1
|
Li L, Mo Q, Wan Y, Zhou Y, Li W, Li W. Antimicrobial peptide AP2 ameliorates Salmonella Typhimurium infection by modulating gut microbiota. BMC Microbiol 2025; 25:64. [PMID: 39910418 PMCID: PMC11796240 DOI: 10.1186/s12866-025-03776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Endogenous antimicrobial peptides and proteins are essential for shaping and maintaining a healthy gut microbiota, contributing to anti-inflammatory responses and resistance to pathogen colonization. Salmonella enterica subsp. enterica serovar Typhimurium (ST) infection is one of the most frequently reported bacterial diseases worldwide. Manipulation of the gut microbiota through exogenous antimicrobial peptides may protect against ST colonization and improve clinical outcomes. RESULTS This study demonstrated that oral administration of the antimicrobial peptide AP2 (2 µg /mouse), an optimized version of native apidaecin IB (AP IB), provided protective effects against ST infection in mice. These effects were evidenced by reduced ST-induced body weight loss and lower levels of serum inflammatory cytokines. A 16 S rRNA-based analysis of the cecal microbiota revealed that AP2 significantly modulated the gut microbiota, increasing the relative abundance of Bifidobacterium while decreasing that of Akkermansia at the genus level. Furthermore, the transplantation of fecal microbiota from AP2-treated donor mice, rather than from Control mice, significantly reduced cecal damage caused by ST and decreased the concentration of ST by one order of magnitude after infection. CONCLUSIONS These findings reveal a novel mechanism by which exogenous antimicrobial peptides mitigate Salmonella Typhimurium infection through the modulation of gut microbiota.
Collapse
Affiliation(s)
- Lianglan Li
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qiufen Mo
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Sciences, Zhejiang University, Hangzhou, China
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yi Wan
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Weiqin Li
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Fan G, Zhao Y, Suo X, Li Y, Yang X. Effects of Supplementing Yeast Fermentation Products on Growth Performance, Colonic Metabolism, and Microbiota of Pigs Challenged with Salmonella Typhimurium. Animals (Basel) 2024; 14:3675. [PMID: 39765579 PMCID: PMC11672560 DOI: 10.3390/ani14243675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Yeast fermentation products (YFPs) are known to contain bioactive compounds, such as nutritional metabolites and cell wall polysaccharides (specifically glucan and mannan), which have been demonstrated to exert positive effects on the growth performance and immunity of livestock and poultry. However, the impact of YFPs on intestinal inflammation and microflora composition in pigs infected with Salmonella typhimurium remains unclear. To investigate this, a total of 18 weaned pigs were divided into three treatment groups: a non-challenged control group (Con), a group challenged with Salmonella typhimurium (ST), and a group challenged with Salmonella typhimurium and supplemented with 0.4% YFP (YFP). The experiment spanned five weeks, encompassing a period of 21 days prior to and 14 days subsequent to the initial Salmonella typhimurium challenge. The findings indicated that the YFP group exhibited an increase in average daily gain (ADG) and a decrease in the feed-gain ratio (F/G) in comparison to the ST group following the Salmonella challenge. Additionally, the YFP group demonstrated a reduction in the levels of inflammatory cytokines in plasma and a decrease in the expression of inflammatory genes in the colon. Treatment with YFP also resulted in improved colon histomorphology, heightened alpha diversity of the gut microbiota, augmented the abundance of butyrate-producing bacteria, and elevated concentrations of short-chain fatty acids (SCFAs). In addition, YFP reprogrammed energy metabolism in colon epithelial cells by blunting glycolysis. Together, dietary YFP supplementation alleviated colon inflammation in weaned pigs challenged with Salmonella typhimurium, and shaped the beneficial microbiota, thereby maintaining gut homeostasis. The results provided evidence supporting the application of yeast fermentation products in livestock production.
Collapse
Affiliation(s)
- Guoqiang Fan
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China; (G.F.); (Y.Z.); (X.S.); (Y.L.)
| | - Yongsen Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China; (G.F.); (Y.Z.); (X.S.); (Y.L.)
| | - Xiaoyi Suo
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China; (G.F.); (Y.Z.); (X.S.); (Y.L.)
| | - Yanfei Li
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China; (G.F.); (Y.Z.); (X.S.); (Y.L.)
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China; (G.F.); (Y.Z.); (X.S.); (Y.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Kitchens SR, Wang C, Price SB. Bridging Classical Methodologies in Salmonella Investigation with Modern Technologies: A Comprehensive Review. Microorganisms 2024; 12:2249. [PMID: 39597638 PMCID: PMC11596670 DOI: 10.3390/microorganisms12112249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Advancements in genomics and machine learning have significantly enhanced the study of Salmonella epidemiology. Whole-genome sequencing has revolutionized bacterial genomics, allowing for detailed analysis of genetic variation and aiding in outbreak investigations and source tracking. Short-read sequencing technologies, such as those provided by Illumina, have been instrumental in generating draft genomes that facilitate serotyping and the detection of antimicrobial resistance. Long-read sequencing technologies, including those from Pacific Biosciences and Oxford Nanopore Technologies, offer the potential for more complete genome assemblies and better insights into genetic diversity. In addition to these sequencing approaches, machine learning techniques like decision trees and random forests provide powerful tools for pattern recognition and predictive modeling. Importantly, the study of bacteriophages, which interact with Salmonella, offers additional layers of understanding. Phages can impact Salmonella population dynamics and evolution, and their integration into Salmonella genomics research holds promise for novel insights into pathogen control and epidemiology. This review revisits the history of Salmonella and its pathogenesis and highlights the integration of these modern methodologies in advancing our understanding of Salmonella.
Collapse
Affiliation(s)
| | | | - Stuart B. Price
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL 36849-5519, USA; (S.R.K.); (C.W.)
| |
Collapse
|
4
|
Felix MA, Sopovski D, Commichaux S, Yoskowitz N, Aljahdali NH, Grim CJ, Abbott CN, Carlton A, Han J, Sanad YM, Zhao S, Wang X, Foley SL, Khajanchi BK. Genetic relatedness and virulence potential of Salmonella Schwarzengrund strains with or without an IncFIB-IncFIC(FII) fusion plasmid isolated from food and clinical sources. Front Microbiol 2024; 15:1397068. [PMID: 38827152 PMCID: PMC11143878 DOI: 10.3389/fmicb.2024.1397068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 06/04/2024] Open
Abstract
A total of 55 food and clinical S. Schwarzengrund isolates were assayed for plasmid content, among which an IncFIB-IncFIC(FII) fusion plasmid, conferring streptomycin resistance, was detected in 17 isolates. Among the 17 isolates, 9 were food isolates primarily collected from poultry meat, and 8 clinical isolates collected from stool, urine, and gallbladder. SNP-based phylogenetic analyses showed that the isolates carrying the fusion plasmid formed a subclade indicating the plasmid was acquired and is now maintained by the lineage. Phylogenetic analysis of the plasmid suggested it is derived from avian pathogenic plasmids and might confer an adaptive advantage to the S. Schwarzengrund isolates within birds. IncFIB-IncFIC(FII) fusion plasmids from all food and three clinical isolates were self-conjugative and successfully transferred into E. coli J53 by conjugation. Food and clinical isolates had similar virulome profiles and were able to invade human Caco-2 cells. However, the IncFIB-IncFIC(FII) plasmid did not significantly add to their invasion and persistence potential in human Caco-2 cells.
Collapse
Affiliation(s)
- Monique A. Felix
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, United States
- University of Arkansas at Pine Bluff, Pine Bluff, AR, United States
| | - Danielle Sopovski
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, United States
| | - Seth Commichaux
- Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Noah Yoskowitz
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, United States
| | - Nesreen H. Aljahdali
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, United States
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Christopher J. Grim
- Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, College Park, MD, United States
| | - Carter N. Abbott
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, United States
| | - Ashlyn Carlton
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, United States
- University of Arkansas at Pine Bluff, Pine Bluff, AR, United States
| | - Jing Han
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, United States
| | - Yasser M. Sanad
- University of Arkansas at Pine Bluff, Pine Bluff, AR, United States
- Department of Epidemiology, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shaohua Zhao
- Center for Veterinary Medicine, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Xiong Wang
- Minnesota Department of Health, St. Paul, MN, United States
| | - Steven L. Foley
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, United States
| | - Bijay K. Khajanchi
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, United States
- Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, U. S. Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
5
|
Daniel IK, Njue OM, Sanad YM. Antimicrobial Effects of Plant-Based Supplements on Gut Microbial Diversity in Small Ruminants. Pathogens 2023; 13:31. [PMID: 38251338 PMCID: PMC10819137 DOI: 10.3390/pathogens13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Every year in the United States, approximately 48 million people are affected by bacterial illnesses that are transmitted through food, leading to 3000 fatalities. These illnesses typically stem from food animals and their by-products, which may harbor dangerous pathogens like Salmonella enterica, Listeria monocytogenes, enterohemorrhagic Escherichia coli O157:H7, and Campylobacter jejuni. Factors that contribute to contamination include manure used as a soil amendment, exposure to polluted irrigation water, and contact with animals. To improve food safety, researchers are studying pre-slaughter intervention methods to eliminate bacterial contamination in live animals. While small ruminants are vital to global agriculture and income generation for small farms, traditional feeding practices involve supplements and antibiotics to boost performance, which contributes to antibiotic resistance. Hence, researchers are looking for friendly bacterial strains that enhance both animal and human health without impacting livestock productivity. The global trend is to minimize the use of antibiotics as feed supplements, with many countries prohibiting or limiting their use. The aim of this review is to provide a comprehensive insight on the antioxidant capabilities, therapeutic attributes, and applications of bioactive compounds derived from sweet potato tops (SPTs), rice bran (RB) and radish tops (RTs). This overview provides an insight on plant parts that are abundant in antioxidant and prebiotic effects and could be used as value-added products in animal feed and pharmaceutical applications. This review was based on previous findings that supplementation of basal diets with natural supplements represents a multifaceted intervention that will become highly important over time. By remarkably reducing the burden of foodborne pathogens, they apply to multiple species, are cheap, do not require withdrawal periods, and can be applied at any time in food animal production.
Collapse
Affiliation(s)
- Ian K. Daniel
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Obadiah M. Njue
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| | - Yasser M. Sanad
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
6
|
Abramov VM, Kosarev IV, Machulin AV, Deryusheva EI, Priputnevich TV, Panin AN, Chikileva IO, Abashina TN, Manoyan AM, Akhmetzyanova AA, Blumenkrants DA, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. Anti- Salmonella Defence and Intestinal Homeostatic Maintenance In Vitro of a Consortium Containing Limosilactobacillus fermentum 3872 and Ligilactobacillus salivarius 7247 Strains in Human, Porcine, and Chicken Enterocytes. Antibiotics (Basel) 2023; 13:30. [PMID: 38247590 PMCID: PMC10812507 DOI: 10.3390/antibiotics13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Limosilactobacillus fermentum strain 3872 (LF3872) was originally isolated from the breast milk of a healthy woman during lactation and the breastfeeding of a child. Ligilactobacillus salivarius strain 7247 (LS7247) was isolated at the same time from the intestines and reproductive system of a healthy woman. The genomes of these strains contain genes responsible for the production of peptidoglycan-degrading enzymes and factors that increase the permeability of the outer membrane of Gram-negative pathogens. In this work, the anti-Salmonella and intestinal homeostatic features of the LF3872 and LS7247 consortium were studied. A multi-drug resistant (MDR) strain of Salmonella enteritidis (SE) was used in the experiments. The consortium effectively inhibited the adhesion of SE to intact and activated human, porcine, and chicken enterocytes and reduced invasion. The consortium had a bactericidal effect on SE in 6 h of co-culturing. A gene expression analysis of SE showed that the cell-free supernatant (CFS) of the consortium inhibited the expression of virulence genes critical for the colonization of human and animal enterocytes. The CFS stimulated the production of an intestinal homeostatic factor-intestinal alkaline phosphatase (IAP)-in Caco-2 and HT-29 enterocytes. The consortium decreased the production of pro-inflammatory cytokines IL-8, TNF-α, and IL-1β, and TLR4 mRNA expression in human and animal enterocytes. It stimulated the expression of TLR9 in human and porcine enterocytes and stimulated the expression of TLR21 in chicken enterocytes. The consortium also protected the intestinal barrier functions through the increase of transepithelial electrical resistance (TEER) and the inhibition of paracellular permeability in the monolayers of human and animal enterocytes. The results obtained suggest that a LF3872 and LS7247 consortium can be used as an innovative feed additive to reduce the spread of MDR SE among the population and farm animals.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Irina O. Chikileva
- Blokhin National Research Center of Oncology, Ministry of Health RF, 115478 Moscow, Russia
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Anna A. Akhmetzyanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Dmitriy A. Blumenkrants
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | | | - Ilia N. Nikonov
- Federal State Educational Institution of Higher Professional Education, Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia;
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia; (V.S.K.); (V.K.S.)
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
7
|
Almeida C, Gonçalves-Nobre JG, Alpuim Costa D, Barata P. The potential links between human gut microbiota and cardiovascular health and disease - is there a gut-cardiovascular axis? FRONTIERS IN GASTROENTEROLOGY 2023; 2. [DOI: 10.3389/fgstr.2023.1235126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut-heart axis is an emerging concept highlighting the crucial link between gut microbiota and cardiovascular diseases (CVDs). Recent studies have demonstrated that gut microbiota is pivotal in regulating host metabolism, inflammation, and immune function, critical drivers of CVD pathophysiology. Despite a strong link between gut microbiota and CVDs, this ecosystem’s complexity still needs to be fully understood. The short-chain fatty acids, trimethylamine N-oxide, bile acids, and polyamines are directly or indirectly involved in the development and prognosis of CVDs. This review explores the relationship between gut microbiota metabolites and CVDs, focusing on atherosclerosis and hypertension, and analyzes personalized microbiota-based modulation interventions, such as physical activity, diet, probiotics, prebiotics, and fecal microbiota transplantation, as a promising strategy for CVD prevention and treatment.
Collapse
|
8
|
Wang W, Chen Y, Ye H, Dong Z, Zhang C, Feng D, Cao Q, Liang S, Zuo J. N-acyl homoserine lactonase attenuates the virulence of Salmonella typhimurium and its induction of intestinal damages in broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:334-342. [PMID: 37635927 PMCID: PMC10448016 DOI: 10.1016/j.aninu.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/08/2023] [Accepted: 04/05/2023] [Indexed: 08/29/2023]
Abstract
This study aimed to investigate the potential mitigating effects of N-acyl homoserine lactonase (AHLase) on the virulence of Salmonella typhimurium and its induction of intestinal damages in broilers. In vitro study was firstly conducted to examine if AHLase treatment could attenuate the virulence of S. typhimurium. Then, an in vivo experiment was performed by allocating 240 broiler chicks at 1 d old into 3 groups (8 replicates per group): negative control (NC), positive control (PC), and PC supplemented with 10,000 U/kg AHLase. All chicks except those in NC were orally challenged by S. typhimurium from 8 to 10 d of age. Parameters were measured on d 11 and 21. The results showed that treatment with 1 U/mL AHLase suppressed the biofilm-forming ability (including biofilm biomass, extracellular DNA secretion and biofilm formation-related gene expression), together with swarming motility and adhesive capacity of S. typhimurium. Supplemental 10,000 U/kg AHLase counteracted S. typhimurium-induced impairments (P < 0.05) in broiler growth performance (including final body weight, average daily gain and average daily feed intake) during either 1-11 d or 12-21 d, and increases (P < 0.05) in the indexes of liver, spleen and bursa of Fabricius on d 11, together with reductions (P < 0.05) in ileal villus height and its ratio to crypt depth on both d 11 and 21. AHLase addition also normalized the increased (P < 0.05) mRNA expression of ileal occludin on both d 11 and 21 in S. typhimurium-challenged broilers. However, neither S. typhimurium challenge nor AHLase addition altered (P > 0.05) serum diamine oxidase activity of broilers. Noticeably, S. typhimurium challenge caused little change in the mRNA expression of ileal inflammatory cytokines except for an increase (P < 0.05) in interleukin-8 expression on d 11, whereas AHLase addition normalized (P < 0.05) this change. In conclusion, AHLase treatment could attenuate the virulence and pathogenicity of S. typhimurium, thus contributing to alleviate S. typhimurium-induced growth retardation and intestinal damages in broilers.
Collapse
Affiliation(s)
| | | | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zemin Dong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Changming Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dingyuan Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingyun Cao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shujie Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jianjun Zuo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
9
|
Nale JY, Ahmed B, Haigh R, Shan J, Phothaworn P, Thiennimitr P, Garcia A, AbuOun M, Anjum MF, Korbsrisate S, Galyov EE, Malik DJ, Clokie MR. Activity of a Bacteriophage Cocktail to Control Salmonella Growth Ex Vivo in Avian, Porcine, and Human Epithelial Cell Cultures. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:11-25. [PMID: 37214653 PMCID: PMC10196083 DOI: 10.1089/phage.2023.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We examined the activity of phages to control the growth of chicken and swine Salmonella strains in avian (CHIC-8E11), porcine (IPEC-1), and human (HT-29) cell cultures. We optimized a six-phage cocktail by selecting the five most effective myoviruses and a siphovirus that have optimal lysis on prevalent serovars. We observed ∼20% of 7 log10 PFU/well phage and 3-6 log10 CFU bacterial adhesions, and 3-5 log10 CFU bacterial invasion per 2 cm2 of the cultured cells at 2 h post-treatment. The invasive bacteria when plated had a variable reduced susceptibility to the phages. After phage application at an MOI of 10, the prophylaxis regimen had better efficacy at controlling bacterial growth with an up to 6 log10 CFU/well reduction as compared with the 1-2 log10 CFU/well bacterial reduction observed in the remedial and coinfection regimens. Our data support the development of these phages to control salmonellosis in chickens, pigs, and humans.
Collapse
Affiliation(s)
- Janet Y. Nale
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland's Rural College, Inverness, United Kingdom
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Buthainah Ahmed
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Richard Haigh
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Department of Respiratory Science, University of Leicester, Leicester, United Kingdom
| | - Jinyu Shan
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Preeda Phothaworn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Centre of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Angela Garcia
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Muna F. Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Edouard E. Galyov
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Danish J. Malik
- Department of Chemical Engineering, Loughborough University, Loughborough, United Kingdom
| | - Martha R.J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
10
|
Wang W, Ou J, Ye H, Cao Q, Zhang C, Dong Z, Feng D, Zuo J. Supplemental N-acyl homoserine lactonase alleviates intestinal disruption and improves gut microbiota in broilers challenged by Salmonella Typhimurium. J Anim Sci Biotechnol 2023; 14:7. [PMID: 36617579 PMCID: PMC9827655 DOI: 10.1186/s40104-022-00801-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/20/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Salmonella Typhimurium challenge causes a huge detriment to chicken production. N-acyl homoserine lactonase (AHLase), a quorum quenching enzyme, potentially inhibits the growth and virulence of Gram-negative bacteria. However, it is unknown whether AHLase can protect chickens against S. Typhimurium challenge. This study aimed to evaluate the effects of AHLase on growth performance and intestinal health in broilers challenged by S. Typhimurium. A total of 240 one-day-old female crossbred broilers (817C) were randomly divided into 5 groups (6 replicates/group): negative control (NC), positive control (PC), and PC group supplemented with 5, 10 or 20 U/g AHLase. All birds except those in NC were challenged with S. Typhimurium from 7 to 9 days of age. All parameters related to growth and intestinal health were determined on d 10 and 14. RESULTS The reductions (P < 0.05) in body weight (BW) and average daily gain (ADG) in challenged birds were alleviated by AHLase addition especially at 10 U/g. Thus, samples from NC, PC and PC plus 10 U/g AHLase group were selected for further analysis. S. Typhimurium challenge impaired (P < 0.05) intestinal morphology, elevated (P < 0.05) ileal inflammatory cytokines (IL-1β and IL-8) expression, and increased (P < 0.05) serum diamine oxidase (DAO) activity on d 10. However, AHLase addition normalized these changes. Gut microbiota analysis on d 10 showed that AHLase reversed the reductions (P < 0.05) in several beneficial bacteria (e.g. Bacilli, Bacillales and Lactobacillales), along with increases (P < 0.05) in certain harmful bacteria (e.g. Proteobacteria, Gammaproteobacteria, Enterobacteriaceae and Escherichia/Shigella) in PC group. Furthermore, AHLase-induced increased beneficial bacteria and decreased harmful bacteria were basically negatively correlated (P < 0.05) with the reductions of ileal IL-1β and IL-8 expression and serum DAO activity, but positively correlated (P < 0.05) with the increased BW and ADG. Functional prediction revealed that AHLase abolished S. Typhimurium-induced upregulations (P < 0.05) of certain pathogenicity-related pathways such as lipopolysaccharide biosynthesis, shigellosis, bacterial invasion of epithelial cells and pathogenic Escherichia coli infection of gut microbiota. CONCLUSIONS Supplemental AHLase attenuated S. Typhimurium-induced growth retardation and intestinal disruption in broilers, which could be associated with the observed recovery of gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Weiwei Wang
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Jingseng Ou
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Hui Ye
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Qingyun Cao
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Changming Zhang
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Zemin Dong
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Dingyuan Feng
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Jianjun Zuo
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| |
Collapse
|
11
|
Sharma A, Raman V, Lee J, Forbes NS. Microbial Imbalance Induces Inflammation by Promoting Salmonella Penetration through the Mucosal Barrier. ACS Infect Dis 2022; 8:969-981. [PMID: 35404574 DOI: 10.1021/acsinfecdis.1c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The balance of microbial species in the intestine must be maintained to prevent inflammation and disease. Healthy bacteria suppress infection by pathogens and prevent disorders such as inflammatory bowel diseases (IBDs). The role of mucus in the relation between pathogens and the intestinal microbiota is poorly understood. Here, we hypothesized that healthy bacteria inhibit infection by preventing pathogens from penetrating the mucus layer and that microbial imbalance leads to inflammation by promoting the penetration of the mucosal barrier. We tested this hypothesis with an in vitro model that contains mucus, an epithelial cell layer, and resident immune cells. We found that, unlike probiotic VSL#3 bacteria, Salmonella penetrated the mucosal layers and induced the production of interleukin-8 (IL-8) and tumor necrosis factor (TNF)-α. At ratios greater than 104:1, probiotic bacteria suppressed the growth and penetration of Salmonella and reduced the production of inflammatory cytokines. Counterintuitively, low densities of healthy bacteria increased both pathogen penetration and cytokine production. In all cases, mucus increased Salmonella penetration and the production of cytokines. These results suggest that mucus lessens the protective effect of probiotic bacteria by promoting barrier penetration. In this model, a more imbalanced microbial population caused infection and inflammation by selecting pathogens that are more invasive and immunogenic. Combined, the results suggest that the depletion of commensal bacteria or an insufficient dosage of probiotics could worsen an infection and cause increased inflammation. A better understanding of the interactions between pathogens, healthy microbes, and the mucosal barrier will improve the treatment of infections and inflammatory diseases.
Collapse
Affiliation(s)
- Abhinav Sharma
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jungwoo Lee
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Neil S. Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
12
|
Vitamin D Receptor Influences Intestinal Barriers in Health and Disease. Cells 2022; 11:cells11071129. [PMID: 35406694 PMCID: PMC8997406 DOI: 10.3390/cells11071129] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D receptor (VDR) executes most of the biological functions of vitamin D. Beyond this, VDR is a transcriptional factor regulating the expression levels of many target genes, such as genes for tight junction proteins claudin-2, -5, -12, and -15. In this review, we discuss the progress of research on VDR that influences intestinal barriers in health and disease. We searched PubMed and Google Scholar using key words vitamin D, VDR, tight junctions, cancer, inflammation, and infection. We summarize the literature and progress reports on VDR regulation of tight junction distribution, cellular functions, and mechanisms (directly or indirectly). We review the impacts of VDR on barriers in various diseases, e.g., colon cancer, infection, inflammatory bowel disease, and chronic inflammatory lung diseases. We also discuss the limits of current studies and future directions. Deeper understanding of the mechanisms by which the VDR signaling regulates intestinal barrier functions allow us to develop efficient and effective therapeutic strategies based on levels of tight junction proteins and vitamin D/VDR statuses for human diseases.
Collapse
|
13
|
Acevedo-Villanueva KY, Akerele GO, Al Hakeem WG, Renu S, Shanmugasundaram R, Selvaraj RK. A Novel Approach against Salmonella: A Review of Polymeric Nanoparticle Vaccines for Broilers and Layers. Vaccines (Basel) 2021; 9:vaccines9091041. [PMID: 34579278 PMCID: PMC8470574 DOI: 10.3390/vaccines9091041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
This work discusses the present-day limitations of current commercial Salmonella vaccines for broilers and layers and explores a novel approach towards poultry vaccination using biodegradable nanoparticle vaccines against Salmonella. With the increasing global population and poultry production and consumption, Salmonella is a potential health risk for humans. The oral administration of killed or inactivated vaccines would provide a better alternative to the currently commercially available Salmonella vaccines for poultry. However, there are currently no commercial oral killed-vaccines against Salmonella for use in broilers or layers. There is a need for novel and effective interventions in the poultry industry. Polymeric nanoparticles could give way to an effective mass-administered mucosal vaccination method for Salmonella. The scope of this work is limited to polymeric nanoparticles against Salmonella for use in broilers and layers. This review is based on the information available at the time of the investigation.
Collapse
Affiliation(s)
- Keila Y. Acevedo-Villanueva
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (K.Y.A.-V.); (G.O.A.); (W.G.A.H.)
| | - Gabriel O. Akerele
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (K.Y.A.-V.); (G.O.A.); (W.G.A.H.)
| | - Walid Ghazi Al Hakeem
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (K.Y.A.-V.); (G.O.A.); (W.G.A.H.)
| | - Sankar Renu
- Upkara Inc., 45145 W 12 Mile Rd, Novi, MI 48377, USA;
| | | | - Ramesh K. Selvaraj
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (K.Y.A.-V.); (G.O.A.); (W.G.A.H.)
- Correspondence:
| |
Collapse
|
14
|
Hajra D, Nair AV, Chakravortty D. An elegant nano-injection machinery for sabotaging the host: Role of Type III secretion system in virulence of different human and animal pathogenic bacteria. Phys Life Rev 2021; 38:25-54. [PMID: 34090822 DOI: 10.1016/j.plrev.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
Various Gram-negative bacteria possess a specialized membrane-bound protein secretion system known as the Type III secretion system (T3SS), which transports the bacterial effector proteins into the host cytosol thereby helping in bacterial pathogenesis. The T3SS has a special needle-like translocon that can sense the contact with the host cell membrane and translocate effectors. The export apparatus of T3SS recognizes these effector proteins bound to chaperones and translocates them into the host cell. Once in the host cell cytoplasm, these effector proteins result in modulation of the host system and promote bacterial localization and infection. Using molecular biology, bioinformatics, genetic techniques, electron microscopic studies, and mathematical modeling, the structure and function of the T3SS and the corresponding effector proteins in various bacteria have been studied. The strategies used by different human pathogenic bacteria to modulate the host system and thereby enhance their virulence mechanism using T3SS have also been well studied. Here we review the history, evolution, and general structure of the T3SS, highlighting the details of its comparison with the flagellar export machinery. Also, this article provides mechanistic details about the common role of T3SS in subversion and manipulation of host cellular processes. Additionally, this review describes specific T3SS apparatus and the role of their specific effectors in bacterial pathogenesis by considering several human and animal pathogenic bacteria.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
15
|
Agbayani G, Clark K, Sandhu JK, Hewitt M, Sad S, Murphy SP, Krishnan L. IFN-alpha receptor deficiency enhances host resistance to oral Salmonella enterica serovar Typhimurium infection during murine pregnancy. Am J Reprod Immunol 2021; 86:e13454. [PMID: 33991140 DOI: 10.1111/aji.13454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
PROBLEM Maternal tolerance during pregnancy increases the risk of infection with certain intracellular pathogens. Systemic Salmonella enterica serovar Typhimurium (S.Tm) infection during pregnancy in normally resistant 129X1/SvJ mice leads to severe placental infection, as well as fetal and maternal deaths. However, the effect of oral infection with S.Tm in pregnant mice and the roles of infection-induced inflammation and cell death pathways in contributing to susceptibility to infection are unclear. METHOD OF STUDY Non-pregnant and pregnant C57BL/6J wild-type (WT) and cell death pathway-altered mice (IFNAR1-/- , Caspase-1, 11-/- , RIP3-/- ) were infected orally with S.Tm. Host survival and fetal resorption were determined. Bacterial burden in mesenteric lymph nodes (MLNs), spleen, liver, and placentas was enumerated at various time points post-infection. Serum cytokine expression was measured through cytometric bead array. RESULTS Oral infection of WT mice with S.Tm on days 9-10 of gestation resulted in systemic dissemination of the bacteria, substantial placental colonization, and fetal loss 5 days post-infection. Histopathological examination of the placentas indicated that infection-induced widespread focal necrosis and neutrophil infiltration throughout the spongiotrophoblast (SpT) layer. In the non-pregnant state, IFNAR1-/- mice exhibited increased survival following oral S.Tm infection relative to Caspase-1, 11-/- , RIP3-/- , and WT mice. The increased resistance to S.Tm infection in IFNAR1-/- mice was seen during pregnancy as well, with decreased bacterial burden within MLNs, spleen, and placenta, which correlated with the decreased resorptions relative to WT and Caspase-1, 11-/- mice. CONCLUSION Oral S.Tm exposure leads to placental infection, inflammation, and resorption, whereas IFNAR1 deficiency enhances host resistance both in the non-pregnant and pregnant states.
Collapse
Affiliation(s)
- Gerard Agbayani
- Division of Life Sciences, Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Kristina Clark
- Division of Life Sciences, Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Jagdeep K Sandhu
- Division of Life Sciences, Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Melissa Hewitt
- Division of Life Sciences, Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Shawn P Murphy
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA.,Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Lakshmi Krishnan
- Division of Life Sciences, Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
16
|
Gupta A, Bansal M, Liyanage R, Upadhyay A, Rath N, Donoghue A, Sun X. Sodium butyrate modulates chicken macrophage proteins essential for Salmonella Enteritidis invasion. PLoS One 2021; 16:e0250296. [PMID: 33909627 PMCID: PMC8081216 DOI: 10.1371/journal.pone.0250296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/02/2021] [Indexed: 12/28/2022] Open
Abstract
Salmonella Enteritidis is an intracellular foodborne pathogen that has developed multiple mechanisms to alter poultry intestinal physiology and infect the gut. Short chain fatty acid butyrate is derived from microbiota metabolic activities, and it maintains gut homeostasis. There is limited understanding on the interaction between S. Enteritidis infection, butyrate, and host intestinal response. To fill this knowledge gap, chicken macrophages (also known as HTC cells) were infected with S. Enteritidis, treated with sodium butyrate, and proteomic analysis was performed. A growth curve assay was conducted to determine sub-inhibitory concentration (SIC, concentration that do not affect bacterial growth compared to control) of sodium butyrate against S. Enteritidis. HTC cells were infected with S. Enteritidis in the presence and absence of SIC of sodium butyrate. The proteins were extracted and analyzed by tandem mass spectrometry. Our results showed that the SIC was 45 mM. Notably, S. Enteritidis-infected HTC cells upregulated macrophage proteins involved in ATP synthesis through oxidative phosphorylation such as ATP synthase subunit alpha (ATP5A1), ATP synthase subunit d, mitochondrial (ATP5PD) and cellular apoptosis such as Cytochrome-c (CYC). Furthermore, sodium butyrate influenced S. Enteritidis-infected HTC cells by reducing the expression of macrophage proteins mediating actin cytoskeletal rearrangements such as WD repeat-containing protein-1 (WDR1), Alpha actinin-1 (ACTN1), Vinculin (VCL) and Protein disulfide isomerase (P4HB) and intracellular S. Enteritidis growth and replication such as V-type proton ATPase catalytic subunit A (ATPV1A). Interestingly, sodium butyrate increased the expression of infected HTC cell protein involving in bacterial killing such as Vimentin (VIM). In conclusion, sodium butyrate modulates the expression of HTC cell proteins essential for S. Enteritidis invasion.
Collapse
Affiliation(s)
- Anamika Gupta
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Mohit Bansal
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Rohana Liyanage
- Department of Chemistry, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, United States of America
| | - Narayan Rath
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, Arkansas, United States of America
| | - Annie Donoghue
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, Arkansas, United States of America
| | - Xiaolun Sun
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
17
|
Hower S, McCormack R, Bartra SS, Alonso P, Podack ER, Shembade N, Plano GV. LPS modifications and AvrA activity of Salmonella enterica serovar Typhimurium are required to prevent Perforin-2 expression by infected fibroblasts and intestinal epithelial cells. Microb Pathog 2021; 154:104852. [PMID: 33762201 DOI: 10.1016/j.micpath.2021.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Cellular Perforin-2 (MPEG1) is a pore-forming MACPF family protein that plays a critical role in the defense against bacterial pathogens. Macrophages, neutrophils, and several other cell types that are part of the front line of innate defenses constitutively express high levels of Perforin-2; whereas, most other cell types must be induced to express Perforin-2 by interferons (α, β and γ) and/or PAMPs such as LPS. In this study, we demonstrate that many bacterial pathogens can limit the expression of Perforin-2 in cells normally inducible for Perforin-2 expression, while ordinarily commensal or non-pathogenic bacteria triggered high levels of Perforin-2 expression in these same cell types. The mechanisms by which pathogens suppress Perforin-2 expression was explored further using Salmonella enterica serovar Typhimurium and cultured MEFs as well as intestinal epithelial cell lines. These studies identified multiple factors required to minimize the expression of Perforin-2 in cell types inducible for Perforin-2 expression. These included the PmrAB and PhoPQ two-component systems, select LPS modification enzymes and the Type III secretion effector protein AvrA.
Collapse
Affiliation(s)
- Suzanne Hower
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ryan McCormack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sara Schesser Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Patricia Alonso
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Eckhard R Podack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Noula Shembade
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
18
|
Dong N, Xue C, Zhang L, Zhang T, Wang C, Bi C, Shan A. Oleanolic acid enhances tight junctions and ameliorates inflammation in Salmonella typhimurium-induced diarrhea in mice via the TLR4/NF-κB and MAPK pathway. Food Funct 2020; 11:1122-1132. [PMID: 31825448 DOI: 10.1039/c9fo01718f] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Salmonella typhimurium (S.T) is a common cause of acute, self-limiting food-borne diarrhea with severe intestinal inflammation and intestinal barrier damage. Oleanolic acid (OA), isolated from almost 2000 plant species, has been shown to have anti-inflammatory roles. The purpose of this study was to investigate the potential protective effects of OA on S.T-induced diarrhea and enteritis and to elucidate its anti-inflammatory mechanisms. A total of eighty BALB/c mice (4-week-old) were randomly divided into the control group (no S.T, no OA), the S.T group (S.T only), the S.T + OA group (S.T plus 100 mg kg-1 OA) and the OA group (100 mg kg-1 OA only). Compared with the S.T group, OA administration significantly reduced clinical symptoms and weight loss, and the severity of diarrhea and intestinal structural damage was significantly alleviated, which was confirmed by a decrease in the diarrhea index (DI) and jejunal histological damage. In addition, in the infected jejunum, OA maintained the expression and localization of occludin, claudin-1 and ZO-1 to protect the jejunal barrier, thereby maintaining the integrity of the gut barrier. Finally, OA treatment not only reduced the levels of COX-2 and iNOS but also inhibited the secretion of pro-inflammatory cytokines, such as IL-1β, IL-6 and TNF-α. Furthermore, western blotting results showed that OA treatment significantly inhibited IκB phosphorylation and degradation in intestinal tissues and the nuclear translocation of p65, and OA also decreased the level of TLR4 and the activation of the MAPK pathway. To summarise, OA can maintain the intestinal tight junction barrier and prevent diarrhea caused by S.T. as well as reduce intestinal inflammation through the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Na Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Gupta A, Bansal M, Wagle B, Sun X, Rath N, Donoghue A, Upadhyay A. Sodium Butyrate Reduces Salmonella Enteritidis Infection of Chicken Enterocytes and Expression of Inflammatory Host Genes in vitro. Front Microbiol 2020; 11:553670. [PMID: 33042060 PMCID: PMC7524895 DOI: 10.3389/fmicb.2020.553670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Salmonella Enteritidis (SE) is a facultative intracellular pathogen that colonizes the chicken gut leading to contamination of carcasses during processing. A reduction in intestinal colonization by SE could result in reduced carcass contamination thereby reducing the risk of illnesses in humans. Short chain fatty acids such as butyrate are microbial metabolites produced in the gut that exert various beneficial effects. However, its effect on SE colonization is not well known. The present study investigated the effect of sub-inhibitory concentrations (SICs) of sodium butyrate on the adhesion and invasion of SE in primary chicken enterocytes and chicken macrophages. In addition, the effect of sodium butyrate on the expression of SE virulence genes and selected inflammatory genes in chicken macrophages challenged with SE were investigated. Based on the growth curve analysis, the two SICs of sodium butyrate that did not reduce SE growth were 22 and 45 mM, respectively. The SICs of sodium butyrate did not affect the viability and proliferation of chicken enterocytes and macrophage cells. The SICs of sodium butyrate reduced SE adhesion by ∼1.7 and 1.8 Log CFU/mL, respectively. The SE invasion was reduced by ∼2 and 2.93 Log CFU/mL, respectively in chicken enterocytes (P < 0.05). Sodium butyrate did not significantly affect the adhesion of SE to chicken macrophages. However, 45 mM sodium butyrate reduced invasion by ∼1.7 Log CFU/mL as compared to control (P < 0.05). Exposure to sodium butyrate did not change the expression of SE genes associated with motility (flgG, prot6E), invasion (invH), type 3 secretion system (sipB, pipB), survival in macrophages (spvB, mgtC), cell wall and membrane integrity (tatA), efflux pump regulator (mrr1) and global virulence regulation (lrp) (P > 0.05). However, a few genes contributing to type-3 secretion system (ssaV, sipA), adherence (sopB), macrophage survival (sodC) and oxidative stress (rpoS) were upregulated by at least twofold. The expression of inflammatory genes (Il1β, Il8, and Mmp9) that are triggered by SE for host colonization was significantly downregulated (at least 25-fold) by sodium butyrate as compared to SE (P < 0.05). The results suggest that sodium butyrate has an anti-inflammatory potential to reduce SE colonization in chickens.
Collapse
Affiliation(s)
- Anamika Gupta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Mohit Bansal
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Basanta Wagle
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Xiaolun Sun
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Narayan Rath
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, AR, United States
| | - Annie Donoghue
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, AR, United States
| | - Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
20
|
Sharma A, Raman V, Lee J, Forbes NS. Mucus blocks probiotics but increases penetration of motile pathogens and induces TNF-α and IL-8 secretion. Biotechnol Bioeng 2020; 117:2540-2555. [PMID: 32396232 PMCID: PMC7806204 DOI: 10.1002/bit.27383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 12/29/2022]
Abstract
The mucosal barrier in combination with innate immune system are the first line of defense against luminal bacteria at the intestinal mucosa. Dysfunction of the mucus layer and bacterial infiltration are linked to tissue inflammation and disease. To study host-bacterial interactions at the mucosal interface, we created an experimental model that contains luminal space, a mucus layer, an epithelial layer, and suspended immune cells. Reconstituted porcine small intestinal mucus formed an 880 ± 230 µm thick gel layer and had a porous structure. In the presence of mucus, sevenfold less probiotic and nonmotile VSL#3 bacteria transmigrated across the epithelial barrier compared to no mucus. The higher bacterial transmigration caused immune cell differentiation and increased the concentration of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α; p < .01). Surprisingly, the mucus layer increased transmigration of pathogenic Salmonella and increased secretion of TNF-α and IL-8 (p < .05). Nonmotile, flagella knockout Salmonella had lower transmigration and caused lower IL-8 and TNF-α secretion (p < .05). These results demonstrate that motility enables pathogenic bacteria to cross the mucus and epithelial layers, which could lead to infection. Using an in vitro coculture platform to understand the interactions of bacteria with the intestinal mucosa has the potential to improve the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Abhinav Sharma
- Department of Chemical Engineering, University of Massachusetts, Amherst
| | - Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst
| | - Jungwoo Lee
- Department of Chemical Engineering, University of Massachusetts, Amherst
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst
- Institute for Applied Life Sciences, University of Massachusetts, Amherst
| | - Neil S. Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst
- Institute for Applied Life Sciences, University of Massachusetts, Amherst
| |
Collapse
|
21
|
Giovagnoni G, Rossi B, Tugnoli B, Ghiselli F, Bonetti A, Piva A, Grilli E. Thymol and Carvacrol Downregulate the Expression of Salmonella typhimurium Virulence Genes during an In Vitro Infection on Caco-2 Cells. Microorganisms 2020; 8:microorganisms8060862. [PMID: 32517327 PMCID: PMC7355688 DOI: 10.3390/microorganisms8060862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 11/16/2022] Open
Abstract
Salmonella typhimurium is one of the major bacteria responsible for gastroenteritis in humans caused by foodborne pathogens. As pork is one of the main routes of transmission, bioactive compounds used as feed additives may be an important strategy to control Salmonella typhimurium. The aim of this study was to assess the antimicrobial activity of several organic acids and nature identical compounds against Salmonella typhimurium ATCC®® 6994™. Moreover, the effect of sub-lethal concentrations of thymol and carvacrol in counteracting a Salmonella typhimurium in vitro infection on Caco-2 cells was evaluated, focusing on the maintenance of the epithelial barrier and the alteration of Salmonella virulence genes. The results showed a protective effect of the compounds on the integrity of the intestinal monolayer, improving transepithelial electrical resistance and bacterial translocation compared to the non-treated cells. A real-time PCR study highlighted a significant downregulation of the main virulence genes of Salmonella (hilA, prgH, invA, sipA, sipC, sipD, sopB, sopE2). These findings indicate that thymol and carvacrol could be good candidates for the control of Salmonella typhimurium in pigs.
Collapse
Affiliation(s)
- Giulia Giovagnoni
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy; (G.G.); (F.G.); (A.B.); (A.P.)
| | - Barbara Rossi
- Vetagro S.p.A., via Porro 2, 42124 Reggio Emilia, Italy; (B.R.); (B.T.)
| | - Benedetta Tugnoli
- Vetagro S.p.A., via Porro 2, 42124 Reggio Emilia, Italy; (B.R.); (B.T.)
| | - Federico Ghiselli
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy; (G.G.); (F.G.); (A.B.); (A.P.)
| | - Andrea Bonetti
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy; (G.G.); (F.G.); (A.B.); (A.P.)
| | - Andrea Piva
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy; (G.G.); (F.G.); (A.B.); (A.P.)
- Vetagro S.p.A., via Porro 2, 42124 Reggio Emilia, Italy; (B.R.); (B.T.)
| | - Ester Grilli
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy; (G.G.); (F.G.); (A.B.); (A.P.)
- Vetagro Inc., 116 W. Jackson Blvd., Suite #320, Chicago, IL 60604, USA
- Correspondence:
| |
Collapse
|
22
|
Acevedo-Villanueva KY, Lester B, Renu S, Han Y, Shanmugasundaram R, Gourapura R, Selvaraj R. Efficacy of chitosan-based nanoparticle vaccine administered to broiler birds challenged with Salmonella. PLoS One 2020; 15:e0231998. [PMID: 32330169 PMCID: PMC7182187 DOI: 10.1371/journal.pone.0231998] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/04/2020] [Indexed: 01/14/2023] Open
Abstract
Two experiments were conducted to evaluate the immune response of broilers vaccinated with Salmonella chitosan-nanoparticle (CNP) vaccine and challenged with Salmonella. The Salmonella CNP vaccine was synthesized with Salmonella enterica outer membrane proteins (OMPs) and flagellin proteins. In Experiment I, birds were orally gavaged with PBS or 500, 1000, or 2000μg of CNP vaccine 1 and 7d-of-age. At 14d-of-age, birds were orally challenged with 1 X 105 CFU/bird of live S. Enteritidis (SE). Macrophage-nitrite production 11d-post-challenge was higher (P<0.05) in the 500μg group when compared to the control. At d14 (8h-post-challenge), broilers vaccinated with 1000μg CNP had higher (P<0.05) serum anti-OMPs IgG and IgA and cloacal anti-OMP IgA amounts. At 11d-post-challenge, birds vaccinated with 1000μg CNP vaccine had greater (P<0.05) bile anti-OMP and anti-flagellin IgA amounts. At 11d-post-challenge, birds administered 1000μg CNP vaccine has increased (P<0.05) IL-1β and IL-10 mRNA in cecal tonsils. In Experiment II, birds were orally gavaged with PBS or 1000μg CNP or a live commercial vaccine at 1 and 7d-of-age. At 14d-of-age, birds were orally challenged with 1 X 105 CFU/bird of live SE or S. Heidelberg (SH). Birds vaccinated with CNP showed higher (P<0.05) serum anti-OMPs IgG amounts at 8h-post-challenge. At 4d-post-SH challenge, birds vaccinated with CNP had higher (P<0.05) bile anti-flagellin IgA amounts. CNP decreased (P<0.05) anti-OMPs IgG levels in serum at 2d-post-SE challenge and 4d-post-SH or SE challenge. Salmonella Enteritidis loads in cecal content at 2d-post-challenge was decreased (P<0.05) by 65.9% in birds vaccinated with CNP, when compared to the control. Chitosan-nanovaccine had no adverse effects on bird’s production performance. In conclusion, 1000μg CNP vaccine can induce a specific immune response against Salmonella and has the potential to mitigate SE cecal colonization in broiler birds.
Collapse
Affiliation(s)
| | - Bailey Lester
- Department of Poultry Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Sankar Renu
- Food Animal Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- Department Of Veterinary Preventive Medicine, College Of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Yi Han
- Food Animal Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Revathi Shanmugasundaram
- Department of Poultry Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Renukaradhya Gourapura
- Food Animal Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Ramesh Selvaraj
- Department of Poultry Sciences, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
23
|
|
24
|
Gaudino SJ, Kumar P. Cross-Talk Between Antigen Presenting Cells and T Cells Impacts Intestinal Homeostasis, Bacterial Infections, and Tumorigenesis. Front Immunol 2019; 10:360. [PMID: 30894857 PMCID: PMC6414782 DOI: 10.3389/fimmu.2019.00360] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/12/2019] [Indexed: 11/21/2022] Open
Abstract
Innate immunity is maintained in part by antigen presenting cells (APCs) including dendritic cells, macrophages, and B cells. APCs interact with T cells to link innate and adaptive immune responses. By displaying bacterial and tumorigenic antigens on their surface via major histocompatibility complexes, APCs can directly influence the differentiation of T cells. Likewise, T cell activation, differentiation, and effector functions are modulated by APCs utilizing multiple mechanisms. The objective of this review is to describe how APCs interact with and influence the activation of T cells to maintain innate immunity during exposure to microbial infection and malignant cells. How bacteria and cancer cells take advantage of some of these interactions for their own benefit will also be discussed. While this review will cover a broad range of topics, a general focus will be held around pathogens, cancers, and interactions that typically occur within the gastrointestinal tract.
Collapse
Affiliation(s)
- Stephen J Gaudino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| | - Pawan Kumar
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
25
|
Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, Picu A, Petcu L, Chifiriuc MC. Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Front Immunol 2018; 9:1830. [PMID: 30158926 PMCID: PMC6104162 DOI: 10.3389/fimmu.2018.01830] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
The microbiota consists of a dynamic multispecies community of bacteria, fungi, archaea, and protozoans, bringing to the host organism a dowry of cells and genes more numerous than its own. Among the different non-sterile cavities, the human gut harbors the most complex microbiota, with a strong impact on host homeostasis and immunostasis, being thus essential for maintaining the health condition. In this review, we outline the roles of gut microbiota in immunity, starting with the background information supporting the further presentation of the implications of gut microbiota dysbiosis in host susceptibility to infections, hypersensitivity reactions, autoimmunity, chronic inflammation, and cancer. The role of diet and antibiotics in the occurrence of dysbiosis and its pathological consequences, as well as the potential of probiotics to restore eubiosis is also discussed.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Irina Gheorghe
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Carmen Curutiu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Ariana Picu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Laura Petcu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
26
|
Odendall C, Voak AA, Kagan JC. Type III IFNs Are Commonly Induced by Bacteria-Sensing TLRs and Reinforce Epithelial Barriers during Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3270-3279. [PMID: 28954888 PMCID: PMC5679450 DOI: 10.4049/jimmunol.1700250] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
Abstract
Type III IFNs (IFN-λs) are secreted factors that are well-known for their antiviral activities. However, their regulation and functions during bacterial infections are unclear. In this article, we report that the regulation of IFN-λ genes did not track with mechanisms that control type I IFN expression in response to TLRs. Whereas type I IFNs were only expressed from TLRs present on endosomes, type III IFNs could be induced by TLRs that reside at the plasma membrane and that detect various bacterial products. The mechanisms that regulate type III IFN gene expression tracked with those that promote inflammatory cytokine and chemokine expression. Importantly, rIFN-λs enhanced epithelial barriers in vitro, preventing transcellular bacteria dissemination. We therefore propose that in addition to their functions in cell-intrinsic antiviral immunity, type III IFNs protect epithelial barrier integrity, an activity that would benefit the host during any infectious encounter.
Collapse
Affiliation(s)
- Charlotte Odendall
- Harvard Medical School, Boston, MA 02115;
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115; and
- Department of Infectious Diseases, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Andrew A Voak
- Department of Infectious Diseases, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Jonathan C Kagan
- Harvard Medical School, Boston, MA 02115;
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115; and
| |
Collapse
|
27
|
Identification of Transcriptional Modules and Key Genes in Chickens Infected with Salmonella enterica Serovar Pullorum Using Integrated Coexpression Analyses. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8347085. [PMID: 28529955 PMCID: PMC5424481 DOI: 10.1155/2017/8347085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/01/2017] [Accepted: 03/27/2017] [Indexed: 01/20/2023]
Abstract
Salmonella enterica Pullorum is one of the leading causes of mortality in poultry. Understanding the molecular response in chickens in response to the infection by S. enterica is important in revealing the mechanisms of pathogenesis and disease progress. There have been studies on identifying genes associated with Salmonella infection by differential expression analysis, but the relationships among regulated genes have not been investigated. In this study, we employed weighted gene coexpression network analysis (WGCNA) and differential coexpression analysis (DCEA) to identify coexpression modules by exploring microarray data derived from chicken splenic tissues in response to the S. enterica infection. A total of 19 modules from 13,538 genes were associated with the Jak-STAT signaling pathway, the extracellular matrix, cytoskeleton organization, the regulation of the actin cytoskeleton, G-protein coupled receptor activity, Toll-like receptor signaling pathways, and immune system processes; among them, 14 differentially coexpressed modules (DCMs) and 2,856 differentially coexpressed genes (DCGs) were identified. The global expression of module genes between infected and uninfected chickens showed slight differences but considerable changes for global coexpression. Furthermore, DCGs were consistently linked to the hubs of the modules. These results will help prioritize candidate genes for future studies of Salmonella infection.
Collapse
|
28
|
Preliminary assessment on potentials of probiotic B. subtilis RX7 and B. methylotrophicus C14 strains as an immune modulator in Salmonella-challenged weaned pigs. Trop Anim Health Prod 2017; 49:1065-1070. [PMID: 28326485 DOI: 10.1007/s11250-017-1278-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
A total of 40 crossbred weaned piglets (28 days old; [Landrace × Yorkshire] × Duroc) were used for preliminary assessment on potentials of Bacillus-based probiotics as an immune modulator in a Salmonella Typhimurium challenge model in a 3-week experiment. Pigs were randomly allotted to four experimental diets according to their initial body weight (9.21 ± 1.1 kg) and sex (10 pigs per treatment; 5 barrows and 5 gilts). The dietary treatments were basal diet (CON), basal diet + oral administration of Salmonella enterica ser. Typhimurium at the dosage of 1 mL containing 1 × 1011 cfu/mL of viable cell concentrations at day 21 (SC), SC + Bacillus subtilis (BS), and SC+ Bacillus methylotrophicus (BM). After 12 h of Salmonella challenge, the red blood cell (RBC), immunoglobulin G (IgG), and immunoglobulin M (IgM) concentrations were reduced (P < 0.05) whereas haptoglobin and cortisol levels were greater (P < 0.05) in SC compared with CON. However, the concentrations of RBC, IgG, and IgM were increased whereas haptoglobin and cortisol levels were reduced in BS and BM compared with SC. The probiotic-treated groups showed reduced (P < 0.05) IgM levels and increased (P < 0.05) WBC and cortisol levels compared with CON. The supplementation of probiotics showed increased (P < 0.05) fecal Lactobacillus counts and reduced Escherichia coli and Salmonella counts in piglets though there was no biological relevance compared with SC. Thus, in our preliminary study, Bacillus-based probiotic has shown some positive immunomodulatory effects in Salmonella-challenged pigs which provided a base for further studies.
Collapse
|
29
|
Gart EV, Suchodolski JS, Welsh TH, Alaniz RC, Randel RD, Lawhon SD. Salmonella Typhimurium and Multidirectional Communication in the Gut. Front Microbiol 2016; 7:1827. [PMID: 27920756 PMCID: PMC5118420 DOI: 10.3389/fmicb.2016.01827] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022] Open
Abstract
The mammalian digestive tract is home to trillions of microbes, including bacteria, archaea, protozoa, fungi, and viruses. In monogastric mammals the stomach and small intestine harbor diverse bacterial populations but are typically less populated than the colon. The gut bacterial community (microbiota hereafter) varies widely among different host species and individuals within a species. It is influenced by season of the year, age of the host, stress and disease. Ideally, the host and microbiota benefit each other. The host provides nutrients to the microbiota and the microbiota assists the host with digestion and nutrient metabolism. The resident microbiota competes with pathogens for space and nutrients and, through this competition, protects the host in a phenomenon called colonization resistance. The microbiota participates in development of the host immune system, particularly regulation of autoimmunity and mucosal immune response. The microbiota also shapes gut–brain communication and host responses to stress; and, indeed, the microbiota is a newly recognized endocrine organ within mammalian hosts. Salmonella enterica serovar Typhimurium (S. Typhimurium hereafter) is a food-borne pathogen which adapts to and alters the gastrointestinal (GI) environment. In the GI tract, S. Typhimurium competes with the microbiota for nutrients and overcomes colonization resistance to establish infection. To do this, S. Typhimurium uses multiple defense mechanisms to resist environmental stressors, like the acidic pH of the stomach, and virulence mechanisms which allow it to invade the intestinal epithelium and disseminate throughout the host. To coordinate gene expression and disrupt signaling within the microbiota and between host and microbiota, S. Typhimurium employs its own chemical signaling and may regulate host hormone metabolism. This review will discuss the multidirectional interaction between S. Typhimurium, host and microbiota as well as mechanisms that allow S. Typhimurium to succeed in the gut.
Collapse
Affiliation(s)
- Elena V Gart
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station TX, USA
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station TX, USA
| | - Thomas H Welsh
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station TX, USA
| | - Robert C Alaniz
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station TX, USA
| | | | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station TX, USA
| |
Collapse
|
30
|
Abstract
For the important foodborne pathogen Salmonella enterica to cause disease or persist in pigs, it has evolved an intricate set of interactions between itself, the host, and the indigenous microflora of the host. S. enterica must evade the host's immune system and must also overcome colonization resistance mediated by the pig's indigenous microflora. The inflammatory response against S. enterica provides the bacteria with unique metabolites and is thus exploited by S. enterica for competitive advantage. During infection, changes in the composition of the indigenous microflora occur that have been associated with a breakdown in colonization resistance. Healthy pigs that are low-level shedders of S. enterica also exhibit alterations in their indigenous microflora similar to those in ill animals. Here we review the literature on the interactions that occur between swine, S. enterica, and the indigenous microflora and discuss methods to reduce or prevent colonization of pigs with S. enterica.
Collapse
Affiliation(s)
- Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Chungnam, South Korea 31116;
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota 55108;
| |
Collapse
|
31
|
Martin SAM, Dehler CE, Król E. Transcriptomic responses in the fish intestine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:103-117. [PMID: 26995769 DOI: 10.1016/j.dci.2016.03.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/05/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
The intestine, being a multifunctional organ central to both nutrient uptake, pathogen recognition and regulating the intestinal microbiome, has been subjected to intense research. This review will focus on the recent studies carried out using high-throughput gene expression approaches, such as microarray and RNA sequencing (RNA-seq). These techniques have advanced greatly in recent years, mainly as a result of the massive changes in sequencing methodologies. At the time of writing, there is a transition between relatively well characterised microarray platforms and the developing RNA-seq, with the prediction that within a few years as costs decrease and computation power increase, RNA-seq related approaches will supersede the microarrays. Comparisons between the approaches are made and specific examples of how the techniques have been used to examine intestinal responses to pathogens, dietary manipulations and osmoregulatory challenges are given.
Collapse
Affiliation(s)
- Samuel A M Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Carola E Dehler
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Elżbieta Król
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
32
|
Miarelli M, Drumo R, Signorelli F, Marchitelli C, Pavone S, Pesciaroli M, Ruggieri J, Chirullo B, Ammendola S, Battistoni A, Alborali GL, Manuali E, Pasquali P. Salmonella Typhimurium infection primes a nutriprive mechanism in piglets. Vet Microbiol 2016; 186:117-25. [DOI: 10.1016/j.vetmic.2016.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/14/2022]
|
33
|
Drumo R, Pesciaroli M, Ruggeri J, Tarantino M, Chirullo B, Pistoia C, Petrucci P, Martinelli N, Moscati L, Manuali E, Pavone S, Picciolini M, Ammendola S, Gabai G, Battistoni A, Pezzotti G, Alborali GL, Napolioni V, Pasquali P, Magistrali CF. Salmonella enterica Serovar Typhimurium Exploits Inflammation to Modify Swine Intestinal Microbiota. Front Cell Infect Microbiol 2016; 5:106. [PMID: 26835435 PMCID: PMC4722131 DOI: 10.3389/fcimb.2015.00106] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/28/2015] [Indexed: 12/28/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria) normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota.
Collapse
Affiliation(s)
- Rosanna Drumo
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di SanitàRome, Italy; Department of Comparative Biomedicine and Food Science, University of PaduaPadua, Italy
| | - Michele Pesciaroli
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di SanitàRome, Italy; VISAVET Health Surveillance Centre, Universidad Complutense MadridMadrid, Spain
| | - Jessica Ruggeri
- Department of Veterinary Diagnostic, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna Brescia, Italy
| | - Michela Tarantino
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità Rome, Italy
| | - Barbara Chirullo
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità Rome, Italy
| | - Claudia Pistoia
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità Rome, Italy
| | - Paola Petrucci
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità Rome, Italy
| | - Nicola Martinelli
- Department of Veterinary Diagnostic, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna Brescia, Italy
| | - Livia Moscati
- Research and Development Area, Istituto Zooprofilattico Sperimentale dell'Umbria e della Marche Perugia, Italy
| | - Elisabetta Manuali
- Research and Development Area, Istituto Zooprofilattico Sperimentale dell'Umbria e della Marche Perugia, Italy
| | - Silvia Pavone
- Research and Development Area, Istituto Zooprofilattico Sperimentale dell'Umbria e della Marche Perugia, Italy
| | - Matteo Picciolini
- Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Serena Ammendola
- Department of Biology, University of Roma Tor Vergata Rome, Italy
| | - Gianfranco Gabai
- Department of Comparative Biomedicine and Food Science, University of Padua Padua, Italy
| | | | - Giovanni Pezzotti
- Research and Development Area, Istituto Zooprofilattico Sperimentale dell'Umbria e della Marche Perugia, Italy
| | - Giovanni L Alborali
- Department of Veterinary Diagnostic, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna Brescia, Italy
| | - Valerio Napolioni
- Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Paolo Pasquali
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità Rome, Italy
| | - Chiara F Magistrali
- Research and Development Area, Istituto Zooprofilattico Sperimentale dell'Umbria e della Marche Perugia, Italy
| |
Collapse
|
34
|
Das S, Sarkar A, Choudhury SS, Owen KA, Derr-Castillo VL, Fox S, Eckmann L, Elliott MR, Casanova JE, Ernst PB. ELMO1 has an essential role in the internalization of Salmonella Typhimurium into enteric macrophages that impacts disease outcome. Cell Mol Gastroenterol Hepatol 2015; 1:311-324. [PMID: 26878033 PMCID: PMC4747049 DOI: 10.1016/j.jcmgh.2015.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUNDS AND AIMS 4-6 million people die of enteric infections each year. After invading intestinal epithelial cells, enteric bacteria encounter phagocytes. However, little is known about how phagocytes internalize the bacteria to generate host responses. Previously, we have shown that BAI1 (Brain Angiogenesis Inhibitor 1) binds and internalizes Gram-negative bacteria through an ELMO1 (Engulfment and cell Motility protein 1)/Rac1-dependent mechanism. Here we delineate the role of ELMO1 in host inflammatory responses following enteric infection. METHODS ELMO1-depleted murine macrophage cell lines, intestinal macrophages and ELMO1 deficient mice (total or myeloid-cell specific) was infected with Salmonella enterica serovar Typhimurium. The bacterial load, inflammatory cytokines and histopathology was evaluated in the ileum, cecum and spleen. The ELMO1 dependent host cytokines were detected by a cytokine array. ELMO1 mediated Rac1 activity was measured by pulldown assay. RESULTS The cytokine array showed reduced release of pro-inflammatory cytokines, including TNF-α and MCP-1, by ELMO1-depleted macrophages. Inhibition of ELMO1 expression in macrophages decreased Rac1 activation (~6 fold) and reduced internalization of Salmonella. ELMO1-dependent internalization was indispensable for TNF-α and MCP-1. Simultaneous inhibition of ELMO1 and Rac function virtually abrogated TNF-α responses to infection. Further, activation of NF-κB, ERK1/2 and p38 MAP kinases were impaired in ELMO1-depleted cells. Strikingly, bacterial internalization by intestinal macrophages was completely dependent on ELMO1. Salmonella infection of ELMO1-deficient mice resulted in a 90% reduction in bacterial burden and attenuated inflammatory responses in the ileum, spleen and cecum. CONCLUSION These findings suggest a novel role for ELMO1 in facilitating intracellular bacterial sensing and the induction of inflammatory responses following infection with Salmonella.
Collapse
Affiliation(s)
- Soumita Das
- Department of Pathology, University of California San Diego, San Diego, California
| | - Arup Sarkar
- Trident School of Biotech Sciences, Trident Academy of Creative Technology, Odisha, India
| | | | - Katherine A. Owen
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | | | - Sarah Fox
- Department of Pathology, University of California San Diego, San Diego, California
| | - Lars Eckmann
- Department of Medicine, University of California San Diego, San Diego, California
| | - Michael R. Elliott
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, New York
| | - James E. Casanova
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Peter B. Ernst
- Department of Pathology, University of California San Diego, San Diego, California,Correspondence Address correspondence to: Peter B. Ernst, DVM, PhD, University of California San Diego, Division of Comparative Pathology and Medicine, Department of Pathology, MC 0063, San Diego, California 92093-0063. fax: 858.246.0523.
| |
Collapse
|
35
|
Jones C, Darton TC, Pollard AJ. Why the development of effective typhoid control measures requires the use of human challenge studies. Front Microbiol 2014; 5:707. [PMID: 25566221 PMCID: PMC4267421 DOI: 10.3389/fmicb.2014.00707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/27/2014] [Indexed: 01/21/2023] Open
Affiliation(s)
- Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford Oxford, UK
| | - Thomas C Darton
- Oxford Vaccine Group, Department of Paediatrics, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford Oxford, UK
| |
Collapse
|
36
|
Application of Molecular Approaches for Understanding Foodborne Salmonella Establishment in Poultry Production. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/813275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Salmonellosis in the United States is one of the most costly foodborne diseases. Given that Salmonella can originate from a wide variety of environments, reduction of this organism at all stages of poultry production is critical. Salmonella species can encounter various environmental stress conditions which can dramatically influence their survival and colonization. Current knowledge of Salmonella species metabolism and physiology in relation to colonization is traditionally based on studies conducted primarily with tissue culture and animal infection models. Consequently, while there is some information about environmental signals that control Salmonella growth and colonization, much still remains unknown. Genetic tools for comprehensive functional genomic analysis of Salmonella offer new opportunities for not only achieving a better understanding of Salmonella pathogens but also designing more effective intervention strategies. Now the function(s) of each single gene in the Salmonella genome can be directly assessed and previously unknown genetic factors that are required for Salmonella growth and survival in the poultry production cycle can be elucidated. In particular, delineating the host-pathogen relationships involving Salmonella is becoming very helpful for identifying optimal targeted gene mutagenesis strategies to generate improved vaccine strains. This represents an opportunity for development of novel vaccine approaches for limiting Salmonella establishment in early phases of poultry production. In this review, an overview of Salmonella issues in poultry, a general description of functional genomic technologies, and their specific application to poultry vaccine developments are discussed.
Collapse
|
37
|
Gunn JS, Marshall JM, Baker S, Dongol S, Charles RC, Ryan ET. Salmonella chronic carriage: epidemiology, diagnosis, and gallbladder persistence. Trends Microbiol 2014; 22:648-55. [PMID: 25065707 PMCID: PMC4252485 DOI: 10.1016/j.tim.2014.06.007] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
Typhoid (enteric fever) remains a major cause of morbidity and mortality worldwide, causing over 21 million new infections annually, with the majority of deaths occurring in young children. Because typhoid fever-causing Salmonella have no known environmental reservoir, the chronic, asymptomatic carrier state is thought to be a key feature of continued maintenance of the bacterium within human populations. Despite the importance of this disease to public health, our understanding of the molecular mechanisms that catalyze carriage, as well as our ability to reliably identify and treat the Salmonella carrier state, have only recently begun to advance.
Collapse
Affiliation(s)
- John S Gunn
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, OH, USA.
| | - Joanna M Marshall
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, OH, USA
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Oxford University, Oxford, United Kingdom; The London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
38
|
Pontier-Bres R, Munro P, Boyer L, Anty R, Imbert V, Terciolo C, André F, Rampal P, Lemichez E, Peyron JF, Czerucka D. Saccharomyces boulardii modifies Salmonella typhimurium traffic and host immune responses along the intestinal tract. PLoS One 2014; 9:e103069. [PMID: 25118595 PMCID: PMC4145484 DOI: 10.1371/journal.pone.0103069] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/27/2014] [Indexed: 12/12/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (ST) is an enteropathogenic Gram-negative bacterium that causes infection following oral ingestion. ST spreads rapidly along the gastrointestinal tract (GIT) and invades the intestinal epithelium to ultimately reach internal body organs. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B) is prescribed for prophylaxis of diarrheal infectious diseases. We previously showed that S.b-B prevents weight loss in ST-infected mice and significantly decreases bacterial translocation to the spleen and liver. This study was designed to investigate the effect of S.b-B on ST migration along the GIT and the impact of the yeast on the host's early innate immune responses. Bioluminescent imaging (BLI) was used to evaluate the effect of S.b-B on the progression of luminescent Salmonella Typhimurium (ST-lux) in the GIT of mice pretreated with streptomycin. Photonic emission (PE) was measured in GIT extracts (stomach, small intestine, cecum and colon) at various time periods post-infection (PI). PE analysis revealed that, 45 min PI, ST-lux had migrated slightly faster in the mice treated with S.b-B than in the untreated infected animals. At 90 min PI, ST-lux had reached the cecum in both groups of mice. Adhesion of ST to S.b-B was visualized in the intestines of the mice and probably accounts for (1) the faster elimination of ST-lux in the feces, and (2) reduced translocation of ST to the spleen and liver. In the early phase of infection, S.b-B also modifies the host's immune responses by (1) increasing IFN-γ gene expression and decreasing IL-10 gene expression in the small intestine, and (2) elevating both IFN-γ, and IL-10 mRNA levels in the cecum. BLI revealed that S.b-B modifies ST migration and the host immune response along the GIT. Study findings shed new light on the protective mechanisms of S.b-B during the early phase of Salmonella pathogenesis.
Collapse
Affiliation(s)
- Rodolphe Pontier-Bres
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 4 “Inflammation, Cancer, Cancer Stem Cells” Nice, France
- Université de Nice-Sophia Antipolis, UFR Médecine, IFR50, Faculté de Médecine, Nice, France
| | - Patrick Munro
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 6 “Microbial toxins in host pathogen interactions” Nice, France
- Université de Nice-Sophia Antipolis, UFR Médecine, IFR50, Faculté de Médecine, Nice, France
| | - Laurent Boyer
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 6 “Microbial toxins in host pathogen interactions” Nice, France
- Université de Nice-Sophia Antipolis, UFR Médecine, IFR50, Faculté de Médecine, Nice, France
| | - Rodolphe Anty
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 8 “Hepatic complications in obesity” Nice, France
- Université de Nice-Sophia Antipolis, UFR Médecine, IFR50, Faculté de Médecine, Nice, France
| | - Véronique Imbert
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 4 “Inflammation, Cancer, Cancer Stem Cells” Nice, France
- Université de Nice-Sophia Antipolis, UFR Médecine, IFR50, Faculté de Médecine, Nice, France
| | - Chloé Terciolo
- CRO2 INSERM U911, Campus Santé Timone, Université Aix-Marseille, Marseille, France
| | - Fréderic André
- CRO2 INSERM U911, Campus Santé Timone, Université Aix-Marseille, Marseille, France
| | | | - Emmanuel Lemichez
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 6 “Microbial toxins in host pathogen interactions” Nice, France
- Université de Nice-Sophia Antipolis, UFR Médecine, IFR50, Faculté de Médecine, Nice, France
| | - Jean-François Peyron
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 4 “Inflammation, Cancer, Cancer Stem Cells” Nice, France
- Université de Nice-Sophia Antipolis, UFR Médecine, IFR50, Faculté de Médecine, Nice, France
| | - Dorota Czerucka
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 4 “Inflammation, Cancer, Cancer Stem Cells” Nice, France
- Université de Nice-Sophia Antipolis, UFR Médecine, IFR50, Faculté de Médecine, Nice, France
- * E-mail:
| |
Collapse
|
39
|
Intestinal alkaline phosphatase prevents antibiotic-induced susceptibility to enteric pathogens. Ann Surg 2014; 259:715-22. [PMID: 23598380 DOI: 10.1097/sla.0b013e31828fae14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To determine the efficacy of oral supplementation of the gut enzyme intestinal alkaline phosphatase (IAP) in preventing antibiotic-associated infections from Salmonella enterica serovar Typhimurium (S. Typhimurium) and Clostridium difficile. BACKGROUND The intestinal microbiota plays a pivotal role in human health and well-being. Antibiotics inherently cause dysbiosis, an imbalance in the number and composition of intestinal commensal bacteria, which leads to susceptibility to opportunistic bacterial infections. Previously, we have shown that IAP preserves the normal homeostasis of intestinal microbiota and that oral supplementation with calf IAP (cIAP) rapidly restores the normal gut flora. We hypothesized that oral IAP supplementation would protect against antibiotic-associated bacterial infections. METHODS C57BL/6 mice were treated with antibiotic(s) ± cIAP in the drinking water, followed by oral gavage of S. Typhimurium or C. difficile. Mice were observed for clinical conditions and mortality. After a defined period of time, mice were killed and investigated for hematological, inflammatory, and histological changes. RESULTS We observed that oral supplementation with cIAP during antibiotic treatment protects mice from infections with S. Typhimurium as well as with C. difficile. Animals given IAP maintained their weight, had reduced clinical severity and gut inflammation, and showed improved survival. CONCLUSIONS Oral IAP supplementation protected mice from antibiotic-associated bacterial infections. We postulate that oral IAP supplementation could represent a novel therapy to protect against antibiotic-associated diarrhea (AAD), C. difficile-associated disease (CDAD), and other enteric infections in humans.
Collapse
|
40
|
Zhang T, Yu J, Zhang Y, Li L, Chen Y, Li D, Liu F, Zhang CY, Gu H, Zen K. Salmonella enterica serovar enteritidis modulates intestinal epithelial miR-128 levels to decrease macrophage recruitment via macrophage colony-stimulating factor. J Infect Dis 2014; 209:2000-11. [PMID: 24415783 DOI: 10.1093/infdis/jiu006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The mechanism underlying the ability of virulent Salmonella organisms to escape clearance by macrophages is incompletely understood. Here, we report a novel mechanism by which Salmonella escapes macrophages. METHODS Microarray and quantitative real-time polymerase chain reaction analyses were used to screen key microRNAs regulating Salmonella-host cell interactions. Target gene was tested using luciferase reporter and Western blot assays. The role of microRNA 128 (miR-128) was assayed using intestinal epithelial cells and a mouse infection model. RESULTS The miR-128 level in human intestinal epithelial HT29 cells was strongly increased by infection with strain SE2472, and the elevation in miR-128 levels in mouse intestine and colon tissues correlated with the level of Salmonella infection in mice. Macrophage colony-stimulating factor (M-CSF) was identified as a target of miR-128, and increased miR-128 levels in epithelial cells due to infection with strain SE2472 significantly decreased the level of cell-secreted M-CSF, leading to impaired M-CSF-mediated macrophage recruitment. The secreted proteins from Salmonella were identified as possible effectors to induce miR-128 expression via the p53 signaling pathway. Moreover, intragastric delivery of anti-miR-128 antagomir into mice significantly increased M-CSF-mediated macrophage recruitment and suppressed Salmonella infection. CONCLUSIONS Salmonella can upregulate intestinal epithelial miR-128 expression, which, in turn, decreases levels of epithelial cell-secreted M-CSF and M-CSF-induced macrophage recruitment.
Collapse
Affiliation(s)
- Tianfu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| | - Jianxiong Yu
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| | - Yaqin Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| | - Limin Li
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| | - Yuanyuan Chen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| | - Donghai Li
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| | - Fenyong Liu
- Department of Virology, University of California School of Public Health, Berkeley
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| | - Hongwei Gu
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| | - Ke Zen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| |
Collapse
|
41
|
Foley SL, Johnson TJ, Ricke SC, Nayak R, Danzeisen J. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol Mol Biol Rev 2013; 77:582-607. [PMID: 24296573 PMCID: PMC3973385 DOI: 10.1128/mmbr.00015-13] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today.
Collapse
|
42
|
Proteomic analysis of intestinal mucosa responses to Salmonella enterica serovar typhimurium in naturally infected pig. Comp Immunol Microbiol Infect Dis 2013; 37:59-67. [PMID: 24268431 DOI: 10.1016/j.cimid.2013.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 02/07/2023]
Abstract
Salmonella enterica serovar typhimurium (S. typhimurium) is one of the most frequent Salmonella serotypes isolated from European pigs. Despite the advances in understanding the mechanisms involved in host-pathogen interactions and host cell responses to S. typhimurium, the global change that occurs in naturally exposed populations has been poorly characterized. Here, we present a proteomics study on intestinal mucosa of pigs naturally infected with S. typhimurium, in order to better understand the pathogenesis of salmonellosis and the pathways which might be affected after infection. Samples were analyzed by 2D-DIGE and 44 different proteins exhibited statistically significant differences. The data set was analyzed by employing the Ingenuity Pathway Analysis and the physiological function most significantly perturbed were immunological and infectious disease, cellular assembly and organization and metabolism. The pathways implicated in the porcine immune response to S. typhimurium were gluconeogenesis and Rho GDI/RhoA signaling, and our results suggest that keratins and the intermediate filaments could play an important role in the damage of the mucosa and in the success of infection. The role of these findings in salmonellosis has been discussed, as well as the importance of analyzing naturally infected animals to have a complete picture of the infection. Also, we compared the results found in this work with those obtained in a similar study using experimentally infected animals.
Collapse
|
43
|
|
44
|
No protective effects of high-dosage dietary zinc oxide on weaned pigs infected with Salmonella enterica serovar typhimurium DT104. Appl Environ Microbiol 2013; 79:2914-21. [PMID: 23435881 DOI: 10.1128/aem.03577-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Twenty-eight-day-old weaned pigs were fed diets with a low (LZn), medium (MZn), or high (MZn) Zn concentration (50 to 80, 150, or 2,500 mg Zn/kg of diet, respectively) provided as zinc oxide (ZnO)(24 pigs per group). They were infected orally with Salmonella enterica serovar Typhimurium DT104 on day 32. Salmonellae were cultivated from feces (up to 42 days postinfection [dpi]) and organs (2 and 42 dpi). Activation of the adaptive systemic and mucosal immune systems was investigated by recording anti-Salmonella IgG levels and levels of B and T lymphocyte subpopulations in blood and gut-associated lymphatic tissue. Growth performance was recorded as well. Salmonellae were shed at higher levels and for longer periods in the HZn group (P < 0.05), with no differences in the tissues. At 2 dpi, the relative percentages of CD4(+) T helper cells (P < 0.01) and of CD2(+) T and NK cells (P < 0.01) in blood were reduced from the relative cell counts obtained at 0 dpi, irrespective of the Zn group. The lowest percentage of cytotoxic T cells was found 14 dpi in the HZn group relative to the MZn (P < 0.05) and LZn (P < 0.01) groups. Supplementation of the feed with 2,500 mg Zn/kg of diet immediately after weaning could positively affect the immune responses of piglets infected with Salmonella Typhimurium, but for a short period only. After 2 weeks, all positive effects disappeared, and rather negative effects, such as higher shedding of salmonellae, lower T cell frequencies, and worse performance, occurred. Thus, supplementation with ZnO at high levels in the pig industry should be limited to 2 to 3 weeks.
Collapse
|
45
|
Wells JE, Kalchayanand N, Berry ED, Oliver WT. Effects of antimicrobials fed as dietary growth promoters on faecal shedding of Campylobacter, Salmonella and shiga-toxin producing Escherichia coli in swine. J Appl Microbiol 2012; 114:318-28. [PMID: 23163916 DOI: 10.1111/jam.12065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/19/2012] [Accepted: 11/05/2012] [Indexed: 11/27/2022]
Abstract
AIMS To determine whether antimicrobials commonly used in swine diets affect zoonotic pathogen shedding in faeces. METHODS AND RESULTS Barrows (n = 160) were sorted into two treatments at 10 weeks of age (week 0 of the study), and fed growing, grow finishing and finishing diets in 4-week feeding periods. For each feeding phase, diets were prepared without (A-) and with (A+) dietary antimicrobials (chlortetracycline, 0-8 week; bacitracin, 9-12 week) typical of the United States. At week 0, 4, 8, 9, 10 and 12 of the study, faecal swabs or grabs were collected for analyses. Campylobacter spp. was absent at week 0, but prevalence increased over time with most isolates being identified as Campylobacter coli. When chlortetracycline was used in A+ diets (week 4 and 8), prevalence for Campylobacter spp., pathogenic Escherichia coli O26 and stx genes was lower in faeces. On week 12 after the shift to bacitracin, Campylobacter spp. and stx genes were higher in faeces from piglets fed A+ diet. Pathogenic E. coli serogroups O103 and O145 were isolated throughout the study and their prevalence did not differ due to diet. Pathogenic E. coli serogroups O111 and O121 were never found in the piglets, and Salmonella spp. prevalence was low. CONCLUSIONS In production swine, growing diets with chlortetracycline may have reduced pathogen shedding compared with the A-growing diets, whereas finishing diets with bacitracin may have increased pathogen shedding compared with the A-finishing diet. SIGNIFICANCE AND IMPACT OF THE STUDY Inclusion of antimicrobials in the diet can affect zoonotic pathogen shedding in faeces of swine.
Collapse
Affiliation(s)
- J E Wells
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA.
| | | | | | | |
Collapse
|
46
|
Keely S, Kelly CJ, Weissmueller T, Burgess A, Wagner BD, Robertson CE, Harris JK, Colgan SP. Activated fluid transport regulates bacterial-epithelial interactions and significantly shifts the murine colonic microbiome. Gut Microbes 2012; 3:250-60. [PMID: 22614705 PMCID: PMC3427217 DOI: 10.4161/gmic.20529] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Within the intestinal mucosa, epithelial cells serve multiple functions to partition the lumen from the lamina propria. As part of their natural function, intestinal epithelial cells actively transport electrolytes with passive water movement as a mechanism for mucosal hydration. Here, we hypothesized that electrogenic Cl(-) secretion, and associated mucosal hydration, influences bacterial-epithelial interactions and significantly influences the composition of the intestinal microbiota. An initial screen of different epithelial secretagogues identified lubiprostone as the most potent agonist for which to define these principles. In in vitro studies using cultured T84 cells, lubiprostone decreased E. coli translocation in a concentration-dependent manner (p < 0.001) and decreased S. typhimurium internalization and translocation by as much as 71 ± 6% (p < 0.01). Such decreases in bacterial translocation were abolished by inhibition of electrogenic Cl(-) secretion and water transport using the Na/K/Cl(-) antagonist bumetanide (p < 0.01). Extensions of these findings to microbiome analysis in vivo revealed that lubiprostone delivered orally to mice fundamentally shifted the intestinal microbiota, with notable changes within the Firmicutes and Bacteroidetes phyla of resident colonic bacteria. Such findings document a previously unappreciated role for epithelial Cl(-) secretion and water transport in influencing bacterial-epithelial interactions and suggest that active mucosal hydration functions as a primitive innate epithelial defense mechanism.
Collapse
Affiliation(s)
- Simon Keely
- Mucosal Inflammation Program; Department of Medicine; University of Colorado School of Medicine; Aurora, CO USA,School of Biomedical Sciences and Pharmacy; University of Newcastle; New Castle, Australia
| | - Caleb J. Kelly
- Mucosal Inflammation Program; Department of Medicine; University of Colorado School of Medicine; Aurora, CO USA
| | - Thomas Weissmueller
- Mucosal Inflammation Program; Department of Medicine; University of Colorado School of Medicine; Aurora, CO USA,Department of Anesthesiology and Perioperative Pain; Brigham and Women’s Hospital and Harvard Medical School; Boston, MA USA
| | - Adrianne Burgess
- Mucosal Inflammation Program; Department of Medicine; University of Colorado School of Medicine; Aurora, CO USA
| | - Brandie D. Wagner
- Department of Biostatistics and Informatics; Colorado School of Public Health; University of Colorado Denver; Aurora, CO USA
| | - Charles E. Robertson
- Department of Molecular; Cellular and Developmental Biology; University of Colorado; Boulder, CO USA
| | - J. Kirk Harris
- Department of Pediatrics, Pulmonary Medicine; Children’s Hospital Colorado; Aurora, CO USA
| | - Sean P. Colgan
- Mucosal Inflammation Program; Department of Medicine; University of Colorado School of Medicine; Aurora, CO USA,Correspondence to: Sean P. Colgan,
| |
Collapse
|
47
|
Li C, Zhang Y, Wang R, Lu J, Nandi S, Mohanty S, Terhune J, Liu Z, Peatman E. RNA-seq analysis of mucosal immune responses reveals signatures of intestinal barrier disruption and pathogen entry following Edwardsiella ictaluri infection in channel catfish, Ictalurus punctatus. FISH & SHELLFISH IMMUNOLOGY 2012; 32:816-827. [PMID: 22366064 DOI: 10.1016/j.fsi.2012.02.004] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 05/31/2023]
Abstract
The mucosal surfaces of fish (gill, skin, gastrointestinal tract) are important sites of bacterial exposure and host defense mechanisms. In mammalian systems, the intestinal epithelium is well characterized as both a selectively permeable barrier regulated by junctional proteins and as a primary site of infection for a number of enteric pathogens including viruses, bacteria, and parasites. The causative bacterium of enteric septicemia of catfish, Edwardsiella ictaluri, is believed to gain entry through the intestinal epithelium, with previous research using a rat intestinal epithelial cell line (IEC-6) indicating actin polymerization and receptor-mediated endocytosis as potential mechanisms of uptake. Here, we utilized high-throughput RNA-seq to characterize the role of the intestinal epithelial barrier following E. ictaluri challenge. A total of 197.6 million reads were obtained and assembled into 176,481 contigs with an average length of 893.7 bp and N50 of 1676 bp. The assembled contigs contained 14,457 known unigenes, including 2719 genes not previously identified in other catfish transcriptome studies. Comparison of digital gene expression between challenged and control samples revealed 1633 differentially expressed genes at 3 h, 24 h, and 3 day following exposure. Gene pathway analysis of the differentially expressed gene set indicated the centrality of actin cytoskeletal polymerization/remodelling and junctional regulation in pathogen entry and subsequent inflammatory responses. The expression patterns of fifteen differentially expressed genes related to intestinal epithelial barrier dysfunction were validated by quantitative real-time RT-PCR (average correlation coeff. 0.92, p < 0.001). Our results set a foundation for future studies comparing mechanisms of pathogen entry and mucosal immunity across several important catfish pathogens including E. ictaluri, Edwardsiellatarda, Flavobacterium columnare, and virulent atypical Aeromonas hydrophila. Understanding of molecular mechanisms of pathogen entry during infection will provide insight into strategies for selection of resistant catfish brood stocks against various diseases.
Collapse
Affiliation(s)
- Chao Li
- Department of Fisheries and Allied Aquacultures, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
No beneficial effects evident for Enterococcus faecium NCIMB 10415 in weaned pigs infected with Salmonella enterica serovar Typhimurium DT104. Appl Environ Microbiol 2012; 78:4816-25. [PMID: 22544257 DOI: 10.1128/aem.00395-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium DT 104 is the major pathogen for salmonellosis outbreaks in Europe. We tested if the probiotic bacterium Enterococcus faecium NCIMB 10415 can prevent or alleviate salmonellosis. Therefore, piglets of the German Landrace breed that were treated with E. faecium (n = 16) as a feed additive and untreated controls (n = 16) were challenged with S. Typhimurium 10 days after weaning. The presence of salmonellae in feces and selected organs, as well as the immune response, were investigated. Piglets treated with E. faecium gained less weight than control piglets (P = 0.05). The feeding of E. faecium had no effect on the fecal shedding of salmonellae and resulted in a higher abundance of the pathogen in tonsils of all challenged animals. The specific (anti-Salmonella IgG) and nonspecific (haptoglobin) humoral immune responses as well as the cellular immune response (T helper cells, cytotoxic T cells, regulatory T cells, γδ T cells, and B cells) in the lymph nodes, Peyer's patches of different segments of the intestine (jejunal and ileocecal), the ileal papilla, and in the blood were affected in the course of time after infection (P < 0.05) but not by the E. faecium treatment. These results led to the conclusion that E. faecium may not have beneficial effects on the performance of weaned piglets in the case of S. Typhimurium infection. Therefore, we suggest a critical discussion and reconsideration of E. faecium NCIMB 10415 administration as a probiotic for pigs.
Collapse
|
49
|
Agbor TA, McCormick BA. Salmonella effectors: important players modulating host cell function during infection. Cell Microbiol 2011; 13:1858-69. [PMID: 21902796 DOI: 10.1111/j.1462-5822.2011.01701.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative facultative food-borne pathogen that causes gastroenteritis in humans. This bacterium has evolved a sophisticated machinery to alter host cell function critical to its virulence capabilities. Central to S. Typhimurium pathogenesis are two Type III secretion systems (T3SS) encoded within pathogenicity islands SPI-1 and SPI-2 that are responsible for the secretion and translocation of a set of bacterial proteins termed effectors into host cells with the intention of altering host cell physiology for bacterial entry and survival. Thus, once delivered by the T3SS, the secreted effectors play critical roles in manipulating the host cell to allow for bacteria invasion, induction of inflammatory responses, and the assembly of an intracellular protective niche created for bacterial survival and replication. Emerging evidence indicates that these effectors are modular proteins consisting of distinct functional domains/motifs that are utilized by the bacteria to activate intracellular signalling pathways modifying host cell function. Also, recently reported are the dual functionality of secreted effectors and the concept of 'terminal reassortment'. Herein, we highlight some of the nascent concepts regarding Salmonella effectors in the context of infection.
Collapse
Affiliation(s)
- Terence A Agbor
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
50
|
Gunn JS. Salmonella host-pathogen interactions: a special topic. Front Microbiol 2011; 2:191. [PMID: 21954397 PMCID: PMC3175612 DOI: 10.3389/fmicb.2011.00191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 12/15/2022] Open
Affiliation(s)
- John S Gunn
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University Columbus, OH, USA
| |
Collapse
|