1
|
Huang L, Xiao M, Huang X, Wu J, Luo J, Li F, Gu W. Analysis of clinical characteristics of hemorrhagic fever with renal syndrome with acute pancreatitis: a retrospective study. Ann Med 2025; 57:2453081. [PMID: 39829396 PMCID: PMC11748856 DOI: 10.1080/07853890.2025.2453081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/13/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE This research aimed to analyze the impact of hemorrhagic fever with renal syndrome (HFRS) with acute pancreatitis (AP) on the severity and prognosis of patients, screen the risk factors of HFRS with AP, and establish a nomogram model. METHODS Data were collected from HFRS patients at the First Affiliated Hospital of Dali University and Dali Prefecture People's Hospital (2013-2023). Patients were divided into HFRS with AP (n = 34) and HFRS without AP groups (n = 356). Propensity Score Matching (PSM) and logistic regression analyzed the impact of AP on HFRS severity and short-term prognosis. LASSO-Logistic regression was used to screen risk factors and develop a nomogram model. RESULTS After PSM, HFRS patients with AP had higher rates of Continuous Renal Replacement Therapy (CRRT) and/or mechanical ventilation use, , ICU admission, and 30-day mortalitycompared with those without AP (p < 0.05). Further analysis revealed that smoking (OR: 3.702), ferritin (OR: 1.002), white blood cell (OR), fibrinogen (OR: 0.463), and platelet (OR: 0.987) were risk factors for HFRS with AP (p < 0.05). A nomogram model was constructed based on these factors, to predict the risk of HFRS with AP, with an Area Under the Curve (AUC) of 0.90 (95% CI: 0.84-0.95). Additionally, the model calibration curve fit well according to the Hosmer-Lemeshow test (χ2=8.51, p = 0.39). CONCLUSION Patients with HFRS with AP exhibit higher disease severity and poorer prognosis. Smoking, elevated ferritin and white blood cell levels, decreased fibrinogen and platelet levels are more susceptible to developing AP.
Collapse
Affiliation(s)
- Lihua Huang
- Department of Infection Disease, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Min Xiao
- Department of Clinical Laboratory, Sichuan Provincial People’s Hospital East Sichuan Hospital & DaZhou First People’s Hospital, Dazhou, Sichuan, China
| | - Xiaoling Huang
- Department of Respiratory Medicine, Sichuan Provincial People’s Hospital East Sichuan Hospital & Dazhou First People’s Hospital, Dazhou, Sichuan, China
| | - Jun Wu
- Department of Ophthalmology, Dali Prefecture People’s Hospital, Dali, Yunnan, China
| | - Jiao Luo
- Department of Infection Disease, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Fuxing Li
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wei Gu
- Department of Infection Disease, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| |
Collapse
|
2
|
Liu Z, Xue X, Geng S, Jiang Z, Ge Z, Zhao C, Xu Y, Wang X, Zhang W, Lin L, Chen Z. The differences in cytokine signatures between severe fever with thrombocytopenia syndrome (SFTS) and hemorrhagic fever with renal syndrome (HFRS). J Virol 2024; 98:e0078624. [PMID: 38916398 PMCID: PMC11265425 DOI: 10.1128/jvi.00786-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) virus and hantavirus are categorized under the Bunyavirales order. The severe disease progression in both SFTS and hemorrhagic fever with renal syndrome (HFRS) is associated with cytokine storms. This study aimed to explore the differences in cytokine profiles and immune responses between the two diseases. A cross-sectional, single-center study involved 100 participants, comprising 46 SFTS patients, 48 HFRS patients, and 6 healthy controls. The study employed the Luminex cytokine detection platform to measure 48 cytokines. The differences in cytokine profiles and immune characteristics between the two diseases were further analyzed using multiple linear regression, principal component analysis, and random forest method. Among the 48 cytokines tested, 30 showed elevated levels in SFTS and/or HFRS compared to the healthy control group. Furthermore, there were 19 cytokines that exhibited significant differences between SFTS and HFRS. Random forest analysis suggested that TRAIL and CTACK were predictive of SFTS, while IL2Ralpha, MIG, IL-8, IFNalpha2, HGF, SCF, MCP-3, and PDGFBB were more common with HFRS. It was further verified by the receiver operating characteristic with area under the curve >0.8 and P-values <0.05, except for TRAIL. Significant differences were observed in the cytokine profiles of SFTS and HFRS, with TRAIL, IL2Ralpha, MIG, and IL-8 being the top 4 cytokines that most clearly distinguished the two diseases. IMPORTANCE SFTS and HFRS differ in terms of cytokine immune characteristics. TRAIL, IL-2Ralpha, MIG, and IL-8 were the top 4 that differed markedly between SFTS and HFRS.
Collapse
Affiliation(s)
- Zishuai Liu
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Xue
- Department of Infectious Disease, Beijing Ditan Hospital, Peking University, Beijing, China
| | - Shuying Geng
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, China
| | - Zhouling Jiang
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ziruo Ge
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chenxi Zhao
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanli Xu
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, China
| | - Xiaolei Wang
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ling Lin
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, China
| | - Zhihai Chen
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Infectious Disease, Beijing Ditan Hospital, Peking University, Beijing, China
| |
Collapse
|
3
|
Marceau J, Safronetz D, Martellaro C, Marzi A, Rosenke K, Feldmann H. Bivalent VSV Vectors Mediate Rapid and Potent Protection from Andes Virus Challenge in Hamsters. Viruses 2024; 16:279. [PMID: 38400054 PMCID: PMC10893017 DOI: 10.3390/v16020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Orthohantaviruses may cause hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome. Andes virus (ANDV) is the only orthohantavirus associated with human-human transmission. Therefore, emergency vaccination would be a valuable public health measure to combat ANDV-derived infection clusters. Here, we utilized a promising vesicular stomatitis virus (VSV)-based vaccine to advance the approach for emergency applications. We compared monovalent and bivalent VSV vectors containing the Ebola virus (EBOV), glycoprotein (GP), and ANDV glycoprotein precursor (GPC) for protective efficacy in pre-, peri- and post-exposure immunization by the intraperitoneal and intranasal routes. Inclusion of the EBOV GP was based on its favorable immune cell targeting and the strong innate responses elicited by the VSV-EBOV vaccine. Our data indicates no difference of ANDV GPC expressing VSV vectors in pre-exposure immunization independent of route, but a potential benefit of the bivalent VSVs following peri- and post-exposure intraperitoneal vaccination.
Collapse
Affiliation(s)
- Joshua Marceau
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (J.M.); (D.S.); (C.M.)
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT 59812, USA
| | - David Safronetz
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (J.M.); (D.S.); (C.M.)
| | - Cynthia Martellaro
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (J.M.); (D.S.); (C.M.)
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (J.M.); (D.S.); (C.M.)
| | - Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (J.M.); (D.S.); (C.M.)
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (J.M.); (D.S.); (C.M.)
| |
Collapse
|
4
|
Afzal S, Ali L, Batool A, Afzal M, Kanwal N, Hassan M, Safdar M, Ahmad A, Yang J. Hantavirus: an overview and advancements in therapeutic approaches for infection. Front Microbiol 2023; 14:1233433. [PMID: 37901807 PMCID: PMC10601933 DOI: 10.3389/fmicb.2023.1233433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Hantaviruses are a significant and emerging global public health threat, impacting more than 200,000 individuals worldwide each year. The single-stranded RNA viruses belong to the Hantaviridae family and are responsible for causing two acute febrile diseases in humans: Hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). Currently, there are no licensed treatments or vaccines available globally for HTNV infection. Various candidate drugs have shown efficacy in increasing survival rates during the early stages of HTNV infection. Some of these drugs include lactoferrin, ribavirin, ETAR, favipiravir and vandetanib. Immunotherapy utilizing neutralizing antibodies (NAbs) generated from Hantavirus convalescent patients show efficacy against HTNV. Monoclonal antibodies such as MIB22 and JL16 have demonstrated effectiveness in protecting against HTNV infection. The development of vaccines and antivirals, used independently and/or in combination, is critical for elucidating hantaviral infections and the impact on public health. RNA interference (RNAi) arised as an emerging antiviral therapy, is a highly specific degrades RNA, with post-transcriptional mechanism using eukaryotic cells platform. That has demonstrated efficacy against a wide range of viruses, both in vitro and in vivo. Recent antiviral methods involve using small interfering RNA (siRNA) and other, immune-based therapies to target specific gene segments (S, M, or L) of the Hantavirus. This therapeutic approach enhances viral RNA clearance through the RNA interference process in Vero E6 cells or human lung microvascular endothelial cells. However, the use of siRNAs faces challenges due to their low biological stability and limited in vivo targeting ability. Despite their successful inhibition of Hantavirus replication in host cells, their antiviral efficacy may be hindered. In the current review, we focus on advances in therapeutic strategies, as antiviral medications, immune-based therapies and vaccine candidates aimed at enhancing the body's ability to control the progression of Hantavirus infections, with the potential to reduce the risk of severe disease.
Collapse
Affiliation(s)
- Samia Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Anum Batool
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Momina Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Nida Kanwal
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | | | | | - Atif Ahmad
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Jing Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| |
Collapse
|
5
|
Du H, Hu H, Li J, Wang X, Jiang H, Lian J, Zhang Y, Wang P. High levels of exfoliated fragments following glycocalyx destruction in hemorrhagic fever with the renal syndrome are associated with mortality risk. Front Med (Lausanne) 2023; 10:1096353. [PMID: 37138736 PMCID: PMC10149802 DOI: 10.3389/fmed.2023.1096353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 05/05/2023] Open
Abstract
Background The glycocalyx is a gel-like structure that covers the luminal side of vascular endothelial cells. It plays an important role in maintaining the integrity of the vascular endothelial barrier structure. However, the presence or absence of glycocalyx destruction in hemorrhagic fever with renal syndrome (HFRS) and its specific mechanism and role is still unclear. Methods In this study, we detected the levels of exfoliated glycocalyx fragments, namely, heparan sulfate (HS), hyaluronic acid (HA), and chondroitin sulfate (CS), in HFRS patients and investigated their clinical application value on the evaluation of disease severity and prognosis prediction. Results The expression of exfoliated glycocalyx fragments in plasma was significantly increased during the acute stage of HFRS. The levels of HS, HA, and CS in HFRS patients during the acute stage were significantly higher than in healthy controls and convalescent stages of the same type. HS and CS during the acute stage gradually increased with the aggravation of HFRS, and both fragments showed a significant association with disease severity. In addition, exfoliated glycocalyx fragments (especially HS and CS) showed a significant correlation with conventional laboratory parameters and hospitalization days. High levels of HS and CS during the acute phase were significantly associated with patient mortality and demonstrated an obvious predictive value for the mortality risk of HFRS. Conclusion Glycocalyx destruction and shedding may be closely associated with endothelial hyperpermeability and microvascular leakage in HFRS. The dynamic detection of the exfoliated glycocalyx fragments may be beneficial for the evaluation of disease severity and prognosis prediction in HFRS.
Collapse
|
6
|
Tariq M, Kim DM. Hemorrhagic Fever with Renal Syndrome: Literature Review, Epidemiology, Clinical Picture and Pathogenesis. Infect Chemother 2022; 54:1-19. [PMID: 35384417 PMCID: PMC8987181 DOI: 10.3947/ic.2021.0148] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/30/2022] [Indexed: 02/06/2023] Open
Abstract
Hantaviruses can cause two types of infections in humans: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome. The old world hantaviruses, primarily Hantaan virus (HTNV), responsible for causing HFRS occurs endemically in Asia and Europe. Apodernus agraricus, a striped field mouse, is being considered as main host reservoir for HTNV. Infection in humans is typically accidental and occurs when virus-containing rodent excretions such as urine, feces, or saliva are aerosolized. The major clinical manifestations includes increased vascular permeability causing vascular leakage, acute kidney injury and coagulation abnormalities. The case fatality rate of HFRS varies around 5.0 - 10.0% depending on the causative viral agent. The direct effects of viral infection on endothelial cells, as well as the immunological response to the viral infection, have been suggested to play a key role in the pathogenesis of HFRS. This article summarizes the current knowledge of HFRS epidemiology in Korea and around the globe, etiology, host transmission, clinical presentation, pathogenesis, diagnostic techniques, treatment, and prevention.
Collapse
Affiliation(s)
- Misbah Tariq
- Department of Internal Medicine, Chosun University College of Medicine, Gwangju, Korea.,Dow University of Health Sciences, Karachi, Pakistan
| | - Dong-Min Kim
- Department of Internal Medicine, Chosun University College of Medicine, Gwangju, Korea.
| |
Collapse
|
7
|
Simons P, Guo Y, Bondu V, Tigert SL, Harkins M, Goodfellow S, Tompkins C, Chabot-Richards D, Yang XO, Bosc LG, Bradfute S, Lawrence DA, Buranda T. Longitudinal Assessment of Cytokine Expression and Plasminogen Activation in Hantavirus Cardiopulmonary Syndrome Reveals Immune Regulatory Dysfunction in End-Stage Disease. Viruses 2021; 13:1597. [PMID: 34452463 PMCID: PMC8402847 DOI: 10.3390/v13081597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
Pathogenic New World orthohantaviruses cause hantavirus cardiopulmonary syndrome (HCPS), a severe immunopathogenic disease in humans manifested by pulmonary edema and respiratory distress, with case fatality rates approaching 40%. High levels of inflammatory mediators are present in the lungs and systemic circulation of HCPS patients. Previous studies have provided insights into the pathophysiology of HCPS. However, the longitudinal correlations of innate and adaptive immune responses and disease outcomes remain unresolved. This study analyzed serial immune responses in 13 HCPS cases due to Sin Nombre orthohantavirus (SNV), with 11 severe cases requiring extracorporeal membrane oxygenation (ECMO) treatment and two mild cases. We measured viral load, levels of various cytokines, urokinase plasminogen activator (uPA), and plasminogen activator inhibitor-1 (PAI-1). We found significantly elevated levels of proinflammatory cytokines and PAI-1 in five end-stage cases. There was no difference between the expression of active uPA in survivors' and decedents' cases. However, total uPA in decedents' cases was significantly higher compared to survivors'. In some end-stage cases, uPA was refractory to PAI-1 inhibition as measured by zymography, where uPA and PAI-1 were strongly correlated to lymphocyte counts and IFN-γ. We also found bacterial co-infection influencing the etiology and outcome of immune response in two cases. Unsupervised Principal Component Analysis and hierarchical cluster analyses resolved separate waves of correlated immune mediators expressed in one case patient due to a sequential co-infection of bacteria and SNV. Overall, a robust proinflammatory immune response, characterized by an imbalance in T helper 17 (Th17) and regulatory T-cells (Treg) subsets, was correlated with dysregulated inflammation and mortality. Our sample size is small; however, the core differences correlated to survivors and end-stage HCPS are instructive.
Collapse
Affiliation(s)
- Peter Simons
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (P.S.); (V.B.); (C.T.); (D.C.-R.)
| | - Yan Guo
- Bioinformatics Shared Resource Center, Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Virginie Bondu
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (P.S.); (V.B.); (C.T.); (D.C.-R.)
| | - Susan L. Tigert
- Clinical and Translational Science Center (CTSC), University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Michelle Harkins
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (M.H.); (S.G.); (S.B.)
| | - Samuel Goodfellow
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (M.H.); (S.G.); (S.B.)
| | - Cana Tompkins
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (P.S.); (V.B.); (C.T.); (D.C.-R.)
| | - Devon Chabot-Richards
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (P.S.); (V.B.); (C.T.); (D.C.-R.)
| | - Xuexian O. Yang
- Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Laura Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Steven Bradfute
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (M.H.); (S.G.); (S.B.)
| | - Daniel A. Lawrence
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (P.S.); (V.B.); (C.T.); (D.C.-R.)
| |
Collapse
|
8
|
Mojoli A, Gonçalves BS, Temerozo JR, Cister-Alves B, Geddes V, Herlinger A, Aguiar RS, Pilotto JH, Saraiva EM, Bou-Habib DC. Neutrophil extracellular traps from healthy donors and HIV-1-infected individuals restrict HIV-1 production in macrophages. Sci Rep 2020; 10:19603. [PMID: 33177532 PMCID: PMC7658358 DOI: 10.1038/s41598-020-75357-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Neutrophils release extracellular traps (NETs) after interaction with microorganisms and physiological or synthetic products. NETs consist of decondensed chromatin complexed with proteins, some of them with microbicidal properties. Because NETs can modulate the functioning of HIV-1 target cells, we aimed to verify whether they modify HIV-1 replication in macrophages. We found that exposure of HIV-1-infected macrophages to NETs resulted in significant inhibition of viral replication. The NET anti-HIV-1 action was independent of other soluble factors released by the activated neutrophils, but otherwise dependent on the molecular integrity of NETs, since NET-treatment with protease or DNase abolished this effect. NETs induced macrophage production of the anti-HIV-1 β-chemokines Rantes and MIP-1β, and reduced the levels of integrated HIV-1 DNA in the macrophage genome, which may explain the decreased virus production by infected macrophages. Moreover, the residual virions released by NET-treated HIV-1-infected macrophages lost infectivity. In addition, elevated levels of DNA-elastase complexes were detected in the plasma from HIV-1-infected individuals, and neutrophils from these patients released NETs, which also inhibited HIV-1 replication in in vitro infected macrophages. Our results reveal that NETs may function as an innate immunity mechanism able to restrain HIV-1 production in macrophages.
Collapse
Affiliation(s)
- Andrés Mojoli
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Barbara Simonson Gonçalves
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Jairo R Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Bruno Cister-Alves
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Victor Geddes
- Laboratory of Molecular Virology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alice Herlinger
- Laboratory of Molecular Virology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Santana Aguiar
- Laboratory of Molecular Virology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Henrique Pilotto
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Elvira M Saraiva
- Laboratory of Immunobiology of Leishmaniasis, Department of Immunology, Paulo de Goes Institute of Microbiology, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco D/D1-44, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil. .,National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Raftery MJ, Lalwani P, Lütteke N, Kobak L, Giese T, Ulrich RG, Radosa L, Krüger DH, Schönrich G. Replication in the Mononuclear Phagocyte System (MPS) as a Determinant of Hantavirus Pathogenicity. Front Cell Infect Microbiol 2020; 10:281. [PMID: 32596167 PMCID: PMC7304325 DOI: 10.3389/fcimb.2020.00281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/12/2020] [Indexed: 02/03/2023] Open
Abstract
Members of different virus families including Hantaviridae cause viral hemorrhagic fevers (VHFs). The decisive determinants of hantavirus-associated pathogenicity are still enigmatic. Pathogenic hantavirus species, such as Puumala virus (PUUV), Hantaan virus (HTNV), Dobrava-Belgrade virus (DOBV), and Sin Nombre virus (SNV), are associated with significant case fatality rates. In contrast, Tula virus (TULV) only sporadically causes mild disease in immunocompetent humans and Prospect Hill virus (PHV) so far has not been associated with any symptoms. They are thus defined here as low pathogenic/apathogenic hantavirus species. We found that productive infection of cells of the mononuclear phagocyte system (MPS), such as monocytes and dendritic cells (DCs), correlated well with the pathogenicity of hantavirus species tested. HTNV (intermediate case fatality rates) replicated more efficiently than PUUV (low case fatality rates) in myeloid cells, whereas low pathogenic/apathogenic hantavirus species did not produce any detectable virus titers. Analysis of PHPUV, a reassortant hantavirus derived from a pathogenic (PUUV) and an apathogenic (PHV) hantavirus species, indicated that the viral glycoproteins are not decisive for replication in MPS cells. Moreover, blocking acidification of endosomes with chloroquine decreased the number of TULV genomes in myeloid cells suggesting a post-entry block for low pathogenic/apathogenic hantavirus species in myeloid cells. Intriguingly, pathogenic but not low pathogenic/apathogenic hantavirus species induced conversion of monocytes into inflammatory DCs. The proinflammatory programming of MPS cells by pathogenic hantavirus species required integrin signaling and viral replication. Our findings indicate that the capacity to replicate in MPS cells is a prominent feature of hantaviral pathogenicity.
Collapse
Affiliation(s)
- Martin J Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Pritesh Lalwani
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Nina Lütteke
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Lidija Kobak
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Thomas Giese
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Lukas Radosa
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Detlev H Krüger
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
10
|
Kell AM, Hemann EA, Turnbull JB, Gale M. RIG-I-like receptor activation drives type I IFN and antiviral signaling to limit Hantaan orthohantavirus replication. PLoS Pathog 2020; 16:e1008483. [PMID: 32330200 PMCID: PMC7202661 DOI: 10.1371/journal.ppat.1008483] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/06/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Pathogenic hantaviruses, genus Orthohantaviridae, are maintained in rodent reservoirs with zoonotic transmission to humans occurring through inhalation of rodent excreta. Hantavirus disease in humans is characterized by localized vascular leakage and elevated levels of circulating proinflammatory cytokines. Despite the constant potential for deadly zoonotic transmission to humans, specific virus-host interactions of hantaviruses that lead to innate immune activation, and how these processes impart disease, remain unclear. In this study, we examined the mechanisms of viral recognition and innate immune activation of Hantaan orthohantavirus (HTNV) infection. We identified the RIG-I-like receptor (RLR) pathway as essential for innate immune activation, interferon (IFN) production, and interferon stimulated gene (ISG) expression in response to HTNV infection in human endothelial cells, and in murine cells representative of a non-reservoir host. Our results demonstrate that innate immune activation and signaling through the RLR pathway depends on viral replication wherein the host response can significantly restrict replication in target cells in a manner dependent on the type 1 interferon receptor (IFNAR). Importantly, following HTNV infection of a non-reservoir host murine model, IFNAR-deficient mice had higher viral loads, increased persistence, and greater viral dissemination to lung, spleen, and kidney compared to wild-type animals. Surprisingly, this response was MAVS independent in vivo. Innate immune profiling in these tissues demonstrates that HTNV infection triggers expression of IFN-regulated cytokines early during infection. We conclude that the RLR pathway is essential for recognition of HTNV infection to direct innate immune activation and control of viral replication in vitro, and that additional virus sensing and innate immune response pathways of IFN and cytokine regulation contribute to control of HTNV in vivo. These results reveal a critical role for innate immune regulation in driving divergent outcomes of HTNV infection, and serve to inform studies to identify therapeutic targets to alleviate human hantavirus disease.
Collapse
Affiliation(s)
- Alison M. Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, United States of America
| | - Emily A. Hemann
- Department of Immunology, University of Washington, Seattle, United States of America
| | - J. Bryan Turnbull
- Department of Immunology, University of Washington, Seattle, United States of America
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle United States of America
| |
Collapse
|
11
|
Puumala and Tula Virus Differ in Replication Kinetics and Innate Immune Stimulation in Human Endothelial Cells and Macrophages. Viruses 2019; 11:v11090855. [PMID: 31540120 PMCID: PMC6784088 DOI: 10.3390/v11090855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/23/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
Old world hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) upon zoonotic transmission to humans. In Europe, the Puumala virus (PUUV) is the main causative agent of HFRS. Tula virus (TULV) is also widely distributed in Europe, but there is little knowledge about the pathogenicity of TULV for humans, as reported cases are rare. We studied the replication of TULV in different cell types in comparison to the pathogenic PUUV and analyzed differences in stimulation of innate immunity. While both viruses replicated to a similar extent in interferon (IFN)-deficient Vero E6 cells, TULV replication in human lung epithelial (A549) cells was slower and less efficient when compared to PUUV. In contrast to PUUV, no replication of TULV could be detected in human microvascular endothelial cells and in macrophages. While a strong innate immune response towards PUUV infection was evident at 48 h post infection, TULV infection triggered only a weak IFN response late after infection of A549 cells. Using appropriate in vitro cell culture models for the orthohantavirus infection, we could demonstrate major differences in host cell tropism, replication kinetics, and innate immune induction between pathogenic PUUV and the presumably non- or low-pathogenic TULV that are not observed in Vero E6 cells and may contribute to differences in virulence.
Collapse
|
12
|
Schönrich G, Raftery MJ. Dendritic Cells (DCs) as "Fire Accelerants" of Hantaviral Pathogenesis. Viruses 2019; 11:v11090849. [PMID: 31540199 PMCID: PMC6783833 DOI: 10.3390/v11090849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023] Open
Abstract
Hantaviruses are widespread zoonotic pathogens found around the globe. Depending on their geographical location, hantaviruses can cause two human syndromes, haemorrhagic fever with renal syndrome (HFRS) or hantavirus pulmonary syndrome (HPS). HPS and HFRS have many commonalities amongst which excessive activation of immune cells is a prominent feature. Hantaviruses replicate in endothelial cells (ECs), the major battlefield of hantavirus-induced pathogenesis, without causing cytopathic effects. This indicates that a misdirected response of human immune cells to hantaviruses is causing damage. As dendritic cells (DCs) orchestrate antiviral immune responses, they are in the focus of research analysing hantavirus-induced immunopathogenesis. In this review, we discuss the interplay between hantaviruses and DCs and the immunological consequences thereof.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Martin J Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
13
|
Mittler E, Dieterle ME, Kleinfelter LM, Slough MM, Chandran K, Jangra RK. Hantavirus entry: Perspectives and recent advances. Adv Virus Res 2019; 104:185-224. [PMID: 31439149 DOI: 10.1016/bs.aivir.2019.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hantaviruses are important zoonotic pathogens of public health importance that are found on all continents except Antarctica and are associated with hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. Despite the significant disease burden they cause, no FDA-approved specific therapeutics or vaccines exist against these lethal viruses. The lack of available interventions is largely due to an incomplete understanding of hantavirus pathogenesis and molecular mechanisms of virus replication, including cellular entry. Hantavirus Gn/Gc glycoproteins are the only viral proteins exposed on the surface of virions and are necessary and sufficient to orchestrate virus attachment and entry. In vitro studies have implicated integrins (β1-3), DAF/CD55, and gC1qR as candidate receptors that mediate viral attachment for both Old World and New World hantaviruses. Recently, protocadherin-1 (PCDH1) was demonstrated as a requirement for cellular attachment and entry of New World hantaviruses in vitro and lethal HPS in vivo, making it the first clade-specific host factor to be identified. Attachment of hantavirus particles to cellular receptors induces their internalization by clathrin-mediated, dynamin-independent, or macropinocytosis-like mechanisms, followed by particle trafficking to an endosomal compartment where the fusion of viral and endosomal membranes can occur. Following membrane fusion, which requires cholesterol and acid pH, viral nucleocapsids escape into the cytoplasm and launch genome replication. In this review, we discuss the current mechanistic understanding of hantavirus entry, highlight gaps in our existing knowledge, and suggest areas for future inquiry.
Collapse
Affiliation(s)
- Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maria Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lara M Kleinfelter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Megan M Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
14
|
Klingström J, Smed-Sörensen A, Maleki KT, Solà-Riera C, Ahlm C, Björkström NK, Ljunggren HG. Innate and adaptive immune responses against human Puumala virus infection: immunopathogenesis and suggestions for novel treatment strategies for severe hantavirus-associated syndromes. J Intern Med 2019; 285:510-523. [PMID: 30663801 PMCID: PMC6850289 DOI: 10.1111/joim.12876] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two related hyperinflammatory syndromes are distinguished following infection of humans with hantaviruses: haemorrhagic fever with renal syndrome (HFRS) seen in Eurasia and hantavirus pulmonary syndrome (HPS) seen in the Americas. Fatality rates are high, up to 10% for HFRS and around 35%-40% for HPS. Puumala virus (PUUV) is the most common HFRS-causing hantavirus in Europe. Here, we describe recent insights into the generation of innate and adaptive cell-mediated immune responses following clinical infection with PUUV. First described are studies demonstrating a marked redistribution of peripheral blood mononuclear phagocytes (MNP) to the airways, a process that may underlie local immune activation at the site of primary infection. We then describe observations of an excessive natural killer (NK) cell activation and the persistence of highly elevated numbers of NK cells in peripheral blood following PUUV infection. A similar vigorous CD8 Tcell response is also described, though Tcell responses decline with viraemia. Like MNPs, many NK cells and CD8 T cells also localize to the lung upon acute PUUV infection. Following this, findings demonstrating the ability of hantaviruses, including PUUV, to cause apoptosis resistance in infected target cells, are described. These observations, and associated inflammatory cytokine responses, may provide new insights into HFRS and HPS disease pathogenesis. Based on similarities between inflammatory responses in severe hantavirus infections and other hyperinflammatory disease syndromes, we speculate whether some therapeutic interventions that have been successful in the latter conditions may also be applicable in severe hantavirus infections.
Collapse
Affiliation(s)
- J Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - K T Maleki
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - C Solà-Riera
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - C Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University Hospital, Umeå University, Umeå, Sweden
| | - N K Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - H G Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Raftery MJ, Abdelaziz MO, Hofmann J, Schönrich G. Hantavirus-Driven PD-L1/PD-L2 Upregulation: An Imperfect Viral Immune Evasion Mechanism. Front Immunol 2018; 9:2560. [PMID: 30559738 PMCID: PMC6287426 DOI: 10.3389/fimmu.2018.02560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
Viruses often subvert antiviral immune responses by taking advantage of inhibitory immune signaling. We investigated if hantaviruses use this strategy. Hantaviruses cause viral hemorrhagic fever (VHF) which is associated with strong immune activation resulting in vigorous CD8+ T cell responses. Surprisingly, we observed that hantaviruses strongly upregulate PD-L1 and PD-L2, the ligands of checkpoint inhibitor programmed death-1 (PD-1). We detected high amounts of soluble PD-L1 (sPD-L1) and soluble PD-L2 (sPD-L2) in sera from hantavirus-infected patients. In addition, we observed hantavirus-induced PD-L1 upregulation in mice with a humanized immune system. The two major target cells of hantaviruses, endothelial cells and monocyte-derived dendritic cells, strongly increased PD-L1 and PD-L2 surface expression upon hantavirus infection in vitro. As an underlying mechanism, we found increased transcript levels whereas membrane trafficking of PD-L1 was not affected. Further analysis revealed that hantavirus-associated inflammatory signals and hantaviral nucleocapsid (N) protein enhance PD-L1 and PD-L2 expression. Cell numbers were strongly reduced when hantavirus-infected endothelial cells were mixed with T cells in the presence of an exogenous proliferation signal compared to uninfected cells. This is compatible with the concept that virus-induced PD-L1 and PD-L2 upregulation contributes to viral immune escape. Intriguingly, however, we observed hantavirus-induced CD8+ T cell bystander activation despite strongly upregulated PD-L1 and PD-L2. This result indicates that hantavirus-induced CD8+ T cell bystander activation bypasses checkpoint inhibition allowing an early antiviral immune response upon virus infection.
Collapse
Affiliation(s)
- Martin J Raftery
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mohammed O Abdelaziz
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jörg Hofmann
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Günther Schönrich
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
16
|
Strandin T, Mäkelä S, Mustonen J, Vaheri A. Neutrophil Activation in Acute Hemorrhagic Fever With Renal Syndrome Is Mediated by Hantavirus-Infected Microvascular Endothelial Cells. Front Immunol 2018; 9:2098. [PMID: 30283445 PMCID: PMC6157395 DOI: 10.3389/fimmu.2018.02098] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) in humans. Both diseases are considered to be immunologically mediated but the exact pathological mechanisms are still poorly understood. Neutrophils are considered the first line of defense against invading microbes but little is still known of their role in virus infections. We wanted to study the role of neutrophils in HFRS using blood and tissue samples obtained from Puumala hantavirus (PUUV)-infected patients. We found that neutrophil activation products myeloperoxidase and neutrophil elastase, together with interleukin-8 (the major neutrophil chemotactic factor in humans), are strongly elevated in blood of acute PUUV-HFRS and positively correlate with kidney dysfunction, the hallmark clinical finding of HFRS. These markers localized mainly in the tubulointerstitial space in the kidneys of PUUV-HFRS patients suggesting neutrophil activation to be a likely component of the general immune response toward hantaviruses. We also observed increased levels of circulating extracellular histones at the acute stage of the disease supporting previous findings of neutrophil extracellular trap formation in PUUV-HFRS. Mechanistically, we did not find evidence for direct PUUV-mediated activation of neutrophils but instead primary blood microvascular endothelial cells acquired a pro-inflammatory phenotype and promoted neutrophil degranulation in response to PUUV infection in vitro. These results suggest that neutrophils are activated by hantavirus-infected endothelial cells and may contribute to the kidney pathology which determines the severity of HFRS.
Collapse
Affiliation(s)
- Tomas Strandin
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Satu Mäkelä
- Department of Internal Medicine, Faculty of Medicine and Life Sciences, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Jukka Mustonen
- Department of Internal Medicine, Faculty of Medicine and Life Sciences, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Antti Vaheri
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Schönrich G, Raftery MJ. Exploring the Immunopathogenesis of Viral Hemorrhagic Fever in Mice with a Humanized Immune System. Front Immunol 2017; 8:1202. [PMID: 29018450 PMCID: PMC5622932 DOI: 10.3389/fimmu.2017.01202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/11/2017] [Indexed: 01/23/2023] Open
Abstract
Viral hemorrhagic fever (VHF) as a disease entity was first codified in the 1930s by soviet scientists investigating patients suffering from hantavirus infection. The group of hemorrhagic fever viruses (HFVs) has since expanded to include members from at least four different virus families: Arenaviridae, Bunyaviridae, Filoviridae, and Flaviviridae, all enveloped single-stranded RNA viruses. After infection, the natural hosts of HFVs do not develop symptoms, whereas humans can be severely affected. This observation and other evidence from experimental data suggest that the human immune system plays a crucial role in VHF pathogenesis. For this reason mice with a human immune system, referred to here as humanized mice (humice), are valuable tools that provide insight into disease mechanisms and allow for preclinical testing of novel vaccinations approaches as well as antiviral agents. In this article, we review the impact of humice in VHF research.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin J Raftery
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
18
|
Jiang H, Du H, Wang LM, Wang PZ, Bai XF. Corrigendum: Hemorrhagic Fever with Renal Syndrome: Pathogenesis and Clinical Picture. Front Cell Infect Microbiol 2016; 6:178. [PMID: 27981038 PMCID: PMC5143613 DOI: 10.3389/fcimb.2016.00178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 11/22/2016] [Indexed: 12/02/2022] Open
Affiliation(s)
- Hong Jiang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Hong Du
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Li M Wang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University Xi'an, China
| | - Ping Z Wang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Xue F Bai
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| |
Collapse
|
19
|
Schönrich G, Raftery MJ. Neutrophil Extracellular Traps Go Viral. Front Immunol 2016; 7:366. [PMID: 27698656 PMCID: PMC5027205 DOI: 10.3389/fimmu.2016.00366] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are the most numerous immune cells. Their importance as the first line of defense against bacterial and fungal pathogens is well described. In contrast, the role of neutrophils in controlling viral infections is less clear. Bacterial and fungal pathogens can stimulate neutrophils extracellular traps (NETs) in a process called NETosis. Although NETosis has previously been described as a special form of programmed cell death, there are forms of NET production that do not end with the demise of neutrophils. As an end result of NETosis, genomic DNA complexed with microbicidal proteins is expelled from neutrophils. These structures can kill pathogens or at least prevent their local spread within host tissue. On the other hand, disproportionate NET formation can cause local or systemic damage. Only recently, it was recognized that viruses can also induce NETosis. In this review, we discuss the mechanisms by which NETs are produced in the context of viral infection and how this may contribute to both antiviral immunity and immunopathology. Finally, we shed light on viral immune evasion mechanisms targeting NETs.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Martin J Raftery
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|
20
|
Tsergouli K, Papa A. Immune response in Dobrava-Belgrade virus infections. Arch Virol 2016; 161:3413-3420. [PMID: 27619797 PMCID: PMC7102332 DOI: 10.1007/s00705-016-3039-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/27/2016] [Indexed: 12/12/2022]
Abstract
Dobrava-Belgrade virus (DOBV) is a hantavirus that causes a disease in humans known as hemorrhagic fever with renal syndrome. Hallmarks of hantaviral infections are increased vascular permeability due to dysregulation of the endothelial cell barrier and acute thrombocytopenia. In order to gain insight into the immune response in DOBV infections, the serum levels of 27 cytokines in 24 hospitalized Greek HFRS patients were evaluated. Compared to the control group, significantly higher IL-1ra, IL-6, IL-8, IL-9, IL-10, GM-CSF, IP-10, MIP-1b, TNF-α and VEGF levels were found in severe cases, while in non-severe cases, IL-13 and TNF-α levels were significantly higher (p < 0.05). In all groups, IP-10 was increased and RANTES was decreased. Significant and time- (after onset of illness) dependent differences among fatal, severe and non-severe cases were seen. VEGF was positively associated with disease severity. A strong immune response was seen during the first week of illness, especially in severe cases, while the response in non-severe cases was weaker and delayed. The Th1 response was strong in non-severe cases and weak in the fatal case, while a mixed Th1/Th2 immune response was seen in the survivors of severe disease.
Collapse
Affiliation(s)
- Katerina Tsergouli
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
21
|
Ermonval M, Baychelier F, Tordo N. What Do We Know about How Hantaviruses Interact with Their Different Hosts? Viruses 2016; 8:v8080223. [PMID: 27529272 PMCID: PMC4997585 DOI: 10.3390/v8080223] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/27/2016] [Accepted: 08/05/2016] [Indexed: 11/26/2022] Open
Abstract
Hantaviruses, like other members of the Bunyaviridae family, are emerging viruses that are able to cause hemorrhagic fevers. Occasional transmission to humans is due to inhalation of contaminated aerosolized excreta from infected rodents. Hantaviruses are asymptomatic in their rodent or insectivore natural hosts with which they have co-evolved for millions of years. In contrast, hantaviruses cause different pathologies in humans with varying mortality rates, depending on the hantavirus species and its geographic origin. Cases of hemorrhagic fever with renal syndrome (HFRS) have been reported in Europe and Asia, while hantavirus cardiopulmonary syndromes (HCPS) are observed in the Americas. In some cases, diseases caused by Old World hantaviruses exhibit HCPS-like symptoms. Although the etiologic agents of HFRS were identified in the early 1980s, the way hantaviruses interact with their different hosts still remains elusive. What are the entry receptors? How do hantaviruses propagate in the organism and how do they cope with the immune system? This review summarizes recent data documenting interactions established by pathogenic and nonpathogenic hantaviruses with their natural or human hosts that could highlight their different outcomes.
Collapse
Affiliation(s)
- Myriam Ermonval
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| | - Florence Baychelier
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| | - Noël Tordo
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
22
|
A Cluster of Three Cases of Hantavirus Pulmonary Syndrome among Canadian Military Personnel. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2016; 2016:2757969. [PMID: 27366160 PMCID: PMC4904570 DOI: 10.1155/2016/2757969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/14/2016] [Indexed: 11/25/2022]
Abstract
Hantavirus pulmonary syndrome (HPS) is a rare illness in eastern Canada. We present three cases of HPS among military personnel in Quebec. The three cases shared a common exposure to mouse excreta while engaged in military training in Alberta, a western province of Canada.
Collapse
|