1
|
Ma X, Dawany N, Kondo A, Maurer K, Karakasheva T, Shraim R, Williams PA, Parham LR, Simon LA, Danan CH, Conrad MA, Piccoli DA, Devoto M, Sullivan KE, Kaestner KH, Kelsen JR, Hamilton KE. TNFSF13 insufficiency disrupts human colonic epithelial cell-mediated B cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614260. [PMID: 39386555 PMCID: PMC11463615 DOI: 10.1101/2024.09.23.614260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cytokines mediating epithelial and immune cell interactions modulate mucosal healing- a process that goes awry with chronic inflammation as in inflammatory bowel disease. TNFSF13 is a cytokine important for B cell maturation and function, but roles for epithelial TNFSF13 and putative contribution to inflammatory bowel disease are poorly understood. We evaluated functional consequences of a novel monoallelic TNFSF13 variant using biopsies, tissue-derived colonoids and induced pluripotent stem cell (iPSC)-derived colon organoids. TNFSF13 variant colonoids exhibited a >50% reduction in secreted TNFSF13, increased epithelial proliferation, and reduced apoptosis, which was confirmed in iPSC-derived colon organoids. Single cell RNA-sequencing, flow cytometry, and co-immunoprecipitation identified FAS as the predominant colonic epithelial receptor for TNFSF13. Imaging mass cytometry revealed an increase in epithelial-associated B cells in TNFSF13 variant colon tissue sections. Finally, TNFSF13 variant colonoids co-cultured with memory B cells demonstrated a reduction in the production of IgA+ plasma cells compared to control colonoid co-cultures. Our findings support a role for epithelial TNFSF13 as a regulator of colonic epithelial growth and epithelial crosstalk with B cells.
Collapse
Affiliation(s)
- Xianghui Ma
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Noor Dawany
- Department of Biomedical and Health Informatics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Ayano Kondo
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kelly Maurer
- Division of Allergy Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tatiana Karakasheva
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Rawan Shraim
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Patrick A. Williams
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Louis R. Parham
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Lauren A. Simon
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Charles H. Danan
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Maire A. Conrad
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - David A. Piccoli
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Marcella Devoto
- Institute for Research in Genetics and Biomedicine, CNR, Cagliari, Italy, and Department of Translational and Precision Medicine, University Sapienza, Rome, Italy
| | - Kathleen E. Sullivan
- Division of Allergy Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Klaus H. Kaestner
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, Philadelphia, PA, 19104, USA
| | - Judith R. Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Kathryn E. Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Gu W, Eke C, Gonzalez Santiago E, Olaloye O, Konnikova L. Single-cell atlas of the small intestine throughout the human lifespan demonstrates unique features of fetal immune cells. Mucosal Immunol 2024; 17:599-617. [PMID: 38555026 PMCID: PMC11384551 DOI: 10.1016/j.mucimm.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Proper development of mucosal immunity is critical for human health. Over the past decade, it has become evident that in humans, this process begins in utero. However, there are limited data on the unique features and functions of fetal mucosal immune cells. To address this gap, we integrated several single-cell ribonucleic acid sequencing datasets of the human small intestine (SI) to create an SI transcriptional atlas throughout the human life span, ranging from the first trimester to adulthood, with a focus on immune cells. Fetal SI displayed a complex immune landscape comprising innate and adaptive immune cells that exhibited distinct transcriptional programs from postnatal samples, especially compared with pediatric and adult samples. We identified shifts in myeloid populations across gestation and progression of memory T-cell states throughout the human lifespan. In particular, there was a marked shift of memory T cells from those with stem-like properties in the fetal samples to fully differentiated cells with a high expression of activation and effector function genes in adult samples, with neonatal samples containing both features. Finally, we demonstrate that the SI developmental atlas can be used to elucidate improper trajectories linked to mucosal diseases by implicating developmental abnormalities underlying necrotizing enterocolitis, a severe intestinal complication of prematurity. Collectively, our data provide valuable resources and important insights into intestinal immunity that will facilitate regenerative medicine and disease understanding.
Collapse
Affiliation(s)
- Weihong Gu
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Chino Eke
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Oluwabunmi Olaloye
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Department of Obstetrics, Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, CT, USA; Program in Translational Biomedicine, Yale University School of Medicine, New Haven, CT, USA; Program in Human Translational Immunology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Fekrvand S, Abolhassani H, Rezaei N. An overview of early genetic predictors of IgA deficiency. Expert Rev Mol Diagn 2024; 24:715-727. [PMID: 39087770 DOI: 10.1080/14737159.2024.2385521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Inborn errors of immunity (IEIs) refer to a heterogeneous category of diseases with defects in the number and/or function of components of the immune system. Immunoglobulin A (IgA) deficiency is the most prevalent IEI characterized by low serum level of IgA and normal serum levels of IgG and/or IgM. Most of the individuals with IgA deficiency are asymptomatic and are only identified through routine laboratory tests. Others may experience a wide range of clinical features including mucosal infections, allergies, and malignancies as the most important features. IgA deficiency is a multi-complex disease, and the exact pathogenesis of it is still unknown. AREAS COVERED This review compiles recent research on genetic and epigenetic factors that may contribute to the development of IgA deficiency. These factors include defects in B-cell development, IgA class switch recombination, synthesis, secretion, and the long-term survival of IgA switched memory B cells and plasma cells. EXPERT OPINION A better and more comprehensive understanding of the cellular pathways involved in IgA deficiency could lead to personalized surveillance and potentially curative strategies for affected patients, especially those with severe symptoms.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
4
|
Gao L, Li H, Liu X, Li H, Li P, Lu W, Xie X, Lv J, Jin J. Humoral immune responses primed by the alteration of gut microbiota were associated with galactose-deficient IgA1 production in IgA nephropathy. Front Immunol 2024; 15:1415026. [PMID: 39104521 PMCID: PMC11298704 DOI: 10.3389/fimmu.2024.1415026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Galactose-deficient IgA1 (GdIgA1) is critical in the formation of immunodeposits in IgA nephropathy (IgAN), whereas the origin of GdIgA1 is unknown. We focused on the immune response to fecal microbiota in patients with IgAN. Methods By running 16S ribosomal RNA gene sequencing, we compared IgAN samples to the control samples from household-matched or non-related individuals. Levels of plasma GdIgA1 and poly-IgA complexes were measured, and candidate microbes that can either incite IgA-directed antibody response or degrade IgA through specific IgA protease activities were identified. Results The IgAN group showed a distinct composition of fecal microbiota as compared to healthy controls. Particularly, high abundance of Escherichia-Shigella was associated with the disease group based on analyses using receiver operating characteristic (area under curve, 0.837; 95% CI, 0.738-0.914), principle coordinates, and the linear discriminant analysis effect size algorithm (linear discriminant analysis score, 4.56; p < 0.001). Accordingly, the bacterial levels directly correlated with high titers of plasma GdIgA1(r = 0.36, p < 0.001), and patients had higher IgA1 against stx2(2.88 ± 0.46 IU/mL vs. 1.34 ± 0.35 IU/mL, p = 0.03), the main antigen of Escherichia-Shigella. Conversely, the healthy controls showed relatively higher abundance of the commensal bacteria that produce IgA-degrading proteases. Particularly, the abundance of some intestinal bacteria expressing IgA proteases showed an inverse correlation with the levels of plasma GdIgA1 in IgAN. Conclusion Our data suggest that mucosal IgA production, including those of GdIgA1, is potentially linked to the humoral response to gut Escherichia-Shigella as one of the sources of plasma GdIgA1. Conversely, the IgA protease-producing microbiota in the gut are suppressed in patients with IgAN.
Collapse
Affiliation(s)
- Li Gao
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huixian Li
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoling Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Haiyun Li
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Peiqi Li
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wanhong Lu
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinfang Xie
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jicheng Lv
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Jing Jin
- Department of Medicine-Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
5
|
Muchhala KH, Kallurkar PS, Kang M, Koseli E, Poklis JL, Xu Q, Dewey WL, Fettweis JM, Jimenez NR, Akbarali HI. The role of morphine- and fentanyl-induced impairment of intestinal epithelial antibacterial activity in dysbiosis and its impact on the microbiota-gut-brain axis. FASEB J 2024; 38:e23603. [PMID: 38648368 PMCID: PMC11047137 DOI: 10.1096/fj.202301590rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Recent evidence suggests that chronic exposure to opioid analgesics such as morphine disrupts the intestinal epithelial layer and causes intestinal dysbiosis. Depleting gut bacteria can preclude the development of tolerance to opioid-induced antinociception, suggesting an important role of the gut-brain axis in mediating opioid effects. The mechanism underlying opioid-induced dysbiosis, however, remains unclear. Host-produced antimicrobial peptides (AMPs) are critical for the integrity of the intestinal epithelial barrier as they prevent the pathogenesis of the enteric microbiota. Here, we report that chronic morphine or fentanyl exposure reduces the antimicrobial activity in the ileum, resulting in changes in the composition of bacteria. Fecal samples from morphine-treated mice had increased levels of Akkermansia muciniphila with a shift in the abundance ratio of Firmicutes and Bacteroidetes. Fecal microbial transplant (FMT) from morphine-naïve mice or oral supplementation with butyrate restored (a) the antimicrobial activity, (b) the expression of the antimicrobial peptide, Reg3γ, (c) prevented the increase in intestinal permeability and (d) prevented the development of antinociceptive tolerance in morphine-dependent mice. Improved epithelial barrier function with FMT or butyrate prevented the enrichment of the mucin-degrading A. muciniphila in morphine-dependent mice. These data implicate impairment of the antimicrobial activity of the intestinal epithelium as a mechanism by which opioids disrupt the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Karan H. Muchhala
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Prajkta S. Kallurkar
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Minho Kang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Eda Koseli
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Qingguo Xu
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - William L. Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer M. Fettweis
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Nicole R. Jimenez
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
6
|
Zhou ZQ, Liu M, Deng ZY, Li J. Effect of bovine colostrum liposomes on the bioavailability of immunoglobulin G and their immunoregulatory function in immunosuppressed BALB/c mice. Food Funct 2024; 15:2719-2732. [PMID: 38380650 DOI: 10.1039/d3fo05441a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Bovine colostrum (BC) has high nutritional value; however, the low bioavailability of immune active substances in BC may affect their immunoregulatory function. Our previous studies indicated that encapsulating bovine colostrum with liposomes could enable the sustained release of immunoglobulin G in vitro; however, the effect of bovine colostrum liposomes (BCLs) on the bioavailability of immunoglobulins in vivo is still unknown. In addition, the immunoregulatory function of BCLs on immunosuppressed mice is still unclear. Therefore, our current study aimed to explore the effect of BCLs on the bioavailability of immunoglobulins, and further explore their immunoregulatory effect on immunosuppressed BALB/c mice. Through metabolic cage experiments, it was shown that BCLs decreased the urine and fecal concentrations of IgG and exhibited a higher bioavailability of IgG in mice than BC (about 2-fold). In addition, by establishing an immunosuppressed animal model, it was found that BCLs could increase the body weight, spleen weight, and thymus weight in immunosuppressed BALB/c mice, which further restored the serum levels of interleukin-4 (IL-4), interleukin-10 (IL-10), tumor necrosis factor α (TNF-α), and interferon γ (IFN-γ). Through histology analysis, it was suggested that BCLs restored the structure of jejunal epithelial cells, which was accompanied by an improvement in intestinal cytokine levels (IL-4, IL-10, TNF-α, and IFN-γ). Finally, BCLs increased serum and intestine concentrations of immunoglobulin G (IgG) and immunoglobulin A (IgA) in immunosuppressed BALB/c mice, which further indicated that BCLs had a sustained-release effect for immunoglobulin G in vivo. Our current research will provide a basis for understanding the role of BCLs on the bioavailability of IgG and their immunoregulatory effect on immunosuppressed mice, which might further provide some reference for the application of BCLs.
Collapse
Affiliation(s)
- Ze-Qiang Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Mengge Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330031, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330031, China
- National Center of Technology Innovation for Dairy, China
| |
Collapse
|
7
|
Abstract
The remarkable diversity of lymphocytes, essential components of the immune system, serves as an ingenious mechanism for maximizing the efficient utilization of limited host defense resources. While cell adhesion molecules, notably in gut-tropic T cells, play a central role in this mechanism, the counterbalancing molecular details have remained elusive. Conversely, we've uncovered the molecular pathways enabling extracellular vesicles secreted by lymphocytes to reach the gut's mucosal tissues, facilitating immunological regulation. This discovery sheds light on immune fine-tuning, offering insights into immune regulation mechanisms.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| |
Collapse
|
8
|
Lun J, Guo J, Yu M, Zhang H, Fang J. Circular RNAs in inflammatory bowel disease. Front Immunol 2023; 14:1307985. [PMID: 38187401 PMCID: PMC10771839 DOI: 10.3389/fimmu.2023.1307985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a term encompassing a few chronic inflammatory disorders that leads to damage of the intestinal tract. Although much progress has been made in understanding the pathology of IBD, the precise pathogenesis is not completely understood. Circular RNAs (circRNAs) are single-stranded, covalently closed, endogenous molecules in eukaryotes with a variety of biological functions. CircRNAs have been shown to have regulatory effects in many diseases, such as cancer, cardiovascular disease, and neurological disorders. CircRNAs have also been found to play important roles in IBD, and although they are not sufficiently investigated in the context of IBD, a few circRNAs have been identified as potential biomarkers for the diagnosis and prognosis of IBD and as potential therapeutic targets for IBD. Herein, we survey recent progress in understanding the functions and roles of circRNAs in IBD and discuss their potential clinical applications.
Collapse
Affiliation(s)
- Jie Lun
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Jing Guo
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Mengchao Yu
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jing Fang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, China
| |
Collapse
|
9
|
Holubekova V, Loderer D, Grendar M, Mikolajcik P, Kolkova Z, Turyova E, Kudelova E, Kalman M, Marcinek J, Miklusica J, Laca L, Lasabova Z. Differential gene expression of immunity and inflammation genes in colorectal cancer using targeted RNA sequencing. Front Oncol 2023; 13:1206482. [PMID: 37869102 PMCID: PMC10586664 DOI: 10.3389/fonc.2023.1206482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/24/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a heterogeneous disease caused by molecular changes, as driver mutations, gene methylations, etc., and influenced by tumor microenvironment (TME) pervaded with immune cells with both pro- and anti-tumor effects. The studying of interactions between the immune system (IS) and the TME is important for developing effective immunotherapeutic strategies for CRC. In our study, we focused on the analysis of expression profiles of inflammatory and immune-relevant genes to identify aberrant signaling pathways included in carcinogenesis, metastatic potential of tumors, and association of Kirsten rat sarcoma virus (KRAS) gene mutation. Methods A total of 91 patients were enrolled in the study. Using NGS, differential gene expression analysis of 11 tumor samples and 11 matching non-tumor controls was carried out by applying a targeted RNA panel for inflammation and immunity genes containing 475 target genes. The obtained data were evaluated by the CLC Genomics Workbench and R library. The significantly differentially expressed genes (DEGs) were analyzed in Reactome GSA software, and some selected DEGs were used for real-time PCR validation. Results After prioritization, the most significant differences in gene expression were shown by the genes TNFRSF4, IRF7, IL6R, NR3CI, EIF2AK2, MIF, CCL5, TNFSF10, CCL20, CXCL11, RIPK2, and BLNK. Validation analyses on 91 samples showed a correlation between RNA-seq data and qPCR for TNFSF10, RIPK2, and BLNK gene expression. The top differently regulated signaling pathways between the studied groups (cancer vs. control, metastatic vs. primary CRC and KRAS positive and negative CRC) belong to immune system, signal transduction, disease, gene expression, DNA repair, and programmed cell death. Conclusion Analyzed data suggest the changes at more levels of CRC carcinogenesis, including surface receptors of epithelial or immune cells, its signal transduction pathways, programmed cell death modifications, alterations in DNA repair machinery, and cell cycle control leading to uncontrolled proliferation. This study indicates only basic molecular pathways that enabled the formation of metastatic cancer stem cells and may contribute to clarifying the function of the IS in the TME of CRC. A precise identification of signaling pathways responsible for CRC may help in the selection of personalized pharmacological treatment.
Collapse
Affiliation(s)
- Veronika Holubekova
- Laboratory of Genomics and Prenatal Diagnostics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dusan Loderer
- Laboratory of Genomics and Prenatal Diagnostics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marian Grendar
- Laboratory of Bioinformatics and Biostatistics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Mikolajcik
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Zuzana Kolkova
- Laboratory of Genomics and Prenatal Diagnostics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Turyova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Kudelova
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Michal Kalman
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Juraj Marcinek
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Juraj Miklusica
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Ludovit Laca
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
10
|
Zanardi KR, Grancieri M, Silva CW, Trivillin LO, Viana ML, Costa AGV, Costa NMB. Functional effects of yacon ( Smallanthus sonchifolius) and kefir on systemic inflammation, antioxidant activity, and intestinal microbiome in rats with induced colorectal cancer. Food Funct 2023; 14:9000-9017. [PMID: 37740322 DOI: 10.1039/d3fo02599c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers with high morbidity and mortality. The modulation of intestinal health through the administration of pro- and prebiotics may be a viable alternative to reduce the risk of CRC. This study aimed to evaluate the functional effects of yacon and kefir, isolated or associated, in rats with colorectal cancer. Adult Wistar rats were divided into five groups (n = 8): HC (healthy control AIN-93M diet), CC (CCR + AIN-93M diet), Y (CCR + AIN-93 M + yacon diet), K (CCR + AIN-93-M + kefir diet) and YK (CCR + AIN-93 M + yacon + kefir diet). Colorectal carcinogenesis was induced in groups CC, Y, K, and YK with 1,2-dimethylhydrazine (55 mg kg-1, subcutaneously) for 5 weeks. From the 6th week onwards, the experimental groups were fed the respective diets. In the 15th week, urine was collected for analysis of intestinal permeability and then the animals were euthanized. Yacon increased acetate levels, reduced pH and carcinogenic neoplastic lesions, and increased the abundance of bacteria related to the fermentation of non-digestible carbohydrates, such as the genera Dorea, Collinsela, and Bifidobacteria. On the other hand, kefir increased macroscopic neoplastic lesions and increased the abundance of Firmicutes and Clostridium. The association of yacon + kefir increased the number of carcinogenic lesions, despite a reduction in pH and beneficial bacteria prevalence. Thus, it is concluded that yacon, unlikely kefir, is a promising alternative to mitigate the manifestations of induced carcinogenesis in rats.
Collapse
Affiliation(s)
- Keila Rodrigues Zanardi
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo (Universidade Federal do Espírito Santo - UFES), Alto Universitário, Guararema, 29500-000, Alegre, ES, Brazil.
| | - Mariana Grancieri
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo (Universidade Federal do Espírito Santo - UFES), Alto Universitário, Guararema, 29500-000, Alegre, ES, Brazil.
- Department of Pharmacy and Nutrition, Centre of Exact, Natural and Health Sciences, UFES, Alegre, ES, Brazil
| | - Caroline Woelffel Silva
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo (Universidade Federal do Espírito Santo - UFES), Alto Universitário, Guararema, 29500-000, Alegre, ES, Brazil.
| | - Leonardo Oliveira Trivillin
- Department of Veterinary Medicine, Centre of Agricultural and Engineering Sciences, UFES, Alegre, ES, Brazil
| | - Mirelle Lomar Viana
- Department of Pharmacy and Nutrition, Centre of Exact, Natural and Health Sciences, UFES, Alegre, ES, Brazil
| | - André Gustavo Vasconcelos Costa
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo (Universidade Federal do Espírito Santo - UFES), Alto Universitário, Guararema, 29500-000, Alegre, ES, Brazil.
- Department of Pharmacy and Nutrition, Centre of Exact, Natural and Health Sciences, UFES, Alegre, ES, Brazil
| | - Neuza Maria Brunoro Costa
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo (Universidade Federal do Espírito Santo - UFES), Alto Universitário, Guararema, 29500-000, Alegre, ES, Brazil.
- Department of Pharmacy and Nutrition, Centre of Exact, Natural and Health Sciences, UFES, Alegre, ES, Brazil
| |
Collapse
|
11
|
Muchhala K, Kang M, Koseli E, Poklis J, Xu Q, Dewey W, Fettweis J, Jimenez N, Akbarali H. The Role of Morphine-Induced Impairment of Intestinal Epithelial Antibacterial Activity in Dysbiosis and its Impact on the Microbiota-Gut-Brain Axis.. [PMID: 37503065 PMCID: PMC10371156 DOI: 10.21203/rs.3.rs-3084467/v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2024]
Abstract
Abstract
Recent evidence suggests that chronic exposure to opioid analgesics such as morphine disrupt the intestinal epithelial layer and cause intestinal dysbiosis. Inhibiting opioid-induced dysbiosis can preclude the development of tolerance to opioid-induced antinociception, suggesting an important role of the gut-brain axis in mediating opioid effects. However, the mechanism underlying opioid-induced dysbiosis remains unclear. Host-produced antimicrobial peptides (AMPs) are critical for the integrity of the intestinal epithelial barrier as they prevent the pathogenesis of the enteric microbiota. Here, we report that chronic morphine exposure reduces expression of the antimicrobial peptide, Regenerating islet-derived 3 gamma (Reg3γ), in the ileum resulting in reduced intestinal antimicrobial activity against Gram-positive bacteria, L. reuteri. Fecal samples from morphine-treated mice had reduced levels of the phylum, Firmicutes, concomitant with reduced levels of short-chain fatty acid, butyrate. Fecal microbial transplant (FMT) from morphine-naïve mice restored the antimicrobial activity, the expression of Reg3γ, and prevented the increase in intestinal permeability and the development of antinociceptive tolerance in morphine-dependent mice. Similarly, oral gavage with sodium butyrate dose-dependently reduced the development of antinociceptive tolerance, and prevented the downregulation of Reg3γ and the reduction in antimicrobial activity. The alpha diversity of the microbiome was also restored by oral butyrate in morphine-dependent mice. These data implicate impairment of the antimicrobial activity of the intestinal epithelium as a mechanism by which morphine disrupts the microbiota-gut-brain axis.
Collapse
|
12
|
Muchhala K, Kang M, Koseli E, Poklis J, Xu Q, Dewey W, Fettweis J, Jimenez N, Akbarali H. The Role of Morphine-Induced Impairment of Intestinal Epithelial Antibacterial Activity in Dysbiosis and its Impact on the Microbiota-Gut-Brain Axis. RESEARCH SQUARE 2023:rs.3.rs-3084467. [PMID: 37503065 PMCID: PMC10371156 DOI: 10.21203/rs.3.rs-3084467/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Recent evidence suggests that chronic exposure to opioid analgesics such as morphine disrupt the intestinal epithelial layer and cause intestinal dysbiosis. Inhibiting opioid-induced dysbiosis can preclude the development of tolerance to opioid-induced antinociception, suggesting an important role of the gut-brain axis in mediating opioid effects. However, the mechanism underlying opioid-induced dysbiosis remains unclear. Host-produced antimicrobial peptides (AMPs) are critical for the integrity of the intestinal epithelial barrier as they prevent the pathogenesis of the enteric microbiota. Here, we report that chronic morphine exposure reduces expression of the antimicrobial peptide, Regenerating islet-derived 3 gamma (Reg3γ), in the ileum resulting in reduced intestinal antimicrobial activity against Gram-positive bacteria, L. reuteri. Fecal samples from morphine-treated mice had reduced levels of the phylum, Firmicutes, concomitant with reduced levels of short-chain fatty acid, butyrate. Fecal microbial transplant (FMT) from morphine-naïve mice restored the antimicrobial activity, the expression of Reg3γ, and prevented the increase in intestinal permeability and the development of antinociceptive tolerance in morphine-dependent mice. Similarly, oral gavage with sodium butyrate dose-dependently reduced the development of antinociceptive tolerance, and prevented the downregulation of Reg3γ and the reduction in antimicrobial activity. The alpha diversity of the microbiome was also restored by oral butyrate in morphine-dependent mice. These data implicate impairment of the antimicrobial activity of the intestinal epithelium as a mechanism by which morphine disrupts the microbiota-gut-brain axis.
Collapse
|
13
|
Wittner J, Schuh W. Krüppel-like factor 2: a central regulator of B cell differentiation and plasma cell homing. Front Immunol 2023; 14:1172641. [PMID: 37251374 PMCID: PMC10213221 DOI: 10.3389/fimmu.2023.1172641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
The development of B cells, their activation and terminal differentiation into antibody-producing plasma cells are characterized by alternating phases of proliferation and quiescence that are controlled by complex transcriptional networks. The spatial and anatomical organization of B cells and plasma cells inside lymphoid organs as well as their migration within lymphoid structures and between organs are prerequisites for the generation and the maintenance of humoral immune responses. Transcription factors of the Krüppel-like family are critical regulators of immune cell differentiation, activation, and migration. Here, we discuss the functional relevance of Krüppel-like factor 2 (KLF2) for B cell development, B cell activation, plasma cell formation and maintenance. We elaborate on KLF2-mediated regulation of B cell and plasmablast migration in the context of immune responses. Moreover, we describe the importance of KLF2 for the onset and the progression of B cell-related diseases and malignancies.
Collapse
|