1
|
Guo J, Xin J, Wang J, Li Z, Yang J, Yu X, Yan M, Mo J. A high-efficiency and selective fluorescent assay for the detection of tetracyclines. Sci Rep 2024; 14:22918. [PMID: 39358472 PMCID: PMC11447125 DOI: 10.1038/s41598-024-74411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Tetracyclines (TCs) rank second globally in the use of animal infection therapy and animal husbandry as growth promoters among all antibiotics. However, large amounts of TCs residue in food products and more than 75% of TCs are excreted into the environment, causing adverse effects on the ecological system and human health. It has been challenging to simultaneously realize low-cost, rapid, and highly selective detection of TCs. Here, inspired by the fluorogenic reactions between resorcinol and catecholamines, we find the fluorescence quenching ability of tetracycline (TC) and firstly propose a fluorescent "turn-off" detection of TC using dopamine and 4-fluororesorcinol. The optimal reaction condition for the fluorescent assay is investigated and the optimized probe showed a good limit of detection (LOD of 1.7 µM) and a wide linear range (10 µM to 350 µM). Moreover, this fluorescent assay proved to be an effective tool for detecting TC in river, Sprite, and beer samples, which represent the aquatic environments and food and may contain tetracyclines residues. Finally, the high selectivity of the method for TC has been confirmed by eliminating the interference from common substances. The proposed strategy provides a high-efficiency and selective solution for the detection of TCs in environment and food and the application fields of this fluorescent assay could be further expanded in the future.
Collapse
Affiliation(s)
- Jingqiao Guo
- College of Medicine and Nursing, Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, 253023, China
| | - Jianhui Xin
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Jine Wang
- College of Medicine and Nursing, Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, 253023, China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, China
| | - Jianlei Yang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Xue Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China.
| | - Mengxia Yan
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China.
| | - Jiangyang Mo
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China.
| |
Collapse
|
2
|
Jiang H, Dong Y, Jiao X, Tang B, Feng T, Li P, Fang J. In vivo fitness of sul gene-dependent sulfonamide-resistant Escherichia coli in the mammalian gut. mSystems 2024; 9:e0083624. [PMID: 39140732 PMCID: PMC11406977 DOI: 10.1128/msystems.00836-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
The widespread sulfonamide resistance genes sul1, sul2, and sul3 in food and gut bacteria have attracted considerable attention. In this study, we assessed the in vivo fitness of sul gene-dependent sulfonamide-resistant Escherichia coli, using a murine model. High fitness costs were incurred for sul1 and sul3 gene-dependent E. coli strains in vivo. A fitness advantage was found in three of the eight mice after intragastric administration of sul2 gene-dependent E. coli strains. We isolated three compensatory mutant strains (CMSs) independently from three mice that outcompeted the parent strain P2 in vivo. Whole-genome sequencing revealed seven identical single nucleotide polymorphism (SNP) mutations in the three CMSs compared with strain P2, an additional SNP mutation in strain S2-2, and two additional SNP mutations in strain S2-3. Furthermore, tandem mass tag-based quantitative proteomic analysis revealed abundant differentially expressed proteins (DEPs) in the CMSs compared with P2. Of these, seven key fitness-related DEPs distributed in two-component systems, galactose and tryptophan metabolism pathways, were verified using parallel reaction monitoring analysis. The DEPs in the CMSs influenced bacterial motility, environmental stress tolerance, colonization ability, carbohydrate utilization, cell morphology maintenance, and chemotaxis to restore fitness costs and adapt to the mammalian gut environment.IMPORTANCESulfonamides are traditional synthetic antimicrobial agents used in clinical and veterinary medical settings. Their long-term excessive overuse has resulted in widespread microbial resistance, limiting their application for medical interventions. Resistance to sulfonamides is primarily conferred by the alternative genes sul1, sul2, and sul3 encoding dihydropteroate synthase in bacteria. Studying the potential fitness cost of these sul genes is crucial for understanding the evolution and transmission of sulfonamide-resistant bacteria. In vitro studies have been conducted on the fitness cost of sul genes in bacteria. In this study, we provide critical insights into bacterial adaptation and transmission using an in vivo approach.
Collapse
Affiliation(s)
- Han Jiang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Yuzhi Dong
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Xue Jiao
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Biao Tang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Tao Feng
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Jiehong Fang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Zhou Z, Huang F, Chen L, Liu F, Wang B, Tang J. Effects of antibiotics on microbial nitrogen cycling and N 2O emissions: A review. CHEMOSPHERE 2024; 357:142034. [PMID: 38615962 DOI: 10.1016/j.chemosphere.2024.142034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/31/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Sulfonamides, quinolones, tetracyclines, and macrolides are the most prevalent classes of antibiotics used in both medical treatment and agriculture. The misuse of antibiotics leads to their extensive dissemination in the environment. These antibiotics can modify the structure and functionality of microbial communities, consequently impacting microbial-mediated nitrogen cycling processes including nitrification, denitrification, and anammox. They can change the relative abundance of nirK/norB contributing to the emission of nitrous oxide, a potent greenhouse gas. This review provides a comprehensive examination of the presence of these four antibiotic classes across different environmental matrices and synthesizes current knowledge of their effects on the nitrogen cycle, including the underlying mechanisms. Such an overview is crucial for understanding the ecological impacts of antibiotics and for guiding future research directions. The presence of antibiotics in the environment varies widely, with significant differences in concentration and type across various settings. We conducted a comprehensive review of over 70 research articles that compare various aspects including processes, antibiotics, concentration ranges, microbial sources, experimental methods, and mechanisms of influence. Antibiotics can either inhibit, have no effect, or even stimulate nitrification, denitrification, and anammox, depending on the experimental conditions. The influence of antibiotics on the nitrogen cycle is characterized by dose-dependent responses, primarily inhibiting nitrification, denitrification, and anammox. This is achieved through alterations in microbial community composition and diversity, carbon source utilization, enzyme activities, electron transfer chain function, and the abundance of specific functional enzymes and antibiotic resistance genes. These alterations can lead to diminished removal of reactive nitrogen and heightened nitrous oxide emissions, potentially exacerbating the greenhouse effect and related environmental issues. Future research should consider diverse reaction mechanisms and expand the scope to investigate the combined effects of multiple antibiotics, as well as their interactions with heavy metals and other chemicals or organisms.
Collapse
Affiliation(s)
- Zikun Zhou
- MOE Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Fuyang Huang
- MOE Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan, PR China.
| | - Linpeng Chen
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing, PR China
| | - Fei Liu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing, PR China
| | - Bin Wang
- MOE Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan, PR China.
| | - Jie Tang
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan, PR China
| |
Collapse
|
4
|
Zeng Y, Shen M, Liu S, Zhou X. Characterization and resistance mechanism of phage-resistant strains of Salmonella enteritidis. Poult Sci 2024; 103:103756. [PMID: 38652948 PMCID: PMC11063523 DOI: 10.1016/j.psj.2024.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024] Open
Abstract
In the face of the increasingly severe problem of antibiotic resistance, phage therapy is regarded as a highly potential alternative. Compared with traditional antimicrobial agents, a key research area of phage therapy is the study of phage-resistant mutant bacteria. To effectively monitor and prevent this resistance, it is crucial to conduct in-depth exploration of the mechanism behind phage resistance. In this study, a strain of Salmonella enteritidis (sm140) and the corresponding phage (Psm140) were isolated from chicken liver and sewage, respectively. Using the double-layer plate method, successfully screened out phage-resistant mutant strains. Whole-genome resequencing of 3 resistant strains found that the wbaP gene of all 3 strains had mutations at a specific position (1,118), with the base changing from G to A. This mutation causes the gene-encoded glycine to be replaced by aspartic acid. Subsequent studies found that the frequency of this gene mutation is extremely high, reaching 84%, and all mutations occur at the same position. To further explore the relationship between the wbaP gene and phage resistance, knockout strains and complement strains of the wbaP gene were constructed. The experimental results confirmed the association between the wbaP gene and phage resistance. At the same time, biological characteristics and virulence were evaluated for wild strains, resistant strains, knockout strains, and complement strains. It was found that mutations or deletions of the wbaP gene lead to a decrease in bacterial environmental adaptability and virulence. Through systematic research on the mechanism and biological characteristics of phage resistance, this study provides important references and guidance for the development of new phage therapies, promoting progress in the field of antimicrobial treatment. At the same time, the emergence of phage resistance due to wbaP gene mutations is reported for the first time in salmonella, providing a new perspective and ideas for further studying phage resistance mechanisms.
Collapse
Affiliation(s)
- Yukun Zeng
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Mangmang Shen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Nkoh JN, Shang C, Okeke ES, Ejeromedoghene O, Oderinde O, Etafo NO, Mgbechidinma CL, Bakare OC, Meugang EF. Antibiotics soil-solution chemistry: A review of environmental behavior and uptake and transformation by plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120312. [PMID: 38340667 DOI: 10.1016/j.jenvman.2024.120312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/21/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The increased use of antibiotics by humans for various purposes has left the environment polluted. Antibiotic pollution remediation is challenging because antibiotics exist in trace amounts and only highly sensitive detection techniques could be used to quantify them. Nevertheless, their trace quantity is not a hindrance to their transfer along the food chain, causing sensitization and the development of antibiotic resistance. Despite an increase in the literature on antibiotic pollution and the development and transfer of antibiotic-resistant genes (ARGs), little attention has been given to the behavior of antibiotics at the soil-solution interface and how this affects antibiotic adsorption-desorption interactions and subsequent uptake and transformation by plants. Thus, this review critically examines the interactions and possible degradation mechanisms of antibiotics in soil and the link between antibiotic soil-solution chemistry and uptake by plants. Also, different factors influencing antibiotic mobility in soil and the transfer of ARGs from one organism to another were considered. The mechanistic and critical analyses revealed that: (a) the charge characteristics of antibiotics at the soil-root interface determine whether they are adsorbed to soil or taken up by plants; (b) antibiotics that avoid soil colloids and reach soil pore water can be absorbed by plant roots, but their translocation to the stem and leaves depends on the ionic state of the molecule; (c) few studies have explored how plants adapt to antibiotic pollution and the transformation of antibiotics in plants; and (d) the persistence of antibiotics in cropland soils can be influenced by the content of soil organic matter, coexisting ions, and fertilization practices. Future research should focus on the soil/solution-antibiotic-plant interactions to reveal detailed mechanisms of antibiotic transformation by plants and whether plant-transformed antibiotics could be of environmental risk.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya; Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China.
| | - Onome Ejeromedoghene
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya; School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189, China
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Nelson Oshogwue Etafo
- Programa de Posgrado en Ciencia y Tecnología de Materiales, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N Republica, 25280 Saltillo, Coahuila Mexico
| | - Chiamaka Linda Mgbechidinma
- Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State, 200243, Nigeria
| | - Omonike Christianah Bakare
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Elvira Foka Meugang
- School of Metallurgy & Environment, Central South University, 932 Lushan South Road, Changsha, 410083, China
| |
Collapse
|
6
|
Zhao Y, Kong L, Li S, Zhao Z, Wang N, Pang Y. Research progress on composite material of bismuth vanadate catalyzing the decomposition of Quinolone antibiotics. Sci Rep 2024; 14:1591. [PMID: 38238361 PMCID: PMC10796960 DOI: 10.1038/s41598-024-51485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
Since quinolone is a kind of synthetic broad-spectrum antibacterial drugs, with the widespread use of this class of antibiotics, the risk and harm to human health have been attendant to the sewage containing quinolones which are discharged into the environment. Photocatalysis is considered as a promising technology for antibiotic degradation for its strong redox properties and reaction rate. As a metal oxidizing substance, Bismuth vanadate (BiVO4) is such a popular and hot material for the degradation of organic pollutants recently due to its good photocatalytic activity and chemical stability. Numerous studies have confirmed that BiVO4 composites can overcome the shortcomings of pure BiVO4 and cleave the main structure of quinolone under photocatalytic conditions. This paper mainly outlines the research progress on the preparation of BiVO4 composites and the degradation of quinolone antibiotics from the perspective of improving the catalysis and degrading the efficiency mechanism of BiVO4 composites.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China
| | - Lingyuan Kong
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China
| | - Shangdong Li
- School of Clinical Medicine Gansu University Of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, People's Republic of China
| | - Zhirui Zhao
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China
| | - Na Wang
- School of Clinical Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China
| | - Yunqing Pang
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
7
|
Saibu S, Uhanie Perera I, Suzuki S, Rodó X, Fujiyoshi S, Maruyama F. Resistomes in freshwater bioaerosols and their impact on drinking and recreational water safety: A perspective. ENVIRONMENT INTERNATIONAL 2024; 183:108377. [PMID: 38103344 DOI: 10.1016/j.envint.2023.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Antibiotic resistance genes (ARGs) are widespread environmental pollutants of biological origin that pose a significant threat to human, animal, and plant health, as well as to ecosystems. ARGs are found in soil, water, air, and waste, and several pathways for global dissemination in the environment have been described. However, studies on airborne ARG transport through atmospheric particles are limited. The ARGs in microorganisms inhabiting an environment are referred to as the "resistome". A global search was conducted of air-resistome studies by retrieving bioaerosol ARG-related papers published in the last 30 years from PubMed. We found that there is no dedicated methodology for isolating ARGs in bioaerosols; instead, conventional methods for microbial culture and metagenomic analysis are used in combination with standard aerosol sampling techniques. There is a dearth of information on the bioaerosol resistomes of freshwater environments and their impact on freshwater sources used for drinking and recreational activities. More studies of aerobiome freshwater environments are needed to ensure the safe use of water and sanitation. In this review we outline and synthesize the few studies that address the freshwater air microbiome (from tap water, bathroom showers, rivers, lakes, and swimming pools) and their resistomes, as well as the likely impacts on drinking and recreational waters. We also discuss current knowledge gaps for the freshwater airborne resistome. This review will stimulate new investigations of the atmospheric microbiome, particularly in areas where both air and water quality are of public health concern.
Collapse
Affiliation(s)
- Salametu Saibu
- Department of Microbiology, Lagos State University of Ojo, Lagos, Nigeria
| | - Ishara Uhanie Perera
- Section of Microbial Genomics and Ecology, Planetary Health and Innovation Science Center (PHIS), The IDEC Institute, Hiroshima University, Japan
| | - Satoru Suzuki
- Graduate School of Science and Engineering, Center for Marine Environmental Studies, Ehime University, Japan
| | - Xavier Rodó
- ICREA and CLIMA Program, Barcelona Institute for Global Health (-ISGlobal), Barcelona, Spain
| | - So Fujiyoshi
- Section of Microbial Genomics and Ecology, Planetary Health and Innovation Science Center (PHIS), The IDEC Institute, Hiroshima University, Japan
| | - Fumito Maruyama
- Section of Microbial Genomics and Ecology, Planetary Health and Innovation Science Center (PHIS), The IDEC Institute, Hiroshima University, Japan.
| |
Collapse
|
8
|
Yin X, Li Y, Liu Y, Zheng J, Yu X, Li Y, Achterberg EP, Wang X. Dietary exposure to sulfamethazine alters fish intestinal homeostasis and promotes resistance gene transfer. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106733. [PMID: 37875383 DOI: 10.1016/j.aquatox.2023.106733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
The present study was undertaken to explore the effects of sulfamethazine (SMZ) dietary exposure on the enrichment of the intestine microbial structure, and antibiotic resistance gene (ARGs) transmission in marine medaka, with respect to antibiotic dose, duration, and sex. In male fish, a dietary exposure of 10 μg/L SMZ led to a heightened SMZ enrichment in the intestine, whereas metabolite (N-SMZ) levels were elevated at a higher exposure concentration (100 μg/L). Conversely, female fish exhibited stable levels of accumulation and metabolic rates across the exposure period. The composition of intestinal microorganisms revealed that exposure duration exerted a greater impact on the abundance and diversity of gut microbes, and microbial responses to SMZ varied across exposure time points. The expansion of Bacteroidetes and Ruegeria likely stimulated SMZ metabolism and contributed to the more balanced level of SMZ and N-SMZ observed in females. In males, short-term SMZ stress resulted in a disruption of intestinal homeostasis, while the rise in the abundance of the Fusobacteria and Propionigeniuma suggested a potential enhancement in intestinal anti-inflammatory capacity over time. Overall, female medaka exhibited greater adaptability to SMZ, and males appear to experience prolonged effects due to SMZ. A total of 11 ARGs and 5 mobile genetic elements (MGEs) were identified. Ruegeria is the main carrier of two types of MGEs (IS1247, ISSm2-Xanthob), and may serve as an indicator of ARG transmission. Therefore, it is rational to consider some fish breeding areas in natural waters as potential "reservoirs" of antibiotic resistance. This research will provide a valuable reference for the transmission of drug resistance along the food chain.
Collapse
Affiliation(s)
- Xiaohan Yin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Youshen Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Yawen Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Jingyi Zheng
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Xiaoxuan Yu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | | | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
9
|
Suzuki S, Pruden A, Virta M, Zhang T. Editorial: Antibiotic resistance in aquatic systems, volume II. Front Microbiol 2023; 14:1298681. [PMID: 37937217 PMCID: PMC10627218 DOI: 10.3389/fmicb.2023.1298681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Affiliation(s)
- Satoru Suzuki
- Graduate School of Science and Engineering, Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Marko Virta
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Tong Zhang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Sha Y, Lin N, Zhang G, Zhang Y, Zhao J, Lu J, Zhu T, Zhang X, Li Q, Zhang H, Lin X, Li K, Bao Q, Li D. Identification and characterization of a novel chromosomal aminoglycoside 3'- O-phosphotransferase, APH(3')-Id, from Kluyvera intermedia DW18 isolated from the sewage of an animal farm. Front Microbiol 2023; 14:1224464. [PMID: 37700861 PMCID: PMC10493288 DOI: 10.3389/fmicb.2023.1224464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/17/2023] [Indexed: 09/14/2023] Open
Abstract
Background Aminoglycosides, as important clinical antimicrobials, are used as second-line drugs for treating multidrug-resistant tuberculosis or combined with β-lactam drugs for treating severe infections such as sepsis. Aminoglycoside-modifying enzyme (AME) is the most important mechanism of aminoglycoside resistance and deserves more attention. Methods The bacterium Kluyvera intermedia DW18 was isolated from the sewage of an animal farm using the conventional method. The agar dilution method was used to determine the minimum inhibitory concentrations (MICs) of antimicrobials. A novel resistance gene was cloned, and the enzyme was expressed. The kinetic parameters were measured by a SpectraMax M5 multifunctional microplate reader. Bioinformatic analysis was performed to reveal the genetic context of the aph(3')-Id gene and its phylogenetic relationship with other AMEs. Results A novel aminoglycoside 3'-O-phosphotransferase gene designated aph(3')-Id was identified in K. intermedia DW18 and shared the highest amino acid identity of 77.49% with the functionally characterized aminoglycoside 3'-O-phosphotransferase APH(3')-Ia. The recombinant plasmid carrying the novel resistance gene (pMD19-aph(3')-Id/E. coli DH5α) showed 1,024-, 512-, 128- and 16-fold increased MIC levels for kanamycin, ribostamycin, paromomycin and neomycin, respectively, compared with the reference strain DH5α. APH(3')-Id showed the highest catalytic efficiency for ribostamycin [kcat/Km of (4.96 ± 1.63) × 105 M-1/s-1], followed by paromomycin [kcat/Km of (2.18 ± 0.21) × 105 M-1/s-1], neomycin [kcat/Km of (1.73 ± 0.20) × 105 M-1/s-1], and kanamycin [kcat/Km of (1.10 ± 0.18) × 105 M-1/s-1]. Three conserved functional domains of the aminoglycoside phosphotransferase family and ten amino acid residues responsible for the phosphorylation of kanamycin were found in the amino acid sequence of APH(3')-Id. No mobile genetic element (MGE) was discovered surrounding the aph(3')-Id gene. Conclusion In this work, a novel aminoglycoside 3'-O-phosphotransferase gene designated aph(3')-Id encoded in the chromosome of the environmental isolate Kluyvera intermedia DW18 was identified and characterized. These findings will help clinicians select effective antimicrobials to treat infections caused by pathogens with this kind of resistance gene.
Collapse
Affiliation(s)
- Yuning Sha
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Naru Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guozhi Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuan Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingxuan Zhao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Tingting Zhu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xueya Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiaoling Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiyu Bao
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Dong Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Yang H, Xu M, Wang L, Wang X, Jeppesen E, Zhang W. Metagenomic analysis to determine the characteristics of antibiotic resistance genes in typical antibiotic-contaminated sediments. J Environ Sci (China) 2023; 128:12-25. [PMID: 36801028 DOI: 10.1016/j.jes.2022.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 06/18/2023]
Abstract
Comprehensive studies of the effects of various physical and chemical variables (including heavy metals), antibiotics, and microorganisms in the environment on antibiotic resistance genes are rare. We collected sediment samples from the Shatian Lake aquaculture area and surrounding lakes and rivers located in Shanghai, China. The spatial distribution of sediment ARGs was assessed by metagenomic analysis that revealed 26 ARG types (510 subtypes), dominated by Multidrug, β-lactam, Aminoglycoside, Glycopeptides, Fluoroquinolone, and Tetracyline. Redundancy discriminant analysis indicated that antibiotics (SAs and MLs) in the aqueous environment and sediment along with water TN and TP were the key variables affecting the abundance distribution of total ARGs. However, the main environmental drivers and key influences differed among the different ARGs. For total ARGs, the environmental subtypes affecting their structural composition and distribution characteristics were mainly antibiotic residues. Procrustes analysis showed a significant correlation between ARGs and microbial communities in the sediment in the survey area. Network analysis revealed that most of the target ARGs were significantly and positively correlated with microorganisms, and a small number of ARGs (e.g., rpoB, mdtC, and efpA) were highly significantly and positively correlated with microorganisms (e.g., Knoellia, Tetrasphaera, and Gemmatirosa). Potential hosts for the major ARGs included Actinobacteria, Proteobacteria, and Gemmatimonadetes. Our study provides new insight and a comprehensive assessment of the distribution and abundance of ARGs and the drivers of ARG occurrence and transmission.
Collapse
Affiliation(s)
- Han Yang
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Mu Xu
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Liqing Wang
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xianyun Wang
- Shanghai National Engineering Research Center for Urban Water Resources Co., Ltd., Shanghai 200082, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing 100190, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, 33731 Mersin, Turkey
| | - Wei Zhang
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
12
|
Li L, Li T, Liu Y, Li L, Huang X, Xie J. Effects of antibiotics stress on root development, seedling growth, antioxidant status and abscisic acid level in wheat (Triticum aestivum L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114621. [PMID: 36774794 DOI: 10.1016/j.ecoenv.2023.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/22/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The veterinary antibiotics contamination in agroecosystems is a substantial problem globally. However, little is known about their toxicity to crops, especially in wheat. This study evaluated the phytotoxic effects of the two most representative antibiotics, namely oxytetracycline (OTC) and enrofloxacin (ENR), on seed germination, seedling growth, root elongation and antioxidant status in wheat, and investigated the response of abscisic acid (ABA) to antibiotic stress and its underlying mechanism. The results showed that OTC and ENR under the experimental concentrations (5, 10, 20, 40 and 80 mg·L-1) had no influence on seed germination of wheat. The reduced root length, fresh weight and surface area were observed when the concentrations of OTC and ENR were higher than 10 mg·L-1 and 5 mg·L-1, respectively. High concentrations (>40 mg·L-1) of antibiotics dramatically decreased the root length, fresh weight, root numbers and surface area as well as the number of stele cells and stele area. The activity of catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD), and malondialdehyde (MDA) content in shoots and roots were increased with the increasing OTC and ENR concentrations. High concentrations (>40 mg·L-1) of antibiotics improved ABA content and enhanced the transcription levels of genes related to ABA biosynthesis (TaNCED1 and TaNCED2) and metabolism (TaABA8'OH1-A and TaABA8'OH2-A) in shoots and roots of wheat seedlings. Wheat seedlings had relatively strong sensitivity to low concentration (5 mg·L-1) of ENR. These results suggest that OTC and ENR modulate root development and seedling growth by regulating ABA level and antioxidant defense system in wheat.
Collapse
Affiliation(s)
- Li Li
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, PR China; Environmental Monitoring Center, Shanxi Agricultural University, Taigu 030801, PR China
| | - Tingliang Li
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, PR China; Environmental Monitoring Center, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Yang Liu
- Environmental Monitoring Center, Shanxi Agricultural University, Taigu 030801, PR China
| | - Lina Li
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, PR China; Environmental Monitoring Center, Shanxi Agricultural University, Taigu 030801, PR China
| | - Xiaolei Huang
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, PR China; Environmental Monitoring Center, Shanxi Agricultural University, Taigu 030801, PR China
| | - Junyu Xie
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, PR China; Environmental Monitoring Center, Shanxi Agricultural University, Taigu 030801, PR China
| |
Collapse
|
13
|
Wu J, Ye F, Qu J, Dai Z. Insight into the Antibiotic Resistance of Bacteria Isolated from Popular Aquatic Products Collected in Zhejiang, China. Pol J Microbiol 2023; 72:61-67. [PMID: 36929890 DOI: 10.33073/pjm-2023-010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/10/2023] [Indexed: 03/18/2023] Open
Abstract
The present study was aimed to obtain a close insight into the distribution and diversity of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) among the aquatic products collected in Zhejiang, China. A total of 136 presumptive ARB picked up from six aquatic samples were classified into 22 genera and 49 species based on the 16S rDNA sequencing. Aeromonas spp., Shewanella spp., Acinetobacter spp., Myroides spp., Pseudomonas spp., and Citrobacter spp. accounted for 80% of the ARB. Among them, 109 isolates (80.15%) exhibited resistance to at least one antibiotic. Most isolates showed resistance to not only the originally selected drug but also to one to three other tested drugs. The diversity of ARB distributed in different aquatic products was significant. Furthermore, the resistance data obtained from genotypic tests were not entirely consistent with the results of the phenotypic evaluation. The genes qnrS, tetA, floR, and cmlA were frequently detected in their corresponding phenotypic resistant isolates. In contrast, the genes sul2, aac(6')-Ib, and bla PSE were less frequently found in the corresponding phenotypically resistant strains. The high diversity and detection rate of ARB and ARGs in aquaculture might be a significant threat to the food chains closely related to human health.
Collapse
Affiliation(s)
- Jiajia Wu
- 1Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- 3The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, Hangzhou, China
| | - Fan Ye
- 1Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | | | - Zhiyuan Dai
- 1Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- 3The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, Hangzhou, China
| |
Collapse
|
14
|
Hua Y, Yao Q, Lin J, Li X, Yang Y. Comprehensive survey and health risk assessment of antibiotic residues in freshwater fish in southeast China. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Ferri G, Lauteri C, Vergara A. Antibiotic Resistance in the Finfish Aquaculture Industry: A Review. Antibiotics (Basel) 2022; 11:1574. [PMID: 36358229 PMCID: PMC9686606 DOI: 10.3390/antibiotics11111574] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 11/06/2022] [Indexed: 11/07/2023] Open
Abstract
Significant challenges to worldwide sustainable food production continue to arise from environmental change and consistent population growth. In order to meet increasing demand, fish production industries are encouraged to maintain high growth densities and to rely on antibiotic intervention throughout all stages of development. The inappropriate administering of antibiotics over time introduces selective pressure, allowing the survival of resistant bacterial strains through adaptive pathways involving transferable nucleotide sequences (i.e., plasmids). This is one of the essential mechanisms of antibiotic resistance development in food production systems. This review article focuses on the main international regulations and governing the administering of antibiotics in finfish husbandry and summarizes recent data regarding the distribution of bacterial resistance in the finfish aquaculture food production chain. The second part of this review examines promising alternative approaches to finfish production, sustainable farming techniques, and vaccination that circumvents excessive antibiotic use, including new animal welfare measures. Then, we reflect on recent adaptations to increasingly interdisciplinary perspectives in the field and their greater alignment with the One Health initiative.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Faculty of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy
| | | | | |
Collapse
|
16
|
Loest D, Uhland FC, Young KM, Li XZ, Mulvey MR, Reid-Smith R, Sherk LM, Carson CA. Carbapenem-resistant Escherichia coli from shrimp and salmon available for purchase by consumers in Canada: a risk profile using the Codex framework. Epidemiol Infect 2022; 150:e148. [PMID: 35968840 PMCID: PMC9386791 DOI: 10.1017/s0950268822001030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/28/2022] [Accepted: 05/21/2022] [Indexed: 11/05/2022] Open
Abstract
Resistance to carbapenems in human pathogens is a growing clinical and public health concern. The carbapenems are in an antimicrobial class considered last-resort, they are used to treat human infections caused by multidrug-resistant Enterobacterales, and they are classified by the World Health Organization as 'High Priority Critically Important Antimicrobials'. The presence of carbapenem-resistant Enterobacterales (CREs) of animal-origin is of concern because targeted studies of Canadian retail seafood revealed the presence of carbapenem resistance in a small number of Enterobacterales isolates. To further investigate this issue, a risk profile was developed examining shrimp and salmon, the two most important seafood commodities consumed by Canadians and Escherichia coli, a member of the Enterobacterales order. Carbapenem-resistant E. coli (CREc) isolates have been identified in shrimp and other seafood products. Although carbapenem use in aquaculture has not been reported, several classes of antimicrobials are utilised globally and co-selection of antimicrobial-resistant microorganisms in an aquaculture setting is also of concern. CREs have been identified in retail seafood purchased in Canada and are currently thought to be uncommon. However, data concerning CRE or CREc occurrence and distribution in seafood are limited, and argue for implementation of ongoing or periodic surveillance.
Collapse
Affiliation(s)
- Daleen Loest
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - F. Carl Uhland
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Kaitlin M. Young
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Xian-Zhi Li
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Richard Reid-Smith
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Lauren M. Sherk
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Carolee A. Carson
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| |
Collapse
|
17
|
Degradation of tetracycline in tropical river ecosystems: generation and dissipation of metabolites; kinetic and thermodynamic parameters. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Pattis I, Weaver L, Burgess S, Ussher JE, Dyet K. Antimicrobial Resistance in New Zealand-A One Health Perspective. Antibiotics (Basel) 2022; 11:antibiotics11060778. [PMID: 35740184 PMCID: PMC9220317 DOI: 10.3390/antibiotics11060778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) is an increasing global threat that affects human, animal and, often less acknowledged, environmental health. This complex issue requires a multisectoral One Health approach to address the interconnectedness of humans, animals and the natural environment. The prevalence of AMR in these reservoirs varies widely among countries and thus often requires a country-specific approach. In New Zealand (NZ), AMR and antimicrobial usage in humans are relatively well-monitored and -understood, with high human use of antimicrobials and the frequency of resistant pathogens increasing in hospitals and the community. In contrast, on average, NZ is a low user of antimicrobials in animal husbandry systems with low rates of AMR in food-producing animals. AMR in New Zealand’s environment is little understood, and the role of the natural environment in AMR transmission is unclear. Here, we aimed to provide a summary of the current knowledge on AMR in NZ, addressing all three components of the One Health triad with a particular focus on environmental AMR. We aimed to identify knowledge gaps to help develop research strategies, especially towards mitigating AMR in the environment, the often-neglected part of the One Health triad.
Collapse
Affiliation(s)
- Isabelle Pattis
- Institute of Environmental Science and Research Ltd., Christchurch 8041, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd., Christchurch 8041, New Zealand
| | - Sara Burgess
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Kristin Dyet
- Institute of Environmental Science and Research Ltd., Porirua 5022, New Zealand
| |
Collapse
|
19
|
Sorn S, Lin MY, Shuto M, Noguchi M, Honda R, Yamamoto-Ikemoto R, Watanabe T. Potential impact factors on the enhancement of antibiotic resistance in a lake environment. JOURNAL OF WATER AND HEALTH 2022; 20:1017-1026. [PMID: 35768974 DOI: 10.2166/wh.2022.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is considerable concern regarding antibiotic resistance in the water environment due to antibiotic residues from anthropogenic origins. The low antibiotic concentration in the water environment may promote the selection of antibiotic resistance. However, it is unclear how environmental factors affect resistance selection. We investigated the proliferation of quinolone-susceptible faecal bacteria (E. coli) exposed to low norfloxacin concentration (ng/L) at variable temperatures, exposure times, and carbon concentrations, simulating the conditions of the water environment. The induction of antibiotic resistance in thirteen E. coli isolates was more likely to occur at 37 °C. However, resistance also occurred at temperatures as low as 25 °C, provided a longer exposure time of 5 days. These results suggest that antibiotic resistance is more likely to be induced in regions where temperatures may reach 25-37 °C, such as tropical regions.
Collapse
Affiliation(s)
- S Sorn
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - M-Y Lin
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - M Shuto
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - M Noguchi
- Department of Agriculture, Ibaraki University, Inashiki, Ibaraki, Japan
| | - R Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan E-mail:
| | - R Yamamoto-Ikemoto
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan E-mail:
| | - T Watanabe
- Department of Food, Life and Environmental Sciences, Yamagata University, Tsuruoka, Japan
| |
Collapse
|
20
|
Majeed Issa O, Abdul-Elah Bakir W, Ayad Abbas M. Laboratory diagnosis of urinary tract infections in patients with resistance genes towards antibiotics. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Escherichia coli are gram-negative bacteria that cause urinary tract infections (UTIs). UTIs have affected a significant percentage of humans yearly due to bacterial infection. Our study aims to determine the prevalence of resistance genes in E. coli towards sulfamethoxazole. This study included (490) patients with UTIs, and the urine samples were cultured on media. The patients were admitted to the Medical City in Baghdad to treat UTIs. 116 E.coli isolates were isolated from urine specimens, 35 isolates of them were resistant to trimethoprim/sulfamethoxazole, and 81 isolates were sensitive to trimethoprim/sulfamethoxazole; the E. coli isolates were submitted to multiplex PCR to detection some resistance genes (Sul1, sul2) after detected the isolates by PCR depending on 16S rRNA. Our study showed that identified E. coli was (91-99%) depending on the number of the examined samples by the Vitek 2 system. The molecular study included extraction of chromosomal DNA from (53) E. coli isolates; 35 samples were taken resistant to antibiotics, while from the total of 81 sensitive isolates, only 18 sensitive samples were taken from that are the most sensitive to Timethprime/sulfamethoxazole, then identification by 16S rRNA gene. Detection of Sulfonamides resistance genes included sul1 and sul2. The results showed the 16S rRNA gene identification found in all E. coli isolates and the detection of antibiotic resistance genes. The resistant isolates with the Sul1 gene prevalence were 11(31%), while the sensitive isolates with Sul1gene were 1(6%).
Moreover, the resisted isolates with Sul2 gene prevalence was 8(23%), while the sensitive isolates with the Sul1 gene were 0(0%). The numbers of the resistant isolates were (11) and (8) that carry the Sul1 gene and Sul2 gene, respectively, while the numbers of the sensitive isolates were (1) and (0), respectively. We can conclude that a high percentage of Sul1 gene and Sul2 genes in E. coil isolated from UTIs were high.
Keywords. UTI, Sul1, Sul2, resistant gene, trimethoprim-sulfamethoxazole
Collapse
Affiliation(s)
- Oday Majeed Issa
- Department of Microbiology, College of Medicine, Mustansiriyah University, Baghdad IRQA
| | | | - Mohammed Ayad Abbas
- Department of Microbiology, College of Medicine, Mustansiriyah University, Baghdad IRQA
| |
Collapse
|
21
|
N-TiO2-δ/g-C3N4 Dual Photocatalysts for Efficient Oxytetracycline Hydrochloride Photodegradation and CO2 Photoreduction. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/3057189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A series of
(wt) N-TiO2-δ/g-C3N4 composites was synthesized by calcination and hydrothermal methods (labeled
TiCN,
: 5, 10, and 15). All composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The photocatalytic activity of these composites was evaluated through oxytetracycline hydrochloride (denoted as OTC) photodegradation and CO2 photoreduction. The
TiCN composites exhibited higher OTC photodegradation than bulk g-C3N4. 10TiCN was slightly more active than 5TiCN and 15TiCN, with a photodegradation yield of 97% after 5 h of light irradiation and constant rate of 0.647 h-1. For CO2 photoreduction, it was observed that 5TiCN exhibited the highest activity among the synthesized composites, with 7.0 ppm CH4 formed. This CH4 concentration was 7.8 times higher than the concentration formed by bulk g-C3N4 (0.9 ppm). A
-scheme mechanism was proposed to explain the enhanced photocatalysis by
(wt) N-TiO2-δ/g-C3N4 composites. The
-scheme structure increased redox ability, caused better separation of photogenerated electron-hole pairs, and broadened the light absorption zone of the photocatalysts.
Collapse
|
22
|
Wang J, Zhang Y, Ding Y, Song H, Liu T. Analysis of microbial community resistance mechanisms in groundwater contaminated with SAs and high NH 4+-Fe-Mn. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153036. [PMID: 35026256 DOI: 10.1016/j.scitotenv.2022.153036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 05/05/2023]
Abstract
The resistance mechanism of microbial communities in contaminated groundwater under the combined stress of sulfonamide antibiotics (SAs), NH4+, and Fe-Mn exceeding the standard levels was studied in an agricultural area along the Songhua River in Northeast China with developed livestock and poultry breeding. Representative points were selected in the study area to explore the response of environmental parameters and microbial communities, and microscopic experiments with different SA concentrations were conducted with background groundwater. The results showed a complex relationship between microbial communities and environmental factors. The environmental factors SM, SM2, SMX, DOC, NO3-, Fe, Mn, and HCO3- significantly affected the microbial community, with SMX, DOC, and Mn having the greatest effect. Three types of antibiotics with similar properties had different effects on the microbial community, and these effects were not simply additive or superimposed. After adding SAs, Proteobacteria with multi-resistance (99.85%) became the dominant phylum, and Acinetobacter (98.68%) became the dominant genus with SA resistance. SAs have a significant influence on bacterial chemotaxis, transporters, substance transport, and metabolism. Microorganisms resist the influence of SAs via a series of resistance mechanisms, such as enhancing the synthesis of relevant enzymes, generating new biochemical reactions, and reducing the transport of harmful substances through cell membranes. We also found that the proportion of exogenous compound degradation and metabolism-related functional genes in the presence of high SA concentrations increased significantly, which may be related to the degradation of SAs by microorganisms.
Collapse
Affiliation(s)
- Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China.
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Hewei Song
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Ting Liu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
23
|
Yuan T, Lin ZB, Cheng S, Wang R, Lu P. Removal of Sulfonamide Resistance Genes in Fishery Reclamation Mining Subsidence Area by Zeolite. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074281. [PMID: 35409961 PMCID: PMC8998867 DOI: 10.3390/ijerph19074281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022]
Abstract
A majority of subsidence lakes were reclaimed as fish ponds, but the widespread use of antibiotics has caused the pollution of antibiotic resistance genes (ARGs). This paper uses zeolite as a filter material to construct a horizontal submersible wastewater treatment device and explores its effect on the removal of conventional pollutants and sulfonamide ARGs in wastewater. The results showed that the removal of total nitrogen and ammonia nitrogen by the zeolite filter media were 59.0% and 63.8%, respectively, which were higher than the removal of total phosphorus and COD. The absolute abundances of sul1 and sul2 in wastewater were 2.81 × 104 copies·L−1 and 2.42 × 103 copies·L−1. On average, 60.62% of sul1 and 75.84% of sul2 can be removed, and more than 90% of sul1 and sul2 can be removed. Experiments showed that the residence time of wastewater in the treatment device had a significant impact on removal. The microbial community structure of aquaculture wastewater was quite different before and after wastewater treatment. The abundance changes of Saccharimonadales and Mycobacterium affect the removal of sulfonamide ARGs.
Collapse
Affiliation(s)
- Tao Yuan
- School of Architectural Decoration, Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221000, China;
| | - Zi-Bo Lin
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221000, China; (Z.-B.L.); (S.C.); (R.W.)
| | - Sen Cheng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221000, China; (Z.-B.L.); (S.C.); (R.W.)
| | - Rui Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221000, China; (Z.-B.L.); (S.C.); (R.W.)
| | - Ping Lu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221000, China; (Z.-B.L.); (S.C.); (R.W.)
- Correspondence:
| |
Collapse
|
24
|
Chen X, Yang Y, Ke Y, Chen C, Xie S. A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152852. [PMID: 34995606 DOI: 10.1016/j.scitotenv.2021.152852] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/12/2023]
Abstract
The release of tetracyclines (TCs) in the environment is of significant concern because the residual antibiotics may promote resistance in pathogenic microorganisms, and the transfer of antibiotic resistance genes poses a potential threat to ecosystems. Microbial biodegradation plays an important role in removing TCs in both natural and artificial systems. After long-term acclimation, microorganisms that can tolerate and degrade TCs are retained to achieve efficient removal of TCs under the optimum conditions (e.g. optimal operational parameters and moderate concentrations of TCs). To date, cultivation-based techniques have been used to isolate bacteria or fungi with potential degradation ability. Moreover, the biodegradation mechanism of TCs can be unveiled with the development of chemical analysis (e.g. UPLC-Q-TOF mass spectrometer) and molecular biology techniques (e.g. 16S rRNA gene sequencing, multi-omics sequencing, and whole genome sequencing). In this review, we made an overview of the biodegradation of TCs in different systems, refined functional microbial communities and pure isolates relevant to TCs biodegradation, and summarized the biodegradation products, pathways, and degradation genes of TCs. In addition, ecological risks of TCs biodegradation were considered from the perspectives of metabolic products toxicity and resistance genes. Overall, this article aimed to outline the research progress of TCs biodegradation and propose future research prospects.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuyin Yang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
25
|
Igere BE, Onohuean H, Nwodo UU. Water bodies are potential hub for spatio-allotment of cell-free nucleic acid and pandemic: a pentadecadal (1969-2021) critical review on particulate cell-free DNA reservoirs in water nexus. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:56. [PMID: 35283621 PMCID: PMC8899441 DOI: 10.1186/s42269-022-00750-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In recent times, there had been report of diverse particulate nucleic acid-related infections and diseases which have been associated with endemic, sporadic, and pandemic reports spreading within water nexus. Some of such disease cases were seldom reported in earlier years of technological advancement and research based knowledge-scape. Although the usefulness of water, wastewater treatment systems, water regulatory organizations and water re-use policy in compliant regions remains sacrosanct, it has been implicated in diverse gene distribution. MAIN BODY A cosmopolitan bibliometric and critical assessment of cell-free DNA reservoir in water bodies was determined. This is done by analysing retrieved pentadecadal scientific publications in Scopus and Pubmed centre database, determining the twelve-monthly publication rates of related articles, and a content-review assessment of cell-free nucleic acids (cfNAs) in water environment. Our results revealed thirty-eight metric documents with sources as journals and books that conform to the inclusion criteria. The average reports/publication rate per year shows 16.7, while several single and collaborating authors are included with a collaboration index of 4.31. A zero average citation per document and citation per year indicate poor research interest and awareness. SHORT CONCLUSION It is important to note that a redirected interest to studies on cfNAs in water environments would encourage advancement of water treatment strategies to include specific approaches on the removal of cfNAs, membrane vesicles or DNA reservoirs, plasmids or extra-chromosomal DNA and other exogenous nucleic acids from water bodies. It may also lead to a generational development/improvement of water treatment strategies for the removals of cfNAs and its members from water bodies.
Collapse
Affiliation(s)
- Bright Esegbuyota Igere
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700 Eastern Cape South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700 Eastern Cape South Africa
| | - Hope Onohuean
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700 Eastern Cape South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700 Eastern Cape South Africa
| | - Uchechukwu U. Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700 Eastern Cape South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700 Eastern Cape South Africa
| |
Collapse
|
26
|
Yang XL, Wang Q, Li T, Xu H, Song HL. Antibiotic removal and antibiotic resistance genes fate by regulating bioelectrochemical characteristics in microbial fuel cells. BIORESOURCE TECHNOLOGY 2022; 348:126752. [PMID: 35077813 DOI: 10.1016/j.biortech.2022.126752] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics removal and ARGs control in microbial fuel cell (MFC) has received extensive attention. In particular, the critical role of bioelectrochemical characteristics deserves further study. Bioelectrochemical characteristics significantly affected sulfamethoxazole (SMX) removal and ARGs fate, in which the current intensity played a more critical role than anode potential. High-concentration SMX (2 mg/L and 10 mg/L) facilitated the anode potential tend to be close, and thus, the strengthening effect of current on the system was highlighted. However, the SMX degradation pathway under different bioelectrochemical characteristics was not affected. Furthermore, the higher current intensity was preferable to antibiotic removal, but unfavorable for ARGs control might be due to the oxidative stress on microorganisms. Low-concentration SMX (0.5 mg/L) contributed to improving higher electricity generation because of Geobacter enrichement. This study suggested that appropriate bioelectrochemical characteristics regulation in MFCs was essential in removing antibiotics and controlling ARGs.
Collapse
Affiliation(s)
- Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Qi Wang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Tao Li
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Han Xu
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| |
Collapse
|
27
|
Wu L, Bao H, Yang Z, He T, Tian Y, Zhou Y, Pang M, Wang R, Zhang H. Antimicrobial susceptibility, multilocus sequence typing, and virulence of listeria isolated from a slaughterhouse in Jiangsu, China. BMC Microbiol 2021; 21:327. [PMID: 34823476 PMCID: PMC8613961 DOI: 10.1186/s12866-021-02335-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
Background Listeria monocytogenes is one of the deadliest foodborne pathogens. The bacterium can tolerate severe environments through biofilm formation and antimicrobial resistance. This study aimed to investigate the antimicrobial susceptibility, resistance genes, virulence, and molecular epidemiology about Listeria from meat processing environments. Methods This study evaluated the antibiotic resistance and virulence of Listeria isolates from slaughtering and processing plants. All isolates were subjected to antimicrobial susceptibility testing using a standard microbroth dilution method. The harboring of resistant genes was identified by polymerase chain reaction. The multilocus sequence typing was used to determine the subtyping of the isolates and characterize possible routes of contamination from meat processing environments. The virulence of different STs of L. monocytogenes isolates was evaluated using a Caco-2 cell invasion assay. Results A total of 59 Listeria isolates were identified from 320 samples, including 37 L. monocytogenes isolates (62.71%). This study evaluated the virulence of L. monocytogenes and the antibiotic resistance of Listeria isolates from slaughtering and processing plants. The susceptibility of these 59 isolates against 8 antibiotics was analyzed, and the resistance levels to ceftazidime, ciprofloxacin, and lincomycin were as high as 98.31% (L. m 37; L. innocua 7; L. welshimeri 14), 96.61% (L. m 36; L. innocua 7; L. welshimeri 14), and 93.22% (L. m 35; L. innocua 7; L. welshimeri 13), respectively. More than 90% of the isolates were resistant to three to six antibiotics, indicating that Listeria isolated from meat processing environments had high antimicrobial resistance. Up to 60% of the isolates harbored the tetracycline-resistance genes tetA and tetM. The frequency of ermA, ermB, ermC, and aac(6′)-Ib was 16.95, 13.56, 15.25, and 6.78%, respectively. Notably, the resistant phenotype and genotype did not match exactly, suggesting that the mechanisms of antibiotic resistance of these isolates were likely related to the processing environment. Multilocus sequence typing (MLST) revealed that 59 Listeria isolates were grouped into 10 sequence types (STs). The dominant L. monocytogenes STs were ST5, ST9, and ST121 in the slaughtering and processing plant of Jiangsu province. Moreover, ST5 subtypes exhibited high invasion in Caco-2 cells compared with ST9 and ST121 cells. Conclusion The dominant L. monocytogenes ST5 persisted in the slaughtering and processing plant and had high antimicrobial resistance and invasion characteristics, illustrating a potential risk in food safety and human health.
Collapse
Affiliation(s)
- Liting Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Hongduo Bao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Zhengquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Tao He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Yuan Tian
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.,Jiangsu University - School of Food and Biological Engineering, Zhenjiang, 212013, China
| | - Yan Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Maoda Pang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Ran Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Hui Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
28
|
Maggio F, Rossi C, Chiaverini A, Ruolo A, Orsini M, Centorame P, Acciari VA, Chaves López C, Salini R, Torresi M, Serio A, Pomilio F, Paparella A. Genetic relationships and biofilm formation of Listeria monocytogenes isolated from the smoked salmon industry. Int J Food Microbiol 2021; 356:109353. [PMID: 34411997 DOI: 10.1016/j.ijfoodmicro.2021.109353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
Among pathogens, L. monocytogenes has the capability to persist on Food Processing Environment (FPE), first of all posing safety issues, then economic impact on productivity. The aim of this work was to determine the influence of biofilm forming-ability and molecular features on the persistence of 19 Listeria monocytogenes isolates obtained from FPE, raw and processed products of a cold-smoked salmon processing plant. To verify the phenotypic and genomic correlations among the isolates, different analyses were employed: serotyping, Clonal Complex (CC), core genome Multi-Locus Sequence Typing (cgMLST) and Single Nucleotide Polymorphisms (SNPs) clustering, and evaluation of the presence of virulence- and persistence-associated genes. From our results, the biofilm formation was significantly higher (*P < 0.05) at 37 °C, compared to 30 and 12 °C, suggesting a temperature-dependent behaviour. Moreover, the biofilm-forming ability showed a strain-specific trend, not correlated with CC or with strains persistence. Instead, the presence of internalin (inL), Stress Survival Islet (SSI) and resistance to erythromycin (ermC) genes was correlated with the ability to produce biofilms. Our data demonstrate that the genetic profile influences the adhesion capacity and persistence of L. monocytogenes in food processing plants and could be the result of environmental adaptation in response to the external selective pressure.
Collapse
Affiliation(s)
- Francesca Maggio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, TE, Italy
| | - Chiara Rossi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, TE, Italy
| | - Alexandra Chiaverini
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, TE, Italy
| | - Anna Ruolo
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, TE, Italy
| | - Massimiliano Orsini
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, TE, Italy; Department of Risk Analysis and Public Health Surveillance, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Patrizia Centorame
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, TE, Italy
| | - Vicdalia A Acciari
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, TE, Italy
| | - Clemencia Chaves López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, TE, Italy
| | - Romolo Salini
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, TE, Italy
| | - Marina Torresi
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, TE, Italy
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, TE, Italy.
| | - Francesco Pomilio
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, TE, Italy
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, TE, Italy
| |
Collapse
|
29
|
Fauzi NNFNM, Hamdan RH, Mohamed M, Ismail A, Mat Zin AA, Mohamad NFA. Prevalence, antibiotic susceptibility, and presence of drug resistance genes in Aeromonas spp. isolated from freshwater fish in Kelantan and Terengganu states, Malaysia. Vet World 2021; 14:2064-2072. [PMID: 34566322 PMCID: PMC8448652 DOI: 10.14202/vetworld.2021.2064-2072] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background and Aim: The emergence of antibiotic-resistant bacterial pathogens has been increasingly reported, which has resulted in a decreasing ability to treat bacterial infections. Therefore, this study investigated the presence of Aeromonas spp., including its antibiotic resistance in various fish samples, Oreochromis spp., Clarias gariepinus, and Pangasius hypophthalmus, obtained from Kelantan and Terengganu, Malaysia. Materials and Methods: In this study, 221 fish samples, of which 108 (Oreochromis spp., n=38; C. gariepinus, n=35; and P. hypophthalmus, n=35) were from Kelantan and 113 (Oreochromis spp., n=38; C. gariepinus, n=35; and P. hypophthalmus, n=40) were from Terengganu, were caught using cast nets. Then, samples from their kidneys were cultured on a Rimler Shott agar to isolate Aeromonas spp. Polymerase chain reaction (PCR) was used to confirm this isolation using specific gene primers for species identification. Subsequently, the isolates were tested for their sensitivity to 14 antibiotics using the Kirby–Bauer method, after which the PCR was conducted again to detect resistance genes: sul1, strA-strB, aadA, blaTEM, blaSHV, tetA-tetE, and tetM. Results: From the results, 61 isolates were identified as being from the genus Aeromonas using PCR, of which 28 were Aeromonas jandaei, 19 were Aeromonas veronii, seven were Aeromonas hydrophila, and seven were Aeromonas sobria. Moreover, 8, 12, and 8 of A. jandaei; 4, 3, and 12 of A. veronii; 6, 0, and 1 of A. hydrophila; and 3, 3, and 1 of A. sobria were obtained from Oreochromis spp., C. gariepinus, and P. hypophthalmus, respectively. In addition, the isolates showed the highest level of resistance to ampicillin (100%), followed by streptomycin (59.0%), each kanamycin and nalidixic acid (41.0%), neomycin (36.1%), tetracycline (19.7%), sulfamethoxazole (14.8%), and oxytetracycline (13.1%). Resistance to gentamicin and ciprofloxacin both had the same percentage (9.8%), whereas isolates showed the lowest resistance to norfloxacin (8.2%) and doxycycline (1.6%). Notably, all Aeromonas isolates were susceptible to chloramphenicol and nitrofurantoin. Results also revealed that the multiple antibiotic resistances index of the isolates ranged from 0.07 to 0.64, suggesting that the farmed fish in these areas were introduced to the logged antibiotics indiscriminately and constantly during their cultivation stages. Results also revealed that the sul1 gene was detected in 19.7% of the Aeromonas isolates, whereas the tetracycline resistance genes, tetA and tetE, were detected in 27.9% and 4.9% of the isolates, respectively. However, β-lactam resistance genes, blaTEM and blaSHV, were found in 44.3% and 13.1% of Aeromonas isolates, respectively, whereas strA-strB and aadA genes were found in 3.3% and 13.1% of the isolates, respectively. Conclusion: This study, therefore, calls for continuous surveillance of antibiotic-resistant Aeromonas spp. in cultured freshwater fish to aid disease management and better understand their implications to public health.
Collapse
Affiliation(s)
- Nik Nur Fazlina Nik Mohd Fauzi
- Department of Paraclinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Ruhil Hayati Hamdan
- Department of Paraclinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Maizan Mohamed
- Department of Paraclinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Aziana Ismail
- Department of Paraclinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Ain Auzureen Mat Zin
- Department of Paraclinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Nora Faten Afifah Mohamad
- Department of Paraclinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
30
|
Zhou Y, Fang J, Davood Z, Han J, Qu D. Fitness cost and compensation mechanism of sulfonamide resistance genes (sul1, sul2, and sul3) in Escherichia coli. Environ Microbiol 2021; 23:7538-7549. [PMID: 34554624 DOI: 10.1111/1462-2920.15783] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022]
Abstract
The fitness cost of antibiotic resistance is a crucial factor to determine the evolutionary and transmission success of resistant bacteria. Exploring the fitness cost and compensation mechanism of antibiotic resistance genes (ARGs) in bacteria may effectively reduce the transmission of drug-resistant genes in the environment. Engineered bacteria with the same genetic background that carry sulfonamide resistance gene were generated to explore the fitness cost of sulfonamide resistance gene in Escherichia coli. There were significant differences in the protein expression of the two-component system pathway (fliZ, fliA, fliC and lrhA), folate biosynthesis pathway (sul1, sul2 and sul3), ABC transporter system (ugpC, rbsA and gsiA), and outer membrane pore protein OmpD through the comparative analysis of differential proteins compared to sensitive bacteria. Thus, we could speculate the possible fitness compensation mechanism. Finally, quantitative Real-time PCR (qRT-PCR) was used to verify the functions of some differential proteins at the transcriptional level. The fitness cost and compensatory evolution of antibiotic resistance are an essential part of bacterial evolution.
Collapse
Affiliation(s)
- Yuqiao Zhou
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, China
| | - Jiehong Fang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, China
| | - Zaeim Davood
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, China
| | - Jianzhong Han
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, China
| | - Daofeng Qu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, China
| |
Collapse
|
31
|
Liu P, Wu Z, Abramova AV, Cravotto G. Sonochemical processes for the degradation of antibiotics in aqueous solutions: A review. ULTRASONICS SONOCHEMISTRY 2021; 74:105566. [PMID: 33975189 PMCID: PMC8122362 DOI: 10.1016/j.ultsonch.2021.105566] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 05/15/2023]
Abstract
Antibiotic residues in water are general health and environmental risks due to the antibiotic-resistance phenomenon. Sonication has been included among the advanced oxidation processes (AOPs) used to remove recalcitrant contaminants in aquatic environments. Sonochemical processes have shown substantial advantages, including cleanliness, safety, energy savings and either negligible or no secondary pollution. This review provides a wide overview of the different protocols and degradation mechanisms for antibiotics that either use sonication alone or in hybrid processes, such as sonication with catalysts, Fenton and Fenton-like processes, photolysis, ozonation, etc.
Collapse
Affiliation(s)
- Pengyun Liu
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, Turin 10125, Italy
| | - Zhilin Wu
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, Turin 10125, Italy
| | - Anna V Abramova
- Federal State Budgetary Institution of Science N.S. Kurnakov Institute of General Inorganic Chemistry of the Russian Academy of Sciences, GSP-1, V-71, Leninsky Prospekt 31, 119991 Moscow, Russia
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, Turin 10125, Italy; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, 8 Trubetskaya ul, Moscow, Russia.
| |
Collapse
|
32
|
Xu L, Zhang H, Xiong P, Zhu Q, Liao C, Jiang G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141975. [PMID: 33207448 DOI: 10.1016/j.scitotenv.2020.141975] [Citation(s) in RCA: 308] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/09/2020] [Accepted: 08/23/2020] [Indexed: 05/03/2023]
Abstract
Tetracyclines (TCs), used as human and veterinary medicines, are the most widely used antibiotics. More than 75% of TCs are excreted in an active form and released into the environment through human and animal urine and feces, causing adverse effects on the ecological system and human health. Few articles review the environmental occurrence and behaviors of TCs, as well as their risks and toxicities. Here, we comprehensively summarized the recent advances on the following important issues: (1) Environmental occurrence of TCs. TCs are used globally and their occurrence in the aquatic environment has been documented, including surface water, groundwater, drinking water, wastewater, sediment, and sludge. (2) Environmental behaviors of TCs, particularly the fate of TCs in wastewater treatment plants (WWTPs). Most WWTPs cannot effectively remove TCs from wastewater, so alternative methods for efficient removal of TCs need to be developed. The latest degradation methods of TCs are summarized, including adsorption, photocatalytic, photochemical and electrochemical, and biological degradations. (3) Toxicities and possible risks of TCs. The toxicological data of TCs indicate that several TCs are more toxic to algae than fish and daphnia. Risk assessments based on individual compound exposure indicate that the risks arising from the current concentrations of TCs in the aquatic environment cannot be ignored.
Collapse
Affiliation(s)
- Longyao Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
33
|
Al-Rafyai HM, Alwash MS, Al-Khafaji NS. Quinolone resistance (qnrA) gene in isolates of Escherichia coli collected from the Al-Hillah River in Babylon Province, Iraq. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e57819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aquatic environment contamination remains a foremost global public health hazards, and symbolizes a significant reservoir of releasing antibiotic resistant bacteria. The survival of Escherichia coli in aquatic environments serves as a potential reservoir of antibiotic resistance, encompassing but not restricted to a plasmid-mediated quinolone resistance (PMQR) mechanism. The current study aimed to detect the presence of the PMQR-qnrA gene in quinolone-resistant E. coli isolates. Sixty-one waterborne E. coli with known phylogroups/subgroups isolated from the Al-Hillah River in Babylon Province, Iraq, were screened for the phenotypic resistance to third-generation quinolones (levofloxacin and ofloxacin) and were further analysed for the presence of the qnrA gene using polymerase chain reaction (PCR). Fifty-seven (93.4%) of 61 E. coli isolates were levofloxacin-resistant, and 55 (90.2%) were ofloxacin-resistant. Among the 57 quinolone-resistant E. coli, 40 (65.57%) isolates were found to carry the PMQR-qnrA gene. Among the 40 qnrA-positive E. coli, 22 (36.1%) isolates were in phylogroup B2, followed by 8 (13.1%) isolates in phylogroup D, 6 (9.8%) isolates in phylogroup B1, and 4 (6.6%) isolates in phylogroup A. The presence of the PMQR-qnrA gene in E. coli belonging to phylogroup B2 and D reflects the need for routine monitoring of antibiotic resistance genes (ARGs) in the Al-Hillah River.
Collapse
|
34
|
Zhou X, Cuasquer GJP, Li Z, Mang HP, Lv Y. Occurrence of typical antibiotics, representative antibiotic-resistant bacteria, and genes in fresh and stored source-separated human urine. ENVIRONMENT INTERNATIONAL 2021; 146:106280. [PMID: 33395931 PMCID: PMC7786438 DOI: 10.1016/j.envint.2020.106280] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 05/04/2023]
Abstract
Human urine is a source of fertilizer and, with proper management, it can be reused in agriculture. Determining the contamination issue of antibiotics in source-separated urine is important because the majority of antibiotics are excreted with urine. In this study, source-separated urine samples were randomly collected from a male toilet in a university building and analyzed in terms of 30 typical antibiotics (including 14 sulfonamides, 4 tetracyclines, and 12 fluoroquinolones) and tetracycline-resistant Escherichia coli, as well as its antibiotic-resistant genes to determine the contamination characteristics of antibiotic-related pollution in fresh and stored urine. Results showed that 18 out of 30 typical antibiotics were detected in fresh source-separated human urine. The dominant antibiotic was oxytetracycline with a frequency of 100%, followed by tetracycline, sparfloxacin, enrofloxacin, and ofloxacin, which demonstrated a detection frequency of 55%. Among the detected values, sulfonamides (2 antibiotics), tetracyclines (4 antibiotics), and fluoroquinolones (12 antibiotics) had a concentration range of 0.25-2.94, 0.94-41.2, and 0.06-163.16 ng/mL, respectively. Furthermore, tetracycline-resistant Escherichia coli, which was measured using plate count method, and its related gene, tet M, exhibited a maximum cell density of (200,000 ± 5000) CFU/100 mL and (2.73 ± 0.261) × 107 copies/mL, respectively. When the fresh urine was stored in an ambient environment for 30 days to simulate the real circumstances of urine management, a significant reduction in antibiotics and antibiotic-resistant bacteria was observed, while the change in antibiotic-resistant genes was insignificant. The results of this study suggest that risks associated with antibiotics and their antibiotic-resistant bacteria and genes are retained during collection and storage. Hence, these kinds of microcontaminants must be considered in further urine utilization.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Gabriela Jacqueline Perez Cuasquer
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Heinz Peter Mang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yaping Lv
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
35
|
Abe K, Nomura N, Suzuki S. Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol Ecol 2020; 96:5766226. [PMID: 32109282 PMCID: PMC7189800 DOI: 10.1093/femsec/fiaa031] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Biofilms in water environments are thought to be hot spots for horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). ARGs can be spread via HGT, though mechanisms are known and have been shown to depend on the environment, bacterial communities and mobile genetic elements. Classically, HGT mechanisms include conjugation, transformation and transduction; more recently, membrane vesicles (MVs) have been reported as DNA reservoirs implicated in interspecies HGT. Here, we review the current knowledge on the HGT mechanisms with a focus on the role of MVs and the methodological innovations in the HGT research.
Collapse
Affiliation(s)
- Kimihiro Abe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577 Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577 Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, 305-8577 Japan
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577 Japan
| |
Collapse
|
36
|
Dutta J, Mala AA. Removal of antibiotic from the water environment by the adsorption technologies: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:401-426. [PMID: 32960788 DOI: 10.2166/wst.2020.335] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Antibiotics are known as emergent pollutants because of their toxicological properties. Due to continuous discharge and persistence in the aquatic environment, antibiotics are detected almost in every environmental matrix. Therefore antibiotics that are polluting the aquatic environment have gained significant research interest for their removal. Several techniques have been used to remove pollutants, but appropriate technology is still to be found. This review addresses the use of modified and cheap materials for antibiotic removal from the environment.
Collapse
Affiliation(s)
- Joydeep Dutta
- Department of Zoology School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India E-mail:
| | - Aijaz Ahmad Mala
- Department of Zoology School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India E-mail:
| |
Collapse
|
37
|
Multiantibiotic residues in commercial fish from Argentina. The presence of mixtures of antibiotics in edible fish, a challenge to health risk assessment. Food Chem 2020; 332:127380. [PMID: 32603916 DOI: 10.1016/j.foodchem.2020.127380] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/27/2022]
Abstract
The occurrence of 46 antibiotics (amphenicols, cephalosporins, dihydrofolate reductase inhibitors, fluroquinolones, macrolides, nitrofurans, penicillins, quinolones, sulfamides and tetracyclines) in Argentinean market fish were investigated by UPLC-MS/MS. Veterinary and human antimicrobials enrofloxacin, clarithromycin, roxithromycin, doxycycline and oxytetracycline were detected in 100% of the samples, being to our knowledge the first report of clarithromycin in edible fish muscle. Maximum Residual Limits were exceeded for at least one antibiotic in 82% of pacú, 57% of shad, 57% of trout and 50% of salmon samples. Chloramphenicol, furazolidone and nitrofurantoin (banned compounds in food items) were detected in 41%, 22% and 4% of the samples, respectively. Based on the estimated daily intake calculation, samples do not pose a serious risk to public health. Further investigation on the chronic impact and risk calculation of the mixture of antibiotics on the aquatic environment and human health is urgently needed.
Collapse
|
38
|
Thornber K, Verner‐Jeffreys D, Hinchliffe S, Rahman MM, Bass D, Tyler CR. Evaluating antimicrobial resistance in the global shrimp industry. REVIEWS IN AQUACULTURE 2020; 12:966-986. [PMID: 32612676 PMCID: PMC7319481 DOI: 10.1111/raq.12367] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/05/2019] [Indexed: 05/13/2023]
Abstract
Antimicrobial resistance (AMR) is a growing threat to global public health, and the overuse of antibiotics in animals has been identified as a major risk factor. With high levels of international trade and direct connectivity to the aquatic environment, shrimp aquaculture may play a role in global AMR dissemination. The vast majority of shrimp production occurs in low- and middle-income countries, where antibiotic quality and usage is widely unregulated, and where the integration of aquaculture with family livelihoods offers many opportunities for human, animal and environmental bacteria to come into close contact. Furthermore, in shrimp growing areas, untreated waste is often directly eliminated into local water sources. These risks are very different to many other major internationally-traded aquaculture commodities, such as salmon, which is produced in higher income countries where there are greater levels of regulation and well-established management practices. Assessing the true scale of the risk of AMR dissemination in the shrimp industry is a considerable challenge, not least because obtaining reliable data on antibiotic usage is very difficult. Combating the risks associated with AMR dissemination is also challenging due to the increasing trend towards intensification and its associated disease burden, and because many farmers currently have no alternatives to antibiotics for preventing crop failure. In this review, we critically assess the potential risks the shrimp industry poses to AMR dissemination. We also discuss some of the possible risk mitigation strategies that could be considered by the shrimp industry as it strives for a more sustainable future in production.
Collapse
Affiliation(s)
- Kelly Thornber
- Centre for Sustainable Aquaculture FuturesUniversity of ExeterExeterUK
- BiosciencesUniversity of ExeterExeterUK
| | - David Verner‐Jeffreys
- Centre for Sustainable Aquaculture FuturesUniversity of ExeterExeterUK
- Centre for Environment, Fisheries and Aquaculture ScienceWeymouthUK
| | - Steve Hinchliffe
- Centre for Sustainable Aquaculture FuturesUniversity of ExeterExeterUK
- Department of GeographyUniversity of ExeterExeterUK
| | | | - David Bass
- Centre for Sustainable Aquaculture FuturesUniversity of ExeterExeterUK
- Centre for Environment, Fisheries and Aquaculture ScienceWeymouthUK
| | - Charles R. Tyler
- Centre for Sustainable Aquaculture FuturesUniversity of ExeterExeterUK
- BiosciencesUniversity of ExeterExeterUK
| |
Collapse
|
39
|
Serrano MJ, Mitjana O, Bonastre C, Laborda A, Falceto MV, García-Gonzalo D, Abilleira E, Elorduy J, Bousquet-Melou A, Mata L, Condón S, Pagán R. Is Blood a Good Indicator for Detecting Antimicrobials in Meat? Evidence for the Development of In Vivo Surveillance Methods. Antibiotics (Basel) 2020; 9:E175. [PMID: 32290542 PMCID: PMC7235904 DOI: 10.3390/antibiotics9040175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/28/2020] [Accepted: 04/10/2020] [Indexed: 11/16/2022] Open
Abstract
The introduction of antimicrobial residues in the food chain has a significant impact on human health. An innovative solution to avoid their presence in meat is the adaptation of current control methods for use with in vivo matrixes. Thus, the aim was to obtain paired blood and muscle samples from pigs treated with some of the main antimicrobials currently used in veterinary medicine (oxytetracycline, sulfamethoxypyridazine, enrofloxacin, amoxicillin), and to compare their rate of depletion in both matrixes. Antimicrobial concentrations in paired samples of blood and muscle were determined by liquid chromatography with tandem mass spectrometry (LC-MS/MS) or high performance liquid chromatography with fluorescence detection (HPLC-FLD). A comparison between values obtained in muscle and blood showed a similar distribution in both matrixes for oxytetracycline; for sulfamethoxypyridazine, a similar decrease rate but a concentration three times higher in blood compared to muscle was found; for enrofloxacin, we found significant differences in the rate of depletion, with similar antimicrobial concentrations in both matrixes with values close to the maximum residue limit (MRL) and higher amounts in muscle for values that lay considerably over the MRL. Conversely, amoxicillin depletion was so rapid that its appearance in carcasses does not seem to pose a risk. Therefore, blood would be a feasible matrix for the development of new in vivo tests.
Collapse
Affiliation(s)
- María Jesús Serrano
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain; (M.J.S.); (O.M.); (C.B.); (A.L.); (M.V.F.); (D.G.-G.); (S.C.)
| | - Olga Mitjana
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain; (M.J.S.); (O.M.); (C.B.); (A.L.); (M.V.F.); (D.G.-G.); (S.C.)
| | - Cristina Bonastre
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain; (M.J.S.); (O.M.); (C.B.); (A.L.); (M.V.F.); (D.G.-G.); (S.C.)
| | - Alicia Laborda
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain; (M.J.S.); (O.M.); (C.B.); (A.L.); (M.V.F.); (D.G.-G.); (S.C.)
| | - María Victoria Falceto
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain; (M.J.S.); (O.M.); (C.B.); (A.L.); (M.V.F.); (D.G.-G.); (S.C.)
| | - Diego García-Gonzalo
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain; (M.J.S.); (O.M.); (C.B.); (A.L.); (M.V.F.); (D.G.-G.); (S.C.)
| | - Eunate Abilleira
- Public Health Laboratory, Office of Public Health and Addictions, Ministry of Health of the Basque Government, 20013 Guipuzkoa, Spain; (E.A.); (J.E.)
| | - Janire Elorduy
- Public Health Laboratory, Office of Public Health and Addictions, Ministry of Health of the Basque Government, 20013 Guipuzkoa, Spain; (E.A.); (J.E.)
| | | | - Luis Mata
- Department of R&D, ZEULAB S.L., 50197 Zaragoza, Spain;
| | - Santiago Condón
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain; (M.J.S.); (O.M.); (C.B.); (A.L.); (M.V.F.); (D.G.-G.); (S.C.)
| | - Rafael Pagán
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain; (M.J.S.); (O.M.); (C.B.); (A.L.); (M.V.F.); (D.G.-G.); (S.C.)
| |
Collapse
|
40
|
Tan TY, Zeng ZT, Zeng GM, Gong JL, Xiao R, Zhang P, Song B, Tang WW, Ren XY. Electrochemically enhanced simultaneous degradation of sulfamethoxazole, ciprofloxacin and amoxicillin from aqueous solution by multi-walled carbon nanotube filter. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116167] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
|
42
|
Environmental Reservoirs of Vibrio cholerae: Challenges and Opportunities for Ocean-Color Remote Sensing. REMOTE SENSING 2019. [DOI: 10.3390/rs11232763] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The World Health Organization has estimated the burden of the on-going pandemic of cholera at 1.3 to 4 million cases per year worldwide in 2016, and a doubling of case-fatality-rate to 1.8% in 2016 from 0.8% in 2015. The disease cholera is caused by the bacterium Vibrio cholerae that can be found in environmental reservoirs, living either in free planktonic form or in association with host organisms, non-living particulate matter or in the sediment, and participating in various biogeochemical cycles. An increasing number of epidemiological studies are using land- and water-based remote-sensing observations for monitoring, surveillance, or risk mapping of Vibrio pathogens and cholera outbreaks. Although the Vibrio pathogens cannot be sensed directly by satellite sensors, remotely-sensed data can be used to infer their presence. Here, we review the use of ocean-color remote-sensing data, in conjunction with information on the ecology of the pathogen, to map its distribution and forecast risk of disease occurrence. Finally, we assess how satellite-based information on cholera may help support the Sustainable Development Goals and targets on Health (Goal 3), Water Quality (Goal 6), Climate (Goal 13), and Life Below Water (Goal 14).
Collapse
|
43
|
Kohyama Y, Suzuki S. Conjugative Gene Transfer between Nourished and Starved Cells of Photobacterium damselae ssp. damselae and Escherichia coli. Microbes Environ 2019; 34:388-392. [PMID: 31631079 PMCID: PMC6934395 DOI: 10.1264/jsme2.me19099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Horizontal gene transfer (HGT) between bacteria with different habitats and nutritional requirements is important for the spread of antibiotic resistance genes (ARG). The objective of the present study was to clarify the effects of organic matter on HGT between nourished and starved bacteria. We demonstrated that conjugation ability is affected by the nutritional conditions of the cell and environment. A filter mating HGT experiment was performed using Photobacterium damselae ssp. damselae, strain 04Ya311, a marine-origin bacterium possessing the multidrug-resistance plasmid pAQU1, as the donor, and Escherichia coli as the recipient. The donor and recipient were both prepared as nutrient-rich cultured and starved cells. Filter mating was performed on agar plates with and without organic nutrients. The transcription of the plasmid-borne genes tet(M) and traI was quantitated under eutrophic and oligotrophic conditions. The donor P. damselae transferred the plasmid to E. coli at a transfer rate of 10−4 under oligotrophic and eutrophic conditions. However, when the donor was starved, HGT was not detected under oligotrophic conditions. The addition of organic matter to starved cells restored conjugative HGT even after 6 d of starvation. The transcription of traI was not detected in starved cells, but was restored upon the addition of organic matter. The HGT rate appears to be affected by the transcription of plasmid-associated genes. The present results suggest that the HGT rate is low in starved donors under oligotrophic conditions, but is restored by the addition of organic matter.
Collapse
Affiliation(s)
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University
| |
Collapse
|
44
|
Suzuki S, Nakanishi S, Tamminen M, Yokokawa T, Sato-Takabe Y, Ohta K, Chou HY, Muziasari WI, Virta M. Occurrence of sul and tet(M) genes in bacterial community in Japanese marine aquaculture environment throughout the year: Profile comparison with Taiwanese and Finnish aquaculture waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:649-656. [PMID: 30889452 DOI: 10.1016/j.scitotenv.2019.03.111] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
The use of antibiotics in aquaculture causes selection pressure for antibiotic-resistant bacteria (ARB). Antibiotic resistance genes (ARGs) may persist in ARB and the environment for long time even after stopping drug administration. Here we show monthly differences in the occurrences of genes conferring resistance to sulfonamides (i.e. sul1, sul2, sul3), and tetracyclines (tet(M)) in Japanese aquaculture seawater accompanied by records of drug administration. sul2 was found to persist throughout the year, whereas the occurrences of sul1, sul3, and tet(M) changed month-to-month. sul3 and tet(M) were detected in natural bacterial assemblages in May and July, but not in colony-forming bacteria, thus suggesting that the sul3 was harbored by the non-culturable fraction of the bacterial community. Comparison of results from Taiwanese, Japanese, and Finnish aquaculture waters reveals that the profile of sul genes and tet(M) in Taiwan resembles that in Japan, but is distinct from that in Finland. To our knowledge, this work represents the first report to use the same method to compare the dynamics of sul genes and tet(M) in aquaculture seawater in different countries.
Collapse
Affiliation(s)
- Satoru Suzuki
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan.
| | - Sayoko Nakanishi
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Manu Tamminen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Taichi Yokokawa
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Yuki Sato-Takabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Kohei Ohta
- South Ehime Fisheries Research Center, Ehime University, Ainan, Ehime 798-4292, Japan
| | - Hsin-Yiu Chou
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Windi I Muziasari
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Marko Virta
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
45
|
Detection of the sul2–strA–strB gene cluster in an ice core from Dome Fuji Station, East Antarctica. J Glob Antimicrob Resist 2019; 17:72-78. [DOI: 10.1016/j.jgar.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/26/2018] [Accepted: 11/03/2018] [Indexed: 01/21/2023] Open
|
46
|
Liu K, Han J, Li S, Liu L, Lin W, Luo J. Insight into the diversity of antibiotic resistance genes in the intestinal bacteria of shrimp Penaeus vannamei by culture-dependent and independent approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:451-459. [PMID: 30735978 DOI: 10.1016/j.ecoenv.2019.01.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Antibiotic resistance genes (ARGs) that distributed in antibiotic resistant bacteria (ARBs) are widespread in aquaculture and have great threats to the aquatic organism as well as to human. However, our understanding about the risk of ARGs to the health of aquatic organism is still limited. In the present study, we got a deep insight into the diversity of ARGs in the intestinal bacteria of shrimp by culture-dependent and independent approaches. Results of the PCR-based detection and culture-dependent analysis indicated that the tetracycline, sulfadiazine, quinolone and erythromycin resistance genes were prevalent in the commercial shrimps that bought from aquatic markets or supermarket. The culture-independent plasmid metagenomic analysis identified 62 different ARGs, which were classified into 21 types, with abundances ranging from 13 to 1418 ppm. The analysis suggested that most of the ARGs come from the plasmids originating from Vibrio (accounted for 2.8-51%) and Aeromonas (accounted for 16-55%), and the Vibrio group was concluded to be the main bacterial pathogen that probably resulted in the shrimp disease. Accordingly, the plasmid metagenomic that focuses on the mobile genetic elements has great potential on the identification of ARGs in complex environments.
Collapse
Affiliation(s)
- Kexin Liu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jiamin Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Surong Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Liangting Liu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Weitie Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Jianfei Luo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
47
|
Wu J, Mao C, Deng Y, Guo Z, Liu G, Xu L, Bei L, Su Y, Feng J. Diversity and abundance of antibiotic resistance of bacteria during the seedling period in marine fish cage-culture areas of Hainan, China. MARINE POLLUTION BULLETIN 2019; 141:343-349. [PMID: 30955742 DOI: 10.1016/j.marpolbul.2019.02.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/28/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Antibiotic resistance has become an important focus of research in the aquaculture environment. However, few studies have evaluated antibiotic resistance during the seedling period in marine fish cage-culture areas. In this study, culture-dependent methods and quantitative polymerase chain reaction were used to identify and detect cultivable heterotrophic antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), respectively, during the seedling period in a marine fish cage-culture areas of Hainan, China. Bacterial resistance to amoxicillin, erythromycin, and gentamicin was generally high (average on 27.67%, 23.61% and 37.32%, respectively), whereas resistance to furazolidone and nitrofurantoin was generally low (average on 0.14% and 7.425%). Alteromonas (32.72%) and Vibrio (24.77%) were the dominant genus of ARB. Most ARB were opportunistic pathogens, belonging to the phylum Proteobacteria (96.02%). The abundance of sul family genes was higher than that of tet family genes. Overall, the abundance of ARGs and the resistance rates in HW was highest.
Collapse
Affiliation(s)
- Jinjun Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Can Mao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Guangfeng Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Liwen Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lei Bei
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
48
|
Ribeiro AR, Sures B, Schmidt TC. Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:1153-1166. [PMID: 30029325 DOI: 10.1016/j.envpol.2018.06.040] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 05/21/2023]
Abstract
Due to their widespread occurrence in the aquatic environment, human and veterinary cephalosporin antibiotics have been studied as water pollutants. In order to characterize environmental risks of this compound class, this review evaluates relevant data about physicochemical properties, occurrence, ecotoxicity and degradation of cephalosporins. Although application of cephalosporins is rather low compared to other antibiotics and their environmental life-time is believed to be short (i.e. days), the available data is insufficient to draw conclusions on their environmental relevance. Few studies concerning the fate of cephalosporins in soil are available, while hydrolysis and photo-degradation are suggested as the main attenuation processes in the aquatic environment. Cephalosporins have been detected in different aqueous matrices in concentrations ranging from 0.30 ng L-1 to 0.03 mg L-1, with sewage and wastewater being the main matrices with positive findings. For wastewater treatment purposes, several technologies have been tested for the abatement of cephalosporins, including photolysis and adsorption. In most cases, the technology employed led to complete or significant removal (>95%) of parental drugs but few authors reported on cephalosporins' metabolites and transformation products. Furthermore, the present ecotoxicological data are insufficient for comprehensive ecological risk quotient calculations. Considering the total of 53 cephalosporins, effective values (EC, LC, NOAEC, NOAEL, etc.) are only available for around 30% of parental drugs and are very scarce for cyanobacteria, which is considered to be the most sensitive group of organisms to antibiotics. Furthermore, it has been demonstrated that cephalosporins' transformation products can be more toxic and more persistent than the parental drugs. Few investigations considering this possibility are available. Consequently, more effort on ecotoxicological data generation and verification of biological inactivation of cephalosporins-related products is needed. Likewise, the lack of natural depletion rates and knowledge gaps on mixture effects for cephalosporins' degradation and toxicity have to be overcome.
Collapse
Affiliation(s)
- Alyson R Ribeiro
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany; Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany.
| | - Bernd Sures
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany; Aquatic Ecology, University of Duisburg-Essen, Universitätsstraße 5, 4514, Essen, Germany.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany; Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany; IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany.
| |
Collapse
|
49
|
Suzuki S, Makihara N, Kadoya A. Tetracycline resistance gene tet(M) of a marine bacterial strain is not accumulated in bivalves from seawater in clam tank experiment and mussel monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:181-187. [PMID: 29627540 DOI: 10.1016/j.scitotenv.2018.03.305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
Antibiotic resistance genes (ARGs) are found in marine as well as terrestrial bacteria. Bivalves are known to accumulate chemical pollutants and pathogenic microbes, however, the fate of ARGs in bivalves after the intake of ARG-possessing bacteria is not known. Here we show that the copy number of oxytetracycline resistance gene tet(M) increased rapidly in the clam digestive tract by filtering water, then remained constant over 96h in a tank experiment even with the addition of tet(M)-possessing bacteria every 24h. >99.9% of the added tet(M) was decomposed, reaching a balanced state. Environmental sampling of mussel digestive tract and seawater supported the hypothesis that tet(M) was decomposed in bivalves as tet(M) was present in seawater from April to October at a concentration of 10-5 to 10-6 copies/16S, whereas tet(M) in mussels was mostly below the detection limit. Two (April) and three (July and October) individual mussels were positive for tet(M) with a concentration equivalent to that of seawater. We therefore conclude that bivalves do not accumulate tet(M) from seawater.
Collapse
Affiliation(s)
- Satoru Suzuki
- Centre for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan.
| | - Naoki Makihara
- Centre for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Aya Kadoya
- Centre for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
50
|
Al Atya AK, Abriouel H, Kempf I, Jouy E, Auclair E, Vachée A, Drider D. Effects of Colistin and Bacteriocins Combinations on the In Vitro Growth of Escherichia coli Strains from Swine Origin. Probiotics Antimicrob Proteins 2018; 8:183-190. [PMID: 27557837 DOI: 10.1007/s12602-016-9227-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Escherichia coli strains from swine origin, either susceptible or resistant to colistin, were grown under planktonic and biofilm cultures. After which, they were treated with antibacterial agents including nisin and enterocin DD14 bacteriocins, colistin and their combinations. Importantly, the combination of colistin, enterocin DD14 and nisin eradicated the planktonic and biofilm cultures of E. coli CIP54127 and the E. coli strains with colistin-resistance phenotype such as E. coli 184 (mcr-1 +) and E. coli 289 (mcr-1 -), suggesting therefore that bacteriocins from lactic acid bacteria could be used as agents with antibiotic augmentation capability.
Collapse
Affiliation(s)
- Ahmed K Al Atya
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, 59000, Lille, France
| | - Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Isabelle Kempf
- ANSES, Ploufragan Laboratory, Ploufragan, Univ Bretagne Loire, Rennes, France
| | - Eric Jouy
- ANSES, Ploufragan Laboratory, Ploufragan, Univ Bretagne Loire, Rennes, France
| | - Eric Auclair
- Phileo Animal Care, 137 rue Gabriel Péri, 59700, Marcq-en-Barœul, France
| | - Anne Vachée
- Laboratoire de Bactériologie, Hôpital Victor Provo, Boulevard Lacordaire, 59100, Roubaix, France
| | - Djamel Drider
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, 59000, Lille, France.
| |
Collapse
|