1
|
Satheesan L, Kittur PM, Alhussien MN, Karanwal S, A P M, Alex R, Kamboj A, Dang AK. Comparative Profiling of Milk Somatic Cells Proteomes Revealed Key Players in Mammary Immune Mechanisms During Mastitis in Tropical Sahiwal (Bos indicus) Cows. Proteomics Clin Appl 2024; 18:e202400054. [PMID: 39313943 DOI: 10.1002/prca.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE Bovine mastitis poses a significant economic burden on the dairy industry worldwide. This pioneering proteomic study conducted a comparative profiling of milk somatic cell (SC) proteins contributing to mammary immune defense during subclinical and clinical mastitis (CM) in Sahiwal (Bos indicus) cows. EXPERIMENTAL DESIGN Based on California mastitis test (CMT) scores, milk SC counts, differential leukocyte counts (DLCs), and bacteriological culture results, quarter milk SC samples were categorized into healthy (H), subclinical mastitis (SCM), and CM groups. Comparative proteome profiling of milk SCs was done using a label-free liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) proteomic approach. RESULTS The identified upregulated proteins in mastitis groups such as Vanin 2, Thioredoxin reductase-like selenoprotein T, Ceramidase, Lymphocyte antigen 75, Misshapen-like kinase 1 (MINK1), Thrombospondin 1, Macrophage scavenger receptor 1, Leupaxin, and Lipoamide acyltransferase, involved in immune responses. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed immune functions and pathways like antigen processing, complement cascades, extracellular matrix receptor interaction, efferocytosis, leukocyte migration, chemokine, peroxisome proliferator-activated receptors (PPARs), and transforming growth factor (TGF)-beta signaling. CONCLUSIONS AND CLINICAL RELEVANCE These findings provide essential information on proteomic profiling in milk SCs and contribute valuable insights into immune-related proteins regulated during mastitis in dairy cows. Further, validated proteins (Vanin 2, MINK1, and Thrombospondin 1) offer potential inflammatory biomarkers for early mastitis detection in dairy cows.
Collapse
Affiliation(s)
- Lija Satheesan
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Priyanka M Kittur
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Mohanned Naif Alhussien
- Reproductive Biotechnology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Seema Karanwal
- Animal Genomics Laboratory, Animal Biotechnology, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Madhusoodan A P
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Rani Alex
- Molecular Genetics Laboratory, Animal Genetics and Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Aarti Kamboj
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
2
|
Gong J, Li T, Li Y, Xiong X, Xu J, Chai X, Ma Y. UID-Dual Transcriptome Sequencing Analysis of the Molecular Interactions between Streptococcus agalactiae ATCC 27956 and Mammary Epithelial Cells. Animals (Basel) 2024; 14:2587. [PMID: 39272372 PMCID: PMC11393856 DOI: 10.3390/ani14172587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Streptococcus agalactiae ATCC 27956 is a highly contagious Gram-positive bacterium that causes mastitis, has a high infectivity for mammary epithelial cells, and becomes challenging to treat. However, the molecular interactions between it and mammary epithelial cells remain poorly understood. This study analyzed differential gene expression in mammary epithelial cells with varying levels of S. agalactiae infection using UID-Dual transcriptome sequencing and bioinformatics tools. This study identified 211 differentially expressed mRNAs (DEmRNAs) and 452 differentially expressed lncRNAs (DElncRNAs) in host cells, primarily enriched in anti-inflammatory responses, immune responses, and cancer-related processes. Additionally, 854 pathogen differentially expressed mRNAs (pDEmRNAs) were identified, mainly enriched in protein metabolism, gene expression, and biosynthesis processes. Mammary epithelial cells activate pathways, such as the ERK1/2 pathway, to produce reactive oxygen species (ROS) to eliminate bacteria. The bacteria disrupt the host's innate immune mechanisms by interfering with the alternative splicing processes of mammary epithelial cells. Specifically, the bacterial genes of tsf, prfB, and infC can interfere with lncRNAs targeting RUNX1 and BCL2L11 in mammary epithelial cells, affecting the alternative splicing of target genes and altering normal molecular regulation.
Collapse
Affiliation(s)
- Jishang Gong
- College of Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Taotao Li
- College of Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
| | - Yuanfei Li
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Xinwei Xiong
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Jiguo Xu
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Xuewen Chai
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Youji Ma
- College of Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
| |
Collapse
|
3
|
Khan MZ, Li L, Wang T, Liu X, Chen W, Ma Q, Zahoor M, Wang C. Bioactive Compounds and Probiotics Mitigate Mastitis by Targeting NF-κB Signaling Pathway. Biomolecules 2024; 14:1011. [PMID: 39199398 PMCID: PMC11352841 DOI: 10.3390/biom14081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Mastitis is a significant inflammatory condition of the mammary gland in dairy cows. It is caused by bacterial infections and leads to substantial economic losses worldwide. The disease can be either clinical or sub-clinical and presents challenges such as reduced milk yield, increased treatment costs, and the need to cull affected cows. The pathogenic mechanisms of mastitis involve the activation of Toll-like receptors (TLRs), specifically TLR2 and TLR4. These receptors play crucial roles in recognizing pathogen-associated molecular patterns (PAMPs) and initiating immune responses through the NF-κB signaling pathway. Recent in vitro studies have emphasized the importance of the TLR2/TLR4/NF-κB signaling pathway in the development of mastitis, suggesting its potential as a therapeutic target. This review summarizes recent research on the role of the TLR2/TLR4/NF-κB signaling pathway in mastitis. It focuses on how the activation of TLRs leads to the production of proinflammatory cytokines, which, in turn, exacerbate the inflammatory response by activating the NF-κB signaling pathway in mammary gland tissues. Additionally, the review discusses various bioactive compounds and probiotics that have been identified as potential therapeutic agents for preventing and treating mastitis by targeting TLR2/TLR4/NF-κB signaling pathway. Overall, this review highlights the significance of targeting the TLR2/TLR4/NF-κB signaling pathway to develop effective therapeutic strategies against mastitis, which can enhance dairy cow health and reduce economic losses in the dairy industry.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Tongtong Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Xiaotong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Qingshan Ma
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien, 90372 Oslo, Norway
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
4
|
Muslimova Z, Abdualiyeva A, Shaugimbayeva N, Orynkhanov K, Ussenbekov Y. Genotyping of Holstein Cows by SELL, MX1 and CXCR1 Gene Loci Associated With Mastitis Resistance. Reprod Domest Anim 2024; 59:e14713. [PMID: 39171501 DOI: 10.1111/rda.14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Mastitis is a significant factor that decreases milk production in cows of different breeds in Kazakhstan. The objective of this study was to determine the genetic makeup of Holstein cows by analysing specific gene loci (SELL, MX1, CXCR1+291C>T and CXCR1+1093C>T) that are linked to resistance against mastitis. The goal was to identify cows with favourable genotypes that are less prone to udder diseases. At the SELL gene locus c.567T>C, all three genetic variants were identified in the control population with the respective frequencies: TT (0.20), CT (0.44), and CC (0.36). Genetic variation was also detected at the MX1 gene c.567T>C, CXCR1 c.+291C>T and CXCR1+1093C>T loci. Deviation from the expected Hardy-Weinberg equilibrium was observed for two gene loci, MX1 g.143182088 and CXCR1+1093C>T, with increased chi-square values of 10.6261 and 9.7137, respectively. The analysis of subclinical mastitis incidence indicates that cows carrying the heterozygous CT genotype at the L-selectin gene locus exhibit greater resistance to the disease. Animals carrying the CCCCCT genotype at the MX1 c.567T>C, CXCR1 c.+291C>T and CXCR1+1093C>T gene loci were discovered to have a significant likelihood of developing subclinical mastitis. This suggests that these genes could serve as potential indicators of susceptibility to the condition. The practical significance of this study lies in determining the frequency of genotypes linked to mammary gland morbidity in Holstein breeding farms in Kazakhstan.
Collapse
Affiliation(s)
- Zhadyra Muslimova
- Department of Obstetrics, Surgery and Reproductive Biotechnology, Kazakh National Agrarian Research University, Almaty, Republic of Kazakhstan
| | - Assem Abdualiyeva
- Department of Biological Safety, Kazakh National Agrarian Research University, Almaty, Republic of Kazakhstan
| | - Nurzhan Shaugimbayeva
- Department of Food Technology, Almaty Technological University, Almaty, Republic of Kazakhstan
| | - Kanat Orynkhanov
- Department of Obstetrics, Surgery and Reproductive Biotechnology, Kazakh National Agrarian Research University, Almaty, Republic of Kazakhstan
| | - Yessengali Ussenbekov
- Department of Obstetrics, Surgery and Reproductive Biotechnology, Kazakh National Agrarian Research University, Almaty, Republic of Kazakhstan
| |
Collapse
|
5
|
Srithanasuwan A, Pangprasit N, Mektrirat R, Suriyasathaporn W, Chuammitri P. Divergent Immune Responses to Minor Bovine Mastitis-Causing Pathogens. Vet Sci 2024; 11:262. [PMID: 38922009 PMCID: PMC11209595 DOI: 10.3390/vetsci11060262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Traditionally, non-aureus staphylococci and mammaliicocci (NASM) were not considered significant players in bovine mastitis. This study investigated the involvement of NASM (Staphylococcus hominis and Staphylococcus chromogenes) and lactic acid bacteria (LAB) strains (Weissella paramesenteroides) through bovine neutrophil responses. Bovine neutrophils displayed minimal apoptosis upon NASM and LAB challenge. Neutrophils expressed high TLR2 after challenge, but TLR6 expression varied and remained low in NASM pathogen recognition. Bovine neutrophils effectively engulfed and killed LAB, but their activity was significantly impaired against NASM. This was evident in S. chromogenes, where reduced TLR6 recognition and a weakened phagocytic response likely contributed to a lower bactericidal effect. Regardless of the bacteria encountered, intracellular ROS production remained high. S. chromogenes-challenged neutrophils displayed upregulation in genes for pathogen recognition (TLRs), ROS production, and both pro- and anti-apoptotic pathways. This response mirrored that of Weissella. except for CASP9 and BCL2, suggesting these bacteria have divergent roles in triggering cell death. Our findings suggest that S. chromogenes manipulates bovine neutrophil defenses through coordinated changes in functional responses and gene expression, while LAB strains have a weaker influence on apoptosis.
Collapse
Affiliation(s)
- Anyaphat Srithanasuwan
- Veterinary Science Unit, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Department of Animal Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Noppason Pangprasit
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Raktham Mektrirat
- Veterinary Bioscience Unit, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Witaya Suriyasathaporn
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand
- Nagoya University Asian Satellite Campuses, Institute-Cambodian Campus, Royal University of Agriculture, Dangkor District, Phnom Penh 370, Cambodia
| | - Phongsakorn Chuammitri
- Veterinary Bioscience Unit, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
6
|
Iso-Touru T, Panitz F, Fischer D, Kyläniemi MK, Taponen S, Tabell J, Virta A, Vilkki J. Genes and pathways revealed by whole transcriptome analysis of milk derived bovine mammary epithelial cells after Escherichia coli challenge. Vet Res 2024; 55:13. [PMID: 38303095 PMCID: PMC10835992 DOI: 10.1186/s13567-024-01269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Mastitis, inflammation of the mammary gland, is the costliest disease in dairy cattle and a major animal welfare concern. Mastitis is usually caused by bacteria, of which staphylococci, streptococci and Escherichia coli are most frequently isolated from bovine mastitis. Bacteria activate the mammary immune system in variable ways, thereby influencing the severity of the disease. Escherichia coli is a common cause of mastitis in cattle causing both subclinical and clinical mastitis. Understanding of the molecular mechanisms that activate and regulate the host response would be central to effective prevention of mastitis and breeding of cows more resistant to mastitis. We used primary bovine mammary epithelial cell cultures extracted noninvasively from bovine milk samples to monitor the cellular responses to Escherichia coli challenge. Differences in gene expression between control and challenged cells were studied by total RNA-sequencing at two time points post-challenge. In total, 150 and 440 (Padj < 0.05) differentially expressed genes were identified at 3 h and 24 h post-challenge, respectively. The differentially expressed genes were mostly upregulated at 3 h (141/150) and 24 h (424/440) post-challenge. Our results are in line with known effects of E. coli infection, with a strong early inflammatory response mediated by pathogen receptor families. Among the most significantly enriched early KEGG pathways were the TNF signalling pathway, the cytokine-cytokine receptor interaction, and the NF-kappa B signalling pathway. At 24 h post-challenge, most significantly enriched were the Influenza A, the NOD-like receptor signalling, and the IL-17 signaling pathway.
Collapse
Affiliation(s)
- Terhi Iso-Touru
- Natural Resources Institute Finland (Luke), Jokioinen, Finland.
| | - Frank Panitz
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Daniel Fischer
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Minna K Kyläniemi
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Suvi Taponen
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Tabell
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Anneli Virta
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Johanna Vilkki
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| |
Collapse
|
7
|
Ameri NF, Moradian H, Koshkoiyeh AE, Montazeri M, Madabi ER, Fozi MA. Genetic diversity and positive signatures of selection in indigenous cattle breeds of Iran. Genome 2024; 67:31-42. [PMID: 37962065 DOI: 10.1139/gen-2022-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Animal domestication, climate changes over time, and artificial selection have played significant roles in shaping the genome structure of various animal species, including cattle. These processes have led to the emergence of several indigenous cattle breeds with distinct genetic characteristics. This study focused on unraveling the genetic diversity and identifying candidate genomic regions in eight indigenous cattle breeds of Iran. The data consisted of ∼777 962 single nucleotide polymorphisms (SNPs) of 89 animals from Iranian indigenous cattle scattered throughout the country. We employed various methods, including integrated haplotype score, FST, and cross-population composite likelihood ratio, to conduct a genome scan for detecting selection signals within and between cattle populations. Average observed heterozygosity across the populations was 0.36, with a range of 0.32-0.40. In addition, negative and low rates of inbreeding (FIS) in the populations were observed. The genome-wide analysis revealed several genomic regions that harbored candidate genes associated with production traits (e.g., MFSD1, TYW5, ADRB2, BLK, and CRTC3), adaptation to local environmental constraints (CACNA2D1, CXCL3, and GRO1), and coat color (DYM). Finally, the study of the reported quantitative trait loci (QTL) regions in the cattle genome demonstrated that the identified regions were associated with QTL related to important traits such as milk composition, body weight, daily gain, feed conversion, and residual feed intake. Overall, this study contributes to a better understanding of the genetic diversity and potential candidate genes underlying important traits in Iranian indigenous cattle breeds, which can inform future breeding and conservation efforts.
Collapse
Affiliation(s)
- Nader Forough Ameri
- Department of Animal ScienceFaculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hasan Moradian
- Department of Animal ScienceFaculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Mahdiyeh Montazeri
- Department of Animal ScienceFaculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Elaheh Rostamzadeh Madabi
- Department of Animal ScienceFaculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masood Asadi Fozi
- Department of Animal ScienceFaculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
8
|
Liu X, Chen W, Huang B, Wang X, Peng Y, Zhang X, Chai W, Khan MZ, Wang C. Advancements in copy number variation screening in herbivorous livestock genomes and their association with phenotypic traits. Front Vet Sci 2024; 10:1334434. [PMID: 38274664 PMCID: PMC10808162 DOI: 10.3389/fvets.2023.1334434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Copy number variations (CNVs) have garnered increasing attention within the realm of genetics due to their prevalence in human, animal, and plant genomes. These structural genetic variations have demonstrated associations with a broad spectrum of phenotypic diversity, economic traits, environmental adaptations, epidemics, and other essential aspects of both plants and animals. Furthermore, CNVs exhibit extensive sequence variability and encompass a wide array of genomes. The advancement and maturity of microarray and sequencing technologies have catalyzed a surge in research endeavors pertaining to CNVs. This is particularly prominent in the context of livestock breeding, where molecular markers have gained prominence as a valuable tool in comparison to traditional breeding methods. In light of these developments, a contemporary and comprehensive review of existing studies on CNVs becomes imperative. This review serves the purpose of providing a brief elucidation of the fundamental concepts underlying CNVs, their mutational mechanisms, and the diverse array of detection methods employed to identify these structural variations within genomes. Furthermore, it seeks to systematically analyze the recent advancements and findings within the field of CNV research, specifically within the genomes of herbivorous livestock species, including cattle, sheep, horses, and donkeys. The review also highlighted the role of CNVs in shaping various phenotypic traits including growth traits, reproductive traits, pigmentation and disease resistance etc., in herbivorous livestock. The main goal of this review is to furnish readers with an up-to-date compilation of knowledge regarding CNVs in herbivorous livestock genomes. By integrating the latest research findings and insights, it is anticipated that this review will not only offer pertinent information but also stimulate future investigations into the realm of CNVs in livestock. In doing so, it endeavors to contribute to the enhancement of breeding strategies, genomic selection, and the overall improvement of herbivorous livestock production and resistance to diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
9
|
Khan MZ, Huang B, Kou X, Chen Y, Liang H, Ullah Q, Khan IM, Khan A, Chai W, Wang C. Enhancing bovine immune, antioxidant and anti-inflammatory responses with vitamins, rumen-protected amino acids, and trace minerals to prevent periparturient mastitis. Front Immunol 2024; 14:1290044. [PMID: 38259482 PMCID: PMC10800369 DOI: 10.3389/fimmu.2023.1290044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Mastitis, the inflammatory condition of mammary glands, has been closely associated with immune suppression and imbalances between antioxidants and free radicals in cattle. During the periparturient period, dairy cows experience negative energy balance (NEB) due to metabolic stress, leading to elevated oxidative stress and compromised immunity. The resulting abnormal regulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with increased non-esterified fatty acids (NEFA) and β-hydroxybutyric acid (BHBA) are the key factors associated with suppressed immunity thereby increases susceptibility of dairy cattle to infections, including mastitis. Metabolic diseases such as ketosis and hypocalcemia indirectly contribute to mastitis vulnerability, exacerbated by compromised immune function and exposure to physical injuries. Oxidative stress, arising from disrupted balance between ROS generation and antioxidant availability during pregnancy and calving, further contributes to mastitis susceptibility. Metabolic stress, marked by excessive lipid mobilization, exacerbates immune depression and oxidative stress. These factors collectively compromise animal health, productive efficiency, and udder health during periparturient phases. Numerous studies have investigated nutrition-based strategies to counter these challenges. Specifically, amino acids, trace minerals, and vitamins have emerged as crucial contributors to udder health. This review comprehensively examines their roles in promoting udder health during the periparturient phase. Trace minerals like copper, selenium, and calcium, as well as vitamins; have demonstrated significant impacts on immune regulation and antioxidant defense. Vitamin B12 and vitamin E have shown promise in improving metabolic function and reducing oxidative stress followed by enhanced immunity. Additionally, amino acids play a pivotal role in maintaining cellular oxidative balance through their involvement in vital biosynthesis pathways. In conclusion, addressing periparturient mastitis requires a holistic understanding of the interplay between metabolic stress, immune regulation, and oxidative balance. The supplementation of essential amino acids, trace minerals, and vitamins emerges as a promising avenue to enhance udder health and overall productivity during this critical phase. This comprehensive review underscores the potential of nutritional interventions in mitigating periparturient bovine mastitis and lays the foundation for future research in this domain.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | | | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
10
|
Kweon J, Park W, Park J, You J, Song G, Lim W. Pyridaben induces apoptosis and inflammation in bovine mammary epithelial cells by disturbance of calcium homeostasis and upregulation of MAPK cascades. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105755. [PMID: 38225098 DOI: 10.1016/j.pestbp.2023.105755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024]
Abstract
Pyridaben is a widely used pyridazinone insecticide used to protect crops against insects and mites. The toxicity of pyridaben has been reported in mice, zebrafish, the human reproductive system, nervous system, and respiratory system. Pyridaben can also be ingested by dairy cattle through feed. However, the toxicity of pyridaben in cattle has not been investigated on. Thus, this study focuses on demonstrating the toxicity of pyridaben in the bovine mammary glands and with the generation milk in the bovine mammary epithelial cells, as it is crucial to the continuance of the amount and the quality of the milk produced. We started by analyzing the intracellular toxicity along with the impact of pyridaben on the cell cycle distribution and the transcription of associated genes. Pyridaben treatment induced cell cycle arrest accompanied the disruption in G1 and S phases with imbalanced cytosolic and mitochondrial calcium ion homeostasis, and caused a destruction of mitochondrial membrane potential. This eventually led to apoptosis of MAC-T cells. We also investigated in the impact that pyridaben has on MAPK signaling proteins, where phosphorylation of ERK1/2, JNK, and p38 were upregulateed. Moreover, examination of the effect of pyridaben in the inflammatory genes revealed hyperactivation of the inflammatory gene transcription. This is the first research to assess the negative outcomes that pyridaben could impose on dairy cattle and milk production.
Collapse
Affiliation(s)
- Junhun Kweon
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeankyoung You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
11
|
Khan IM, Khan A, Liu H, Khan MZ. Editorial: Genetic markers identification for animal production and disease resistance. Front Genet 2023; 14:1243793. [PMID: 37501722 PMCID: PMC10369344 DOI: 10.3389/fgene.2023.1243793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Affiliation(s)
- Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongyu Liu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Muhammad Zahoor Khan
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| |
Collapse
|