1
|
Yuan W, Sun Q, Zhu X, Li B, Zou Y, Liu Z. M2-polarized tumor-associated macrophage-secreted exosomal lncRNA NEAT1 upregulates galectin-3 by recruiting KLF5 and promotes HCC immune escape. J Cell Commun Signal 2025; 19:e12060. [PMID: 39720765 PMCID: PMC11666343 DOI: 10.1002/ccs3.12060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/26/2024] Open
Abstract
HCC cell immune escape is a critical element in the evolution of HCC malignancy. Herein, the regulatory mechanism of lncRNA NEAT1 in regulating HCC immune escape was investigated. Exosomes were isolated from M2 TAMs using ExoQuick-TC. Then, HCC cells were incubated with M2 TAMs-derived exosomes (M2-exos). The activation of perforin+CD8+ T cells was measured using flow cytometry. The secretion of IFN-γ was assessed using ELISA. Cell viability and migration were detected using CCK8 and Transwell assays, respectively. RIP and RNA pull-down assays were used to investigate the link between NEAT1 and KLF5. ChIP and dual-luciferase reporter assays were used to investigate the interaction between KLF5 and the LGALS3 promoter. Our results showed that NEAT1, KLF5 and galectin-3 were overexpressed in HCC tissues. M2-exos treatment promoted HCC proliferation, migration, and immune escape. It was found that NEAT1 was enriched in M2-TAMs and M2-exos. M2-exos facilitated HCC immune escape, whereas NEAT1 silencing reversed this effect. NEAT1 upregulated galectin-3 in HCC cells by recruiting KLF5. Mechanically, M2-TAM-derived exosomal NEAT1 induced HCC immune escape by upregulating KLF5/galectin-3 axis. M2-TAM-derived exosomal NEAT1 upregulated galectin-3 in HCC cells by recruiting KLF5 to promote perforin+CD8+ T cell depletion and further accelerate HCC immune escape.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Emergency SurgeryHainan General HospitalHainan Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Qigang Sun
- Department of Hepatobiliary and Pancreatic SurgeryHainan General HospitalHainan Affiliated Hainan Hospital of Hainan Medical CollegeHaikouChina
| | - Xiaodan Zhu
- Department of Hepatobiliary and Pancreatic SurgeryHainan General HospitalHainan Affiliated Hainan Hospital of Hainan Medical CollegeHaikouChina
| | - Bo Li
- Department of Emergency SurgeryHainan General HospitalHainan Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Yongping Zou
- Department of Emergency SurgeryHainan General HospitalHainan Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Zhehao Liu
- Department of Hepatobiliary and Pancreatic SurgeryHainan General HospitalHainan Affiliated Hainan Hospital of Hainan Medical CollegeHaikouChina
| |
Collapse
|
2
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
3
|
Pi JK, Chen XT, Zhang YJ, Chen XM, Wang YC, Xu JY, Zhou JH, Yu SS, Wu SS. Insight of immune checkpoint inhibitor related myocarditis. Int Immunopharmacol 2024; 143:113559. [PMID: 39536487 DOI: 10.1016/j.intimp.2024.113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
As the understanding of immune-related mechanisms in the development and progression of cancer advances, immunotherapies, notably Immune Checkpoint Inhibitors (ICIs), have become integral in comprehensive cancer treatment strategies. ICIs reactivate T-cell cytotoxicity against tumors by blocking immune suppressive signals on T cells, such as Programmed Death-1 (PD-1) and Cytotoxic T-lymphocyte Antigen-4 (CTLA-4). Despite their beneficial effects, ICIs are associated with immune-related adverse events (irAEs), manifesting as autoimmune side effects across various organ systems. A particularly alarming irAE is life-threatening myocarditis. This rare but severe side effect of ICIs leads to significant long-term cardiac complications, including arrhythmias and heart failure, and has been observed to have a mortality rate of up to 50% in affected patients. This greatly limits the clinical application of ICI-based immunotherapy. In this review, we provide a comprehensive summary of the current knowledge regarding the diagnosis and management of ICI-related myocarditis. We also discuss the utility of preclinical mouse models in understanding and addressing this critical challenge.
Collapse
Affiliation(s)
- Jin-Kui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiao-Ting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yan-Jing Zhang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xue-Mei Chen
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yin-Chan Wang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jia-Yi Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jin-Han Zhou
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shuai-Shuai Yu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Si-Si Wu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
4
|
Zhang R, Yang Y, Li X, Jiao C, Lou M, Mi W, Mao-Ying QL, Chu Y, Wang Y. Exploring Shared Targets in Cancer Immunotherapy and Cancer-Induced Bone Pain: Insights from Preclinical Studies. Cancer Lett 2024:217399. [PMID: 39689823 DOI: 10.1016/j.canlet.2024.217399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/13/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
Cancer casts a profound shadow on global health, with pain emerging as one of the dominant and severe complications, particularly in advanced stages. The effective management of cancer-induced pain remains an unmet need. Emerging preclinical evidence suggests that targets related to tumor immunotherapy may also modulate cancer-related pain pathways, thus offering a promising therapeutic direction. This review, focusing on more than ten molecular targets that link cancer immunotherapy and cancer-induced bone pain, underscores their potential to tackle both aspects in the context of comprehensive cancer care. Emphasizing factors such as types of cancer, drug administration methods, and sex differences in the analgesic efficacy of immunotherapeutic agents provides neuroscientific insights into personalized pain management for patients with cancer.
Collapse
Affiliation(s)
- Ruofan Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Xiang Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Chunmeng Jiao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Mengping Lou
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Wang B, Zhang B, Wu M, Xu T. Unlocking therapeutic potential: Targeting lymphocyte activation Gene-3 (LAG-3) with fibrinogen-like protein 1 (FGL1) in systemic lupus erythematosus. J Transl Autoimmun 2024; 9:100249. [PMID: 39228513 PMCID: PMC11369448 DOI: 10.1016/j.jtauto.2024.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Systemic lupus erythematosus (SLE) represents an autoimmune disorder that affects multiple systems. In the treatment of this condition, the focus primarily revolves around inflammation suppression and immunosuppression. Consequently, targeted therapy has emerged as a prevailing approach. Currently, the quest for highly sensitive and specifically effective targets has gained significant momentum in the context of SLE treatment. Lymphocyte activation gene-3 (LAG-3) stands out as a crucial inhibitory receptor that binds to pMHC-II, thereby effectively dampening autoimmune responses. Fibrinogen-like protein 1 (FGL1) serves as the principal immunosuppressive ligand for LAG-3, and their combined action demonstrates a potent immunosuppressive effect. This intricate mechanism paves the way for potential SLE treatment by targeting LAG-3 with FGL1. This work provides a comprehensive summary of LAG-3's role in the pathogenesis of SLE and elucidates the feasibility of leveraging FGL1 as a therapeutic approach for SLE management. It introduces a novel therapeutic target and opens up new avenues of therapeutic consideration in the clinical context of SLE treatment.
Collapse
Affiliation(s)
- Bing Wang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Biqing Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Min Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Ting Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| |
Collapse
|
6
|
Rong A, Han Z, Zhou M, Nie C, Zhu M, Cheng S, Wang T, Wang J, Quan Z, Wang K, Liu S, Hu X, Wang H, Wang J, Wu Y, Sun X. Respiratory delivery of single low-dose nebulized PFCE-C25 NEs for lymphatic transport and durable stimulation of antitumor immunity in lung cancer. SCIENCE ADVANCES 2024; 10:eadp7561. [PMID: 39612330 PMCID: PMC11606447 DOI: 10.1126/sciadv.adp7561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
The currently available immune checkpoint inhibitors (ICIs) often fail to achieve the desired clinical outcomes due to inadequate immune activation, particularly in patients with lung cancer. To reverse this situation, we synthesized inhalable PFCE-C25 nanoemulsions (NEs), which target lymphocyte activation genes (LAG-3) on immune cells within tumor microenvironment and tumor-draining lymph nodes (TDLNs). By combining in vivo 19F-MR molecular imaging, we investigate the immunological effects of a single low-dose PFCE-C25 NEs in multiple murine lung cancer models, including human immune system (HIS) mouse models, and validated its immunological effects in human TDLNs. The nebulization therapy with PFCE-C25 NEs demonstrated a notable and enduring maturation of dendritic cells (DCs) in TDLNs, leading to systemic immune responses, prolonged survival, the establishment of immune memory, and resistance to tumor rechallenge. Thus, PFCE-C25 NEs successfully demonstrate a promising and efficient approach for enhancing lymphatic transport and sustained activation of antitumor immune responses in lung cancer.
Collapse
Affiliation(s)
- Rong A
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Zhaoguo Han
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Meifang Zhou
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Chaoqun Nie
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Mengyuan Zhu
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Sijie Cheng
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Tianyi Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Jing Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Zhen Quan
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Kaiqi Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Shanshan Liu
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Xinxin Hu
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Haoyu Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Jiannan Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Yongyi Wu
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Xilin Sun
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Kim D, Kim G, Yu R, Lee J, Kim S, Gleason MR, Qiu K, Montauti E, Wang LL, Fang D, Choi J, Chandel NS, Weinberg S, Min B. Inhibitory co-receptor Lag3 supports Foxp3 + regulatory T cell function by restraining Myc-dependent metabolic programming. Immunity 2024; 57:2634-2650.e5. [PMID: 39236718 DOI: 10.1016/j.immuni.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024]
Abstract
Lymphocyte activation gene 3 (Lag3) is an inhibitory co-receptor expressed on activated T cells and has been proposed to regulate regulatory T (Treg) cell function. However, its precise modality and mechanisms remain elusive. We generated Treg cell-specific Lag3-mutant mouse models and found that Lag3 was essential for Treg cell control of autoimmunity. RNA sequencing analysis revealed that Lag3 mutation altered genes associated with metabolic processes, especially Myc target genes. Myc expression in Lag3-mutant Treg cells was increased to the level seen in conventional T helper (Th)1-type effector cells and directly correlated with their metabolic profiles and in vivo suppressive functions. The phosphatidylinositol 3-kinase (PI3K)-Akt-Rictor pathway was activated in Lag3-mutant Treg cells, and inhibiting PI3K, Rictor, or lactate dehydrogenase A (Ldha), a key Myc target enzyme converting pyruvate to lactate, was sufficient to restore normal metabolism and suppressive function in Lag3-mutant Treg cells. These findings indicate that Lag3 supports Treg cell suppression partly by tuning Myc-dependent metabolic programming.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Giha Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rongzhen Yu
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Juyeun Lee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mia R Gleason
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kevin Qiu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elena Montauti
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Li Lily Wang
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Samuel Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Zhang A, Fan T, Liu Y, Yu G, Li C, Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol Cancer 2024; 23:251. [PMID: 39516941 PMCID: PMC11545879 DOI: 10.1186/s12943-024-02156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Regulatory T cells (Tregs), an essential component of the human immune system, are a heterogeneous group of T lymphocytes with the ability to suppress immune responses and maintain immune homeostasis. Recent evidence indicates that Tregs may impair antitumor immunity and facilitate cancer progression by weakening functions of effector T cells (Teffs). Consequently, targeting Tregs to eliminate them from tumor microenvironments to improve Teffs' activity could emerge as an effective strategy for cancer immunotherapy. This review outlines the biology of Tregs, detailing their origins, classification, and crucial markers. Our focus lies on the complex role of Tregs in cancer's development, progression and treatment, particularly on their suppressive role upon antitumor responses via multiple mechanisms. We delve into Tregs' involvement in immune checkpoint blockade (ICB) therapy, their dual effect on cancer immunotherapy and their potential biomarkers for ICB therapy effectiveness. We also summarize advances in the therapies that adjust Tregs to optimize ICB therapy, which may be crucial for devising innovative cancer treatment strategies.
Collapse
Affiliation(s)
- An Zhang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guanhua Yu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Bradford HF, Mauri C. Diversity of regulatory B cells: Markers and functions. Eur J Immunol 2024; 54:e2350496. [PMID: 39086053 DOI: 10.1002/eji.202350496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Regulatory B cells (Bregs) are a functionally distinct B-cell subset involved in the maintenance of homeostasis and inhibition of inflammation. Studies, from the last two decades, have increased our understanding of cellular and molecular mechanisms involved in their generation, function, and to a certain extent phenotype. Current research endeavours to unravel the causes and consequences of Breg defects in disease, with increasing evidence highlighting the relevance of Bregs in promoting tumorigenic responses. Here we provide historical and emerging findings of the significance of Bregs in autoimmunity and transplantation, and how these insights have translated into the cancer field.
Collapse
Affiliation(s)
- Hannah F Bradford
- Division of Infection and Immunity and Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| | - Claudia Mauri
- Division of Infection and Immunity and Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| |
Collapse
|
10
|
Xu C. CRISPR/Cas9-mediated knockout strategies for enhancing immunotherapy in breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8561-8601. [PMID: 38907847 DOI: 10.1007/s00210-024-03208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Breast cancer, a prevalent disease with significant mortality rates, often presents treatment challenges due to its complex genetic makeup. This review explores the potential of combining Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene knockout strategies with immunotherapeutic approaches to enhance breast cancer treatment. The CRISPR/Cas9 system, renowned for its precision in inducing genetic alterations, can target and eliminate specific cancer cells, thereby minimizing off-target effects. Concurrently, immunotherapy, which leverages the immune system's power to combat cancer, has shown promise in treating breast cancer. By integrating these two strategies, we can potentially augment the effectiveness of immunotherapies by knocking out genes that enable cancer cells to evade the immune system. However, safety considerations, such as off-target effects and immune responses, necessitate careful evaluation. Current research endeavors aim to optimize these strategies and ascertain the most effective methods to stimulate the immune response. This review provides novel insights into the integration of CRISPR/Cas9-mediated knockout strategies and immunotherapy, a promising avenue that could revolutionize breast cancer treatment as our understanding of the immune system's interplay with cancer deepens.
Collapse
Affiliation(s)
- Chenchen Xu
- Department of Gynecology and Obstetrics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
11
|
Martín-Escolano R, Virseda-Berdices A, Berenguer J, González-García J, Brochado-Kith O, Fernández-Rodríguez A, Díez C, Hontañon V, Resino S, Jiménez-Sousa MÁ. Low plasma levels of BTLA and LAG-3 before HCV therapy are associated with metabolic disorders after HCV eradication in persons with HIV/HCV coinfection: a retrospective study. Front Pharmacol 2024; 15:1341612. [PMID: 39530457 PMCID: PMC11551606 DOI: 10.3389/fphar.2024.1341612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Background Understanding the predictors of metabolic disorders in persons with HIV/HCV coinfection post-HCV therapy is crucial for improving patient outcomes. Since immune checkpoint proteins are usually upregulated in these persons with HIV/HCV coinfection, we aimed to evaluate the association between plasma immune checkpoint proteins at baseline (before HCV therapy) and metabolic disturbances during the follow-up (about 5 years after successful HCV treatment) in persons with HIV/HCV coinfection. Methods We performed a retrospective study on 80 persons with HIV/HCV coinfection with advanced fibrosis or cirrhosis who cleared HCV infection after successful HCV therapy and were followed for about 5 years after completion of HCV treatment. Plasma samples were collected at baseline. Immune checkpoint proteins were analyzed using a Luminex 200™ analyzer. Outcomes were the development of a metabolic event (type 2 diabetes mellitus and/or dyslipidemia) and the change in Triglycerides and glucose (TyG) index. Results During follow-up, 21 (26%) patients developed metabolic events (type 2 diabetes mellitus/dyslipidemia), and 29 (46.0%) patients had an increase in TyG during the follow-up. Low baseline values of BTLA and LAG-3, two immune checkpoint proteins, were associated with the development of metabolic events (aAMR = 0.69 and aAMR = 0.71, respectively) and with increases in TyG values (aAMR = 0.72 and aAMR = 0.70, respectively). In addition, other immune checkpoint proteins were also inversely associated with increases in TyG. Conclusion We discovered that low plasma levels of BTLA and LAG-3 before HCV therapy significantly correlate with an increased risk of developing metabolic disorders after treatment.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Centro Nacional de Microbiología (CNM), Unidad de Infección Viral e Inmunidad, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ana Virseda-Berdices
- Centro Nacional de Microbiología (CNM), Unidad de Infección Viral e Inmunidad, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan Berenguer
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario “Gregorio Marañón”, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Juan González-García
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Servicio de Medicina Interna-Unidad de VIH, Hospital Universitario La Paz, Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - Oscar Brochado-Kith
- Centro Nacional de Microbiología (CNM), Unidad de Infección Viral e Inmunidad, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Centro Nacional de Microbiología (CNM), Unidad de Infección Viral e Inmunidad, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Cristina Díez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario “Gregorio Marañón”, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Victor Hontañon
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Servicio de Medicina Interna-Unidad de VIH, Hospital Universitario La Paz, Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - Salvador Resino
- Centro Nacional de Microbiología (CNM), Unidad de Infección Viral e Inmunidad, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Ángeles Jiménez-Sousa
- Centro Nacional de Microbiología (CNM), Unidad de Infección Viral e Inmunidad, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
12
|
Toledo-Stuardo K, Ribeiro CH, González-Herrera F, Matthies DJ, Le Roy MS, Dietz-Vargas C, Latorre Y, Campos I, Guerra Y, Tello S, Vásquez-Sáez V, Novoa P, Fehring N, González M, Rodríguez-Siza J, Vásquez G, Méndez P, Altamirano C, Molina MC. Therapeutic antibodies in oncology: an immunopharmacological overview. Cancer Immunol Immunother 2024; 73:242. [PMID: 39358613 PMCID: PMC11448508 DOI: 10.1007/s00262-024-03814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024]
Abstract
The biotechnological development of monoclonal antibodies and their immunotherapeutic use in oncology have grown exponentially in the last decade, becoming the first-line therapy for some types of cancer. Their mechanism of action is based on the ability to regulate the immune system or by interacting with targets that are either overexpressed in tumor cells, released into the extracellular milieu or involved in processes that favor tumor growth. In addition, the intrinsic characteristics of each subclass of antibodies provide specific effector functions against the tumor by activating antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, among other mechanisms. The rational design and engineering of monoclonal antibodies have improved their pharmacokinetic and pharmacodynamic features, thus optimizing the therapeutic regimens administered to cancer patients and improving their clinical outcomes. The selection of the immunoglobulin G subclass, modifications to its crystallizable region (Fc), and conjugation of radioactive substances or antineoplastic drugs may all improve the antitumor effects of therapeutic antibodies. This review aims to provide insights into the immunological and pharmacological aspects of therapeutic antibodies used in oncology, with a rational approach at molecular modifications that can be introduced into these biological tools, improving their efficacy in the treatment of cancer.
Collapse
Affiliation(s)
- Karen Toledo-Stuardo
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Carolina H Ribeiro
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Fabiola González-Herrera
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Douglas J Matthies
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - María Soledad Le Roy
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Claudio Dietz-Vargas
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Yesenia Latorre
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ivo Campos
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Yuneisy Guerra
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Samantha Tello
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Valeria Vásquez-Sáez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Pedro Novoa
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Nicolás Fehring
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Mauricio González
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Jose Rodríguez-Siza
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Gonzalo Vásquez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Pamela Méndez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro Regional de Estudio en Alimentos Saludables, Valparaíso, Chile
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago, Chile
| | - María Carmen Molina
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile.
| |
Collapse
|
13
|
Horikawa M, Masuda K, Takahashi H, Tada H, Tomidokoro Y, Motegi M, Oyama T, Takeda S, Chikamatsu K. Tumor antigen‑specific interleukin‑10‑producing T‑cell response in patients with head and neck squamous cell carcinoma. Oncol Lett 2024; 28:456. [PMID: 39100998 PMCID: PMC11294976 DOI: 10.3892/ol.2024.14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Interleukin-10 (IL-10) is a highly pleiotropic cytokine that regulates immunological homeostasis through anti-inflammatory and/or immunostimulatory functions. Moreover, IL-10 is well known to exert diverse roles in tumor immunology and immunotherapy. The present study investigated the presence of circulating tumor antigen-specific IL-10-producing T cells in patients with head and neck squamous cell carcinoma (HNSCC), and determined factors that may influence the immunodynamics of IL-10-producing T cells. In vitro, peripheral blood mononuclear cells (PBMCs) stimulated with the tumor antigens p53 and MAGE-A4 were evaluated for interferon (IFN)-γ/IL-10 production using the IFN-γ/IL-10 double-color enzyme-linked immunosorbent spot assay. The proportion of T cells expressing immune checkpoint molecules in PBMCs was analyzed using flow cytometry. Of the 18 patients with HNSCC, 2 (11.1%) and 9 (50.0%) exhibited p53-specific IFN-γ and IL-10 production, respectively. Meanwhile, MAGE-A4-specific IFN-γ and IL-10 production was detected in 4 (28.6%) and 7 (50.0%) of 14 patients. In the p53-specific responses, IL-10-producing T cells were observed in significantly more patients than IFN-γ producing T cells (P=0.0275). In both CD4+ and CD8+ T cells, the proportion of T cells expressing lymphocyte activation gene-3 (Lag-3) was significantly lower in patients with p53-specific IL-10 production than in those without. In certain patients, Lag-3 blockade enhanced tumor antigen-specific IL-10. Taken together, the present study successfully demonstrated that tumor antigen-specific IL-10-producing T cells exist in the peripheral blood of patients with HNSCC and that Lag-3+ T cells may serve an important role in modulating IL-10-producing T cells. These findings provide novel insights into the roles of IL-10 and Lag-3 in mediating antitumor immune responses.
Collapse
Affiliation(s)
- Momoka Horikawa
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Kei Masuda
- Department of Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hideyuki Takahashi
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroe Tada
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Yuichi Tomidokoro
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Masaomi Motegi
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Tetsunari Oyama
- Department of Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Shigeki Takeda
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Kazuaki Chikamatsu
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
14
|
Yadav R, Khatkar R, Yap KCH, Kang CYH, Lyu J, Singh RK, Mandal S, Mohanta A, Lam HY, Okina E, Kumar RR, Uttam V, Sharma U, Jain M, Prakash H, Tuli HS, Kumar AP, Jain A. The miRNA and PD-1/PD-L1 signaling axis: an arsenal of immunotherapeutic targets against lung cancer. Cell Death Discov 2024; 10:414. [PMID: 39343796 PMCID: PMC11439964 DOI: 10.1038/s41420-024-02182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Lung cancer is a severe challenge to the health care system with intrinsic resistance to first and second-line chemo/radiotherapies. In view of the sterile environment of lung cancer, several immunotherapeutic drugs including nivolumab, pembrolizumab, atezolizumab, and durvalumab are currently being used in clinics globally with the intention of releasing exhausted T-cells back against refractory tumor cells. Immunotherapies have a limited response rate and may cause immune-related adverse events (irAEs) in some patients. Hence, a deeper understanding of regulating immune checkpoint interactions could significantly enhance lung cancer treatments. In this review, we explore the role of miRNAs in modulating immunogenic responses against tumors. We discuss various aspects of how manipulating these checkpoints can bias the immune system's response against lung cancer. Specifically, we examine how altering the miRNA profile can impact the activity of various immune checkpoint inhibitors, focusing on the PD-1/PD-L1 pathway within the complex landscape of lung cancer. We believe that a clear understanding of the host's miRNA profile can influence the efficacy of checkpoint inhibitors and significantly contribute to existing immunotherapies for lung cancer patients. Additionally, we discuss ongoing clinical trials involving immunotherapeutic drugs, both as standalone treatments and in combination with other therapies, intending to advance the development of immunotherapy for lung cancer.
Collapse
Affiliation(s)
- Ritu Yadav
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Rinku Khatkar
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Kenneth C-H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chloe Yun-Hui Kang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Juncheng Lyu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rahul Kumar Singh
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Surojit Mandal
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Adrija Mohanta
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rajiv Ranjan Kumar
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Vivek Uttam
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Uttam Sharma
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | | | | | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Aklank Jain
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
15
|
Li C, Yu X, Han X, Lian C, Wang Z, Shao S, Shao F, Wang H, Ma S, Liu J. Innate immune cells in tumor microenvironment: A new frontier in cancer immunotherapy. iScience 2024; 27:110750. [PMID: 39280627 PMCID: PMC11399700 DOI: 10.1016/j.isci.2024.110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Innate immune cells, crucial in resisting infections and initiating adaptive immunity, play diverse and significant roles in tumor development. These cells, including macrophages, granulocytes, dendritic cells (DCs), innate lymphoid cells, and innate-like T cells, are pivotal in the tumor microenvironment (TME). Innate immune cells are crucial components of the TME, based on which various immunotherapy strategies have been explored. Immunotherapy strategies, such as novel immune checkpoint inhibitors, STING/CD40 agonists, macrophage-based surface backpack anchoring, ex vivo polarization approaches, DC-based tumor vaccines, and CAR-engineered innate immune cells, aim to enhance their anti-tumor potential and counteract cancer-induced immunosuppression. The proximity of innate immune cells to tumor cells in the TME also makes them excellent drug carriers. In this review, we will first provide a systematic overview of innate immune cells within the TME and then discuss innate cell-based therapeutic strategies. Furthermore, the research obstacles and perspectives within the field will also be addressed.
Collapse
Affiliation(s)
- Changhui Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xinyu Yu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xinyan Han
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Chen Lian
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Zijin Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Fangwei Shao
- National Key Laboratory of Biobased Transportation Fuel Technology, ZJU-UIUC Institute, Zhejiang University, Hangzhou 310027, China
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shenglin Ma
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Hoshi R, Gorospe KA, Labouta HI, Azad T, Lee WL, Thu KL. Alternative Strategies for Delivering Immunotherapeutics Targeting the PD-1/PD-L1 Immune Checkpoint in Cancer. Pharmaceutics 2024; 16:1181. [PMID: 39339217 PMCID: PMC11434872 DOI: 10.3390/pharmaceutics16091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
The programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint constitutes an inhibitory pathway best known for its regulation of cluster of differentiation 8 (CD8)+ T cell-mediated immune responses. Engagement of PD-L1 with PD-1 expressed on CD8+ T cells activates downstream signaling pathways that culminate in T cell exhaustion and/or apoptosis. Physiologically, these immunosuppressive effects exist to prevent autoimmunity, but cancer cells exploit this pathway by overexpressing PD-L1 to facilitate immune escape. Intravenously (IV) administered immune checkpoint inhibitors (ICIs) that block the interaction between PD-1/PD-L1 have achieved great success in reversing T cell exhaustion and promoting tumor regression in various malignancies. However, these ICIs can cause immune-related adverse events (irAEs) due to off-tumor toxicities which limits their therapeutic potential. Therefore, considerable effort has been channeled into exploring alternative delivery strategies that enhance tumor-directed delivery of PD-1/PD-L1 ICIs and reduce irAEs. Here, we briefly describe PD-1/PD-L1-targeted cancer immunotherapy and associated irAEs. We then provide a detailed review of alternative delivery approaches, including locoregional (LDD)-, oncolytic virus (OV)-, nanoparticle (NP)-, and ultrasound and microbubble (USMB)-mediated delivery that are currently under investigation for enhancing tumor-specific delivery to minimize toxic off-tumor effects. We conclude with a commentary on key challenges associated with these delivery methods and potential strategies to mitigate them.
Collapse
Affiliation(s)
- Ryunosuke Hoshi
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Kristyna A. Gorospe
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Hagar I. Labouta
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Leslie Dan Faculty of Pharmacy, University of Toronto, St. George Campus, Toronto, ON M5S 3M2, Canada
- Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, St. George Campus, Toronto, ON M5S 3E2, Canada
| | - Taha Azad
- Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Health Campus, Sherbrooke, QC J1K 2R1, Canada;
- Research Center, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1J 3H5, Canada
| | - Warren L. Lee
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Biochemistry, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada
- Medicine and the Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| |
Collapse
|
17
|
Naumov SS, Tashireva LA, Krakhmal NV, Vtorushin SV. Evaluation of immune-checkpoint molecules in dMMR/pMMR colorectal cancer by multiplex immunohistochemistry. Clin Transl Oncol 2024:10.1007/s12094-024-03691-2. [PMID: 39240301 DOI: 10.1007/s12094-024-03691-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE Colorectal cancer is the most common malignancy worldwide. A number of pathological and molecular genetic criteria are currently used as predictors of the disease. They include assessment of MMR deficiency or MSI/MSS status, which among others, determine the immunogenicity of the tumor. In this regard, the evaluation of PD-L1, CTLA-4, and LAG-3 immune checkpoint molecules in different tumor compartments according to MMR status deserves special attention. METHODS Multiplex immunohistochemistry was used to evaluate the expression of immune checkpoint molecules in the tumor core and at the invasive margin. RESULTS Data analysis showed the predominance of PD-L1 (p = 0.011), CTLA-4 (p = 0.004), and LAG-3 (p = 0.013) expression at the invasive margin of dMMR carcinomas compared to pMMR samples. Quantitative analysis of TILs population in the tumor core and at the invasive margin allowed establishment of the predominance of CD3+ and CD8+ lymphocytes at the invasive margin of dMMR carcinomas. Study of the CD163+ macrophages population in the same tumor compartments revealed the predominance of the studied TAMs in the core and at the invasive margin of dMMR carcinomas and the predominance of CD163+ macrophages with PD-L1-phenotype in the tumor stroma. CONCLUSION This study revealed a significant predominance of PD-L1, CTLA-4, LAG-3, and CD 3+ ,CD8+ lymphocytes in dMMR colorectal carcinomas. Further research on the immune landscape in different tumor compartments will likely have high prognostic value for CRC patients, as it might expand the criteria for prescribing immunotherapy.
Collapse
Affiliation(s)
| | - Liubov Alexandrovna Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences , Tomsk, 634009, Russia
| | - Nadezhda Valerievna Krakhmal
- Siberian State Medical University, Tomsk, 634050, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences , Tomsk, 634009, Russia
| | - Sergey Vladimirovich Vtorushin
- Siberian State Medical University, Tomsk, 634050, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences , Tomsk, 634009, Russia
| |
Collapse
|
18
|
Vilela T, Valente S, Correia J, Ferreira F. Advances in immunotherapy for breast cancer and feline mammary carcinoma: From molecular basis to novel therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189144. [PMID: 38914239 DOI: 10.1016/j.bbcan.2024.189144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
The role of inflammation in cancer is a topic that has been investigated for many years. As established, inflammation emerges as a defining characteristic of cancer, presenting itself as a compelling target for therapeutic interventions in the realm of oncology. Controlling the tumor microenvironment (TME) has gained paramount significance, modifying not only the effectiveness of immunotherapy but also modulating the outcomes and prognoses of standard chemotherapy and other anticancer treatments. Immunotherapy has surfaced as a central focus within the domain of tumor treatments, using immune checkpoint inhibitors as cancer therapy. Immune checkpoints and their influence on the tumor microenvironment dynamic are presently under investigation, aiming to ascertain their viability as therapeutic interventions across several cancer types. Cancer presents a significant challenge in humans and cats, where female breast cancer ranks as the most prevalent malignancy and feline mammary carcinoma stands as the third most frequent. This review seeks to summarize the data about the immune checkpoints cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), programmed cell death protein-1 (PD-1), V-domain Ig suppressor of T cell activation (VISTA), and T-cell immunoglobulin and mucin domain 3 (TIM-3) respective ongoing investigations as prospective targets for therapy for human breast cancer, while also outlining findings from studies reported on feline mammary carcinoma (FMC), strengthening the rationale for employing FMC as a representative model in the exploration of human breast cancer.
Collapse
Affiliation(s)
- Tatiana Vilela
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Sofia Valente
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Jorge Correia
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; CIISA-Center of Interdisciplinary Research in Animal Health, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Fernando Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; CIISA-Center of Interdisciplinary Research in Animal Health, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal.
| |
Collapse
|
19
|
Xiao Y, Zheng P, Xu W, Wu Z, Zhang X, Wang R, Huang T, Ming J. Progesterone receptor impairs immune respond and down-regulates sensitivity to anti-LAG3 in breast cancer. Transl Res 2024; 271:68-78. [PMID: 38795691 DOI: 10.1016/j.trsl.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/09/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Progesterone receptor (PR) serves as a crucial prognostic and predictive marker in breast cancer. Nonetheless, the interplay between PR and the tumor immune microenvironment remains inadequately understood. This investigation employs bioinformatics analyses, mouse models, and clinical specimens to elucidate the impact of PR on immune microenvironment and identify potential targets for immunotherapy, furnishing valuable guidance for clinical practice. METHODS Analysis of immune infiltration score by Xcell between PR-positive and PR-negative breast cancer tumors. Construction of overexpression mouse progesterone receptor (mPgr) EMT-6 cell was to explore the tumor immune microenvironment. Furthermore, anti- Lymphocyte-activation gene 3 (LAG3) therapy aimed to investigate whether PR could influence the effectiveness of immune treatments. RESULTS Overexpression mPgr inhibited tumor growth in vitro, but promoted tumor growth in Balb/c mouse. Flow cytometry showed that the proportion and cytotoxicity of CD8+T cells in tumor of overexpressing mPgr group were significantly reduced. The significant reduction in overexpressing mPgr group was found in the proportions of LAG3+CD8+ T cells and LAG3+ Treg T cells. Anti-LAG3 treatment resulted in reduced tumor growth in EV group mouse rather than in overexpressing mPgr group. Patents derived tumor fragment (PDTF) also showed higher anti-tumor ability of CD3+T cell in patents' tumor with PR <20% after anti-human LAG3 treatment in vitro. CONCLUSIONS The mPgr promotes tumor growth by downregulating the infiltration and function of cytotoxic cell. LAG3 may be a target of ER-positive breast cancer immunotherapy. The high expression of PR hinders the sensitivity to anti-LAG3 treatment.
Collapse
Affiliation(s)
- Yunxiao Xiao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Peng Zheng
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Wenjie Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Zhenghao Wu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Ximeng Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Rong Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China.
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China.
| |
Collapse
|
20
|
Agostini M, Traldi P, Hamdan M. Proteomic Investigation of Immune Checkpoints and Some of Their Inhibitors. Int J Mol Sci 2024; 25:9276. [PMID: 39273224 PMCID: PMC11395526 DOI: 10.3390/ijms25179276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Immune checkpoints are crucial molecules for the maintenance of antitumor immune responses. The activation or inhibition of these molecules is dependent on the interactions between receptors and ligands; such interactions can provide inhibitory or stimulatory signals to the various components of the immune system. Over the last 10 years, the inhibition of immune checkpoints, such as cytotoxic T lymphocyte antigen-4, programmed cell death-1, and programmed cell death ligand-1, has taken a leading role in immune therapy. This relatively recent therapy regime is based on the use of checkpoint inhibitors, which enhance the immune response towards various forms of cancer. For a subset of patients with specific forms of cancer, these inhibitors can induce a durable response to therapy; however, the medium response rate to such therapy remains relatively poor. Recent research activities have demonstrated that the disease response to this highly promising therapy resembles the response of many forms of cancer to chemotherapy, where an encouraging initial response is followed by acquired resistance to treatment and progress of the disease. That said, these inhibitors are now used as single agents or in combination with chemotherapies as first or second lines of treatment for about 50 types of cancer. The prevailing opinion regarding immune therapy suggests that for this approach of therapy to deliver on its promise, a number of challenges have to be circumvented. These challenges include understanding the resistance mechanisms to immune checkpoint blockade, the identification of more efficient inhibitors, extending their therapeutic benefits to a wider audience of cancer patients, better management of immune-related adverse side effects, and, more urgently the identification of biomarkers, which would help treating oncologists in the identification of patients who are likely to respond positively to the immune therapies and, last but not least, the prices of therapy which can be afforded by the highest number of patients. Numerous studies have demonstrated that understanding the interaction between these checkpoints and the immune system is essential for the development of efficient checkpoint inhibitors and improved immune therapies. In the present text, we discuss some of these checkpoints, their inhibitors, and some works in which mass spectrometry-based proteomic analyses were applied.
Collapse
Affiliation(s)
- Marco Agostini
- Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35100 Padova, Italy
| | - Pietro Traldi
- Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35100 Padova, Italy
| | - Mahmoud Hamdan
- Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35100 Padova, Italy
| |
Collapse
|
21
|
Zhang W, Fu J, Du J, Liu X, Cheng J, Wei C, Xu Y, Fu J. A disintegrin and metalloproteinase domain 10 expression inhibition by the small molecules adenosine, cordycepin and N6, N6-dimethyladenosine and immune regulation in malignant cancers. Front Immunol 2024; 15:1434027. [PMID: 39211038 PMCID: PMC11357967 DOI: 10.3389/fimmu.2024.1434027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
A disintegrin and metalloproteinase domain 10 (ADAM10), a member of the ADAM family, is a cellular surface protein with potential adhesion and protease/convertase functions. The expression regulations in cancers by natural products [adenosine (AD) and its analogs, cordycepin (CD), and N6, N6-dimethyladenosine (m6 2A)], and immune regulation are unclear. As results, AD, CD, and m6 2A inhibited ADAM10 expression in various cancer cell lines, indicating their roles in anti-cancer agents. Further molecular docking with ADAM10 protein found the binding energies of all docking groups were <-7 kcal/mol for all small-molecules (AD, CD and m6 2A), suggesting very good binding activities. In addition, analysis of the immunomodulatory roles in cancer showed that ADAM10 was negatively correlated with immunomodulatory genes such as CCL27, CCL14, CCL25, CXCR5, HLA-B, HLA-DOB1, LAG3, TNFRSF18, and TNFRSF4 in bladder urothelial carcinoma, thymoma, breast invasive carcinoma, TGCT, kidney renal papillary cell carcinoma, SKCM and thyroid carcinoma, indicating the immune-promoting roles for ADAM10. LAG3 mRNA levels were reduced by both AD and CD in vivo. ADAM10 is also negatively associated with tumor immunosuppression and interrelated with the immune infiltration of tumors. Overall, the present study determined ADAM10 expression by AD, CD and m6 2A, and in AD or CD/ADAM10/LAG3 signaling in cancers, and suggested a potential method for immunotherapy of cancers by targeting ADAM10 using the small molecules AD, CD and m6 2A.
Collapse
Affiliation(s)
- Wenqian Zhang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiaman Du
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Youhua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
22
|
Ding L, Wang F, Wang Z, Pan Y, Liu T, Cheng L, Liu W, Ding K, Zhu H, Yang Z. Construction of [ 89Zr]Zr-Labeled HuL13 for ImmunoPET Imaging of LAG-3 Checkpoint Expression on Tumor-Infiltrating T Cells. Mol Pharm 2024; 21:3992-4003. [PMID: 38941565 DOI: 10.1021/acs.molpharmaceut.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Lymphocyte activation gene 3 (LAG-3) has attracted much attention as a potentially valuable immune checkpoint. Individual identification of LAG-3 expression at screening and during treatment could improve the successful implementation of anti-LAG-3 therapies. HuL13 is a human IgG1 monoclonal antibody that binds to the LAG-3 receptor in T cells. Here, we used [89Zr]Zr-labeled HuL13 to delineate LAG-3+ T-cell infiltration into tumors via positron emission tomography (PET) imaging. A549/LAG-3 cells, which stably express LAG-3, were generated by infection with lentivirus. The uptake of [89Zr]Zr-DFO-HuL13 in A549/LAG-3 cells was greater than that in the negative control (A549/NC) cells at each time point. The equilibrium dissociation constant (Kd) of [89Zr]Zr-DFO-HuL13 for the LAG-3 receptor was 8.22 nM. PET imaging revealed significant uptake in the tumor areas of A549/LAG-3 tumor-bearing mice from 24 h after injection (SUVmax = 2.43 ± 0.06 at 24 h). As a proof of concept, PET imaging of the [89Zr]Zr-DFO-HuL13 tracer was further investigated in an MC38 tumor-bearing humanized LAG-3 mouse model. PET imaging revealed that the [89Zr]Zr-DFO-HuL13 tracer specifically targets human LAG-3 expressed on tumor-infiltrating lymphocytes (TILs). In addition to the tumors, the spleen was also noticeably visible. Tumor uptake of the [89Zr]Zr-DFO-HuL13 tracer was lower than its uptake in the spleen, but high uptake in the spleen could be reduced by coinjection of unlabeled antibodies. Coinjection of unlabeled antibodies increases tracer activity in the blood pool, thereby improving tumor uptake. Dosimetry evaluation of the healthy mouse models revealed that the highest absorbed radiation dose was in the spleen, followed by the liver and heart wall. In summary, these studies demonstrate the feasibility of using the [89Zr]Zr-DFO-HuL13 tracer for the detection of LAG-3 expression on TILs. Further clinical evaluation of the [89Zr]Zr-DFO-HuL13 tracer may be of significant help in the stratification and management of patients suitable for anti-LAG-3 therapy.
Collapse
Affiliation(s)
- Lixin Ding
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Feng Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zilei Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yongxiang Pan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Teli Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Liansheng Cheng
- Hefei HankeMab Biotechnology Limited, Hefei, Anhui 230088, China
| | - Wenting Liu
- Hefei HankeMab Biotechnology Limited, Hefei, Anhui 230088, China
| | - Kuke Ding
- Office for Public Health Management, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
23
|
Chavanton A, Mialhe F, Abrey J, Baeza Garcia A, Garrido C. LAG-3 : recent developments in combinational therapies in cancer. Cancer Sci 2024; 115:2494-2505. [PMID: 38702996 PMCID: PMC11309939 DOI: 10.1111/cas.16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
The study of anticancer immune responses and in particular the action of immune checkpoint inhibitors that overcome T cell inhibition has revolutionized metastatic patients' care. Unfortunately, many patients are resistant to these innovative immunotherapies. Over the last decade, several immune checkpoint inhibitors, currently available in the clinic, have been developed, such as anti-PD-1/PD-L1 or anti-CTLA-4. More recently, other immune checkpoints have been characterized, among them lymphocyte activation gene 3 (LAG-3). LAG-3 has been the subject of numerous therapeutic studies and may be involved in cancer-associated immune resistance phenomena. This review summarizes the latest knowledge on LAG-3 as an immunotherapeutic target, particularly in combination with standard or innovative therapies. Indeed, many studies are looking at combining LAG-3 inhibitors with chemotherapeutic, immunotherapeutic, radiotherapeutic treatments, or adoptive cell therapies to potentiate their antitumor effects and/or to overcome patients' resistance. We will particularly focus on the association therapies that are currently in phase III clinical trials and innovative combinations in preclinical phase. These new discoveries highlight the possibility of developing other types of therapeutic combinations currently unavailable in the clinic, which could broaden the therapeutic spectrum of personalized medicine.
Collapse
Affiliation(s)
- Aude Chavanton
- INSERM, UMR 1231Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer »DijonFrance
- Faculty of MedicineUniversité de BourgogneDijonFrance
| | - Flavie Mialhe
- INSERM, UMR 1231Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer »DijonFrance
- Faculty of MedicineUniversité de BourgogneDijonFrance
| | - Jimena Abrey
- INSERM, UMR 1231Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer »DijonFrance
- Faculty of MedicineUniversité de BourgogneDijonFrance
| | - Alvaro Baeza Garcia
- INSERM, UMR 1231Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer »DijonFrance
- Faculty of MedicineUniversité de BourgogneDijonFrance
| | - Carmen Garrido
- INSERM, UMR 1231Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer »DijonFrance
- Faculty of MedicineUniversité de BourgogneDijonFrance
- Center for Cancer Georges‐François LeclercDijonFrance
| |
Collapse
|
24
|
Godakhindi V, Tarannum M, Dam SK, Vivero-Escoto JL. Mesoporous Silica Nanoparticles as an Ideal Platform for Cancer Immunotherapy: Recent Advances and Future Directions. Adv Healthc Mater 2024; 13:e2400323. [PMID: 38653190 PMCID: PMC11305940 DOI: 10.1002/adhm.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Cancer immunotherapy recently transforms the traditional approaches against various cancer malignancies. Immunotherapy includes systemic and local treatments to enhance immune responses against cancer and involves strategies such as immune checkpoints, cancer vaccines, immune modulatory agents, mimetic antigen-presenting cells, and adoptive cell therapy. Despite promising results, these approaches still suffer from several limitations including lack of precise delivery of immune-modulatory agents to the target cells and off-target toxicity, among others, that can be overcome using nanotechnology. Mesoporous silica nanoparticles (MSNs) are investigated to improve various aspects of cancer immunotherapy attributed to the advantageous structural features of this nanomaterial. MSNs can be engineered to alter their properties such as size, shape, porosity, surface functionality, and adjuvanticity. This review explores the immunological properties of MSNs and the use of MSNs as delivery vehicles for immune-adjuvants, vaccines, and mimetic antigen-presenting cells (APCs). The review also details the current strategies to remodel the tumor microenvironment to positively reciprocate toward the anti-tumor immune cells and the use of MSNs for immunotherapy in combination with other anti-tumor therapies including photodynamic/thermal therapies to enhance the therapeutic effect against cancer. Last, the present demands and future scenarios for the use of MSNs for cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Varsha Godakhindi
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Mubin Tarannum
- Division of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Sudip Kumar Dam
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Juan L Vivero-Escoto
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
25
|
Buehning F, Lerchner T, Vogel J, Hendgen-Cotta UB, Totzeck M, Rassaf T, Michel L. Preclinical models of cardiotoxicity from immune checkpoint inhibitor therapy. Basic Res Cardiol 2024:10.1007/s00395-024-01070-0. [PMID: 39039301 DOI: 10.1007/s00395-024-01070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Immune checkpoint inhibitor (ICI) therapy represents a ground-breaking paradigm in cancer treatment, harnessing the immune system to combat malignancies by targeting checkpoints such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). The use of ICI therapy generates distinctive immune-related adverse events (irAEs) including cardiovascular toxicity, necessitating targeted research efforts. This comprehensive review explores preclinical models dedicated to ICI-mediated cardiovascular complications including myocarditis. Tailored preclinical models of ICI-mediated myocardial toxicities highlight the key role of CD8+ T cells, emphasizing the profound impact of immune checkpoints on maintaining cardiac integrity. Cytokines and macrophages were identified as possible driving factors in disease progression, and at the same time, initial data on possible cardiac antigens responsible are emerging. The implications of contributing factors including thoracic radiation, autoimmune disorder, and the presence of cancer itself are increasingly understood. Besides myocarditis, mouse models unveiled an accelerated progression of atherosclerosis, adding another layer for a thorough understanding of the diverse processes involving cardiovascular immune checkpoint signalling. This review aims to discuss current preclinical models of ICI cardiotoxicity and their potential for improving enhanced risk assessment and diagnostics, offering potential targets for innovative cardioprotective strategies. Lessons from ICI therapy can drive novel approaches in cardiovascular research, extending insights to areas such as myocardial infarction and heart failure.
Collapse
Affiliation(s)
- Florian Buehning
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Tobias Lerchner
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Julia Vogel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Ulrike B Hendgen-Cotta
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Lars Michel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| |
Collapse
|
26
|
Frey C, Etminan M. Adverse Events of PD-1, PD-L1, CTLA-4, and LAG-3 Immune Checkpoint Inhibitors: An Analysis of the FDA Adverse Events Database. Antibodies (Basel) 2024; 13:59. [PMID: 39051335 PMCID: PMC11270294 DOI: 10.3390/antib13030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
This study aimed to identify the 25 most prevalent adverse events (AEs) associated with FDA-approved immune checkpoint inhibitors (ICIs)-specifically, PD-1, PD-L1, CTLA-4, and LAG-3 inhibitors-using data from the FDA Adverse Events Reporting System (FAERS), a publicly available repository of reported drug adverse events, and AERSMine, an open-access pharmacovigilance tool, to investigate these adverse events. For PD-1 inhibitors, the most common AEs were diarrhea, fatigue, and pyrexia, with notable instances of neutropenia and hypothyroidism, particularly with toripalimab and dostarlimab. PD-L1 inhibitors also frequently caused pyrexia, diarrhea, and fatigue, with interstitial lung disease and hypothyroidism showing a class effect, and drug-specific AEs such as hepatotoxicity and chills. CTLA-4 inhibitors predominantly resulted in diarrhea and colitis, with ipilimumab frequently causing pyrexia and rash, while tremelimumab exhibited unique AEs such as biliary tract infection. The LAG-3 inhibitor relatlimab reported fewer AEs, including pyrexia and pneumonia. Rare but significant AEs across all inhibitors included myocarditis and myasthenia gravis. This study provides a detailed overview of the 25 most common AEs associated with ICIs, offering valuable insights for clinical decision-making and AE management. Further research is necessary to elucidate the mechanisms underlying these AEs and to develop targeted interventions to enhance the safety and efficacy of ICI therapy in patients with cancer.
Collapse
Affiliation(s)
- Connor Frey
- Department of Medicine, University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Mahyar Etminan
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC V5Z 3N9, Canada;
| |
Collapse
|
27
|
Zhang Y, Chen X, Hu B, Zou B, Xu Y. Advancements in nanomedicine delivery systems: unraveling immune regulation strategies for tumor immunotherapy. Nanomedicine (Lond) 2024; 19:1821-1840. [PMID: 39011582 PMCID: PMC11418288 DOI: 10.1080/17435889.2024.2374230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
This review highlights the significant role of nanodrug delivery systems (NDDS) in enhancing the efficacy of tumor immunotherapy. Focusing on the integration of NDDS with immune regulation strategies, it explores their transformative impacts on the tumor microenvironment and immune response dynamics. Key advancements include the optimization of drug delivery through NDDS, targeting mechanisms like immune checkpoint blockade and modulating the immunosuppressive tumor environment. Despite the progress, challenges such as limited clinical efficacy and complex manufacturing processes persist. The review emphasizes the need for further research to optimize these systems, potentially revolutionizing cancer treatment by improving delivery efficiency, reducing toxicity and overcoming immune resistance.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Xi Chen
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Binbin Hu
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| |
Collapse
|
28
|
Blinova VG, Zhdanov DD. Many Faces of Regulatory T Cells: Heterogeneity or Plasticity? Cells 2024; 13:959. [PMID: 38891091 PMCID: PMC11171907 DOI: 10.3390/cells13110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining the immune balance in normal and pathological conditions. In autoimmune diseases and transplantation, they restrain the loss of self-tolerance and promote engraftment, whereas in cancer, an increase in Treg numbers is mostly associated with tumor growth and poor prognosis. Numerous markers and their combinations have been used to identify Treg subsets, demonstrating the phenotypic diversity of Tregs. The complexity of Treg identification can be hampered by the unstable expression of some markers, the decrease in the expression of a specific marker over time or the emergence of a new marker. It remains unclear whether such phenotypic shifts are due to new conditions or whether the observed changes are due to initially different populations. In the first case, cellular plasticity is observed, whereas in the second, cellular heterogeneity is observed. The difference between these terms in relation to Tregs is rather blurred. Considering the promising perspectives of Tregs in regenerative cell-based therapy, the existing confusing data on Treg phenotypes require further investigation and analysis. In our review, we introduce criteria that allow us to distinguish between the heterogeneity and plasticity of Tregs normally and pathologically, taking a closer look at their diversity and drawing the line between two terms.
Collapse
Affiliation(s)
- Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
- Department of Biochemistry, People’s Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russia
| |
Collapse
|
29
|
Kinget L, Naulaerts S, Govaerts J, Vanmeerbeek I, Sprooten J, Laureano RS, Dubroja N, Shankar G, Bosisio FM, Roussel E, Verbiest A, Finotello F, Ausserhofer M, Lambrechts D, Boeckx B, Wozniak A, Boon L, Kerkhofs J, Zucman-Rossi J, Albersen M, Baldewijns M, Beuselinck B, Garg AD. A spatial architecture-embedding HLA signature to predict clinical response to immunotherapy in renal cell carcinoma. Nat Med 2024; 30:1667-1679. [PMID: 38773341 DOI: 10.1038/s41591-024-02978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
An important challenge in the real-world management of patients with advanced clear-cell renal cell carcinoma (aRCC) is determining who might benefit from immune checkpoint blockade (ICB). Here we performed a comprehensive multiomics mapping of aRCC in the context of ICB treatment, involving discovery analyses in a real-world data cohort followed by validation in independent cohorts. We cross-connected bulk-tumor transcriptomes across >1,000 patients with validations at single-cell and spatial resolutions, revealing a patient-specific crosstalk between proinflammatory tumor-associated macrophages and (pre-)exhausted CD8+ T cells that was distinguished by a human leukocyte antigen repertoire with higher preference for tumoral neoantigens. A cross-omics machine learning pipeline helped derive a new tumor transcriptomic footprint of neoantigen-favoring human leukocyte antigen alleles. This machine learning signature correlated with positive outcome following ICB treatment in both real-world data and independent clinical cohorts. In experiments using the RENCA-tumor mouse model, CD40 agonism combined with PD1 blockade potentiated both proinflammatory tumor-associated macrophages and CD8+ T cells, thereby achieving maximal antitumor efficacy relative to other tested regimens. Thus, we present a new multiomics and spatial map of the immune-community architecture that drives ICB response in patients with aRCC.
Collapse
Affiliation(s)
- Lisa Kinget
- Laboratory of Experimental Oncology, KU Leuven, Leuven, Belgium
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Stefan Naulaerts
- Laboratory of Cell Stress and Immunity (CSI), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Laboratory of Cell Stress and Immunity (CSI), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Laboratory of Cell Stress and Immunity (CSI), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Laboratory of Cell Stress and Immunity (CSI), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S Laureano
- Laboratory of Cell Stress and Immunity (CSI), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nikolina Dubroja
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Gautam Shankar
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Francesca M Bosisio
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Eduard Roussel
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | | | - Francesca Finotello
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Markus Ausserhofer
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | | | | | - Johan Kerkhofs
- Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Jessica Zucman-Rossi
- Inserm, UMRS-1138, Génomique fonctionnelle des tumeurs solides, Centre de recherche des Cordeliers, Paris, France
| | - Maarten Albersen
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | | | - Benoit Beuselinck
- Laboratory of Experimental Oncology, KU Leuven, Leuven, Belgium.
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
| | - Abhishek D Garg
- Laboratory of Cell Stress and Immunity (CSI), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
30
|
Franzese O, Ancona P, Bianchi N, Aguiari G. Apoptosis, a Metabolic "Head-to-Head" between Tumor and T Cells: Implications for Immunotherapy. Cells 2024; 13:924. [PMID: 38891056 PMCID: PMC11171541 DOI: 10.3390/cells13110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Induction of apoptosis represents a promising therapeutic approach to drive tumor cells to death. However, this poses challenges due to the intricate nature of cancer biology and the mechanisms employed by cancer cells to survive and escape immune surveillance. Furthermore, molecules released from apoptotic cells and phagocytes in the tumor microenvironment (TME) can facilitate cancer progression and immune evasion. Apoptosis is also a pivotal mechanism in modulating the strength and duration of anti-tumor T-cell responses. Combined strategies including molecular targeting of apoptosis, promoting immunogenic cell death, modulating immunosuppressive cells, and affecting energy pathways can potentially overcome resistance and enhance therapeutic outcomes. Thus, an effective approach for targeting apoptosis within the TME should delicately balance the selective induction of apoptosis in tumor cells, while safeguarding survival, metabolic changes, and functionality of T cells targeting crucial molecular pathways involved in T-cell apoptosis regulation. Enhancing the persistence and effectiveness of T cells may bolster a more resilient and enduring anti-tumor immune response, ultimately advancing therapeutic outcomes in cancer treatment. This review delves into the pivotal topics of this multifaceted issue and suggests drugs and druggable targets for possible combined therapies.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via F. Mortara 74, 44121 Ferrara, Italy;
| |
Collapse
|
31
|
Khan R, Coleman N. Challenges and opportunities in the immunotherapy era: balancing expectations with hope in small-cell lung cancer. Ther Adv Med Oncol 2024; 16:17588359241249627. [PMID: 38765713 PMCID: PMC11102705 DOI: 10.1177/17588359241249627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Small-cell lung cancer (SCLC) is a biologically aggressive subtype of lung cancer, a lethal disease characterized by rapid tumor growth, early relapse, a strong tendency for early widespread metastasis, and high genomic instability, making it a formidable foe in modern oncology practice. While the management of non-SCLC has been revolutionized in the era of immunotherapy, progress in SCLC has been more muted. Recent randomized phase III clinical trials have combined programmed death ligand-1 inhibitors to a chemotherapy backbone and demonstrated improved survival; however, the absolute benefit observed is short months. There is an undeniable urgent need for better responses, better agents, novel therapeutic approaches, and more rational, biomarker-driven clinical trials in SCLC. In this review, we discuss the rationale and current understanding of the biology of SCLC in the modern era of immunotherapy, discuss recent advances in front-line immunotherapeutic approaches that have changed clinical practice globally, provide an overview of some of the challenges and limitations that have staggered immune checkpoint blockade in SCLC, and explore some of the novel immunotherapeutic approaches currently being investigated.
Collapse
Affiliation(s)
- Raza Khan
- School of Medicine, Trinity College, Dublin, Ireland
- St James’s Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
| | - Niamh Coleman
- Trinity St James’s Cancer Institute, James Street, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College, Dublin, Ireland
- St James’s Hospital, Dublin, Ireland
| |
Collapse
|
32
|
Blaya-Cánovas JL, Griñán-Lisón C, Blancas I, Marchal JA, Ramírez-Tortosa C, López-Tejada A, Benabdellah K, Cortijo-Gutiérrez M, Cano-Cortés MV, Graván P, Navarro-Marchal SA, Gómez-Morales J, Delgado-Almenta V, Calahorra J, Agudo-Lera M, Sagarzazu A, Rodríguez-González CJ, Gallart-Aragón T, Eich C, Sánchez-Martín RM, Granados-Principal S. Autologous patient-derived exhausted nano T-cells exploit tumor immune evasion to engage an effective cancer therapy. Mol Cancer 2024; 23:83. [PMID: 38730475 PMCID: PMC11084007 DOI: 10.1186/s12943-024-01997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Active targeting by surface-modified nanoplatforms enables a more precise and elevated accumulation of nanoparticles within the tumor, thereby enhancing drug delivery and efficacy for a successful cancer treatment. However, surface functionalization involves complex procedures that increase costs and timelines, presenting challenges for clinical implementation. Biomimetic nanoparticles (BNPs) have emerged as unique drug delivery platforms that overcome the limitations of actively targeted nanoparticles. Nevertheless, BNPs coated with unmodified cells show reduced functionalities such as specific tumor targeting, decreasing the therapeutic efficacy. Those challenges can be overcome by engineering non-patient-derived cells for BNP coating, but these are complex and cost-effective approaches that hinder their wider clinical application. Here we present an immune-driven strategy to improve nanotherapeutic delivery to tumors. Our unique perspective harnesses T-cell exhaustion and tumor immune evasion to develop a groundbreaking new class of BNPs crafted from exhausted T-cells (NExT) of triple-negative breast cancer (TNBC) patients by specific culture methods without sophisticated engineering. METHODS NExT were generated by coating PLGA (poly(lactic-co-glycolic acid)) nanoparticles with TNBC-derived T-cells exhausted in vitro by acute activation. Physicochemical characterization of NExT was made by dynamic light scattering, electrophoretic light scattering and transmission electron microscopy, and preservation and orientation of immune checkpoint receptors by flow cytometry. The efficacy of chemotherapy-loaded NExT was assessed in TNBC cell lines in vitro. In vivo toxicity was made in CD1 mice. Biodistribution and therapeutic activity of NExT were determined in cell-line- and autologous patient-derived xenografts in immunodeficient mice. RESULTS We report a cost-effective approach with a good performance that provides NExT naturally endowed with immune checkpoint receptors (PD1, LAG3, TIM3), augmenting specific tumor targeting by engaging cognate ligands, enhancing the therapeutic efficacy of chemotherapy, and disrupting the PD1/PDL1 axis in an immunotherapy-like way. Autologous patient-derived NExT revealed exceptional intratumor accumulation, heightened chemotherapeutic index and efficiency, and targeted the tumor stroma in a PDL1+ patient-derived xenograft model of triple-negative breast cancer. CONCLUSIONS These advantages underline the potential of autologous patient-derived NExT to revolutionize tailored adoptive cancer nanotherapy and chemoimmunotherapy, which endorses their widespread clinical application of autologous patient-derived NExT.
Collapse
Grants
- PRDJA19001BLAY Fundación Científica Asociación Española Contra el Cáncer
- POSTDOC_21_638 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía
- RTI2018.101309B-C22 Ministerio de Ciencia, Innovación y Universidades
- FPU19/04450 Ministerio de Ciencia, Innovación y Universidades
- DOC_01686 Consejería de Transformación Económica, Industria, Conocimiento y Universidades
- PI19/01533 Instituto de Salud Carlos III
- P29/22/02 Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía, Spain
Collapse
Affiliation(s)
- José L Blaya-Cánovas
- UGC de Oncología Médica, Hospital Universitario de Jaén, Jaén, 23007, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | - Carmen Griñán-Lisón
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, 18071, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18100, Spain
| | - Isabel Blancas
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- UGC de Oncología, Hospital Universitario San Cecilio, Granada, 18016, Spain
- Department of Medicine, University of Granada, Granada, 18016, Spain
| | - Juan A Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18100, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM), University of Granada, Granada, 18100, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
| | - César Ramírez-Tortosa
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- UGC de Anatomía Patológica, Hospital San Cecilio, Granada, 18016, Spain
| | - Araceli López-Tejada
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, 18071, Spain
| | - Karim Benabdellah
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | - Marina Cortijo-Gutiérrez
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | - M Victoria Cano-Cortés
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry Applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, 18071, Spain
| | - Pablo Graván
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18100, Spain
- Department of Applied Physics, Faculty of Science, University of Granada, Granada, 18071, Spain
| | - Saúl A Navarro-Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18100, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM), University of Granada, Granada, 18100, Spain
- Department of Applied Physics, Faculty of Science, University of Granada, Granada, 18071, Spain
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos IACT-CSIC-UGR, Armilla, 18100, Spain
| | - Violeta Delgado-Almenta
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | - Jesús Calahorra
- UGC de Oncología Médica, Hospital Universitario de Jaén, Jaén, 23007, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | - María Agudo-Lera
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | - Amaia Sagarzazu
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | | | - Tania Gallart-Aragón
- Department of Medicine, University of Granada, Granada, 18016, Spain
- UGC de Cirugía General y del Aparato Digestivo, Hospital Universitario San Cecilio, Granada, 18016, Spain
| | - Christina Eich
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, 2333, The Netherlands
| | - Rosario M Sánchez-Martín
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry Applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, 18071, Spain
| | - Sergio Granados-Principal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain.
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain.
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, 18071, Spain.
| |
Collapse
|
33
|
Jiang H, Wu J, Zhang J. PD-1 and LAG-3 positive T cells are related with the prognosis of patients with chronic kidney disease. Exp Cell Res 2024; 438:114027. [PMID: 38574959 DOI: 10.1016/j.yexcr.2024.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVE Our objective was to study the frequency of circulating LAG-3+ and PD-1+ T cells in chronic kidney disease (CKD) patients and their correlation with cytokines and patient prognosis. METHODS A total of 83 patients with CKD between June 2020 and June 2022 were enrolled. We measured serum levels of IL-6, CRP, IL-1β, and TNF-α by ELISA. The frequency of PD-1+ and LAG-3+ T cells was measured using flow cytometry. All patients were followed up for 1 year, and the occurrence of any of the following conditions during the follow-up period was considered as major adverse cardiac events (MACE) indicating poor prognosis. RESULTS The frequencies of LAG-3+PD-1+, LAG-3+ and PD-1+ cells were significantly increased in CKD group compared to healthy volunteers. Additionally, CKD patients had remarkably enhanced levels of cytokines. Compared to the non-MACE group, MACE group had significantly higher frequencies of LAG-3PD-1, LAG-3 and PD-1 expression on CD8 and CD4. Positive correlations were observed between IL-1β, IL-6 and frequencies of PD-1+LAG-3+. CD4+LAG-3+PD-1+ frequency displayed the highest diagnostic value for CKD patients with MACE. Moreover, CD8+LAG-3+, CD4+LAG-3+PD-1+, CD4+PD-1+, IL-1β and IL-6 were identified as risk factors for the occurrence of MACE in patients with CKD. CONCLUSION In summary, the present research showed that the frequencies of LAG-3+ and PD-1+ T cells were remarkably enhanced in CKD patients. These findings offer novel insights and potential therapeutic targets for the management of CKD.
Collapse
Affiliation(s)
- Hongwei Jiang
- Department of Nephrology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Binhu District, 214122, Wuxi City, Jiangsu Province, China
| | - Jing Wu
- Department of Nephrology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Binhu District, 214122, Wuxi City, Jiangsu Province, China
| | - Junlin Zhang
- Department of Nephrology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Binhu District, 214122, Wuxi City, Jiangsu Province, China.
| |
Collapse
|
34
|
Xu MY, Zeng N, Liu CQ, Sun JX, An Y, Zhang SH, Xu JZ, Zhong XY, Ma SY, He HD, Hu J, Xia QD, Wang SG. Enhanced cellular therapy: revolutionizing adoptive cellular therapy. Exp Hematol Oncol 2024; 13:47. [PMID: 38664743 PMCID: PMC11046957 DOI: 10.1186/s40164-024-00506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
Enhanced cellular therapy has emerged as a novel concept following the basis of cellular therapy. This treatment modality applied drugs or biotechnology to directly enhance or genetically modify cells to enhance the efficacy of adoptive cellular therapy (ACT). Drugs or biotechnology that enhance the killing ability of immune cells include immune checkpoint inhibitors (ICIs) / antibody drugs, small molecule inhibitors, immunomodulatory factors, proteolysis targeting chimera (PROTAC), oncolytic virus (OV), etc. Firstly, overcoming the inhibitory tumor microenvironment (TME) can enhance the efficacy of ACT, which can be achieved by blocking the immune checkpoint. Secondly, cytokines or cytokine receptors can be expressed by genetic engineering or added directly to adoptive cells to enhance the migration and infiltration of adoptive cells to tumor cells. Moreover, multi-antigen chimeric antigen receptors (CARs) can be designed to enhance the specific recognition of tumor cell-related antigens, and OVs can also stimulate antigen release. In addition to inserting suicide genes into adoptive cells, PROTAC technology can be used as a safety switch or degradation agent of immunosuppressive factors to enhance the safety and efficacy of adoptive cells. This article comprehensively summarizes the mechanism, current situation, and clinical application of enhanced cellular therapy, describing potential improvements to adoptive cellular therapy.
Collapse
Affiliation(s)
- Meng-Yao Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Na Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xing-Yu Zhong
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Si-Yang Ma
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Hao-Dong He
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jia Hu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
35
|
Fateeva A, Eddy K, Chen S. Current State of Melanoma Therapy and Next Steps: Battling Therapeutic Resistance. Cancers (Basel) 2024; 16:1571. [PMID: 38672652 PMCID: PMC11049326 DOI: 10.3390/cancers16081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer due to its high propensity to metastasize to distant organs. Significant progress has been made in the last few decades in melanoma therapeutics, most notably in targeted therapy and immunotherapy. These approaches have greatly improved treatment response outcomes; however, they remain limited in their abilities to hinder disease progression due, in part, to the onset of acquired resistance. In parallel, intrinsic resistance to therapy remains an issue to be resolved. In this review, we summarize currently available therapeutic options for melanoma treatment and focus on possible mechanisms that drive therapeutic resistance. A better understanding of therapy resistance will provide improved rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Anna Fateeva
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- U.S. Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ 07018, USA
| |
Collapse
|
36
|
Shebbo S, Binothman N, Darwaish M, Niaz HA, Abdulal RH, Borjac J, Hashem AM, Mahmoud AB. Redefining the battle against colorectal cancer: a comprehensive review of emerging immunotherapies and their clinical efficacy. Front Immunol 2024; 15:1350208. [PMID: 38533510 PMCID: PMC10963412 DOI: 10.3389/fimmu.2024.1350208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer globally and presents a significant challenge owing to its high mortality rate and the limitations of traditional treatment options such as surgery, radiotherapy, and chemotherapy. While these treatments are foundational, they are often poorly effective owing to tumor resistance. Immunotherapy is a groundbreaking alternative that has recently emerged and offers new hope for success by exploiting the body's own immune system. This article aims to provide an extensive review of clinical trials evaluating the efficacy of various immunotherapies, including CRC vaccines, chimeric antigen receptor T-cell therapies, and immune checkpoint inhibitors. We also discuss combining CRC vaccines with monoclonal antibodies, delve into preclinical studies of novel cancer vaccines, and assess the impact of these treatment methods on patient outcomes. This review seeks to provide a deeper understanding of the current state of CRC treatment by evaluating innovative treatments and their potential to redefine the prognosis of patients with CRC.
Collapse
Affiliation(s)
- Salima Shebbo
- Strategic Research and Innovation Laboratories, Taibah University, Madinah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Najat Binothman
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Manar Darwaish
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hanan A. Niaz
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Rwaa H. Abdulal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamilah Borjac
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- Strategic Research and Innovation Laboratories, Taibah University, Madinah, Saudi Arabia
- College of Applied Medical Sciences, Taibah University, Almadinah Almunawarah, Saudi Arabia
| |
Collapse
|
37
|
Ghosh C, Hu J. Importance of targeting various cell signaling pathways in solid cancers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:101-155. [PMID: 38663958 DOI: 10.1016/bs.ircmb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Most adult human cancers are solid tumors prevailing in vital organs and lead to mortality all over the globe. Genetic and epigenetic alterations in cancer genes or genes of associated signaling pathways impart the most common characteristic of malignancy, that is, uncontrolled proliferation. Unless the mechanism of action of these cells signaling pathways (involved in cell proliferation, apoptosis, metastasis, and the maintenance of the stemness of cancer stem cells and cancer microenvironment) and their physiologic alteration are extensively studied, it is challenging to understand tumorigenesis as well as develop new treatments and precision medicines. Targeted therapy is one of the most promising strategies for treating various cancers. However, cancer is an evolving disease, and most patients develop resistance to these drugs by acquired mutations or mediation of microenvironmental factors or due to tumor heterogeneity. Researchers are striving to develop novel therapeutic options like combinatorial approaches targeting multiple responsible pathways effectively. Thus, in-depth knowledge of cell signaling and its components remains a critical topic of cancer research. This chapter summarized various extensively studied pathways in solid cancer and how they are targeted for therapeutic strategies.
Collapse
Affiliation(s)
- Chandrayee Ghosh
- Department of Surgery, Stanford University, Stanford, CA, Unites States.
| | - Jiangnan Hu
- Department of Surgery, Stanford University, Stanford, CA, Unites States
| |
Collapse
|
38
|
Regmi M, Wang Y, Liu W, Dai Y, Liu S, Ma K, Lin G, Yang J, Liu H, Wu J, Yang C. From glioma gloom to immune bloom: unveiling novel immunotherapeutic paradigms-a review. J Exp Clin Cancer Res 2024; 43:47. [PMID: 38342925 PMCID: PMC10860318 DOI: 10.1186/s13046-024-02973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 02/13/2024] Open
Abstract
In tumor therapeutics, the transition from conventional cytotoxic drugs to targeted molecular therapies, such as those targeting receptor tyrosine kinases, has been pivotal. Despite this progress, the clinical outcomes have remained modest, with glioblastoma patients' median survival stagnating at less than 15 months. This underscores the urgent need for more specialized treatment strategies. Our review delves into the progression toward immunomodulation in glioma treatment. We dissect critical discoveries in immunotherapy, such as spotlighting the instrumental role of tumor-associated macrophages, which account for approximately half of the immune cells in the glioma microenvironment, and myeloid-derived suppressor cells. The complex interplay between tumor cells and the immune microenvironment has been explored, revealing novel therapeutic targets. The uniqueness of our review is its exhaustive approach, synthesizing current research to elucidate the intricate roles of various molecules and receptors within the glioma microenvironment. This comprehensive synthesis not only maps the current landscape but also provides a blueprint for refining immunotherapy for glioma, signifying a paradigm shift toward leveraging immune mechanisms for improved patient prognosis.
Collapse
Affiliation(s)
- Moksada Regmi
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China
| | - Yingjie Wang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Yuwei Dai
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Shikun Liu
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Ke Ma
- Peking University Health Science Center, Beijing, 100191, China
| | - Guozhong Lin
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Hongyi Liu
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China
- National Engineering Research Center for Ophthalmology, Beijing, 100730, China
- Engineering Research Center of Ophthalmic Equipment and Materials, Ministry of Education, Beijing, 100730, China
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China
| | - Jian Wu
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China.
- National Engineering Research Center for Ophthalmology, Beijing, 100730, China.
- Engineering Research Center of Ophthalmic Equipment and Materials, Ministry of Education, Beijing, 100730, China.
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China.
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China.
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China.
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China.
| |
Collapse
|
39
|
Scafetta G, D'Alessandria C, Bartolazzi A. Galectin-3 and cancer immunotherapy: a glycobiological rationale to overcome tumor immune escape. J Exp Clin Cancer Res 2024; 43:41. [PMID: 38317202 PMCID: PMC10845537 DOI: 10.1186/s13046-024-02968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
Immunotherapy with checkpoint inhibitors (ICIs) has radically changed the landscape of therapeutic opportunities in oncology, but much still needs to be understood from a mechanistic point of view. There is space for further improving tumors' response to ICIs, as supported by a strong biological rationale. For this achievement a detailed analysis of tumor cell phenotype with functional dissection of the molecular interactions occurring in the TME is required. Galectin-3 is a pleiotropic tumor relevant molecule, which deserves particular attention in immuno-oncology. Due to its ability to finely modulate immune response in vivo, Galectin-3 is a potential target molecule to be considered for overcoming tumor immune escape.
Collapse
Affiliation(s)
- Giorgia Scafetta
- Pathology Research Laboratory St, Andrea University Hospital, Via Di Grottarossa 1035, 00189, Rome, Italy
| | - Calogero D'Alessandria
- Klinikum Rechts Der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Armando Bartolazzi
- Pathology Research Laboratory St, Andrea University Hospital, Via Di Grottarossa 1035, 00189, Rome, Italy.
- Pathology Research Laboratory Cancer Center Karolinska, Karolinska Hospital, S-17176, Stockholm, Sweden.
| |
Collapse
|
40
|
Jo W, Won T, Daoud A, Čiháková D. Immune checkpoint inhibitors associated cardiovascular immune-related adverse events. Front Immunol 2024; 15:1340373. [PMID: 38375475 PMCID: PMC10875074 DOI: 10.3389/fimmu.2024.1340373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are specialized monoclonal antibodies (mAbs) that target immune checkpoints and their ligands, counteracting cancer cell-induced T-cell suppression. Approved ICIs like cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), its ligand PD-L1, and lymphocyte activation gene-3 (LAG-3) have improved cancer patient outcomes by enhancing anti-tumor responses. However, some patients are unresponsive, and others experience immune-related adverse events (irAEs), affecting organs like the lung, liver, intestine, skin and now the cardiovascular system. These cardiac irAEs include conditions like myocarditis, atherosclerosis, pericarditis, arrhythmias, and cardiomyopathy. Ongoing clinical trials investigate promising alternative co-inhibitory receptor targets, including T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) and T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT). This review delves into the mechanisms of approved ICIs (CTLA-4, PD-1, PD-L1, and LAG-3) and upcoming options like Tim-3 and TIGIT. It explores the use of ICIs in cancer treatment, supported by both preclinical and clinical data. Additionally, it examines the mechanisms behind cardiac toxic irAEs, focusing on ICI-associated myocarditis and atherosclerosis. These insights are vital as ICIs continue to revolutionize cancer therapy, offering hope to patients, while also necessitating careful monitoring and management of potential side effects, including emerging cardiac complications.
Collapse
Affiliation(s)
- Wonyoung Jo
- Department of Biomedical Engineering, Johns Hopkins University, Whiting School of Engineering, Baltimore, MD, United States
| | - Taejoon Won
- Department of Pathobiology, University of Illinois Urbana-Champaign, College of Veterinary Medicine, Urbana, IL, United States
| | - Abdel Daoud
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daniela Čiháková
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| |
Collapse
|
41
|
Gorji L, Brown ZJ, Pawlik TM. Advances and considerations in the use of immunotherapies for primary hepato-biliary malignancies. Surg Oncol 2024; 52:102031. [PMID: 38128340 DOI: 10.1016/j.suronc.2023.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) comprise the two most common primary liver malignancies. Curative treatment options often include hepatectomy or liver transplantation; however, many patients present with advanced disease that is not amenable to surgical management. In turn, many patients are treated with systemic or targeted therapy. The tumor microenvironment (TME) is a complex network of immune cells and somatic cells, which can foster an environment for disease development and progression, as well as susceptibility and resistance to systemic therapeutic agents. In particular, the TME is comprised of both immune and non-immune cells. Immune cells such as T lymphocytes, natural killer (NK) cells, macrophages, and neutrophils reside in the TME and can affect tumorigenesis, disease progression, as well as response to therapy. Given the importance of the immune system, there are many emerging approaches for cancer immunotherapy. We herein provide a review the latest data on immunotherapy for primary HCC and BTC relative to the TME.
Collapse
Affiliation(s)
- Leva Gorji
- Department of Surgery, Kettering Health Dayton, Dayton, OH, USA.
| | - Zachary J Brown
- Department of Surgery, Division of Surgical Oncology, New York University - Long Island, Mineola, NY, 11501, USA.
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Cancer Hospital, Columbus, OH, USA.
| |
Collapse
|
42
|
Quagliariello V, Passariello M, Bisceglia I, Paccone A, Inno A, Maurea C, Rapuano Lembo R, Manna L, Iovine M, Canale ML, Scherillo M, Ascierto PA, Gabrielli D, De Lorenzo C, Maurea N. Combinatorial immune checkpoint blockade increases myocardial expression of NLRP-3 and secretion of H-FABP, NT-Pro-BNP, interleukin-1β and interleukin-6: biochemical implications in cardio-immuno-oncology. Front Cardiovasc Med 2024; 11:1232269. [PMID: 38322766 PMCID: PMC10844473 DOI: 10.3389/fcvm.2024.1232269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Background Immune checkpoint blockade in monotherapy or combinatorial regimens with chemotherapy or radiotherapy have become an integral part of oncology in recent years. Monoclonal antibodies against CTLA-4 or PD-1 or PDL-1 are the most studied ICIs in randomized clinical trials, however, more recently, an anti-LAG3 (Lymphocyte activation gene-3) antibody, Relatlimab, has been approved by FDA in combination with Nivolumab for metastatic melanoma therapy. Moreover, Atezolizumab is actually under study in association with Ipilimumab for therapy of metastatic lung cancer. Myocarditis, vasculitis and endothelitis are rarely observed in these patients on monotherapy, however new combination therapies could expose patients to more adverse cardiovascular events. Methods Human cardiomyocytes co-cultured with human peripheral blood lymphocytes (hPBMCs) were exposed to monotherapy and combinatorial ICIs (PD-L1 and CTLA-4 or PD-1 and LAG-3 blocking agents, at 100 nM) for 48 h. After treatments, cardiac cell lysis and secretion of biomarkers of cardiotoxicity (H-FABP, troponin-T, BNP, NT-Pro-BNP), NLRP3-inflammasome and Interleukin 1 and 6 were determined through colorimetric and enzymatic assays. Mitochondrial functions were studied in cardiomyocyte cell lysates through quantification of intracellular Ca++, ATP content and NADH:ubiquinone oxidoreductase core subunit S1 (Ndufs1) levels. Histone deacetylases type 4 (HDAC-4) protein levels were also determined in cardiomyocyte cell lysates to study potential epigenetic changes induced by immunotherapy regimens. Results Both combinations of immune checkpoint inhibitors exert more potent cardiotoxic side effects compared to monotherapies against human cardiac cells co-cultured with human lymphocytes. LDH release from cardiac cells was 43% higher in PD-L1/CTLA-4 blocking agents, and 35.7% higher in PD-1/LAG-3 blocking agents compared to monotherapies. HDAC4 and intracellular Ca++ levels were increased, instead ATP content and Ndufs1 were reduced in myocardial cell lysates (p < 0.001 vs. untreated cells). Troponin-T, BNP, NT-Pro-BNP and H-FABP, were also strongly increased in combination therapy compared to monotherapy regimen. NLRP3 expression, IL-6 and IL-1β levels were also increased by PDL-1/CTLA-4 and PD-1/LAG-3 combined blocking agents compared to untreated cells and monotherapies. Conclusions Data of the present study, although in vitro, indicate that combinatorial immune checkpoint blockade, induce a pro- inflammatory phenotype, thus indicating that these therapies should be closely monitored by the multidisciplinary team consisting of oncologists, cardiologists and immunologists.
Collapse
Affiliation(s)
- V. Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - M. Passariello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - I. Bisceglia
- Servizi Cardiologici Integrati, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - A. Paccone
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - A. Inno
- Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Sacro Cuore Don Calabria, Negrar, Italy
| | - C. Maurea
- Medical Oncology, Ospedale del Mare, Naples, Italy
| | - R. Rapuano Lembo
- Department of Molecular Medicine, Ceinge-Biotecnologie Avanzate s.c.a.r.l., Naples, Italy
| | - L. Manna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - M. Iovine
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - M. L. Canale
- U.O.C. Cardiologia, Ospedale Versilia, Lido di Camaiore (LU), Camaiore, Italy
| | - M. Scherillo
- Cardiologia Interventistica e UTIC, A.O. San Pio, Presidio Ospedaliero Gaetano Rummo, Benevento, Italy
| | - P. A. Ascierto
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Naples, Italy
| | - D. Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, Roma – Fondazione per il Tuo Cuore – Heart Care Foundation, Firenze, Italy
| | - C. De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Department of Molecular Medicine, Ceinge-Biotecnologie Avanzate s.c.a.r.l., Naples, Italy
| | - N. Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
43
|
Adashek JJ, Kato S, Nishizaki D, Pabla S, Nesline MK, Previs RA, Conroy JM, DePietro P, Kurzrock R. LAG-3 transcriptomic expression correlates linearly with other checkpoints, but not with clinical outcomes. Am J Cancer Res 2024; 14:368-377. [PMID: 38323282 PMCID: PMC10839320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Immune checkpoint inhibitors have revolutionized the treatment landscape for patients with cancer. Multi-omics, including next-generation DNA and RNA sequencing, have enabled the identification of exploitable targets and the evaluation of immune mediator expression. There is one FDA-approved LAG-3 inhibitor and multiple in clinical trials for numerous cancers. We analyzed LAG-3 transcriptomic expression among 514 patients with diverse cancers, including 489 patients with clinical annotation for their advanced malignancies. Transcriptomic LAG-3 expression was highly variable between histologies/cancer types and within the same histology/cancer type. LAG-3 RNA levels correlated linearly, albeit weakly, with high RNA levels of other checkpoints, including PD-L1 (Pearson's R2 = 0.21 (P < 0.001)), PD-1 (R2 = 0.24 (P < 0.001)) and CTLA-4 (R2 = 0.19 (P < 0.001)); when examined for Spearman correlation, significance did not change. LAG-3 expression (dichotomized at ≥ 75th (high) versus < 75th (moderate/low) RNA percentile level) was not a prognostic factor for overall survival (OS) in 272 immunotherapy-naïve patients with advanced/metastatic disease (Kaplan Meier analysis; P = 0.54). High LAG-3 levels correlated with longer OS after anti-PD-1/PD-L1-based checkpoint blockade (univariate (P = 0.003), but not multivariate analysis (hazard ratio, 95% confidence interval = 0.80 (0.46-1.40) (P = 0.44))); correlation with longer progression-free survival showed a weak univariate trend (P = 0.13). Taken together, these results suggest that high LAG-3 levels in and of themselves do not predict resistance to anti-PD-1/PD-L1 checkpoint blockade. Even so, since LAG-3 is often co-expressed with PD-1, PD-L1 and/or CTLA-4, selecting patients for combinations of checkpoint blockade based on immunomic co-expression patterns is a strategy that merits exploration.
Collapse
Affiliation(s)
- Jacob J Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins HospitalBaltimore, MD 21287, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer CenterLa Jolla, CA 92093, USA
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer CenterLa Jolla, CA 92093, USA
| | | | | | | | | | | | - Razelle Kurzrock
- WIN ConsortiumParis 94550, France
- MCW Cancer CenterMilwaukee, WI 53226, USA
- University of NebraskaOmaha, NE 68198, USA
| |
Collapse
|
44
|
Rodolfi S, Davidson C, Vecellio M. Regulatory T cells in spondyloarthropathies: genetic evidence, functional role, and therapeutic possibilities. Front Immunol 2024; 14:1303640. [PMID: 38288110 PMCID: PMC10822883 DOI: 10.3389/fimmu.2023.1303640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Regulatory T cells (Tregs) are a very specialized subset of T lymphocytes: their main function is controlling immune responses during inflammation. T-regs involvement in autoimmune and immune-mediated rheumatic diseases is well-described. Here, we critically review the up-to-date literature findings on the role of Tregs in spondyloarthropathies, particularly in ankylosing spondylitis (AS), a polygenic inflammatory rheumatic disease that preferentially affects the spine and the sacroiliac joints. Genetics discoveries helped in elucidating pathogenic T-regs gene modules and functional involvement. We highlight T-regs tissue specificity as crucial point, as T-regs might have a distinct epigenomic and molecular profiling depending on the different site of tissue inflammation. Furthermore, we speculate about possible therapeutic interventions targeting, or enhancing, Treg cells in spondyloarthropathies.
Collapse
Affiliation(s)
- Stefano Rodolfi
- Department of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Connor Davidson
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Matteo Vecellio
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Centro Ricerche Fondazione Italiana Ricerca Sull'Artrite (FIRA), Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| |
Collapse
|
45
|
Crimini E, Boscolo Bielo L, Berton Giachetti PPM, Pellizzari G, Antonarelli G, Taurelli Salimbeni B, Repetto M, Belli C, Curigliano G. Beyond PD(L)-1 Blockade in Microsatellite-Instable Cancers: Current Landscape of Immune Co-Inhibitory Receptor Targeting. Cancers (Basel) 2024; 16:281. [PMID: 38254772 PMCID: PMC10813411 DOI: 10.3390/cancers16020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
High microsatellite instability (MSI-H) derives from genomic hypermutability due to deficient mismatch repair function. Colorectal (CRC) and endometrial cancers (EC) are the tumor types that more often present MSI-H. Anti-PD(L)-1 antibodies have been demonstrated to be agnostically effective in patients with MSI-H cancer, but 50-60% of them do not respond to single-agent treatment, highlighting the necessity of expanding their treatment opportunities. Ipilimumab (anti-CTLA4) is the only immune checkpoint inhibitor (ICI) non-targeting PD(L)-1 that has been approved so far by the FDA for MSI-H cancer, namely, CRC in combination with nivolumab. Anti-TIM3 antibody LY3321367 showed interesting clinical activity in combination with anti-PDL-1 antibody in patients with MSI-H cancer not previously treated with anti-PD(L)-1. In contrast, no clinical evidence is available for anti-LAG3, anti-TIGIT, anti-BTLA, anti-ICOS and anti-IDO1 antibodies in MSI-H cancers, but clinical trials are ongoing. Other immunotherapeutic strategies under study for MSI-H cancers include vaccines, systemic immunomodulators, STING agonists, PKM2 activators, T-cell immunotherapy, LAIR-1 immunosuppression reversal, IL5 superagonists, oncolytic viruses and IL12 partial agonists. In conclusion, several combination therapies of ICIs and novel strategies are emerging and may revolutionize the treatment paradigm of MSI-H patients in the future. A huge effort will be necessary to find reliable immune biomarkers to personalize therapeutical decisions.
Collapse
Affiliation(s)
- Edoardo Crimini
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Luca Boscolo Bielo
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Pier Paolo Maria Berton Giachetti
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Gloria Pellizzari
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Gabriele Antonarelli
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Beatrice Taurelli Salimbeni
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
| | - Matteo Repetto
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carmen Belli
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
| | - Giuseppe Curigliano
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
46
|
Fuchs N, Zhang L, Calvo-Barreiro L, Kuncewicz K, Gabr M. Inhibitors of Immune Checkpoints: Small Molecule- and Peptide-Based Approaches. J Pers Med 2024; 14:68. [PMID: 38248769 PMCID: PMC10817355 DOI: 10.3390/jpm14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The revolutionary progress in cancer immunotherapy, particularly the advent of immune checkpoint inhibitors, marks a significant milestone in the fight against malignancies. However, the majority of clinically employed immune checkpoint inhibitors are monoclonal antibodies (mAbs) with several limitations, such as poor oral bioavailability and immune-related adverse effects (irAEs). Another major limitation is the restriction of the efficacy of mAbs to a subset of cancer patients, which triggered extensive research efforts to identify alternative approaches in targeting immune checkpoints aiming to overcome the restricted efficacy of mAbs. This comprehensive review aims to explore the cutting-edge developments in targeting immune checkpoints, focusing on both small molecule- and peptide-based approaches. By delving into drug discovery platforms, we provide insights into the diverse strategies employed to identify and optimize small molecules and peptides as inhibitors of immune checkpoints. In addition, we discuss recent advances in nanomaterials as drug carriers, providing a basis for the development of small molecule- and peptide-based platforms for cancer immunotherapy. Ongoing research focused on the discovery of small molecules and peptide-inspired agents targeting immune checkpoints paves the way for developing orally bioavailable agents as the next-generation cancer immunotherapies.
Collapse
Affiliation(s)
- Natalie Fuchs
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Longfei Zhang
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Laura Calvo-Barreiro
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Katarzyna Kuncewicz
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
- Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Moustafa Gabr
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| |
Collapse
|
47
|
Seňavová J, Rajmonová A, Heřman V, Jura F, Veľasová A, Hamová I, Tkachenko A, Kupcová K, Havránek O. Immune Checkpoints and Their Inhibition in T-Cell Lymphomas. Folia Biol (Praha) 2024; 70:123-151. [PMID: 39644109 DOI: 10.14712/fb2024070030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
T-cell lymphomas (TCLs) are a rare and heterogeneous subgroup of non-Hodgkin lymphomas (NHLs), forming only 10 % of all NHL cases in Western countries. Resulting from their low incidence and heterogeneity, the current treatment outcome is generally unfavorable, with limited availability of novel therapeutic approaches. Therefore, the recent success of immune checkpoint inhibitors (ICIs) in cancer treatment motivated their clinical investigation in TCLs as well. Multiple studies showed promising results; however, cases of TCL hyperprogression following ICI treatment and secondary T-cell-derived malignancies associated with ICI treatment of other cancer types were also reported. In our review, we first briefly summarize classification of T-cell-derived malignancies, general anti-tumor immune response, immune evasion, and immune checkpoint signaling. Next, we provide an overview of immune checkpoint molecule deregulation in TCLs, summarize available studies of ICIs in TCLs, and review the above-mentioned safety concerns associa-ted with ICI treatment and T-cell-derived malignancies. Despite initial promising results, further studies are necessary to define the most suitable clinical applications and ICI therapeutic combinations with other novel treatment approaches within TCL treatment. ICIs, and their combinations, might hopefully bring the long awaited improvement for the treatment of T-cell-derived malignancies.
Collapse
Affiliation(s)
- Jana Seňavová
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anežka Rajmonová
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Václav Heřman
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filip Jura
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adriana Veľasová
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Iva Hamová
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristýna Kupcová
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondřej Havránek
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
48
|
Mahadevia H, Uson Junior PLS, Wang J, Borad M, Babiker H. An overview of up-and-coming immune checkpoint inhibitors for pancreatic cancer. Expert Opin Pharmacother 2024; 25:79-90. [PMID: 38193476 DOI: 10.1080/14656566.2024.2304125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein-1 (PD-1/PD-L1) pathway as well as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have demonstrated substantial potential in several malignancies. Pancreatic adenocarcinoma (PC) still carries a high mortality despite tremendous advances in the anti-cancer arsenal. AREAS COVERED In this review, we discuss completed and ongoing studies on various ICIs in PC. ICIs have not yielded significant benefits as monotherapy. However, the combination with currently utilized therapies as well as with several other newer forms of therapy has delineated encouraging results. Larger trials are currently underway to definitively characterize the utility of ICIs in the treatment algorithm of PC. ICIs are approved for cancers with mismatch repair deficiency (dMMR) or microsatellite instability-high tumors (MSI-H) as a tumor-agnostic treatment strategy usually referred to as hot tumors. EXPERT OPINION Studies evaluating different drugs to transform the tumor microenvironment (TME) from 'cold' to 'hot' have not shown promise in PC. There still needs to be more prospective trials evaluating the efficacy of the combination of ICIs with different therapeutic modalities in PC that can augment the immunogenic potential of those 'cold' tumors. Exploratory biomarker analysis may help us identify those subsets of PC patients who may particularly benefit from ICIs.
Collapse
Affiliation(s)
- Himil Mahadevia
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Pedro Luiz Serrano Uson Junior
- Department of Internal Medicine, Division of Hematology-Oncology, Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Jing Wang
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Mitesh Borad
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Hani Babiker
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| |
Collapse
|
49
|
Takizawa F, Hashimoto K, Miyazawa R, Ohta Y, Veríssimo A, Flajnik MF, Parra D, Tokunaga K, Suetake H, Sunyer JO, Dijkstra JM. CD4 and LAG-3 from sharks to humans: related molecules with motifs for opposing functions. Front Immunol 2023; 14:1267743. [PMID: 38187381 PMCID: PMC10768021 DOI: 10.3389/fimmu.2023.1267743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
CD4 and LAG-3 are related molecules that are receptors for MHC class II molecules. Their major functional differences are situated in their cytoplasmic tails, in which CD4 has an activation motif and LAG-3 an inhibitory motif. Here, we identify shark LAG-3 and show that a previously identified shark CD4-like gene has a genomic location, expression pattern, and motifs similar to CD4 in other vertebrates. In nurse shark (Ginglymostoma cirratum) and cloudy catshark (Scyliorhinus torazame), the highest CD4 expression was consistently found in the thymus whereas such was not the case for LAG-3. Throughout jawed vertebrates, the CD4 cytoplasmic tail possesses a Cx(C/H) motif for binding kinase LCK, and the LAG-3 cytoplasmic tail possesses (F/Y)xxL(D/E) including the previously determined FxxL inhibitory motif resembling an immunoreceptor tyrosine-based inhibition motif (ITIM). On the other hand, the acidic end of the mammalian LAG-3 cytoplasmic tail, which is believed to have an inhibitory function as well, was acquired later in evolution. The present study also identified CD4-1, CD4-2, and LAG-3 in the primitive ray-finned fishes bichirs, sturgeons, and gars, and experimentally determined these sequences for sterlet sturgeon (Acipenser ruthenus). Therefore, with CD4-1 and CD4-2 already known in teleosts (modern ray-finned fish), these two CD4 lineages have now been found within all major clades of ray-finned fish. Although different from each other, the cytoplasmic tails of ray-finned fish CD4-1 and chondrichthyan CD4 not only contain the Cx(C/H) motif but also an additional highly conserved motif which we expect to confer a function. Thus, although restricted to some species and gene copies, in evolution both CD4 and LAG-3 molecules appear to have acquired functional motifs besides their canonical Cx(C/H) and ITIM-like motifs, respectively. The presence of CD4 and LAG-3 molecules with seemingly opposing functions from the level of sharks, the oldest living vertebrates with a human-like adaptive immune system, underlines their importance for the jawed vertebrate immune system. It also emphasizes the general need of the immune system to always find a balance, leading to trade-offs, between activating and inhibiting processes.
Collapse
Affiliation(s)
- Fumio Takizawa
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, Japan
| | - Keiichiro Hashimoto
- Emeritus Professor, Center for Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Ryuichiro Miyazawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, United States
| | - Ana Veríssimo
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Martin F. Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, United States
| | | | | | - Hiroaki Suetake
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, Japan
| | - J. Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | |
Collapse
|
50
|
Setsu G, Goto M, Ito K, Taira T, Miyamoto M, Watanabe T, Taniguchi T, Umezaki Y, Nakazawa Y, Uesugi S, Mori K, Horiuchi T, Obuchi W, Minami M, Shimada T, Wada C, Yoshida T, Higuchi S. Highly potent, orally active novel small-molecule HPK1 inhibitor DS21150768 induces anti-tumor responses in multiple syngeneic tumor mouse models. Eur J Pharmacol 2023; 961:176184. [PMID: 37944847 DOI: 10.1016/j.ejphar.2023.176184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Augmenting T-cell activity is a promising approach to enhance the efficacy of cancer immunotherapy treatment. Hematopoietic progenitor kinase 1 (HPK1) is predominantly expressed in immune cells and negatively regulates T-cell receptor signaling. It is reported that inhibition of the kinase function of HPK1 results in tumor growth suppression by enhancing cancer immunity. Thus, developing HPK1 inhibitors has attracted considerable attention as a future cancer immunotherapy approach. However, despite recent progress in HPK1 biology and pharmacology, various challenges still remain, such as developing HPK1 inhibitors with favorable pharmacological profiles and identifying tumor characteristics that can be applied to define susceptibility to HPK1 inhibition. Here, we present the identification and pharmacological evaluation of DS21150768, a potent small-molecule HPK1 inhibitor with a novel chemical scaffold. DS21150768 shows remarkable inhibition of HPK1 kinase activity, and in vitro studies demonstrated its potent activity to enhance T-cell function. DS21150768 is orally bioavailable and shows sustained plasma exposure, which leads to enhanced cytokine responses in vivo. We conducted a comparison of the anti-tumor efficacy of DS21150768 alone or in combination with anti-PD-1 antibody in 12 different mouse cancer cell models, and observed that the treatments suppressed tumor growth in multiple models. Furthermore, Gene Set Enrichment Analysis demonstrated significant enrichment of immune-related gene signatures in the tumor models responsive to DS21150768 treatment. Our results provide a path forward for the future development of HPK1 inhibitors and fundamental insights into biomarkers of HPK1-targeted therapy.
Collapse
Affiliation(s)
- Genzui Setsu
- Daiichi Sankyo Co., Ltd., Tokyo, 140-8710, Japan.
| | - Megumi Goto
- Daiichi Sankyo Co., Ltd., Tokyo, 140-8710, Japan
| | - Kentaro Ito
- Daiichi Sankyo Co., Ltd., Tokyo, 140-8710, Japan
| | - Tomoe Taira
- Daiichi Sankyo Co., Ltd., Tokyo, 140-8710, Japan
| | | | | | | | - Yuma Umezaki
- Daiichi Sankyo Co., Ltd., Tokyo, 140-8710, Japan
| | | | | | - Kazuki Mori
- Daiichi Sankyo Co., Ltd., Tokyo, 140-8710, Japan
| | | | | | - Masako Minami
- Daiichi Sankyo RD Novare Co., Ltd., Tokyo, 134-8630, Japan
| | | | - Chisa Wada
- Daiichi Sankyo RD Novare Co., Ltd., Tokyo, 134-8630, Japan
| | | | | |
Collapse
|