1
|
Adeva-Andany MM, Carneiro-Freire N, Castro-Quintela E, Ameneiros-Rodriguez E, Adeva-Contreras L, Fernandez-Fernandez C. Interferon Upregulation Associates with Insulin Resistance in Humans. Curr Diabetes Rev 2025; 21:86-105. [PMID: 38500280 DOI: 10.2174/0115733998294022240309105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/10/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
In humans, insulin resistance is a physiological response to infections developed to supply sufficient energy to the activated immune system. This metabolic adaptation facilitates the immune response but usually persists after the recovery period of the infection and predisposes the hosts to type 2 diabetes and vascular injury. In patients with diabetes, superimposed insulin resistance worsens metabolic control and promotes diabetic ketoacidosis. Pathogenic mechanisms underlying insulin resistance during microbial invasions remain to be fully defined. However, interferons cause insulin resistance in healthy subjects and other population groups, and their production is increased during infections, suggesting that this group of molecules may contribute to reduced insulin sensitivity. In agreement with this notion, gene expression profiles (transcriptomes) from patients with insulin resistance show a robust overexpression of interferon- stimulated genes (interferon signature). In addition, serum levels of interferon and surrogates for interferon activity are elevated in patients with insulin resistance. Circulating levels of interferon- γ-inducible protein-10, neopterin, and apolipoprotein L1 correlate with insulin resistance manifestations, such as hypertriglyceridemia, reduced HDL-c, visceral fat, and homeostasis model assessment-insulin resistance. Furthermore, interferon downregulation improves insulin resistance. Antimalarials such as hydroxychloroquine reduce interferon production and improve insulin resistance, reducing the risk for type 2 diabetes and cardiovascular disease. In addition, diverse clinical conditions that feature interferon upregulation are associated with insulin resistance, suggesting that interferon may be a common factor promoting this adaptive response. Among these conditions are systemic lupus erythematosus, sarcoidosis, and infections with severe acute respiratory syndrome-coronavirus-2, human immunodeficiency virus, hepatitis C virus, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Maria M Adeva-Andany
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Elvira Castro-Quintela
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Eva Ameneiros-Rodriguez
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | | | | |
Collapse
|
2
|
Li Y, Zhang J, Liu X, Zhang X, Shi G. Identification of IFITM3 as a diagnostic biomarker of systemic lupus erythematosus and its association with disease activity based on multi-omics and experimental verification. Lupus 2025; 34:57-70. [PMID: 39629611 DOI: 10.1177/09612033241304454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
BACKGROUND Systemic lupus erythematosus is a clinically heterogeneous autoimmune disease that lacks reliable diagnostic biomarkers. In our study, we aimed to identify a novel biomarker for the diagnosis and disease activity monitoring of SLE. METHODS Bulk RNA and scRNA-seq datasets were obtained from the Gene Expression Omnibus database. In this study, differential analysis, cell-cell communication algorithm, functional enrichment analysis, human protein map database analysis, protein-protein interaction analysis and immune cell infiltration analysis were utilized to identify the hub genes between SLE and healthy groups. Furthermore, clinical data from 68 SLE patients and 31 healthy controls were collected for verification. Changes in IFITM3 levels were confirmed through quantitative real-time polymerase chain reaction, western blotting, and flow cytometry analyses. RESULT Bioinformatic analyses showed that IFITM3 expression was significantly upregulated in peripheral monocytes from patients with SLE. IFITM3 mRNA levels showed a significant diagnostic value for SLE, with an AUC value of 87.14%. IFITM3 expression was associated with the systemic lupus erythematosus disease activity index, as well as C3, C4, and IgG levels. The results of Chi-square test showed that those in the IFITM3-positive group had a higher percentage of several clinical manifestations such as thrombocytopenia, leukopenia, low complement, and fever. CONCLUSIONS These findings indicated an obviously increased expression of IFITM3 in peripheral blood monocytes of patients with SLE and verified IFITM3 as a promising diagnostic marker for SLE and associated with disease activity.
Collapse
Affiliation(s)
- Yan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
| | - Jimin Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
| | - Xiaomei Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
| | - Xinwei Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
| |
Collapse
|
3
|
Wang J, Yang X, Zhang Y, Jiang X, Li Y, Cui J, Liao Y. Single-cell analysis with childhood and adult systemic lupus erythematosus. Autoimmunity 2024; 57:2281228. [PMID: 38347676 DOI: 10.1080/08916934.2023.2281228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/05/2023] [Indexed: 02/15/2024]
Abstract
Patients with systemic lupus erythematosus (SLE), a heterogeneous and chronic autoimmune disease, exhibit unique changes in the complex composition and transcriptional signatures of peripheral blood mononuclear cells (PBMCs). While the mechanism of pathogenesis for both childhood-onset SLE (cSLE) and adult-onset SLE (aSLE) remains unclear, cSLE patients are considered more unpredictable and dangerous than aSLE patients. In this study, we analysed single-cell RNA sequencing data (scRNA-seq) to profile the PBMC clusters of cSLE/aSLE patients and matched healthy donors and compared the PBMC composition and transcriptional variations between the two groups. Our analysis revealed that the PBMC composition and transcriptional variations in cSLE patients were similar to those in aSLE patients. Comparative single-cell transcriptome analysis between healthy donors and SLE patients revealed IFITM3, ISG15, IFI16 and LY6E as potential therapeutic targets for both aSLE and cSLE patients. Additionally, we observed that the percentage of pre-B cells (CD34-) was increased in cSLE patients, while the percentage of neutrophil cells was upregulated in aSLE patients. Notably, we found decreased expression of TPM2 in cSLE patients, and similarly, TMEM150B, IQSEC2, CHN2, LRP8 and USP46 were significantly downregulated in neutrophil cells from aSLE patients. Overall, our study highlights the differences in complex PBMC composition and transcriptional profiles between cSLE and aSLE patients, providing potential biomarkers that could aid in diagnosing SLE.
Collapse
Affiliation(s)
- Jing Wang
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming, China, People's Republic of China
| | - Xiran Yang
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming, China, People's Republic of China
| | - Yanhua Zhang
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming, China, People's Republic of China
| | - Xuemei Jiang
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming, China, People's Republic of China
| | - Yanfang Li
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming, China, People's Republic of China
| | - Jingjing Cui
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming, China, People's Republic of China
| | - Yabin Liao
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming, China, People's Republic of China
| |
Collapse
|
4
|
Ruffenach G, Medzikovic L, Aryan L, Sun W, Lertpanit L, O'Connor E, Dehghanitafti A, Hatamnejad MR, Li M, Reddy ST, Eghbali M. Intestinal IFNα4 promotes 15-HETE diet-induced pulmonary hypertension. Respir Res 2024; 25:419. [PMID: 39609844 PMCID: PMC11606228 DOI: 10.1186/s12931-024-03046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVES Pulmonary arterial hypertension (PAH) is characterized by the remodeling of the pulmonary vascular bed leading to elevation of the pulmonary arterial pressure. Oxidized fatty acids, such as hydroxyeicosatetraenoic acids (HETEs), play a critical role in PAH. We have previously established that dietary supplementation of 15-HETE is sufficient to cause PH in mice, suggesting a role for the gut-lung axis. However, the mechanisms are not known. APPROACH Analysis of RNA-seq data obtained from the lungs and intestines of mice on 15-HETE diet together with transcriptomic data from PAH patient lungs identified IFN inducible protein 44 (IFI44) as the only gene significantly upregulated in mice and humans. We demonstrate that IFI44 is also significantly increased in PBMCs from PAH patients. In mice, 15-HETE diet enhances IFI44 and its inducer IFN⍺4 expression sequentially in the intestine first and then in the lungs. IFI44 expression in PAH is highly correlated with expression of Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL), which is upregulated in CD8 cells in PH lungs of both mice and humans. We show that IFNα4 produced by intestinal epithelial cells facilitates IFI44 expression in CD8 cells. Finally, we demonstrate that IFN receptor 1-KO in mice do not develop PH on 15-HETE diet. In addition, silencing IFI44 expression in the lungs of mice on 15-HETE diet prevents the development of PH and is associated with significantly lower expression of IFI44 and TRAIL in CD8 cells in the lungs. CONCLUSION Our data reveal a novel gut-lung axis driven by 15-HETE in PH.
Collapse
Affiliation(s)
- Grégoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA.
| | - Lejla Medzikovic
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Laila Aryan
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Wasila Sun
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Long Lertpanit
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-7115, USA
| | - Ellen O'Connor
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-7115, USA
| | - Ateyeh Dehghanitafti
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Mohammad Reza Hatamnejad
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Min Li
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-7115, USA
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA.
| |
Collapse
|
5
|
Jiang L, Duan R, Yu X, Huang Z, Peng X, Wang T, Li Z, Liu X, Wang M, Su W. An analysis of single-cell data reveals therapeutic effects of AMG487 in experimental autoimmune uveitis. Biochem Pharmacol 2024; 232:116671. [PMID: 39615601 DOI: 10.1016/j.bcp.2024.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/22/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024]
Abstract
Uveitis, an ocular autoimmune disease that poses a significant threat to vision, is caused by immune cells erroneously attacking retinal cells and currently lacks specific and effective therapeutic interventions. The CXC chemokine receptor 3 (CXCR3) facilitates the migration of immune cells to sites of inflammation. AMG487, a CXCR3 antagonist, holds potential for treating autoimmune diseases by blocking immunes cells chemotaxis. However, its effects and mechanisms in uveitis remain unclear. Using single-cell assay for transposase-accessible chromatin sequencing and RNA sequencing, we observed increased expression of CXCR3 and chemotactic pathways in peripheral blood of Vogt-Koyanagi-Harada patients and cervical lymph nodes of experimental autoimmune uveitis mice. AMG487 treatment in experimental autoimmune uveitis was shown to be therapeutically effective. Analysis of flow cytometry and single-cell RNA sequencing in AMG487-treated mice revealed reduced expression of inflammatory genes in immune cells. Specifically, AMG487 decreased the proportion of plasma cell in B cells, restored the ratio between effector T cells and regulatory T cells, and diminished T helper (Th) 17 cell pathogenicity by suppressing highly inflammatory granulocyte-macrophage colony-stimulating factor-producing Th17 cells while enhancing anti-inflammatory interleukin-10-producing Th17 cells. Our study presents an exhaustive single-cell transcriptional analysis of immune cells under AMG487 treatment, thereby elucidating potential mechanisms and providing a potential reference for the development of novel therapeutic strategies for autoimmune diseases.
Collapse
Affiliation(s)
- Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoyang Yu
- Guangzhou University of Chinese Medicine, Guangzhou 510060, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xuening Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Mingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Hu M, Tan R, Lu C, Zhou T, Wang Q, Liu T. Unveiling shared therapeutic targets and pathological pathways between coronary artery disease and major depressive disorder through bioinformatics analysis. Sci Rep 2024; 14:29365. [PMID: 39592804 PMCID: PMC11599718 DOI: 10.1038/s41598-024-80920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024] Open
Abstract
Coronary artery disease (CAD) is a predominant cardiovascular condition influenced by risk factors, with an emphasis on major depressive disorder (MDD). However, the shared mechanisms and therapeutic targets for CAD and MDD remain incompletely comprehended. Functional enrichment analyses were conducted to investigate the pathways associated with the differentially expressed genes (DEGs) in the CAD and MDD datasets. Hub genes were identified utilizing the Protein-Protein Interaction network and Cytoscape software. The single sample gene set variation analysis was applied to assess immune cell infiltration in the CAD and MDD datasets. Weighted gene co-expression network analysis and molecular biological experiments were executed to evaluate these hub genes. Molecular docking was conducted to identify drug candidates targeting these hub genes. The overlapping DEGs between the CAD and MDD datasets were mainly enriched in the Herpes simplex virus 1 infection and the NF-kappa B signaling pathways. CDC42, NDUFB3, and TXN were validated within the eigengenes of the blue module, which exhibited a significant association with the CAD phenotype. The drug candidate GS-9620 was identified as a potential protective agent against both disorders. In conclusion, CDC42, NDUFB3, and TXN held potential as molecular biomarkers and therapeutic targets for the simultaneous treatment of CAD and MDD.
Collapse
Affiliation(s)
- Mengyun Hu
- Department of Nursing, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Rong Tan
- Department of Nursing, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Caihong Lu
- Clinical Skills Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Ting Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Qin Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China.
- Hubei Province Key Laboratory of Molecular Imaging, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China.
| | - Tao Liu
- Department of Cardiovascular Medicine, Wuhan Red Cross Hospital, Wuhan, 430015, Hubei Province, China.
| |
Collapse
|
7
|
Ma Q, Li L, Xing Y. LncRNA NRIR serves as a biomarker for systemic lupus erythematosus and participates in the disease progression. Lupus 2024:9612033241294032. [PMID: 39428741 DOI: 10.1177/09612033241294032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by a malfunction of the body's immune defense system. OBJECTIVE The objective of the present investigation was to examine the expression and diagnostic significance of NRIR in SLE and to prove whether it is involved in the progression of SLE. METHODS The study involved 110 participants, including 55 healthy individuals and 55 SLE patients. The expression levels of NRIR, miR-31-5p, and ICAM-1 were measured using qRT-PCR. The ROC curve was performed to assess the diagnostic significance of NRIR in SLE patients. Pearson correlation analysis was utilized to explore the relationship between NRIR and other indicators. Cytokines including IL-4, IL-6, and IL-21, along with IgG levels, were assessed using ELISA. The interaction between NRIR and miR-31-5p was validated using a dual-luciferase reporter assay. RESULT Upregulated expression of NRIR was observed in individuals with SLE, serving a diagnostic function for SLE. Additionally, abnormal expression of NRIR impacted the viability of CD4+ T cells within SLE patients. NRIR could negatively modulate the expression of miR-31-5p. CONCLUSION LncRNA NRIR may be a potential biomarker for SLE and is likely involved in the progression of SLE.
Collapse
Affiliation(s)
- Qingfeng Ma
- Laboratory Department, The People's Hospital of Feicheng, Taian, China
| | - Li Li
- Laboratory Department, The People's Hospital of Feicheng, Taian, China
| | - Youzhong Xing
- Department of Blood Transfusion, Jinan Central Hospital, Jinan, China
| |
Collapse
|
8
|
Chen J, Li M, Shang S, Cheng L, Tang Z, Huang C. LncRNA XIST/miR-381-3P/STAT1 axis as a potential biomarker for lupus nephritis. Lupus 2024; 33:1176-1191. [PMID: 39126180 DOI: 10.1177/09612033241273072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
OBJECTIVE We aim to investigate the potential roles of key genes in the development of lupus nephritis (LN), screen key biomarkers, and construct the lncRNA XIST/miR-381-3P/STAT1 axis by using bioinformatic prediction combined with clinical validation, thereby providing new targets and insights for clinical research. METHODS Gene expression microarrays GSE157293 and GSE112943 were downloaded from the GEO database to obtain differentially expressed genes (DEGs), followed by enrichment analyses on these DEGs, which were enriched and analyzed to construct a protein-protein interaction (PPI) network to screen core genes. The lncRNA-miRNA-mRNA regulatory network was predicted and constructed based on the miRNA database. 37 female patients with systemic lupus erythematosus (SLE) were recruited to validate the bioinformatics results by exploring the diagnostic value of the target ceRNA axis in LN by dual luciferase and real-time fluorescence quantitative PCR (RT-qPCR) and receiver operating characteristic (ROC). RESULTS The data represented that a total of 133 differential genes were screened in the GSE157293 dataset and 2869 differential genes in the GSE112943 dataset, yielding a total of 26 differentially co-expressed genes. Six core genes (STAT1, OAS2, OAS3, IFI44, DDX60, and IFI44L) were screened. Biological functional analysis identified key relevant pathways in LN. ROC curve analysis suggested that lncRNA XIST, miR-381-3P, and STAT1 could be used as potential molecular markers to assist in the diagnosis of LN. CONCLUSION STAT1 is a key gene in the development of LN. In conclusion, lncRNA XIST, miR-381-3P, and STAT1 can be used as new molecular markers to assist in the diagnosis of LN, and the lncRNA XIST/miR-381-3P/STAT1 axis may be a potential therapeutic target for LN.
Collapse
Affiliation(s)
- Junjie Chen
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Ming Li
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Shuangshuang Shang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Lili Cheng
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Zhongfu Tang
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Chuanbing Huang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
9
|
Jin Y, Wang Y, Ma X, Li H, Zhang M. Identification of NET formation and the renoprotective effect of degraded NETs in lupus nephritis. Am J Physiol Renal Physiol 2024; 327:F637-F654. [PMID: 39205658 PMCID: PMC11483074 DOI: 10.1152/ajprenal.00122.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
To explore molecular biomarkers associated with the pathophysiology and therapy of lupus nephritis (LN), we conducted a joint analysis of transcriptomic data from 40 peripheral blood mononuclear cells (PBMCs) (GSE81622) and 21 kidney samples (GSE112943) from the Gene Expression Omnibus database using bioinformatics. A total of 976 and 2,427 differentially expressed genes (DEGs) were identified in PBMCs and renal tissues. Seven and two functional modules closely related to LN were identified. Further enrichment analysis revealed that the neutrophil activation pathway was highly active in both PBMCs and the kidney. Subsequently, 16 core genes closely associated with LN were verified by protein-protein interaction screening and quantitative PCR. In vitro cell models and MRL/lpr mouse models confirmed that the abnormal expression of these core genes was closely linked to neutrophil extracellular traps (NETs) generated by neutrophil activation, while degradation of NETs led to downregulation of core gene expression, thereby improving pathological symptoms of LN. Therefore, identification of patients with systemic lupus erythematosus exhibiting abnormal expression patterns for these core genes may serve as a useful indicator for kidney involvement. In addition, targeting neutrophils to modulate their activation levels and inhibit aberrant expression of these genes represents a potential therapeutic strategy for treating LN. NEW & NOTEWORTHY The mechanisms by which immune cells cause kidney injury in lupus nephritis are poorly understood. We integrated and analyzed the transcriptomic features of PBMCs and renal tissues from the GEO database to identify key molecular markers associated with neutrophil activation. We confirmed that neutrophil extracellular traps (NETs) formed by neutrophil activation promoted the upregulation of key genes in cell and animal models. Targeted degradation of NETs significantly ameliorated kidney injury in MRL/lpr mice.
Collapse
Affiliation(s)
- Yong Jin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yutong Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xu Ma
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hongbin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Manling Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
10
|
Yuan Y, Xiang X, Jiang X, Liu Y, Zhang M, Lu L, Zhang X, Liu X, Tan Q, Zhang J. Ginkgo Biloba Bioactive Phytochemicals against Age-Related Diseases: Evidence from a Stepwise, High-Throughput Research Platform. Antioxidants (Basel) 2024; 13:1104. [PMID: 39334763 PMCID: PMC11429439 DOI: 10.3390/antiox13091104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The seeds of ginkgo biloba L (GB) have been widely used worldwide. This study investigated the bioefficacies of whole GB seed powder (WGP) retaining the full nutrients of ginkgo against aging, atherosclerosis, and fatigue. The experimental results indicated that WGP lowered brain monoamine oxidase and serum malondialdehyde levels, enhanced thymus/spleen indexes, and improved learning ability, and delayed aging in senescent mice. WGP regulated lipid levels and prevented atherosclerosis by reducing triglycerides, lowering low-density lipoprotein cholesterol, increasing high-density lipoprotein cholesterol, and decreasing the atherosclerosis index. WGP improved exercise performance by reducing blood lactate accumulation and extending exhaustive swimming and climbing times, improved energy storage by increasing muscle/liver glycogen levels, and relieved physical fatigue. Network pharmacology analysis revealed 270 potential targets of WGP that play roles in cellular pathways related to inflammation inhibition, metabolism regulation, and anti-cellular senescence, etc. Protein-protein interaction analysis identified 10 hub genes, including FOS, ESR1, MAPK8, and SP1 targets. Molecular docking and molecular dynamics simulations showed that the bioactive compounds of WGP bound well to the targets. This study suggests that WGP exerts prominent health-promoting effects through multiple components, targets, and pathways.
Collapse
Affiliation(s)
- Yuming Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Y.Y.); (X.X.); (X.J.); (Y.L.); (X.Z.); (X.L.)
| | - Xiaoyan Xiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Y.Y.); (X.X.); (X.J.); (Y.L.); (X.Z.); (X.L.)
| | - Xuejun Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Y.Y.); (X.X.); (X.J.); (Y.L.); (X.Z.); (X.L.)
| | - Yingju Liu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Y.Y.); (X.X.); (X.J.); (Y.L.); (X.Z.); (X.L.)
| | - Ming Zhang
- Department of Thoracic Surgery, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China;
| | - Luyang Lu
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China;
| | - Xinping Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Y.Y.); (X.X.); (X.J.); (Y.L.); (X.Z.); (X.L.)
| | - Xinyi Liu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Y.Y.); (X.X.); (X.J.); (Y.L.); (X.Z.); (X.L.)
| | - Qunyou Tan
- Department of Thoracic Surgery, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China;
| | - Jingqing Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Y.Y.); (X.X.); (X.J.); (Y.L.); (X.Z.); (X.L.)
| |
Collapse
|
11
|
Elbrashy MM, Metwally H, Sakakibara S, Kishimoto T. Threonine Phosphorylation and the Yin and Yang of STAT1: Phosphorylation-Dependent Spectrum of STAT1 Functionality in Inflammatory Contexts. Cells 2024; 13:1531. [PMID: 39329714 PMCID: PMC11429647 DOI: 10.3390/cells13181531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Threonine phosphorylation promotes inflammatory functions of STAT1 while restricting its interferon (IFN) signaling in innate immune responses. However, it remains unclear whether the restriction of STAT1-mediated IFN signaling conferred by threonine phosphorylation is a ubiquitous mechanism or one that is context-dependent. To address this, we utilized pristane-induced lupus, a prototype IFN-driven systemic autoimmune disease model characterized by the production of high-titer autoantibodies against nucleic acid-associated antigens. Through genetic and biochemical assays, we demonstrate that Thr748 phosphorylation is dispensable for STAT1 functionality in pristane-induced lupus. Genetically engineered mice expressing the phospho-deficient threonine 748-to-alanine (T748A) mutant STAT1 exhibited similar survival rates, high titers of anti-dsDNA IgG, and nephritis compared to their wild-type littermates. In sharp contrast, STAT1 deficiency protected mice against pristane-induced lupus, as evidenced by increased survival, low titers of anti-dsDNA IgG, and less severe nephritis in the STAT1 knockout mice compared to their T748A littermates. Our study suggests a phosphorylation-dependent modularity that governs the spectrum of STAT1 functionality in inflammatory contexts: IFN phospho-tyrosine-dependent and inflammatory phospho-threonine-dependent, with Thr748 phosphorylation driving selective inflammatory activities, particularly those not driven by the canonical JAK pathway. From a broader perspective, our findings provide deeper insights into how distinct phosphorylation events shape the combinatorial logic of signaling cassettes, thereby regulating context-dependent responses.
Collapse
Affiliation(s)
- Maha M Elbrashy
- Laboratory of Immune Regulation, Immunology Frontier Research Center, The World Premier International Research Center Initiative (WPI), Osaka University, Osaka 565-0871, Japan
- Biochemistry Department, Biotechnology Research Institute, National Research Center, Giza P.O. Box 12622, Egypt
| | - Hozaifa Metwally
- Laboratory of Immune Regulation, Immunology Frontier Research Center, The World Premier International Research Center Initiative (WPI), Osaka University, Osaka 565-0871, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, Immunology Frontier Research Center, The World Premier International Research Center Initiative (WPI), Osaka University, Osaka 565-0871, Japan
- Graduate School of Medical Safety Management, Jikei University of Health Care Sciences, Osaka 532-0003, Japan
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, Immunology Frontier Research Center, The World Premier International Research Center Initiative (WPI), Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Wang C, Yuan S, Zeng Y, Li W, Ye J, Li F, He Z, Chen Y, Lin X, Liang L, Xu H, Cai X. A novel long noncoding RNA ENST00000597482 serves as a potential biomarker for disease activity and diagnosis of systemic lupus erythematosus. Lupus 2024; 33:1089-1099. [PMID: 39037598 DOI: 10.1177/09612033241266988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
OBJECTIVES Emerging evidence indicate that long noncoding RNAs (lncRNAs) may play an important role in the pathogenesis of systemic lupus erythematosus (SLE) however, the contribution of lncRNAs to SLE remains largely unclear. Our study aimed to explore the lncRNA expression profiles in peripheral blood mononuclear cells (PBMCs) from SLE patients. METHODS LncRNA sequencing was used to detect differentially expressed genes in PBMCs from 5 SLE-MIX samples and 3 healthy controls (HC)-MIX samples, and the expression of selected lncRNAs was further verified by real-time quantitative polymerase chain reaction (RT‒qPCR). The correlation of lncRNA expression with laboratory indicators as well the SLE disease activity index 2000 (SLEDAI‒2K) score from 72 SLE patients was assessed by Spearman's test. The association between lncRNA ENST00000597482 and organ involvement in SLE patients was determined by the Mann‒Whitney U test. Moreover, lymphocyte subsets in peripheral blood from SLE patients were measured by flow cytometry. In addition, the diagnostic value of lncRNAs in predicting SLE was evaluated by receiver operating characteristic (ROC) curve analysis. RESULTS The lncRNA expression profiles demonstrated 218 differentially expressed lncRNAs, including 121 upregulated genes and 97 downregulated genes, in PBMCs from SLE patients compared to HCs. Among the 10 candidate genes selected, only lncRNA ENST00000597482, which was lower in SLE PBMCs than in HCs, was consistent with the sequencing results. LncRNA ENST00000597482 expression was negatively correlated with SLEDAI-2K score and the titres of ANA antibodies and anti-double-stranded DNA (anti-dsDNA) antibodies. Of note, SLE patients with lower expression of lncRNA ENST00000597482 were prone to develop organ involvement. Furthermore, lncRNA ENST00000597482 exhibited potential diagnostic value in differentiating SLE patients from HCs. CONCLUSIONS LncRNA ENST00000597482 expression was lower in PBMCs from SLE patients than HCs and was negatively correlated with the SLEDAI-2K score and autoantibody titres. In addition, lncRNA ENST00000597482 could act as a novel biomarker for disease activity and diagnosis of SLE.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shiwen Yuan
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yanting Zeng
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Weinian Li
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jinghua Ye
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Fangfei Li
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhixiang He
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yi Chen
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaojun Lin
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Liuqin Liang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
13
|
Huang X, Liu Y, Rong X, Zhao Y, Feng D, Wang J, Xing W. IFIT3 mediates TBK1 phosphorylation to promote activation of pDCs and exacerbate systemic sclerosis in mice. Clin Transl Med 2024; 14:e1800. [PMID: 39305055 PMCID: PMC11415598 DOI: 10.1002/ctm2.1800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE To assess the impact of the IFIT3/TBK1 signalling pathway in activating plasmacytoid dendritic cells (pDCs) and its role in the development of SSc. METHODS Utilized single-cell RNA sequencing (scRNA-seq) and high-throughput transcriptome RNA sequencing to reveal the differential abundance of pDCs and the role of the key gene IFIT3 in SSc. Conducted in vitro cell experiments to evaluate the effect of IFIT3/TBK1 signalling pathway intervention on pDC activation cytokine release and fibroblast function. Constructed an IFIT3-/- mouse model using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing to assess the potential benefits of intervening in the IFIT3/TBK1 signalling pathway on skin and lung fibrosis in the SSc mouse model. RESULTS The IFIT3/TBK1 signalling pathway plays a crucial role in activating pDCs, with IFIT3 acting as an upstream regulator of TBK1. Intervention in the IFIT3/TBK1 signalling pathway can inhibit pDC activation cytokine release and impact fibroblast function. The IFIT3-/- mouse model shows potential benefits of targeting the IFIT3/TBK1 signalling pathway in reducing skin and lung fibrosis in the SSc mouse model. CONCLUSION This study provides new insights into potential therapeutic targets for SSc, highlighting the critical role of the IFIT3/TBK1 signalling pathway in SSc development. HIGHLIGHTS This study elucidates the pivotal role of plasmacytoid dendritic cells (pDCs) in systemic sclerosis (SSc). This study identified the key regulatory gene involved in systemic sclerosis (SSc) as IFIT3. This study has found that IFIT3 functions as an upstream regulatory factor, activating TBK1. This study provides Evidence of the regulatory effects of the IFIT3/TBK1 pathway on plasmacytoid dendritic cells (pDCs). This study validated the therapeutic potential using the IFIT3-/- mouse model.
Collapse
Affiliation(s)
- Xiangyang Huang
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Yi Liu
- Department of Communication Sciences & DisordersMGH Institute of Health ProfessionsBostonMassachusettsUSA
| | - Xia Rong
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Yiheng Zhao
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Dan Feng
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Jun Wang
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Wanhong Xing
- Department of Cardiothoracic SurgeryThe Sixth People's Hospital of ChengduChengduSichuanChina
| |
Collapse
|
14
|
Lai JH, Wu DW, Huang CY, Hung LF, Wu CH, Ho LJ. USP18 induction regulates immunometabolism to attenuate M1 signal-polarized macrophages and enhance IL-4-polarized macrophages in systemic lupus erythematosus. Clin Immunol 2024; 265:110285. [PMID: 38880201 DOI: 10.1016/j.clim.2024.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Effective treatment of systemic lupus erythematosus (SLE) remains an unmet need. Different subsets of macrophages play differential roles in SLE and the modulation of macrophage polarization away from M1 status is beneficial for SLE therapeutics. Given the pathogenic roles of type I interferons (IFN-I) in SLE, this study investigated the effects and mechanisms of a mitochondria localization molecule ubiquitin specific peptidase 18 (USP18) preserving anti-IFN effects and isopeptidase activity on macrophage polarization. After observing USP18 induction in monocytes from SLE patients, we studied mouse bone marrow-derived macrophages and showed that USP18 deficiency increased M1signal (LPS + IFN-γ treatment)-induced macrophage polarization, and the effects involved the induction of glycolysis and mitochondrial respiration and the expression of several glycolysis-associated enzymes and molecules, such as hypoxia-inducible factor-1α. Moreover, the effects on mitochondrial activities, such as mitochondrial DNA release and mitochondrial reactive oxygen species production were observed. In contrast, the overexpression of USP18 inhibited M1signal-mediated and enhanced interleukin-4 (IL-4)-mediated polarization of macrophages and the related cellular events. Moreover, the levels of USP18 mRNA expression showed tendency of correlation with the expression of metabolic enzymes in monocytes from patients with SLE. We thus concluded that by preserving anti-IFN effect and downregulating M1 signaling, promoting USP18 activity may serve as a useful approach for SLE therapeutics.
Collapse
Affiliation(s)
- Jenn-Haung Lai
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, ROC; Graduate Institute of Clinical Research, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - De-Wei Wu
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, ROC
| | - Chuan-Yueh Huang
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC
| | - Li-Feng Hung
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC
| | - Chien-Hsiang Wu
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, ROC
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC.
| |
Collapse
|
15
|
Chen S, Ye J, Lin Y, Chen W, Huang S, Yang Q, Qian H, Gao S, Hua C. Crucial Roles of RSAD2/viperin in Immunomodulation, Mitochondrial Metabolism and Autoimmune Diseases. Inflammation 2024:10.1007/s10753-024-02076-5. [PMID: 38909344 DOI: 10.1007/s10753-024-02076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Autoimmune diseases are typically characterized by aberrant activation of immune system that leads to excessive inflammatory reactions and tissue damage. Nevertheless, precise targeted and efficient therapies are limited. Thus, studies into novel therapeutic targets for the management of autoimmune diseases are urgently needed. Radical S-adenosyl methionine domain-containing 2 (RSAD2) is an interferon-stimulated gene (ISG) renowned for the antiviral properties of the protein it encodes, named viperin. An increasing number of studies have underscored the new roles of RSAD2/viperin in immunomodulation and mitochondrial metabolism. Previous studies have shown that there is a complex interplay between RSAD2/vipeirn and mitochondria and that binding of the iron-sulfur (Fe-S) cluster is necessary for the involvement of viperin in mitochondrial metabolism. Viperin influences the proliferation and development of immune cells as well as inflammation via different signaling pathways. However, the function of RSAD2/viperin varies in different studies and a comprehensive overview of this emerging theme is lacking. This review will describe the characteristics of RSAD2/viperin, decipher its function in immunometabolic processes, and clarify the crosstalk between RSAD2/viperin and mitochondria. Furthermore, we emphasize the crucial roles of RSAD2 in autoimmune diseases and its potential application value.
Collapse
Affiliation(s)
- Siyan Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Jiani Ye
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Yinfang Lin
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Wenxiu Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Qianru Yang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Hengrong Qian
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
16
|
Liu Y, Li Q, Shao C, She Y, Zhou H, Guo Y, An H, Wang T, Yang J, Wan H. Exploring the Potential Mechanisms of Guanxinshutong Capsules in Treating Pathological Cardiac Hypertrophy based on Network Pharmacology, Computer-Aided Drug Design, and Animal Experiments. ACS OMEGA 2024; 9:18083-18098. [PMID: 38680308 PMCID: PMC11044149 DOI: 10.1021/acsomega.3c10009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/15/2024] [Accepted: 03/08/2024] [Indexed: 05/01/2024]
Abstract
Cardiovascular diseases (CVDs) are significant causes of morbidity and mortality worldwide, and pathological cardiac hypertrophy (PCH) is an essential predictor of many heart diseases. Guanxinshutong capsule (GXST) is a Chinese patent medicine widely used in the clinical treatment of CVD, In our previous research, we identified 111 compounds of GXST. In order to reveal the potential molecular mechanisms by which GXST treats PCH, this study employed network pharmacology methods to screen for the active ingredients of GXST in treating PCH and predicted the potential targets. The results identified 26 active ingredients of GXST and 110 potential targets for PCH. Through a protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we confirmed AKT1, MAPK1, and MAPK3 as the core proteins in GXST treatment of PCH, thus establishing the PI3K/AKT and MAPK signaling pathways as the significant mechanisms of GXST in treating PCH. The results of molecular docking (MD) demonstrate that flavonoid naringenin and diterpenoid tanshinone iia have the highest binding affinity with the core protein. Before performing molecular dynamics simulations (MDSs), the geometric structure of naringenin and tanshinone iia was optimized using density functional theory (DFT) at the B97-3c level, and RESP2 atomic charge calculations were carried out at the B3LYP-D3(BJ)/def2-TZVP level. Further MDS results demonstrated that in the human body environment, the complex of naringenin and tanshinone iii with core proteins exhibited high stability, flexibility, and low binding free energy. Additionally, naringenin and tanshinone iia showed favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics and passed the drug similarity (DS) assessment. Ultrasound cardiograms and cardiac morphometric measurements in animal experiments demonstrate that GXST can improve the PCH induced by isoproterenol (ISO). Protein immunoblotting results indicate that GXST increases the expression of P-eNOS and eNOS by activating the PI3K/AKT signaling pathway and the MAPK signaling pathway, further elucidating the mechanism of action of GXST in treating PCH. This study contributes to the elucidation of the key ingredients and molecular mechanisms of GXST in treating PCH.
Collapse
Affiliation(s)
- Yuanfeng Liu
- College
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| | - Qixiang Li
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
| | - Chongyu Shao
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| | - Yong She
- College
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| | - Huifen Zhou
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| | - Yan Guo
- Hangzhou
TCM Hospital Affiliated to Zhejiang Chinese Medical University Hangzhou, Zhejiang 310053, China
| | - Huiyan An
- College
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| | - Ting Wang
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiehong Yang
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| | - Haitong Wan
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
17
|
Forabosco P, Pala M, Crobu F, Diana MA, Marongiu M, Cusano R, Angius A, Steri M, Orrù V, Schlessinger D, Fiorillo E, Devoto M, Cucca F. Transcriptome organization of white blood cells through gene co-expression network analysis in a large RNA-seq dataset. Front Immunol 2024; 15:1350111. [PMID: 38629067 PMCID: PMC11018966 DOI: 10.3389/fimmu.2024.1350111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Gene co-expression network analysis enables identification of biologically meaningful clusters of co-regulated genes (modules) in an unsupervised manner. We present here the largest study conducted thus far of co-expression networks in white blood cells (WBC) based on RNA-seq data from 624 individuals. We identify 41 modules, 13 of them related to specific immune-related functions and cell types (e.g. neutrophils, B and T cells, NK cells, and plasmacytoid dendritic cells); we highlight biologically relevant lncRNAs for each annotated module of co-expressed genes. We further characterize with unprecedented resolution the modules in T cell sub-types, through the availability of 95 immune phenotypes obtained by flow cytometry in the same individuals. This study provides novel insights into the transcriptional architecture of human leukocytes, showing how network analysis can advance our understanding of coding and non-coding gene interactions in immune system cells.
Collapse
Affiliation(s)
- Paola Forabosco
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Mauro Pala
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Francesca Crobu
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Maria Antonietta Diana
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Mara Marongiu
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Roberto Cusano
- CRS4-Next Generation Sequencing (NGS) Core, Parco POLARIS, Cagliari, Italy
| | - Andrea Angius
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health (NIH), Baltimore, MA, United States
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Marcella Devoto
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
- Dipartimento di Medicina Traslazionale e di Precisione, Università Sapienza, Roma, Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| |
Collapse
|
18
|
Mo C, Bi J, Li S, Lin Y, Yuan P, Liu Z, Jia B, Xu S. The influence and therapeutic effect of microbiota in systemic lupus erythematosus. Microbiol Res 2024; 281:127613. [PMID: 38232494 DOI: 10.1016/j.micres.2024.127613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Systemic erythematosus lupus (SLE) is an autoimmune disease involving multiple organs that poses a serious risk to the health and life of patients. A growing number of studies have shown that commensals from different parts of the body and exogenous pathogens are involved in SLE progression, causing barrier disruption and immune dysregulation through multiple mechanisms. However, they sometimes alleviate the symptoms of SLE. Many factors, such as genetic susceptibility, metabolism, impaired barriers, food, and sex hormones, are involved in SLE, and the microbiota drives the development of SLE either by depending on or interacting with these factors. Among these, the crosstalk between genetic susceptibility, metabolism, and microbiota is a hot topic of research and is expected to lay the groundwork for the amelioration of the mechanism, diagnosis, and treatment of SLE. Furthermore, the microbiota has great potential for the treatment of SLE. Ideally, personalised therapeutic approaches should be developed in combination with more specific diagnostic methods. Herein, we provide a comprehensive overview of the role and mechanism of microbiota in lupus of the intestine, oral cavity, skin, and kidney, as well as the therapeutic potential of the microbiota.
Collapse
Affiliation(s)
- Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
沈 梦, 赵 娜, 邓 晓, 邓 敏. [High expression of COX6B2 in gastric cancer is associated with poor long-term prognosis and promotes cell proliferation and cell cycle progression by inhibiting p53 signaling]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:289-297. [PMID: 38501414 PMCID: PMC10954525 DOI: 10.12122/j.issn.1673-4254.2024.02.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To investigate the effect of COX6B2 expression in gastric cancer tissues on the patients' long-term prognosis and its underlying mechanism. METHODS Based on the public databases and the medical records of patients, we analyzed the expression level of COX6B2 in gastric cancer and adjacent tissues and its influence on long-term prognosis of the patients. Enrichment analysis were used to predict the possible role of COX6B2 in gastric cancer. The effects of lentivirusmediated COX6B2 knockdown on biological behaviors of gastric cancer cells were examined using CCK-8 assay, flow cytometry, and Western blotting. RESULTS TCGA database and the results of immunohistochemistry, Western blotting and realtime PCR all demonstrated a significantly higher expression of COX6B2 in gastric cancer tissues (P < 0.05). Kaplan-Meier plotter database and Kaplan-Meier curves showed that the patients with high COX6B2 expression had significantly shorter postoperative survival (P < 0.05). A high expression of COX6B2 in gastric cancer tissues was closely correlated with clinicopathologic stage, CEA and CA19-9 (P < 0.05). A high expression of COX6B2, CEA level≥5 μg/L and CA19-9 level≥37 kU/L were independent risk factors affecting postoperative 5-year survival rate of gastric cancer patients (P < 0.05), and COX6B2 expression level had a predictive value for long-term prognosis of the patients (P < 0.05). GO and KEGG enrichment analyses showed that COX6B2 was mainly involved in the regulation of cell cycle. In the in vitro cell experiment, COX6B2 overexpression significantly promoted gastric cancer cell proliferation, increased the percentage of G1/S phase cells and inhibited the cellular expressions of p53 and p21 (P < 0.05). CONCLUSION s COX6B2 is highly expressed in gastric cancer and is closely correlated with a poor long-term prognosis of the patients possibly by promoting gastric cancer cell proliferation and regulating cell cycle.
Collapse
Affiliation(s)
- 梦迪 沈
- 蚌埠医学院第一附属医院消化内科,安徽 蚌埠 233004Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- 蚌埠医学院,安徽省生化药物研究工程中心,安徽 蚌埠 233030Anhui Provincial Biochemical Drug Research Engineering Center, Bengbu Medical College, Bengbu 233030, China
| | - 娜 赵
- 蚌埠医学院第一附属医院消化内科,安徽 蚌埠 233004Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- 蚌埠医学院,安徽省生化药物研究工程中心,安徽 蚌埠 233030Anhui Provincial Biochemical Drug Research Engineering Center, Bengbu Medical College, Bengbu 233030, China
| | - 晓晶 邓
- 蚌埠医学院第一附属医院消化内科,安徽 蚌埠 233004Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 敏 邓
- 蚌埠医学院第一附属医院消化内科,安徽 蚌埠 233004Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
20
|
Zhang YJ, Huang C, Zu XG, Liu JM, Li YJ. Use of Machine Learning for the Identification and Validation of Immunogenic Cell Death Biomarkers and Immunophenotypes in Coronary Artery Disease. J Inflamm Res 2024; 17:223-249. [PMID: 38229693 PMCID: PMC10790656 DOI: 10.2147/jir.s439315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
Objective Immunogenic cell death (ICD) is part of the immune system's response to coronary artery disease (CAD). In this study, we bioinformatically evaluated the diagnostic and therapeutic utility of immunogenic cell death-related genes (IRGs) and their relationship with immune infiltration features in CAD. Methods We acquired the CAD-related datasets GSE12288, GSE71226, and GSE120521 from the Gene Expression Omnibus (GEO) database and the IRGs from the GeneCards database. After identifying the immune cell death-related differentially expressed genes (IRDEGs), we developed a risk model and detected immune subtypes in CAD. IRDEGs were identified using least absolute shrinkage and selection operator (LASSO) analysis. Using a nomogram, we confirmed that both the LASSO model and ICD signature genes had good diagnostic performance. Results There was a high degree of coincidence and immune representativeness between two CAD groups based on characteristic genes and hub genes. Hub genes were associated with the interaction of neuroactive ligands with receptors and cell adhesion receptors. The two groups differed in terms of adipogenesis, allograft rejection, and apoptosis, as well as the ICD signature and hub gene expression levels. The two CAD-ICD subtypes differed in terms of immune infiltration. Conclusion Quantitative real-time PCR (qRT-PCR) correlated CAD with the expression of OAS3, ITGAV, and PIBF1. The ICD signature genes are candidate biomarkers and reference standards for immune grouping in CAD and can be beneficial in precise immune-targeted therapy.
Collapse
Affiliation(s)
- Yan-jiao Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Chao Huang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, People’s Republic of China
| | - Xiu-guang Zu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Jin-ming Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Yong-jun Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| |
Collapse
|
21
|
Li H, Zhou L, Zhou W, Zhang X, Shang J, Feng X, Yu L, Fan J, Ren J, Zhang R, Duan X. Decoding the mitochondrial connection: development and validation of biomarkers for classifying and treating systemic lupus erythematosus through bioinformatics and machine learning. BMC Rheumatol 2023; 7:44. [PMID: 38044432 PMCID: PMC10694981 DOI: 10.1186/s41927-023-00369-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disease characterized by clinical and pathological diversity. Mitochondrial dysfunction has been identified as a critical pathogenetic factor in SLE. However, the specific molecular aspects and regulatory roles of this dysfunction in SLE are not fully understood. Our study aims to explore the molecular characteristics of mitochondria-related genes (MRGs) in SLE, with a focus on identifying reliable biomarkers for classification and therapeutic purposes. METHODS We sourced six SLE-related microarray datasets (GSE61635, GSE50772, GSE30153, GSE99967, GSE81622, and GSE49454) from the Gene Expression Omnibus (GEO) database. Three of these datasets (GSE61635, GSE50772, GSE30153) were integrated into a training set for differential analysis. The intersection of differentially expressed genes with MRGs yielded a set of differentially expressed MRGs (DE-MRGs). We employed machine learning algorithms-random forest (RF), support vector machine (SVM), and least absolute shrinkage and selection operator (LASSO) logistic regression-to select key hub genes. These genes' classifying potential was validated in the training set and three other validation sets (GSE99967, GSE81622, and GSE49454). Further analyses included differential expression, co-expression, protein-protein interaction (PPI), gene set enrichment analysis (GSEA), and immune infiltration, centered on these hub genes. We also constructed TF-mRNA, miRNA-mRNA, and drug-target networks based on these hub genes using the ChEA3, miRcode, and PubChem databases. RESULTS Our investigation identified 761 differentially expressed genes (DEGs), mainly related to viral infection, inflammatory, and immune-related signaling pathways. The interaction between these DEGs and MRGs led to the identification of 27 distinct DE-MRGs. Key among these were FAM210B, MSRB2, LYRM7, IFI27, and SCO2, designated as hub genes through machine learning analysis. Their significant role in SLE classification was confirmed in both the training and validation sets. Additional analyses included differential expression, co-expression, PPI, GSEA, immune infiltration, and the construction of TF-mRNA, miRNA-mRNA, and drug-target networks. CONCLUSIONS This research represents a novel exploration into the MRGs of SLE, identifying FAM210B, MSRB2, LYRM7, IFI27, and SCO2 as significant candidates for classifying and therapeutic targeting.
Collapse
Affiliation(s)
- Haoguang Li
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Lu Zhou
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Wei Zhou
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiuling Zhang
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jingjing Shang
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xueqin Feng
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Le Yu
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jie Fan
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jie Ren
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Rongwei Zhang
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xinwang Duan
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
22
|
Yang Y, Song J, Zhao H, Zhang H, Guo M. Patients with dermatomyositis shared partially similar transcriptome signature with COVID-19 infection. Autoimmunity 2023; 56:2220984. [PMID: 37353938 DOI: 10.1080/08916934.2023.2220984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/28/2023] [Indexed: 06/25/2023]
Abstract
Dermatomyositis (DM) is an autoimmune disease that primarily affects the skin and skeletal muscle. Virus infection and type I interferon-related signaling pathways play an important role in the pathogenesis of dermatomyositis. In this study, we found that the skin of patients with DM and the skin of patients with COVID-19 have similar transcriptional profiles, and identified key genes involved in dermatomyositis based on bioinformatics analysis. These hub-genes might be served as potential biomarkers for the early diagnosis and therapy of DM, including MX1, ISG15, IFIT3, IFIT1, RSAD2, IFIT2, IFI6, XAF1, IRF9, MX2.
Collapse
Affiliation(s)
- Yiying Yang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Jie Song
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Hongjun Zhao
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Huali Zhang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Muyao Guo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
23
|
Wu YY, Xing J, Li XF, Yang YL, Shao H, Li J. Roles of interferon induced protein with tetratricopeptide repeats (IFIT) family in autoimmune disease. Autoimmun Rev 2023; 22:103453. [PMID: 37741527 DOI: 10.1016/j.autrev.2023.103453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Interferon-induced tetrapeptide repeat (IFIT) family proteins are an important component of the antiviral immune response. There are four known members of the human IFIT family, namely IFIT1, IFIT2, IFIT3 and IFIT5. More and more evidence shows that IFIT family members are involved in a variety of pathophysiological processes in vivo, regulate the homeostasis and differentiation of a variety of cells including immune cells, and are closely related to a variety of autoimmune diseases, which is expected to become a new therapeutic target. This review reviews the biological roles of different IFIT proteins in various autoimmune diseases, and highlights the potential use of these molecules as biomarkers and prognostic factors in autoimmune diseases, with a view to providing ideas for exploring the diagnosis and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yuan-Yuan Wu
- Department of Pharmacy, Zhong da Hospital of Southeast University, No. 87 Ding Jia Qiao, Nanjing 210009, China
| | - Jun Xing
- China Medical University, Shenyang 110122, China
| | - Xiao-Feng Li
- Anhui Institute of Innovative Drugs, the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Ying-Li Yang
- Anhui Institute of Innovative Drugs, the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Hua Shao
- Department of Pharmacy, Zhong da Hospital of Southeast University, No. 87 Ding Jia Qiao, Nanjing 210009, China.
| | - Jun Li
- Anhui Institute of Innovative Drugs, the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
24
|
Huang Z, Jiang Q, Chen J, Liu X, Gu C, Tao T, Lv J, Li Z, Li Z, Su W. Therapeutic Effects of Upadacitinib on Experimental Autoimmune Uveitis: Insights From Single-Cell Analysis. Invest Ophthalmol Vis Sci 2023; 64:28. [PMID: 37713206 PMCID: PMC10506681 DOI: 10.1167/iovs.64.12.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
Purpose This study aimed to elucidate the impact of upadacitinib, a Janus kinase 1 (JAK1)-specific inhibitor, on experimental autoimmune uveitis (EAU) and explore its underlying mechanisms. Methods We utilized single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) to investigate the JAK/signal transducer and activator of transcription (STAT) pathway in peripheral blood mononuclear cells (PBMCs) of 12 patients with Vogt-Koyanagi-Harada (VKH) disease and cervical draining lymph node (CDLN) cells of EAU. After treating EAU with upadacitinib, we analyzed immune cell gene expression and cell-cell communication by integrating scRNA data. Additionally, we applied flow cytometry and western blot to analyze the CDLN cells. Results The JAK/STAT pathway was found to be upregulated in patients with VKH disease and EAU. Upadacitinib effectively alleviated EAU symptoms, reduced JAK1 protein expression, and suppressed pathogenic CD4 T cell (CD4TC) proliferation and pathogenicity while promoting Treg proliferation. The inhibition of pathogenic CD4TCs by upadacitinib was observed in both flow cytometry and scRNA data. Additionally, upadacitinib was found to rescue the interferon-stimulated gene 15 (ISG15)+ CD4TCs and CD8 T and B cell ratios and reduce expression of inflammatory-related genes. Upadacitinib demonstrated the ability to inhibit abnormally activated cell-cell communication, particularly the CXCR4-mediated migration pathway, which has been implicated in EAU pathogenesis. CXCR4 inhibitors showed promising therapeutic effects in EAU. Conclusions Our findings indicate that the JAK1-mediated signaling pathway is significantly upregulated in uveitis, and upadacitinib exhibits therapeutic efficacy against EAU. Furthermore, targeting the CXCR4-mediated migration pathway could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Qi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Junjie Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Chenyang Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Tianyu Tao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jianjie Lv
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zuohong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
25
|
Wang Y, Ma C, Ma Z, Yang M, Pu J, Ma X, Wu X, Peng L, Huo Z, Dang J. Identification and Clinical Correlation Analysis of IFI44 in Systemic Lupus Erythematosus Combined with Bioinformatics and Immune Infiltration Analysis. J Inflamm Res 2023; 16:3219-3231. [PMID: 37547125 PMCID: PMC10404056 DOI: 10.2147/jir.s419880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
Purpose Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can cause systemic damage to multiple organs. This study aims to analyze the value and function of IFI44 in the diagnosis and pathology of SLE by bioinformatics and immune infiltration analysis. Patients and Methods GSE49454 and GSE65391 of SLE were obtained from the GEO dataset, and R software was employed to identify DEGs and investigate their functions. The PPI network was utilized to identify hub genes associated with SLE. CIBERSORT was used to assess differences in immune cell infiltration in SLE patients and controls. ROC curve analysis was performed to evaluate the diagnostic value of IFI44 in SLE. The expression of IFI44 in PBMCs was detected by RT-qPCR, and the correlation between IFI44 expression and SLE-related clinical indicators was analyzed. Results A total of 65 DEGs were identified from the GSE49454 and GSE65391 databases. Through PPI analysis, IFI44 and RSAD2 were identified as significantly aberrantly expressed in SLE patients. SLE patients and controls showed a significant difference in the proportion of immune cell infiltration. IFI44 expression was positively correlated with activated DCs, monocytes, PCs, neutrophils, and activated memory CD4+T cells, while negatively correlated with M0 and CD8+T cells. The expression of IFI44 was significantly higher in SLE patients (P<0.01), especially in male patients (P=0.0376). ROC curve analysis demonstrated that IFI44 had a high diagnostic value for SLE. Correlation analysis indicated that IFI44 expression was correlated with levels of RBC, HGB, HCT, IgA, ESR, UPRO, C3, C4, and ENA in SLE patients. Conclusion IFI44 may play a role in the pathogenesis of SLE by influencing the immune microenvironment of SLE patients, and thus has the potential to serve as a diagnostic marker and therapeutic target for SLE.
Collapse
Affiliation(s)
- Yuan Wang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Chengfeng Ma
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Zhanbing Ma
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Mengyi Yang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Jing Pu
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Xiuhui Ma
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Xi Wu
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Liang Peng
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Zhenghao Huo
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Jie Dang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| |
Collapse
|
26
|
Zhao T, Sun S, Gao Y, Rong Y, Wang H, Qi S, Li Y. Luteolin and triptolide: Potential therapeutic compounds for post-stroke depression via protein STAT. Heliyon 2023; 9:e18622. [PMID: 37600392 PMCID: PMC10432979 DOI: 10.1016/j.heliyon.2023.e18622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Post stroke depression (PSD) is a common neuropsychiatric complication following stroke closely associated with the immune system. The development of medications for PSD remains to be a considerable challenge due to the unclear mechanism of PSD. Multiple researches agree that the functions of gene ontology (GO) are efficient for the investigation of disease mechanisms, and DeepPurpose (DP) is extremely valuable for the mining of new drugs. However, GO terms and DP have not yet been applied to explore the pathogenesis and drug treatment of PSD. This study aimed to interpret the mechanism of PSD and discover important drug candidates targeting risk proteins, based on immune-related risk GO functions and informatics algorithms. According to the risk genes of PSD, we identified 335 immune-related risk GO functions and 37 compounds. Based on the construction of the GO function network, we found that STAT protein may be a pivot protein in underlying the mechanism of PSD. Additionally, we also established networks of Protein-Protein Interaction as well as Gene-GO function to facilitate the evaluation of key genes. Based on DP, a total of 37 candidate compounds targeting 7 key proteins were identified with a potential for the therapy of PSD. Furthermore, we noted that the mechanisms by which luteolin and triptolide acting on STAT-related GO function might involve three crucial pathways, including specifically hsa04010 (MAPK signaling pathway), hsa04151 (PI3K-Akt signaling pathway) and hsa04060 (Cytokine-cytokine receptor interaction). Thus, this study provided fresh and powerful information for the mechanism and therapeutic strategies of PSD.
Collapse
Affiliation(s)
- Tianyang Zhao
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Siqi Sun
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yueyue Gao
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuting Rong
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanwenchen Wang
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sihua Qi
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
27
|
Sentis G, Loukogiannaki C, Malissovas N, Nikolopoulos D, Manolakou T, Flouda S, Grigoriou M, Banos A, Boumpas DT, Filia A. A network-based approach reveals long non-coding RNAs associated with disease activity in lupus nephritis: key pathways for flare and potential biomarkers to be used as liquid biopsies. Front Immunol 2023; 14:1203848. [PMID: 37475860 PMCID: PMC10355154 DOI: 10.3389/fimmu.2023.1203848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Objective A blood-based biomarker is needed to assess lupus nephritis (LN) disease activity, minimizing the need for invasive kidney biopsies. Long non-coding RNAs (lncRNAs) are known to regulate gene expression, appear to be stable in human plasma, and can serve as non-invasive biomarkers. Methods Transcriptomic data of whole blood samples from 74 LN patients and 20 healthy subjects (HC) were analyzed to identify differentially expressed (DE) lncRNAs associated with quiescent disease and flares. Weighted gene co-expression network analysis (WGCNA) was performed to uncover lncRNAs with a central role (hub lncRNAs) in regulating key biological processes that drive LN disease activity. The association of hub lncRNAs with disease activity was validated using RT-qPCR on an independent cohort of 15 LN patients and 9 HC. cis- and trans-targets of validated lncRNAs were explored in silico to examine potential mechanisms of their action. Results There were 444 DE lncRNAs associated with quiescent disease and 6 DE lncRNAs associated with flares (FDR <0.05). WGCNA highlighted IFN signaling and B-cell activity/adaptive immunity as the most significant processes contributing to nephritis activity. Four disease-activity-associated lncRNAs, namely, NRIR, KLHDC7B-DT, MIR600HG, and FAM30A, were detected as hub genes and validated in an independent cohort. NRIR and KLHDC7B-DT emerged as potential key regulators of IFN-mediated processes. Network analysis suggests that FAM30A and MIR600HG are likely to play a central role in the regulation of B-cells in LN through cis-regulation effects and a competing endogenous RNA mechanism affecting immunoglobulin gene expression and the IFN-λ pathway. Conclusions The expression of lncRNAs NRIR, KLHDC7B-DT, FAM30A, and MIR600HG were associated with disease activity and could be further explored as blood-based biomarkers and potential liquid biopsy on LN.
Collapse
Affiliation(s)
- George Sentis
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Catherine Loukogiannaki
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Nikos Malissovas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Dionysis Nikolopoulos
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Sofia Flouda
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria Grigoriou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 1st Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Dimitrios T. Boumpas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Anastasia Filia
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 1st Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
28
|
Song GY, Guo XN, Yao J, Lu ZN, Xie JH, Wu F, He J, Fu ZL, Han J. Differential expression profiles and functional analysis of long non-coding RNAs in calcific aortic valve disease. BMC Cardiovasc Disord 2023; 23:326. [PMID: 37369992 DOI: 10.1186/s12872-023-03311-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
AIM To evaluate the expression profile of long non-coding RNAs (lncRNAs) in calcific aortic valve disease (CAVD) and explore their potential mechanism of action. METHODS The gene expression profiles (GSE153555, GSE148219, GSE199718) were downloaded from the Gene Expression Omnibus (GEO) database and FastQC was run for quality control checks. After filtering and classifying candidate lncRNAs by differentially expressed genes (DEGs) and weighted co-expression networks (WGCNA) in GSE153555, we predicted the potential cis- or trans-regulatory target genes of differentially expressed lncRNAs (DELs) by using FEELnc and established the competitive endogenous RNA (ceRNA) network by miRanda, more over functional enrichment was analyzed using the ClusterProfiler package in R Bioconductor. The hub cis- or trans-regulatory genes were verified in GSE148219 and GSE199718 respectively. RESULTS There were 340 up-regulated lncRNAs identified in AS group compared with the control group (|log2Fold Change| ≥ 1.0 and Padj ≤ 0.05), and 460 down-regulated lncRNAs. Based on target gene prediction and co-expression network construction, twelve Long non-coding RNAs (CDKN2B-AS1, AC244453.2, APCDD1L-DT, SLC12A5-AS1, TGFB3, AC243829.4, MIR4435-2HG, FAM225A, BHLHE40-AS1, LINC01614, AL356417.2, LINC01150) were identified as the hub cis- or trans-regulatory genes in the pathogenesis of CAVD which were validated in GSE148219 and GSE19971. Additionally, we found that MIR4435-2HG was the top hub trans-acting lncRNA which also plays a crucial role by ceRNA pattern. CONCLUSION LncRNAs may play an important role in CAVD and may provide a new perspective on the pathogenesis, diagnosis, and treatment of this disease. Further studies are required to illuminate the underlying mechanisms and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Guang-Yuan Song
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China.
| | - Xu-Nan Guo
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing Yao
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhi-Nan Lu
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jia-Hong Xie
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Fang Wu
- Department of Cardiac Surgery, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing He
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhao-Lin Fu
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jie Han
- Department of Cardiac Surgery, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China.
| |
Collapse
|