p < 0.01). The percentage of neutrophils in the accompanying blood showed a consistent trend. Gross necropsy and H&E staining indicated different levels of bleeding, alveoli exudation, and inflammatory transformation after impact. ELISA depicted the same trend in circulation (F = 22.902, p < 0.01). Western blotting showed that SP-D protein levels in tissues decreased at 0 h and increased at 24, 48, and 72 h. We demonstrate the feasibility of a model of impact lung injury. Primary impact caused injury without external signs. Inflammation began immediately, and the lungs began recovering at 24, 48, and 72 h, as shown by increased SP-D levels in circulation and tissues.With complaints of ALI and inflammation, SP-D may be a potential biomarker after chest trauma.
Collapse
Affiliation(s)
- Ke Wang
- The Clinical Medicine Department, Xi'an Medical University, Xi'an, 710021, Shaanxi, P.R. China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, P.R. China
| | - Zhenpeng Huang
- Faculty of Nursing, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jiawei He
- The Clinical Medicine Department, Xi'an Medical University, Xi'an, 710021, Shaanxi, P.R. China
| | - Lingwang Kong
- The Clinical Medicine Department, Xi'an Medical University, Xi'an, 710021, Shaanxi, P.R. China
| | - Mingwei Chen
- The Clinical Medicine Department, Xi'an Medical University, Xi'an, 710021, Shaanxi, P.R. China.
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, P.R. China.
| |
Collapse
|
25
|
Chen TY, Chen KC, Zhang YH, Lin CA, Hsu WY, Lin NY, Lai PS. Development of a dexamethasone-hyaluronic acid conjugate with selective targeting effect for acute lung injury therapy. Int J Biol Macromol 2024; 280:136149. [PMID: 39353517 DOI: 10.1016/j.ijbiomac.2024.136149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Acute lung injury (ALI), a critical complication of COVID-19, is characterized by widespread inflammation and severe pulmonary damage, necessitating intensive care for those affected. Although glucocorticoids (GCs), such as dexamethasone (Dex), have been employed clinically to lower mortality, their nonspecific systemic distribution has led to significant side effects, limiting their use in ALI treatment. In this study, we explored the conjugation of Dex to hyaluronic acid (HA) to achieve targeted delivery to inflamed lung tissues. We achieved a conjugation efficiency exceeding 98 % using a cosolvent system, with subsequent ester bond cleavage releasing the active Dex, as verified by liquid chromatography. Biodistribution and cellular uptake studies indicated the potential of the HA conjugate for cluster of differentiation 44 (CD44)-mediated targeting and accumulation. In a lipopolysaccharide-induced ALI mouse model, intravenous (IV) HA-Dex administration showed superior anti-inflammatory effects compared to free Dex administration. Flow cytometry analysis suggested that the HA conjugate preferentially accumulated in lung macrophages, suggesting the possibility of reducing clinical Dex dosages through this targeted delivery approach.
Collapse
Affiliation(s)
- Tzu-Yang Chen
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; Basic Research Division, Holy Stone Healthcare Co., Ltd., 114 Taipei, Taiwan
| | - Ke-Cheng Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Han Zhang
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chih-An Lin
- Ph.D. Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Wan-Yun Hsu
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Neng-Yu Lin
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; Ph.D. Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
26
|
Rahman M, Scozzi D, Eguchi N, Klein R, Sankpal NV, Sureshbabu A, Fleming T, Hachem R, Smith M, Bremner R, Mohanakumar T. Downregulation of Tumor Suppressor Gene LKB1 During Severe Primary Graft Dysfunction After Human Lung Transplantation: Implication for the Development of Chronic Lung Allograft Dysfunction. Transplantation 2024:00007890-990000000-00861. [PMID: 39228019 DOI: 10.1097/tp.0000000000005172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
BACKGROUND Severe primary graft dysfunction (PGD) after lung transplantation (LTx) is a significant risk factor for the development of bronchiolitis obliterans syndrome (BOS). Recent data from our group demonstrated that small extracellular vesicles (sEVs) isolated from the plasma of LTx recipients with BOS have reduced levels of tumor suppressor gene liver kinase B1 (LKB1) and promote epithelial-to-mesenchymal transition (EMT) and fibrosis. Here, we hypothesized that early inflammatory responses associated with severe PGD (PGD2/3) can downregulate LKB1 levels in sEVs, predisposing to the development of chronic lung allograft dysfunction (CLAD). METHODS sEVs were isolated from the plasma of human participants by Exosome Isolation Kit followed by 0.20-µm filtration and characterized by NanoSight and immunoblotting analysis. Lung self-antigens (K alpha 1 tubulin, Collagen V), LKB1, nuclear factor kappa B, and EMT markers in sEVs were compared by densitometry analysis between PGD2/3 and no-PGD participants. Neutrophil-derived factors and hypoxia/reperfusion effects on LKB1 levels and EMT were analyzed in vitro using quantitative real-time polymerase chain reaction and Western blotting. RESULTS LKB1 was significantly downregulated in PGD2/3 sEVs compared with no-PGD sEVs. Within PGD2/3 participants, lower post-LTx LKB1 was associated with CLAD development. Hypoxia/reperfusion downregulates LKB1 and is associated with markers of EMT in vitro. Finally, lower LKB1 levels in PGD2/3 are associated with increased markers of EMT. CONCLUSIONS Our results suggest that in post-LTx recipients with PGD2/3, downregulation of LKB1 protein levels in sEVs is associated with increased EMT markers and may result in the development of CLAD. Our results also suggest that ischemia/reperfusion injury during LTx may promote CLAD through the early downregulation of LKB1.
Collapse
Affiliation(s)
- Mohammad Rahman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Davide Scozzi
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Natsuki Eguchi
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Rachel Klein
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Narendra V Sankpal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Angara Sureshbabu
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Ramsey Hachem
- Washington University School of Medicine, St. Louis, MO
| | - Michael Smith
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Ross Bremner
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | | |
Collapse
|
27
|
Pereira-Silva GC, Cornélio CKCA, Pacheco G, Rochael NC, Gomes IAB, Cajado AG, Silva KC, Gonçalves BS, Temerozo JR, Bastos RS, Rocha JA, Souza LP, Souza MHLP, Lima-Júnior RCP, Medeiros JVR, Filgueiras MC, Bou-Habib DC, Saraiva EM, Nicolau LAD. Diminazene aceturate inhibits the SARS-CoV-2 spike protein-induced inflammation involving leukocyte migration and DNA extracellular traps formation. Life Sci 2024; 352:122895. [PMID: 38986896 DOI: 10.1016/j.lfs.2024.122895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/16/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
AIMS To investigate the SARS-CoV-2 Spike protein (Spk)-induced inflammatory response and its downmodulation by diminazene aceturate (DIZE). MATERIALS AND METHODS Through inducing Spk inflammation in murine models, leukocyte migration to the peritoneum, levels of myeloperoxidase (MPO), malondialdehyde (MDA), rolling and adhesion of mesenteric leukocytes, and vascular permeability were investigated. Extracellular DNA traps (DETs) induced by Spk and the production of IL-6 and TNF-α were analyzed using human neutrophils, monocytes, and macrophages. In silico assays assessed the molecular interaction between DIZE and molecules related to leukocyte migration and DETs induction. KEY FINDINGS Spk triggered acute inflammation, demonstrated by increasing leukocyte migration. Oxidative stress was evidenced by elevated levels of MPO and MDA in the peritoneal liquid. DIZE attenuated cell migration, rolling, and leukocyte adhesion, improved vascular barrier function, mitigated DETs, and reduced the production of Spk-induced pro-inflammatory cytokines. Computational studies supported our findings, showing the molecular interaction of DIZE with targets such as β2 integrin, PI3K, and PAD2 due to its intermolecular coupling. SIGNIFICANCE Our results outline a novel role of DIZE as a potential therapeutic agent for mitigating Spk-induced inflammation.
Collapse
Affiliation(s)
- Gean C Pereira-Silva
- Laboratory on Innate Immunity, Department of Immunology, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Cassia K C A Cornélio
- Biotechnology and Biodiversity Center Research, Laboratory of Inflammation and Translational Gastroenterology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba, PI, Brazil
| | - Gabriella Pacheco
- Department of Biochemistry and Pharmacology, Health Sciences Center, Universidade Federal do Piauí (UFPI), Teresina, PI, Brazil
| | - Natalia C Rochael
- Laboratory on Innate Immunity, Department of Immunology, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Isaac A B Gomes
- Biotechnology and Biodiversity Center Research, Laboratory of Inflammation and Translational Gastroenterology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba, PI, Brazil
| | - Aurilene G Cajado
- Department of Physiology and Pharmacology, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Katriane C Silva
- Biotechnology and Biodiversity Center Research, Laboratory of Inflammation and Translational Gastroenterology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba, PI, Brazil
| | | | - Jairo R Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, RJ, Brazil; National Institute of Science and Technology on Neuroimmunemodulation, Rio de Janeiro, Brazil
| | - Ruan S Bastos
- Biotechnology and Biodiversity Center Research, Laboratory of Inflammation and Translational Gastroenterology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba, PI, Brazil
| | - Jefferson A Rocha
- Biotechnology and Biodiversity Center Research, Laboratory of Inflammation and Translational Gastroenterology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba, PI, Brazil
| | - Leonardo P Souza
- Biotechnology and Biodiversity Center Research, Laboratory of Inflammation and Translational Gastroenterology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba, PI, Brazil
| | - Marcellus H L P Souza
- Department of Physiology and Pharmacology, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Roberto C P Lima-Júnior
- Department of Physiology and Pharmacology, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Jand V R Medeiros
- Biotechnology and Biodiversity Center Research, Laboratory of Inflammation and Translational Gastroenterology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba, PI, Brazil; Department of Biochemistry and Pharmacology, Health Sciences Center, Universidade Federal do Piauí (UFPI), Teresina, PI, Brazil
| | - Marcelo C Filgueiras
- Biotechnology and Biodiversity Center Research, Laboratory of Inflammation and Translational Gastroenterology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba, PI, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, RJ, Brazil; National Institute of Science and Technology on Neuroimmunemodulation, Rio de Janeiro, Brazil
| | - Elvira M Saraiva
- Laboratory on Innate Immunity, Department of Immunology, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Lucas A D Nicolau
- Biotechnology and Biodiversity Center Research, Laboratory of Inflammation and Translational Gastroenterology, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba, PI, Brazil; Department of Biochemistry and Pharmacology, Health Sciences Center, Universidade Federal do Piauí (UFPI), Teresina, PI, Brazil.
| |
Collapse
|
28
|
Li H, Guo J, Zhang G, Zhou J, Wang Q. Protective Effect of a Isothiazolinone Derivative on Acute Lung Injury by Regulating PI3K-AKT Signaling Pathway. Chem Biodivers 2024; 21:e202400892. [PMID: 38924251 DOI: 10.1002/cbdv.202400892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Acute lung injury (ALI) is a prevalent organ injury in sepsis, characterized by an inflammatory reactive disorder. Both the incidence and mortality rates of ALI have been steadily increasing. Isothiazolinone derivatives have displayed anti-inflammatory activity and have shown effectiveness in treating pneumonia. The objective of the study is to assess the effects and mechanisms of the isothiazolinone derivative 4-benzoyl-2-butyl-5-(ethylsulfinyl)isothiazol-3(2H)-one (C6) on sepsis-induced ALI.The analysis of biological function and signal pathway enrichment demonstrated that C6 primarily exhibited anti-inflammatory effects. Administration of different doses of C6 through intraperitoneal injection significantly improved the survival rate, body temperature, and body mass of mice with ALI induced by cecal ligation and puncture (CLP). Additionally, it mitigated lung tissue injury, pulmonary edema, lung permeability, inflammatory cell infiltration, apoptosis, and the expression of inflammatory cytokines. Network targeting analysis and experimental validation in mouse leukemia cells of monocyte macrophage (RAW264.7) cells and CLP-induced ALI mice revealed that the anti-inflammatory effect of C6 was mediated by the inhibition of the phosphatidylinositol 3 kinase -protein kinase B (PI3K-AKT) signaling pathway. The research suggest that C6 has protective effects against ALI by inhibiting the PI3K-AKT signaling pathway. This information could be valuable in developing potential treatments for ALI.
Collapse
Affiliation(s)
- Hua Li
- College of Acu-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Jie Guo
- The Second College of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
| | - Gaiyue Zhang
- College of Acu-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Jing Zhou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Qiang Wang
- College of Acu-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| |
Collapse
|
29
|
Liao F, Scozzi D, Zhou D, Maksimos M, Diedrich C, Cano M, Tague LK, Liu Z, Haspel JA, Leonard JM, Li W, Krupnick AS, Wong BW, Kreisel D, Azab AK, Gelman AE. Nanoparticle targeting of neutrophil glycolysis prevents lung ischemia-reperfusion injury. Am J Transplant 2024; 24:1382-1394. [PMID: 38522826 PMCID: PMC11305958 DOI: 10.1016/j.ajt.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Neutrophils exacerbate pulmonary ischemia-reperfusion injury (IRI) resulting in poor short and long-term outcomes for lung transplant recipients. Glycolysis powers neutrophil activation, but it remains unclear if neutrophil-specific targeting of this pathway will inhibit IRI. Lipid nanoparticles containing the glycolysis flux inhibitor 2-deoxyglucose (2-DG) were conjugated to neutrophil-specific Ly6G antibodies (NP-Ly6G[2-DG]). Intravenously administered NP-Ly6G(2-DG) to mice exhibited high specificity for circulating neutrophils. NP-Ly6G(2-DG)-treated neutrophils were unable to adapt to hypoglycemic conditions of the lung airspace environment as evident by the loss of demand-induced glycolysis, reductions in glycogen and ATP content, and an increased vulnerability to apoptosis. NP-Ly6G(2-DG) treatment inhibited pulmonary IRI following hilar occlusion and orthotopic lung transplantation. IRI protection was associated with less airspace neutrophil extracellular trap generation, reduced intragraft neutrophilia, and enhanced alveolar macrophage efferocytotic clearance of neutrophils. Collectively, our data show that pharmacologically targeting glycolysis in neutrophils inhibits their activation and survival leading to reduced pulmonary IRI.
Collapse
Affiliation(s)
- Fuyi Liao
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Davide Scozzi
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dequan Zhou
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mina Maksimos
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Camila Diedrich
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Marlene Cano
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laneshia K Tague
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhyi Liu
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey A Haspel
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer M Leonard
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wenjun Li
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexander S Krupnick
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Brian W Wong
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Abdel Kareem Azab
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, USA.
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
30
|
Niri P, Saha A, Polopalli S, Kumar M, Das S, Chattopadhyay P. Role of biomarkers and molecular signaling pathways in acute lung injury. Fundam Clin Pharmacol 2024; 38:640-657. [PMID: 38279523 DOI: 10.1111/fcp.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is caused by bacterial, fungal, and viral infections. When pathogens invade the lungs, the immune system responds by producing cytokines, chemokines, and interferons to promote the infiltration of phagocytic cells, which are essential for pathogen clearance. Their excess production causes an overactive immune response and a pathological hyper-inflammatory state, which leads to ALI. Until now, there is no particular pharmaceutical treatment available for ALI despite known inflammatory mediators like neutrophil extracellular traps (NETs) and reactive oxygen species (ROS). OBJECTIVES Therefore, the primary objective of this review is to provide the clear overview on the mechanisms controlling NETs, ROS formation, and other relevant processes during the pathogenesis of ALI. In addition, we have discussed the significance of epithelial and endothelial damage indicators and several molecular signaling pathways associated with ALI. METHODS The literature review was done from Web of Science, Scopus, PubMed, and Google Scholar for ALI, NETs, ROS, inflammation, biomarkers, Toll- and nucleotide-binding oligomerization domain (NOD)-like receptors, alveolar damage, pro-inflammatory cytokines, and epithelial/endothelial damage alone or in combination. RESULTS This review summarized the main clinical signs of ALI, including the regulation and distinct function of epithelial and endothelial biomarkers, NETs, ROS, and pattern recognition receptors (PRRs). CONCLUSION However, no particular drugs including vaccine for ALI has been established. Furthermore, there is a lack of validated diagnostic tools and a poor predictive rationality of current therapeutic biomarkers. Hence, extensive and precise research is required to speed up the process of drug testing and development by the application of artificial intelligence technologies, structure-based drug design, in-silico approaches, and drug repurposing.
Collapse
Affiliation(s)
- Pakter Niri
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Subramanyam Polopalli
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Mohit Kumar
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | - Sanghita Das
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
| |
Collapse
|
31
|
Yin Y, Zeng Z, Wei S, Shen Z, Cong Z, Zhu X. Using the sympathetic system, beta blockers and alpha-2 agonists, to address acute respiratory distress syndrome. Int Immunopharmacol 2024; 139:112670. [PMID: 39018694 DOI: 10.1016/j.intimp.2024.112670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
Acute Respiratory Distress Syndrome (ARDS) manifests as an acute inflammatory lung injury characterized by persistent hypoxemia, featuring a swift onset, high mortality, and predominantly supportive care as the current therapeutic approach, while effective treatments remain an area of active investigation. Adrenergic receptors (AR) play a pivotal role as stress hormone receptors, extensively participating in various inflammatory processes by initiating downstream signaling pathways. Advancements in molecular biology and pharmacology continually unveil the physiological significance of distinct AR subtypes. Interventions targeting these subtypes have the potential to induce specific alterations in cellular and organismal functions, presenting a promising avenue as a therapeutic target for managing ARDS. This article elucidates the pathogenesis of ARDS and the basic structure and function of AR. It also explores the relationship between AR and ARDS from the perspective of different AR subtypes, aiming to provide new insights for the improvement of ARDS.
Collapse
Affiliation(s)
- Yiyuan Yin
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Zhaojin Zeng
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Senhao Wei
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Ziyuan Shen
- Department of Anaesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhukai Cong
- Department of Anaesthesiology, Peking University Third Hospital, Beijing, China.
| | - Xi Zhu
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
32
|
Wang F, Zeng L, Chi Y, Yao S, Zheng Z, Peng S, Wang X, Chen K. Adipose-Derived exosome from Diet-Induced-Obese mouse attenuates LPS-Induced acute lung injury by inhibiting inflammation and Apoptosis: In vivo and in silico insight. Int Immunopharmacol 2024; 139:112679. [PMID: 39013217 DOI: 10.1016/j.intimp.2024.112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a severe clinical condition in the intensive care units, and obesity is a high risk of ALI. Paradoxically, obese ALI patients had better prognosis than non-obese patients, and the mechanism remains largely unknown. METHODS Mouse models of ALI and diet-induced-obesity (DIO) were used to investigate the effect of exosomes derived from adipose tissue. The adipose-derived exosomes (ADEs) were isolated by ultracentrifugation, and the role of exosomal miRNAs in the ALI was studied. RESULTS Compared with ADEs of control mice (C-Exo), ADEs of DIO mice (D-Exo) increased survival rate and mitigated pulmonary lesions of ALI mice. GO and KEGG analyses showed that the target genes of 40 differentially expressed miRNAs between D-Exo and C-Exo were mainly involved with inflammation, apoptosis and cell cycle. Furthermore, the D-Exo treatment significantly decreased Ly6G+ cell infiltration, down-regulated levels of pro-inflammatory cytokines (IL-6, IL-12, TNF-α, MCP-1) and chemokines (IL-8 and MIP-2), reduced pulmonary apoptosis and arrest at G0G1 phase (P < 0.01). And the protective effects of D-Exo were better than those of C-Exo (P < 0.05). Compared with the C-Exo mice, the levels of miR-16-5p and miR-335-3p in the D-Exo mice were significantly up-regulated (P < 0.05), and the expressions of IKBKB and TNFSF10, respective target of miR-16-5p and miR-335-3p by bioinformatic analysis, were significantly down-regulated in the D-Exo mice (P < 0.05). CONCLUSIONS Exosomes derived from adipose tissue of DIO mice are potent to attenuate LPS-induced ALI, which could be contributed by exosome-carried miRNAs. Our data shed light on the interaction between obesity and ALI.
Collapse
Affiliation(s)
- Fengyuan Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Lei Zeng
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Yanqi Chi
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Surui Yao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Zihan Zheng
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Shiyu Peng
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Xiangning Wang
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China.
| |
Collapse
|
33
|
Vicovan AG, Petrescu DC, Constantinescu D, Iftimi E, Cernescu IT, Ancuta CM, Caratașu CC, Șorodoc L, Ceasovschih A, Solcan C, Ghiciuc CM. Experimental Insights on the Use of Secukinumab and Magnolol in Acute Respiratory Diseases in Mice. Biomedicines 2024; 12:1538. [PMID: 39062111 PMCID: PMC11275060 DOI: 10.3390/biomedicines12071538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigates the combined treatment of secukinumab (SECU) and magnolol (MAGN) in a mouse model of LPS-induced ALI overlapped with allergic pulmonary inflammation, aiming to better understand the mechanism behind this pathology and to assess the therapeutic potential of this novel approach in addressing the severity of ALI. The combined treatment reveals intricate immunomodulatory effects. Both treatments inhibit IL-17 and promote M2 macrophage polarization, which enhances anti-inflammatory cytokine production such as IL-4, IL-5, IL-10, and IL-13, crucial for lung repair and inflammation resolution. However, the combination treatment exacerbates allergic responses and increases OVA-specific IgE, potentially worsening ALI outcomes. MAGN pretreatment alone demonstrates higher potency in reducing neutrophils and enhancing IFN-γ, suggesting its potential in mitigating severe asthma symptoms and modulating immune responses. The study highlights the need for careful consideration in therapeutic applications due to the combination treatment's inability to reduce IL-6 and its potential to exacerbate allergic inflammation. Elevated IL-6 levels correlate with worsened oxygenation and increased mortality in ALI patients, underscoring its critical role in disease severity. These findings offer valuable insights for the advancement of precision medicine within the realm of respiratory illnesses, emphasizing the importance of tailored therapeutic strategies.
Collapse
Affiliation(s)
- Andrei Gheorghe Vicovan
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iași, Romania; (A.G.V.); (I.T.C.); (C.M.G.)
| | - Diana Cezarina Petrescu
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iași, Romania; (A.G.V.); (I.T.C.); (C.M.G.)
| | - Daniela Constantinescu
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania; (D.C.); (E.I.)
| | - Elena Iftimi
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania; (D.C.); (E.I.)
| | - Irina Teodora Cernescu
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iași, Romania; (A.G.V.); (I.T.C.); (C.M.G.)
| | - Codrina Mihaela Ancuta
- 2nd Rheumatology Department, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Str., 700664 Iași, Romania;
- Rheumatology Department, University of Medicine and Pharmacy “Grigore T Popa”, 16 Universitatii Street, 700115 Iași, Romania
| | - Cezar-Cătălin Caratașu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universității Street, 700115 Iași, Romania;
| | - Laurențiu Șorodoc
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, 16 Universitatii Street, 700115 Iași, Romania; (L.Ș.); (A.C.)
| | - Alexandr Ceasovschih
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, 16 Universitatii Street, 700115 Iași, Romania; (L.Ș.); (A.C.)
| | - Carmen Solcan
- Department IX—Discipline of Histology, Embryology and Molecular Biology, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Str., 700490 Iași, Romania;
| | - Cristina Mihaela Ghiciuc
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iași, Romania; (A.G.V.); (I.T.C.); (C.M.G.)
- Pediatric Emergency Hospital Sf Maria, 700887 Iași, Romania
| |
Collapse
|
34
|
Zhang S, Zhao X, Xue Y, Wang X, Chen XL. Advances in nanomaterial-targeted treatment of acute lung injury after burns. J Nanobiotechnology 2024; 22:342. [PMID: 38890721 PMCID: PMC11184898 DOI: 10.1186/s12951-024-02615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Acute lung injury (ALI) is a common complication in patients with severe burns and has a complex pathogenesis and high morbidity and mortality rates. A variety of drugs have been identified in the clinic for the treatment of ALI, but they have toxic side effects caused by easy degradation in the body and distribution throughout the body. In recent years, as the understanding of the mechanism underlying ALI has improved, scholars have developed a variety of new nanomaterials that can be safely and effectively targeted for the treatment of ALI. Most of these methods involve nanomaterials such as lipids, organic polymers, peptides, extracellular vesicles or cell membranes, inorganic nanoparticles and other nanomaterials, which are targeted to reach lung tissues to perform their functions through active targeting or passive targeting, a process that involves a variety of cells or organelles. In this review, first, the mechanisms and pathophysiological features of ALI occurrence after burn injury are reviewed, potential therapeutic targets for ALI are summarized, existing nanomaterials for the targeted treatment of ALI are classified, and possible problems and challenges of nanomaterials in the targeted treatment of ALI are discussed to provide a reference for the development of nanomaterials for the targeted treatment of ALI.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Yuhao Xue
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, P. R. China
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, P. R. China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
| |
Collapse
|
35
|
Wang K, Huang Z, He J, Kong L, Chen M. Pathophysiological changes and injury markers for acute lung injury from blunt impact in infant rabbits. Front Pediatr 2024; 12:1354531. [PMID: 38910959 PMCID: PMC11190302 DOI: 10.3389/fped.2024.1354531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Background Traffic accidents, particularly blunt impacts, cause serious injuries in children. We aimed to assess inflammatory and injury responses in infant rabbits subjected to acute lung injury resulting from blunt impact, with the goal of identifying potential circulatory injury markers. Methods Forty 4-week-old infant rabbits were subjected to a right chest impact using a Hopkinson bar with 2,600 g. Computed tomography was employed to assess injury severity. Pathological changes were observed using hematoxylin and eosin staining in the control, 0, 24, and 72 h groups, post-injury. Immunohistochemistry was used to examine surfactant protein A (SP-A) changes in right lung tissues and upper main bronchi. Serum levels of interleukin-6 (IL-6), IL-8, and SP-A were measured using ELISA within 24 h post-injury in the control, 0 h, and 24 h groups. Results Following blunt injury, significant increases were observed in blood white blood cell count (F = 101.556, P < 0.01) and neutrophil percentage (F = 104.228, P < 0.01), which gradually decreased after 24 and 72 h. The lung wet/dry weight ratio indicated significant edema (F = 79.677, P < 0.01), corroborated by hematoxylin and eosin staining showing edema, exudation, and marked granulocyte infiltration in the control, 0 h, 24 h and 72 h groups. SP-A levels decreased rapidly at 0 h, and recovered between 24 and 72 h in the right lung tissues (F = 6.7, P < 0.05), left lung (F = 15.825, P < 0.05) and upper main bronchi (F = 59.552, P < 0.01). The ELISA results showed increasing trends for the control and 0 h groups, while decreasing trends were observed in 24 h group for IL-6 (F = 58.328, P < 0.01) and IL-8 (F = 41.802, P < 0.01). Conversely, SP-A exhibited a decreasing trend in the control and 0 h groups but increased in the serum of 24 h group (F = 52.629, P < 0.01). Discussion In cases of direct chest trauma in infant rabbits, particularly mild injuries without rib fractures. SP-A levels correlated with pathological changes across all groups and may serve as biomarkers for pediatric blunt lung impact.
Collapse
Affiliation(s)
- Ke Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- The Clinical Medicine Department, Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - ZhenPeng Huang
- Faculty of Nursing, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - JiaWei He
- The Clinical Medicine Department, Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - LingWang Kong
- The Clinical Medicine Department, Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
36
|
Chi Y, Peng Y, Zhang S, Tang S, Zhang W, Dai C, Ji S. A Rapid In Vivo Toxicity Assessment Method for Antimicrobial Peptides. TOXICS 2024; 12:387. [PMID: 38922067 PMCID: PMC11209610 DOI: 10.3390/toxics12060387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Antimicrobial peptides (AMPs) represent a promising antibiotic alternative to overcome drug-resistant bacteria by inserting into the membrane of bacteria, resulting in cell lysis. However, therapeutic applications of AMPs have been hindered by their ability to lyse eukaryotic cells. GF-17 is a truncated peptide of LL-37, which has perfect amphipathicity and a higher hydrophobicity, resulting in higher haemolytic activity. However, there is no significant difference in the cytotoxicity against human lung epithelial cells between the GF-17 and LL-37 groups, indicating that there are significant differences in the sensitivity of different human cells to GF-17. In this study, LL-37 and GF-17 were administered to mouse lungs via intranasal inoculation. Blood routine examination results showed that LL-37 did not affect the red blood cells, platelet, white blood cells and neutrophil counts, but GF-17 decreased the white blood cells and neutrophil counts with the increasing concentration of peptides. GF-17-treated mice suffer a body weight loss of about 2.3 g on average in 24 h, indicating that GF-17 is highly toxic to mice. The total cell counts in the bronchoalveolar lavage fluid from GF-17-treated mice were 4.66-fold that in the untreated group, suggesting that GF-17 treatment leads to inflammation in the lungs of mice. Similarly, the histological results showed the infiltration of neutrophils in the lungs of GF-17-treated mice. The results suggest that the administration of GF-17 in the lungs of mice does not affect the red blood cells and platelet counts in the blood but promotes neutrophil infiltration in the lungs, leading to an inflammatory response. Therefore, we established a mouse acute lung injury model to preliminarily evaluate the in vivo toxicity of AMPs. For AMPs with a clinical application value, systematic research is still needed to evaluate their acute and long-term toxicity.
Collapse
Affiliation(s)
- Yulang Chi
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.C.)
| | - Yunhui Peng
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.C.)
- School of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China
| | - Shikun Zhang
- Academy of Military Medical Sciences, Beijing 100850, China;
| | - Sijia Tang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.C.)
| | - Wenzhou Zhang
- School of Pharmacy, Quanzhou Medical College, Quanzhou 362011, China
| | - Congjie Dai
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.C.)
| | - Shouping Ji
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.C.)
- School of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China
| |
Collapse
|
37
|
Matson SM, Ngo LT, Sugawara Y, Fernando V, Lugo C, Azeem I, Harrison A, Alsup A, Nissen E, Koestler D, Washburn MP, Rekowski MJ, Wolters PJ, Lee JS, Solomon JJ, Demoruelle MK. Neutrophil extracellular traps linked to idiopathic pulmonary fibrosis severity and survival. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.24.24301742. [PMID: 38343853 PMCID: PMC10854325 DOI: 10.1101/2024.01.24.24301742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) leads to progressive loss of lung function and mortality. Understanding mechanisms and markers of lung injury in IPF is paramount to improving outcomes for these patients. Despite the lack of systemic involvement in IPF, many analyses focus on identifying circulating prognostic markers. Using a proteomic discovery method followed by ELISA validation in multiple IPF lung compartments and cohorts we explored novel markers of IPF survival. Methods In our discovery analysis, agnostic label-free quantitative proteomics differentiated lung tissue protein expression based on survival trajectory (n=10). Following selection of the candidate pathway (neutrophil extracellular trap (NET) formation), we subsequently validated the presence of NETs in the IPF lung microenvironment using fully quantitative assays of known NET remnants in separate IPF cohorts (n=156 and n=52) with bronchoalveolar lavage fluid. We then assessed the correlation of these markers with baseline pulmonary function and survival. Results Discovery lung tissue proteomics identified NET formation as significantly associated with poor IPF survival. Using fully quantitative confirmatory tests for reproducibility we confirmed the presence of NET markers in IPF BALF and found significant correlations with worse pulmonary function in both cohorts (p<0.03 and p = 0.04 respectively). In the survival cohort, higher levels of NET markers predicted worse survival after adjusting for gender, age, and baseline physiologic severity (hazard ratio range: 1.79-2.19). Conclusions NET markers were associated with disease severity and worse survival in IPF. These findings suggest NET formation contributes to lung injury and decreased survival in IPF and may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Scott M. Matson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Linh T. Ngo
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Yui Sugawara
- Department of Respiratory Medicine, Respiratory Center, Toranomon Hospital, Tokyo, Japan
| | - Veani Fernando
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Claudia Lugo
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Imaan Azeem
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Alexis Harrison
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Alex Alsup
- Department of Biostatistics & Data Science, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Emily Nissen
- Department of Biostatistics & Data Science, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Devin Koestler
- Department of Biostatistics & Data Science, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Michael P. Washburn
- Department of Cancer Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Michaella J. Rekowski
- Department of Cancer Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Paul J. Wolters
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, CA, USA
| | - Joyce S. Lee
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA
| | - Joshua J. Solomon
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Hospital, Denver, CO
| | - M. Kristen Demoruelle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
38
|
Qiao X, Yin J, Zheng Z, Li L, Feng X. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: pathogenesis and therapeutic implications. Cell Commun Signal 2024; 22:241. [PMID: 38664775 PMCID: PMC11046830 DOI: 10.1186/s12964-024-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-induced ALI/ARDS.
Collapse
Affiliation(s)
- Xinyu Qiao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Liangge Li
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
39
|
黄 嘉, 方 金, 吴 芝, 吴 建, 方 颖, 林 蒋. [Neutrophil extracellular traps extrusion from neutrophils stably adhered to ICAM-1 by lipoteichoic acid stimulation]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:304-312. [PMID: 38686411 PMCID: PMC11058506 DOI: 10.7507/1001-5515.202401062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Indexed: 05/02/2024]
Abstract
The effect of neutrophil extracellular traps (NETs) on promoting intravascular microthrombi formation and exacerbating the severity of sepsis in patients has gained extensive attention. However, in sepsis, the mechanisms and key signaling molecules mediating NET formation during direct interactions of endothelial cells and neutrophils still need further explored. Herein, we utilized lipoteichoic acid (LTA), a component shared by Gram-positive bacteria, to induce NET extrusion from neutrophils firmly adhered to the glass slides coated with intercellular adhesion molecule-1(ICAM-1). We also used Sytox green to label NET-DNA and Flou-4 AM as the intracellular Ca 2+ signaling indicator to observe the NET formation and fluctuation of Ca 2+ signaling. Our results illustrated that LTA was able to induce NET release from neutrophils firmly attached to ICAM-1-coated glass slides, and the process was time-dependent. In addition, our study indicated that LTA-induced NET release by neutrophils stably adhered to ICAM-1 depended on Ca 2+ signaling but not intracellular reactive oxygen species (ROS). This study reveals NET formation mediated by direct interactions between endothelial ICAM-1 and neutrophils under LTA stimulation and key signaling molecules involved, providing the theoretical basis for medicine development and clinical treatment for related diseases.
Collapse
Affiliation(s)
- 嘉祺 黄
- 华南理工大学 生物科学与工程学院(广州 510006)School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - 金花 方
- 华南理工大学 生物科学与工程学院(广州 510006)School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - 芝伟 吴
- 华南理工大学 生物科学与工程学院(广州 510006)School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - 建华 吴
- 华南理工大学 生物科学与工程学院(广州 510006)School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - 颖 方
- 华南理工大学 生物科学与工程学院(广州 510006)School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - 蒋国 林
- 华南理工大学 生物科学与工程学院(广州 510006)School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
40
|
King PT, Dousha L. Neutrophil Extracellular Traps and Respiratory Disease. J Clin Med 2024; 13:2390. [PMID: 38673662 PMCID: PMC11051312 DOI: 10.3390/jcm13082390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular traps made by neutrophils (NETs) and other leukocytes such as macrophages and eosinophils have a key role in the initial immune response to infection but are highly inflammatory and may contribute to tissue damage. They are particularly relevant to lung disease, with the pulmonary anatomy facilitating their ability to fully extend into the airways/alveolar space. There has been a rapid expansion in the number of published studies demonstrating their role in a variety of important respiratory diseases including chronic obstructive pulmonary disease, cystic fibrosis, bronchiectasis, asthma, pneumonia, COVID-19, rhinosinusitis, interstitial lung disease and lung cancer. The expression of NETs and other traps is a specific process, and diagnostic tests need to differentiate them from other inflammatory pathways/causes of cell death that are also characterised by the presence of extracellular DNA. The specific targeting of this pathway by relevant therapeutics may have significant clinical benefit; however, current clinical trials/evidence are at a very early stage. This review will provide a broad overview of the role of NETs and their possible treatment in respiratory disease.
Collapse
Affiliation(s)
- Paul T. King
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Lovisa Dousha
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
41
|
Liu FC, Yu HP, Liao CC, Chou AH, Lee HC. Corilagin Inhibits Neutrophil Extracellular Trap Formation and Protects against Hydrochloric Acid/Lipopolysaccharide-Induced Acute Lung Injury in Mice by Suppressing the STAT3 and NOX2 Signaling Pathways. Antioxidants (Basel) 2024; 13:491. [PMID: 38671938 PMCID: PMC11047527 DOI: 10.3390/antiox13040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Acute lung injury (ALI) and its severe manifestation, acute respiratory distress syndrome (ARDS), are characterized by uncontrolled inflammatory responses, neutrophil activation and infiltration, damage to the alveolar capillary membrane, and diffuse alveolar injury. Neutrophil extracellular traps (NETs), formed by activated neutrophils, contribute significantly to various inflammatory disorders and can lead to tissue damage and organ dysfunction. Corilagin, a compound found in Phyllanthus urinaria, possesses antioxidative and anti-inflammatory properties. In this study, we investigated the protective effects and underlying mechanisms of corilagin in hydrochloric acid (HCl)/lipopolysaccharide (LPS)-induced lung injury. Mice received intraperitoneal administration of corilagin (2.5, 5, or 10 mg/kg) or an equal volume of saline 30 min after intratracheal HCl/LPS administration. After 20 h, lung tissues were collected for analysis. Corilagin treatment significantly mitigated lung injury, as evidenced by reduced inflammatory cell infiltration, decreased production of proinflammatory cytokines, and alleviated oxidative stress. Furthermore, corilagin treatment suppressed neutrophil elastase expression, reduced NET formation, and inhibited the expression of ERK, p38, AKT, STAT3, and NOX2. Our findings suggest that corilagin inhibits NET formation and protects against HCl/LPS-induced ALI in mice by modulating the STAT3 and NOX2 signaling pathways.
Collapse
Affiliation(s)
- Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (C.-C.L.); (A.-H.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (C.-C.L.); (A.-H.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (C.-C.L.); (A.-H.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - An-Hsun Chou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (C.-C.L.); (A.-H.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hung-Chen Lee
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (C.-C.L.); (A.-H.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
42
|
Cioce A, Cavani A, Cattani C, Scopelliti F. Role of the Skin Immune System in Wound Healing. Cells 2024; 13:624. [PMID: 38607063 PMCID: PMC11011555 DOI: 10.3390/cells13070624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Wound healing is a dynamic and complex process, characterized by the coordinated activities of multiple cell types, each with distinct roles in the stages of hemostasis, inflammation, proliferation, and remodeling. The cells of the immune system not only act as sentinels to monitor the skin and promote homeostasis, but they also play an important role in the process of skin wound repair. Skin-resident and recruited immune cells release cytokines and growth factors that promote the amplification of the inflammatory process. They also work with non-immune cells to remove invading pathogens and debris, as well as guide the regeneration of damaged host tissues. Dysregulation of the immune system at any stage of the process may lead to a prolongation of the inflammatory phase and the development of a pathological condition, such as a chronic wound. The present review aims to summarize the roles of different immune cells, with special emphasis on the different stages of the wound healing process.
Collapse
Affiliation(s)
| | | | | | - Fernanda Scopelliti
- National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy; (A.C.); (A.C.); (C.C.)
| |
Collapse
|
43
|
Vaseruk A, Bila G, Bilyy R. Nanoparticles for stimulation of neutrophil extracellular trap-mediated immunity. Eur J Immunol 2024; 54:e2350582. [PMID: 38279592 DOI: 10.1002/eji.202350582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Neutrophil extracellular traps (NETs) have been identified as triggers for a self-limited inflammatory reaction upon contact with nanoparticles within our bodies. This typically results in entrapping potentially harmful nano- or micro-objects following an immune burst. The demand for potent adjuvants has led to research on particulate-based adjuvants, particularly those that act via NET formation. Various particles, including hydrophobic nanoparticles, needle-like microparticles, and other natural and artificial crystals, have been shown to induce NET formation, eliciting a robust humoral and cellular immune response toward co-injected antigens. The NET formation was found to be the basis of the efficient use of alum as a vaccine adjuvant. Thus, nanoparticles with specific surface properties serve as NET-stimulating adjuvants. In this mini-review, we aim to summarize the current knowledge about the surface properties of particulate objects and the molecular pathways involved in inducing NET formation by neutrophils. Additionally, we discuss the potential use of nanoparticles for activating neutrophils in the tissues and the exploitation of such activation for enhancing vaccine adjuvants.
Collapse
Affiliation(s)
- Anna Vaseruk
- Department of Histology, Cytology & Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, Lviv, 79010, Ukraine
- Lectinotest R&D, Lviv, 79000, Ukraine
| | - Galyna Bila
- Department of Histology, Cytology & Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, Lviv, 79010, Ukraine
- Lectinotest R&D, Lviv, 79000, Ukraine
| | - Rostyslav Bilyy
- Department of Histology, Cytology & Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, Lviv, 79010, Ukraine
- Lectinotest R&D, Lviv, 79000, Ukraine
| |
Collapse
|
44
|
Ponholzer F, Dumfarth J, Krapf C, Pircher A, Hautz T, Wolf D, Augustin F, Schneeberger S. The impact and relevance of techniques and fluids on lung injury in machine perfusion of lungs. Front Immunol 2024; 15:1358153. [PMID: 38510260 PMCID: PMC10950925 DOI: 10.3389/fimmu.2024.1358153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Primary graft dysfunction (PGD) is a common complication after lung transplantation. A plethora of contributing factors are known and assessment of donor lung function prior to organ retrieval is mandatory for determination of lung quality. Specialized centers increasingly perform ex vivo lung perfusion (EVLP) to further assess lung functionality and improve and extend lung preservation with the aim to increase lung utilization. EVLP can be performed following different protocols. The impact of the individual EVLP parameters on PGD development, organ function and postoperative outcome remains to be fully investigated. The variables relate to the engineering and function of the respective perfusion devices, such as the type of pump used, functional, like ventilation modes or physiological (e.g. perfusion solutions). This review reflects on the individual technical and fluid components relevant to EVLP and their respective impact on inflammatory response and outcome. We discuss key components of EVLP protocols and options for further improvement of EVLP in regard to PGD. This review offers an overview of available options for centers establishing an EVLP program and for researchers looking for ways to adapt existing protocols.
Collapse
Affiliation(s)
- Florian Ponholzer
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Dumfarth
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Krapf
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Pircher
- Department of Haematology and Oncology, Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Theresa Hautz
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Haematology and Oncology, Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Augustin
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
45
|
Li Q, Nie H. Advances in lung ischemia/reperfusion injury: unraveling the role of innate immunity. Inflamm Res 2024; 73:393-405. [PMID: 38265687 DOI: 10.1007/s00011-023-01844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Lung ischemia/reperfusion injury (LIRI) is a common occurrence in clinical practice and represents a significant complication following pulmonary transplantation and various diseases. At the core of pulmonary ischemia/reperfusion injury lies sterile inflammation, where the innate immune response plays a pivotal role. This review aims to investigate recent advancements in comprehending the role of innate immunity in LIRI. METHODS A computer-based online search was performed using the PubMed database and Web of Science database for published articles concerning lung ischemia/reperfusion injury, cell death, damage-associated molecular pattern molecules (DAMPs), innate immune cells, innate immunity, inflammation. RESULTS During the process of lung ischemia/reperfusion, cellular injury even death can occur. When cells are injured or undergo cell death, endogenous ligands known as DAMPs are released. These molecules can be recognized and bound by pattern recognition receptors (PRRs), leading to the recruitment and activation of innate immune cells. Subsequently, a cascade of inflammatory responses is triggered, ultimately exacerbating pulmonary injury. These steps are complex and interrelated rather than being in a linear relationship. In recent years, significant progress has been made in understanding the immunological mechanisms of LIRI, involving novel types of cell death, the ability of receptors other than PRRs to recognize DAMPs, and a more detailed mechanism of action of innate immune cells in ischemia/reperfusion injury (IRI), laying the groundwork for the development of novel diagnostic and therapeutic approaches. CONCLUSIONS Various immune components of the innate immune system play critical roles in lung injury after ischemia/reperfusion. Preventing cell death and the release of DAMPs, interrupting DAMPs receptor interactions, disrupting intracellular inflammatory signaling pathways, and minimizing immune cell recruitment are essential for lung protection in LIRI.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
46
|
Zhang H, Wu D, Wang Y, Shi Y, Shao Y, Zeng F, Spencer CB, Ortoga L, Wu D, Miao C. Ferritin-mediated neutrophil extracellular traps formation and cytokine storm via macrophage scavenger receptor in sepsis-associated lung injury. Cell Commun Signal 2024; 22:97. [PMID: 38308264 PMCID: PMC10837893 DOI: 10.1186/s12964-023-01440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/12/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Sepsis is a severe systemic inflammatory disorder manifested by a dysregulated immune response to infection and multi-organ failure. Numerous studies have shown that elevated ferritin levels exist as an essential feature during sepsis and are able to suggest patients' prognoses. At the same time, the specific mechanism of ferritin-induced inflammatory injury remains unclear. METHODS Hyper-ferritin state during inflammation was performed by injecting ferritin into a mouse model and demonstrated that injection of ferritin could induce a systemic inflammatory response and increase neutrophil extracellular trap (NET) formation.Padi4-/-, Elane-/- and Cybb-/- mice were used for the NETs formation experiment. Western blot, immunofluorescence, ELISA, and flow cytometry examined the changes in NETs, inflammation, and related signaling pathways. RESULTS Ferritin induces NET formation in a peptidylarginine deiminase 4 (PAD4), neutrophil elastase (NE), and reactive oxygen species (ROS)-dependent manner, thereby exacerbating the inflammatory response. Mechanistically, ferritin induces the expression of neutrophil macrophage scavenger receptor (MSR), which promotes the formation of NETs. Clinically, high levels of ferritin in patients with severe sepsis correlate with NETs-mediated cytokines storm and are proportional to the severity of sepsis-induced lung injury. CONCLUSIONS In conclusion, we demonstrated that hyper-ferritin can induce systemic inflammation and increase NET formation in an MSR-dependent manner. This process relies on PAD4, NE, and ROS, further aggravating acute lung injury. In the clinic, high serum ferritin levels are associated with elevated NETs and worse lung injury, which suggests a poor prognosis for patients with sepsis. Our study indicated that targeting NETs or MSR could be a potential treatment to alleviate lung damage and systemic inflammation during sepsis. Video Abstract.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Dan Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanghanzhao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuxin Shi
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwen Shao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fu Zeng
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Charles B Spencer
- Department of Cardiac surgery, The Ohio State University, Columbus, USA
| | - Lilibeth Ortoga
- Department of Biomedical Engineering, The Ohio State University, Columbus, USA
| | - Dehua Wu
- Department of Anesthesiology, Shanghai Songjiang District Central Hospital, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Wang T, Zhang Z, Deng Z, Zeng W, Gao Y, Hei Z, Yuan D. Mesenchymal stem cells alleviate sepsis-induced acute lung injury by blocking neutrophil extracellular traps formation and inhibiting ferroptosis in rats. PeerJ 2024; 12:e16748. [PMID: 38304189 PMCID: PMC10832623 DOI: 10.7717/peerj.16748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024] Open
Abstract
Acute lung injury (ALI) is one of the most serious complications of sepsis, characterized by high morbidity and mortality rates. Ferroptosis has recently been reported to play an essential role in sepsis-induced ALI. Excessive neutrophil extracellular traps (NETs) formation induces exacerbated inflammation and is crucial to the development of ALI. In this study, we explored the effects of ferroptosis and NETs and observed the therapeutic function of mesenchymal stem cells (MSCs) on sepsis-induced ALI. First, we produced a cecal ligation and puncture (CLP) model of sepsis in rats. Ferrostain-1 and DNase-1 were used to inhibit ferroptosis and NETs formation separately, to confirm their effects on sepsis-induced ALI. Next, U0126 was applied to suppress the MEK/ERK signaling pathway, which is considered to be vital to NETs formation. Finally, the therapeutic effect of MSCs was observed on CLP models. The results demonstrated that both ferrostain-1 and DNase-1 application could improve sepsis-induced ALI. DNase-1 inhibited ferroptosis significantly in lung tissues, showing that ferroptosis could be regulated by NETs formation. With the inhibition of the MEK/ERK signaling pathway by U0126, NETs formation and ferroptosis in lung tissues were both reduced, and sepsis-induced ALI was improved. MSCs also had a similar protective effect against sepsis-induced ALI, not only inhibiting MEK/ERK signaling pathway-mediated NETs formation, but also alleviating ferroptosis in lung tissues. We concluded that MSCs could protect against sepsis-induced ALI by suppressing NETs formation and ferroptosis in lung tissues. In this study, we found that NETs formation and ferroptosis were both potential therapeutic targets for the treatment of sepsis-induced ALI, and provided new evidence supporting the clinical application of MSCs in sepsis-induced ALI treatment.
Collapse
Affiliation(s)
- TieNan Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, GuangZhou, GuangDong Province, China
| | - Zheng Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, GuangZhou, GuangDong Province, China
| | - Zhizhao Deng
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, GuangZhou, GuangDong Province, China
| | - Weiqi Zeng
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, GuangZhou, GuangDong Province, China
| | - Yingxin Gao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, GuangZhou, GuangDong Province, China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, GuangZhou, GuangDong Province, China
| | - Dongdong Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, GuangZhou, GuangDong Province, China
| |
Collapse
|
48
|
Zhou X, Jin J, Lv T, Song Y. A Narrative Review: The Role of NETs in Acute Respiratory Distress Syndrome/Acute Lung Injury. Int J Mol Sci 2024; 25:1464. [PMID: 38338744 PMCID: PMC10855305 DOI: 10.3390/ijms25031464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
Nowadays, acute respiratory distress syndrome (ARDS) still has a high mortality rate, and the alleviation and treatment of ARDS remains a major research focus. There are various causes of ARDS, among which pneumonia and non-pulmonary sepsis are the most common. Trauma and blood transfusion can also cause ARDS. In ARDS, the aggregation and infiltration of neutrophils in the lungs have a great influence on the development of the disease. Neutrophils regulate inflammatory responses through various pathways, and the release of neutrophils through neutrophil extracellular traps (NETs) is considered to be one of the most important mechanisms. NETs are mainly composed of DNA, histones, and granuloproteins, all of which can mediate downstream signaling pathways that can activate inflammatory responses, generate immune clots, and cause damage to surrounding tissues. At the same time, the components of NETs can also promote the formation and release of NETs, thus forming a vicious cycle that continuously aggravates the progression of the disease. NETs are also associated with cytokine storms and immune balance. Since DNA is the main component of NETs, DNase I is considered a viable drug for removing NETs. Other therapeutic methods to inhibit the formation of NETs are also worthy of further exploration. This review discusses the formation and mechanism of NETs in ARDS. Understanding the association between NETs and ARDS may help to develop new perspectives on the treatment of ARDS.
Collapse
Affiliation(s)
| | | | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China; (X.Z.); (J.J.)
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China; (X.Z.); (J.J.)
| |
Collapse
|
49
|
Farahnak K, Bai YZ, Yokoyama Y, Morkan DB, Liu Z, Amrute JM, De Filippis Falcon A, Terada Y, Liao F, Li W, Shepherd HM, Hachem RR, Puri V, Lavine KJ, Gelman AE, Bharat A, Kreisel D, Nava RG. B cells mediate lung ischemia/reperfusion injury by recruiting classical monocytes via synergistic B cell receptor/TLR4 signaling. J Clin Invest 2024; 134:e170118. [PMID: 38488011 PMCID: PMC10940088 DOI: 10.1172/jci170118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/17/2024] [Indexed: 03/18/2024] Open
Abstract
Ischemia/reperfusion injury-mediated (IRI-mediated) primary graft dysfunction (PGD) adversely affects both short- and long-term outcomes after lung transplantation, a procedure that remains the only treatment option for patients suffering from end-stage respiratory failure. While B cells are known to regulate adaptive immune responses, their role in lung IRI is not well understood. Here, we demonstrated by intravital imaging that B cells are rapidly recruited to injured lungs, where they extravasate into the parenchyma. Using hilar clamping and transplant models, we observed that lung-infiltrating B cells produce the monocyte chemokine CCL7 in a TLR4-TRIF-dependent fashion, a critical step contributing to classical monocyte (CM) recruitment and subsequent neutrophil extravasation, resulting in worse lung function. We found that synergistic BCR-TLR4 activation on B cells is required for the recruitment of CMs to the injured lung. Finally, we corroborated our findings in reperfused human lungs, in which we observed a correlation between B cell infiltration and CM recruitment after transplantation. This study describes a role for B cells as critical orchestrators of lung IRI. As B cells can be depleted with currently available agents, our study provides a rationale for clinical trials investigating B cell-targeting therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrew E. Gelman
- Department of Surgery
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ankit Bharat
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Daniel Kreisel
- Department of Surgery
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | | |
Collapse
|
50
|
Xuan N, Zhao J, Kang Z, Cui W, Tian BP. Neutrophil extracellular traps and their implications in airway inflammatory diseases. Front Med (Lausanne) 2024; 10:1331000. [PMID: 38283037 PMCID: PMC10811107 DOI: 10.3389/fmed.2023.1331000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are essential for immune defense and have been increasingly recognized for their role in infection and inflammation. In the context of airway inflammatory diseases, there is growing evidence suggesting the involvement and significance of NETs. This review aims to provide an overview of the formation mechanisms and components of NETs and their impact on various airway inflammatory diseases, including acute lung injury/ARDS, asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis. By understanding the role of NETs in airway inflammation, we can gain valuable insights into the underlying pathogenesis of these diseases and identify potential targets for future therapeutic strategies that either target NETs formation or modulate their harmful effects. Further research is warranted to elucidate the complex interactions between NETs and airway inflammation and to develop targeted therapies that can effectively mitigate their detrimental effects while preserving their beneficial functions in host defense.
Collapse
Affiliation(s)
- Nanxia Xuan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zhiying Kang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Cui
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bao-ping Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|