1
|
Sun H, Jiang L, Chen J, Kang C, Yan J, Ma S, Zhao M, Guo H, Yang B. Genomic island-encoded LmiA regulates acid resistance and biofilm formation in enterohemorrhagic Escherichia coli O157:H7. Gut Microbes 2025; 17:2443107. [PMID: 39690480 DOI: 10.1080/19490976.2024.2443107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important intestinal pathogen that causes severe foodborne diseases. We previously demonstrated that the genomic island-encoded regulator LmiA activates the locus of enterocyte effacement (LEE) genes to promote EHEC O157:H7 adherence and colonization in the host intestine. However, whether LmiA is involved in the regulation of any other biological processes in EHEC O157:H7 remains largely unexplored. Here, we compared global gene expression differences between the EHEC O157:H7 wild-type strain and an lmiA mutant strain using RNA-seq technology. Genes whose expression was affected by LmiA were identified and classified using the Cluster of Orthologous Groups (COG) database. Specifically, the expression of acid resistance genes (including gadA, gadB, and gadC) was significantly downregulated, whereas the transcript levels of biofilm-related genes (including Z_RS00105, yadN, Z_RS03020, and fdeC) were increased, in the ΔlmiA mutant compared to the EHEC O157:H7 wild-type strain. Further investigation revealed that LmiA enhanced the acid resistance of EHEC O157:H7 by directly activating the transcription of gadA and gadBC. In contrast, LmiA reduced EHEC O157:H7 biofilm formation by indirectly repressing the expression of biofilm-related genes. Furthermore, LmiA-mediated regulation of acid resistance and biofilm formation is highly conserved and widespread among EHEC and enteropathogenic E. coli (EPEC). Our findings provide essential insight into the regulatory function of LmiA in EHEC O157:H7, particularly its role in regulating acid resistance and biofilm formation.
Collapse
Affiliation(s)
- Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Jingnan Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Shuai Ma
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Mengjie Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Houliang Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| |
Collapse
|
2
|
Contreras CA, Hazen TH, Guadarrama C, Cervantes-Rivera R, Ochoa TJ, Vinuesa P, Rasko DA, Puente JL. Phenotypic diversity of type III secretion system activity in enteropathogenic Escherichia coli clinical isolates. J Med Microbiol 2024; 73:001907. [PMID: 39432330 PMCID: PMC11493143 DOI: 10.1099/jmm.0.001907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction. Enteropathogenic Escherichia coli (EPEC) strains pose a significant threat as a leading cause of severe childhood diarrhoea in developing nations. EPEC pathogenicity relies on the type III secretion system (T3SS) encoded by the locus of enterocyte effacement (LEE), facilitating the secretion and translocation of bacterial effector proteins.Gap Statement. While the regulatory roles of PerC (plasmid-encoded regulator) and GrlA (global regulator of LEE-activator) in ler expression and LEE gene activation are well-documented in the EPEC prototype strain E2348/69, understanding the variability in LEE gene expression control mechanisms among clinical EPEC isolates remains an area requiring further investigation.Aim. This study aims to explore the diversity in LEE gene expression control mechanisms among clinical EPEC isolates through a comparative analysis of secretion profiles under defined growth conditions favouring either PerC- or GrlA-mediated activation of LEE expression.Methodology. We compared T3SS-dependent secretion patterns and promoter expression in both typical EPEC (tEPEC) and atypical EPEC (aEPEC) clinical isolates under growth conditions favouring either PerC- or GrlA-mediated activation of LEE expression. Additionally, we conducted promoter reporter activity assays, quantitative real-time PCR and Western blot experiments to assess gene expression activity.Results. Significant differences in T3SS-dependent secretion were observed among tEPEC and aEPEC strains, independent of LEE sequence variations or T3SS gene functionality. Notably, a clinical tEPEC isolate exhibited increased secretion levels under repressive growth conditions and in the absence of both PerC and GrlA, implicating an alternative mechanism in the activation of Ler (LEE-encoded regulator) expression.Conclusion. Our findings indicate that uncharacterized LEE regulatory mechanisms contribute to phenotypic diversity among clinical EPEC isolates, though their impact on clinical outcomes remains unknown. This challenges the conventional understanding based on reference strains and highlights the need to investigate beyond established models to comprehensively elucidate EPEC pathogenesis.
Collapse
Affiliation(s)
- Carmen A. Contreras
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
- Programa de Medicina Humana, Universidad Privada Antenor Orrego, Trujillo, Peru
| | - Tracy H. Hazen
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carmen Guadarrama
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - Ramón Cervantes-Rivera
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - Theresa J. Ochoa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- University of Texas School of Public Health, Houston, USA
| | - Pablo Vinuesa
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - David A. Rasko
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jose L. Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| |
Collapse
|
3
|
Cottam C, White RT, Beck LC, Stewart CJ, Beatson SA, Lowe EC, Grinter R, Connolly JPR. Metabolism of L-arabinose converges with virulence regulation to promote enteric pathogen fitness. Nat Commun 2024; 15:4462. [PMID: 38796512 PMCID: PMC11127945 DOI: 10.1038/s41467-024-48933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/16/2024] [Indexed: 05/28/2024] Open
Abstract
Virulence and metabolism are often interlinked to control the expression of essential colonisation factors in response to host-associated signals. Here, we identified an uncharacterised transporter of the dietary monosaccharide ʟ-arabinose that is widely encoded by the zoonotic pathogen enterohaemorrhagic Escherichia coli (EHEC), required for full competitive fitness in the mouse gut and highly expressed during human infection. Discovery of this transporter suggested that EHEC strains have an enhanced ability to scavenge ʟ-arabinose and therefore prompted us to investigate the impact of this nutrient on pathogenesis. Accordingly, we discovered that ʟ-arabinose enhances expression of the EHEC type 3 secretion system, increasing its ability to colonise host cells, and that the underlying mechanism is dependent on products of its catabolism rather than the sensing of ʟ-arabinose as a signal. Furthermore, using the murine pathogen Citrobacter rodentium, we show that ʟ-arabinose metabolism provides a fitness benefit during infection via virulence factor regulation, as opposed to supporting pathogen growth. Finally, we show that this mechanism is not restricted to ʟ-arabinose and extends to other pentose sugars with a similar metabolic fate. This work highlights the importance integrating central metabolism with virulence regulation in order to maximise competitive fitness of enteric pathogens within the host-niche.
Collapse
Affiliation(s)
- Curtis Cottam
- Newcastle University Biosciences Institute, Newcastle University, NE2 4HH, Newcastle-upon-Tyne, UK
| | - Rhys T White
- Institute of Environmental Science and Research, Wellington, New Zealand
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lauren C Beck
- Newcastle University Translation and Clinical Research Institute, Newcastle University, NE2 4HH, Newcastle-upon-Tyne, UK
| | - Christopher J Stewart
- Newcastle University Translation and Clinical Research Institute, Newcastle University, NE2 4HH, Newcastle-upon-Tyne, UK
| | - Scott A Beatson
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Elisabeth C Lowe
- Newcastle University Biosciences Institute, Newcastle University, NE2 4HH, Newcastle-upon-Tyne, UK
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - James P R Connolly
- Newcastle University Biosciences Institute, Newcastle University, NE2 4HH, Newcastle-upon-Tyne, UK.
| |
Collapse
|
4
|
Liu B, Jiang L, Liu Y, Sun H, Yan J, Kang C, Yang B. Enterohaemorrhagic E. coli utilizes host- and microbiota-derived L-malate as a signaling molecule for intestinal colonization. Nat Commun 2023; 14:7227. [PMID: 37945607 PMCID: PMC10636207 DOI: 10.1038/s41467-023-43149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The mammalian gastrointestinal tract is a complex environment that hosts a diverse microbial community. To establish infection, bacterial pathogens must be able to compete with the indigenous microbiota for nutrients, as well as sense the host environment and modulate the expression of genes essential for colonization and virulence. Here, we found that enterohemorrhagic Escherichia coli (EHEC) O157:H7 imports host- and microbiota-derived L-malate using the DcuABC transporters and converts these substrates into fumarate to fuel anaerobic fumarate respiration during infection, thereby promoting its colonization of the host intestine. Moreover, L-malate is important not only for nutrient metabolism but also as a signaling molecule that activates virulence gene expression in EHEC O157:H7. The complete virulence-regulating pathway was elucidated; the DcuS/DcuR two-component system senses high L-malate levels and transduces the signal to the master virulence regulator Ler, which in turn activates locus of enterocyte effacement (LEE) genes to promote EHEC O157:H7 adherence to epithelial cells of the large intestine. Disruption of this virulence-regulating pathway by deleting either dcuS or dcuR significantly reduced colonization by EHEC O157:H7 in the infant rabbit intestinal tract; therefore, targeting these genes and altering physiological aspects of the intestinal environment may offer alternatives for EHEC infection treatment.
Collapse
Affiliation(s)
- Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, P. R. China.
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, P. R. China.
| |
Collapse
|
5
|
Yang W, Sun H, Yan J, Kang C, Wu J, Yang B. Enterohemorrhagic Escherichia coli senses microbiota-derived nicotinamide to increase its virulence and colonization in the large intestine. Cell Rep 2023; 42:112638. [PMID: 37294635 DOI: 10.1016/j.celrep.2023.112638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/11/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a foodborne pathogen that specifically colonizes and infects the human large intestine. EHEC O157:H7 engages intricate regulatory pathways to detect host intestinal signals and regulate virulence-related gene expression during colonization and infection. However, the overall EHEC O157:H7 virulence regulatory network in the human large intestine remains incompletely understood. Here, we report a complete signal regulatory pathway where the EvgSA two-component system responds to high-nicotinamide levels produced by microbiota in the large intestine and directly activates loci of enterocyte effacement genes to promote EHEC O157:H7 adherence and colonization. This EvgSA-mediated nicotinamide signaling regulatory pathway is conserved and widespread among several other EHEC serotypes. Moreover, disruption of this virulence-regulating pathway by the deletion of evgS or evgA significantly decreased EHEC O157:H7 adherence and colonization in the mouse intestinal tract, indicating that these genes could be potential targets for the development of new therapeutics for EHEC O157:H7 infection.
Collapse
Affiliation(s)
- Wen Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Junli Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China.
| |
Collapse
|
6
|
Wu P, Wang Q, Yang Q, Feng X, Liu X, Sun H, Yan J, Kang C, Liu B, Liu Y, Yang B. A Novel Role of the Two-Component System Response Regulator UvrY in Enterohemorrhagic Escherichia coli O157:H7 Pathogenicity Regulation. Int J Mol Sci 2023; 24:ijms24032297. [PMID: 36768620 PMCID: PMC9916836 DOI: 10.3390/ijms24032297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important human pathogen causing severe diseases, such as hemorrhagic colitis and lethal hemolytic uremic syndrome. The signal-sensing capability of EHEC O157:H7 at specific host colonization sites via different two-component systems (TCSs) is closely related to its pathogenicity during infection. However, the types of systems involved and the regulatory mechanisms are not fully understood. Here, we investigated the function of the TCS BarA/UvrY regulator UvrY in the pathogenicity regulation of EHEC O157:H7. Our results showed that UvrY acts as a positive regulator of EHEC O157:H7 for cellular adherence and mouse colonization through the transcriptional activation of the locus for enterocyte effacement (LEE) pathogenic genes. Furthermore, this regulation is mediated by the LEE island master regulator, Ler. Our results highlight the significance of UvrY in EHEC O157:H7 pathogenicity and underline the unknown importance of BarA/UvrY in colonization establishment and intestinal adaptability during infection.
Collapse
Affiliation(s)
- Pan Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Qian Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Qian Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Xiaohui Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Xingmei Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Nankai International Advanced Research Institute, Nankai University, Shenzhen 518000, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Nankai International Advanced Research Institute, Nankai University, Shenzhen 518000, China
- Correspondence: (Y.L.); (B.Y.)
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Correspondence: (Y.L.); (B.Y.)
| |
Collapse
|
7
|
Smith AD, Chen C, Cheung L, Dawson HD. Raw potato starch alters the microbiome, colon and cecal gene expression, and resistance to Citrobacter rodentium infection in mice fed a Western diet. Front Nutr 2023; 9:1057318. [PMID: 36704785 PMCID: PMC9871501 DOI: 10.3389/fnut.2022.1057318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Resistant starches (RS) are fermented in the cecum and colon to produce short-chain fatty acids and other microbial metabolites that can alter host physiology and the composition of the microbiome. We previously showed that mice fed a Total Western Diet (TWD) based on NHANES data that mimics the composition of a typical American diet, containing resistant potato starch (RPS), produced concentration dependent changes to the cecal short-chain fatty acids, the microbiome composition as well as gene expression changes in the cecum and colon that were most prevalent in mice fed the 10% RPS diet. We were then interested in whether feeding TWD/RPS would alter the resistance to bacterial-induced colitis caused by Citrobacter rodentium (Cr), a mouse pathogen that shares 66.7% of encoded genes with Enteropathogenic Escherichia coli. Mice were fed the TWD for 6 weeks followed by a 3-weeks on the RPS diets before infecting with Cr. Fecal Cr excretion was monitored over time and fecal samples were collected for 16S sequencing. Mice were euthanized on day 12 post-infection and cecal contents collected for 16S sequencing. Cecum and colon tissues were obtained for gene expression analysis, histology and to determine the level of mucosa-associated Cr. Feeding RPS increased the percentage of mice productively infected by Cr and fecal Cr excretion on day 4 post-infection. Mice fed the TWD/10% RPS diet also had greater colonization of colonic tissue at day 12 post-infection and colonic pathology. Both diet and infection altered the fecal and cecal microbiome composition with increased levels of RPS resulting in decreased α-diversity that was partially reversed by Cr infection. RNASeq analysis identified several mechanistic pathways that could be associated with the increased colonization of Cr-infected mice fed 10% RPS. In the distal colon we found a decrease in enrichment for genes associated with T cells, B cells, genes associated with the synthesis of DHA-derived SPMs and VA metabolism/retinoic acid signaling. We also found an increase in the expression of the potentially immunosuppressive gene, Ido1. These results suggest that high-level consumption of RPS in the context of a typical American diet, may alter susceptibility to gastrointestinal bacterial infections.
Collapse
|
8
|
Jia T, Wu P, Liu B, Liu M, Mu H, Liu D, Huang M, Li L, Wei Y, Wang L, Yang Q, Liu Y, Yang B, Huang D, Yang L, Liu B. The phosphate-induced small RNA EsrL promotes E. coli virulence, biofilm formation, and intestinal colonization. Sci Signal 2023; 16:eabm0488. [PMID: 36626577 DOI: 10.1126/scisignal.abm0488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Escherichia coli are part of the normal intestinal microbiome, but some enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli (EPEC) strains can cause potentially life-threatening gastroenteritis. Virulence factors underlying the ability of EHEC and EPEC to cause disease include those encoded in the locus of the enterocyte effacement (LEE) pathogenicity island. Here, we demonstrated that EsrL, a small RNA present in many E. coli strains, promoted pathogenicity, adhesion, and biofilm formation in EHEC and EPEC. PhoB, the response regulator of the two-component system that controls cellular responses to phosphate, directly repressed esrL expression under low-phosphate conditions. A phosphate-rich environment, similar to that of the human intestine, relieved PhoB-mediated repression of esrL. EsrL interacted with and stabilized the LEE-encoded regulator (ler) transcript, which encodes a transcription factor for LEE genes, leading to increased bacterial adhesion to cultured cells and colonization of the rabbit colon. EsrL also bound to and stabilized the fimC transcript, which encodes a chaperone that is required for the assembly of type 1 pili, resulting in enhanced cell adhesion in pathogenic E. coli and enhanced biofilm formation in pathogenic and nonpathogenic E. coli. Our findings demonstrate that EsrL stimulates the expression of virulence genes in both EHEC and EPEC under phosphate-rich conditions, thus promoting the pathogenicity of EHEC and EPEC in the nutrient-rich gut environment.
Collapse
Affiliation(s)
- Tianyuan Jia
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China.,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Pan Wu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Bin Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Miaomiao Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Huiqian Mu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Dan Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Min Huang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Linxing Li
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yi Wei
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Lu Wang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Qian Yang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yutao Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Bin Yang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Di Huang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China.,Nankai International Advanced Research Institute, Shenzhen, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Bin Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China.,Nankai International Advanced Research Institute, Shenzhen, China
| |
Collapse
|
9
|
Zhao X, Sun Y, Ma Y, Xu Y, Guan H, Wang D. Research advances on the contamination of vegetables by Enterohemorrhagic Escherichia coli: pathways, processes and interaction. Crit Rev Food Sci Nutr 2022; 64:4833-4847. [PMID: 36377729 DOI: 10.1080/10408398.2022.2146045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enterohemorrhagic Escherichia coli is considered one of the primary bacterial pathogens that cause foodborne diseases because it can survive in meat, vegetables and so on. Understanding of the effect of vegetable characteristics on the adhesion and proliferation process of EHEC is necessary to develop control measures. In this review, the amount and methods of adhesion, the internalization pathway and proliferation process of EHEC have been described during the vegetable contamination. Types, cultivars, tissue characteristics, leaf age, and damage degree can affect EHEC adhesion on vegetables. EHEC cells contaminate the root surface of vegetables through soil and further internalize. It can also contaminate the stem scar tissue of vegetables by rain or irrigation water and internalize the vertical axis, as well as the stomata, necrotic lesions and damaged tissues of vegetable leaves. After EHEC adhered to the vegetables, they may further proliferate and form biofilms. Leaf and fruit tissues were more sensitive to biofilm formation, and shedding rate of biofilms on epidermis tissue was faster. Insights into the mechanisms of vegetable contamination by EHEC, including the role of exopolysaccharides and proteins responsible for movement, adhesion and oxidative stress response could reveal the molecular mechanism by which EHEC contaminates vegetables.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yeting Sun
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yue Ma
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yujia Xu
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hongyang Guan
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Dan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
10
|
Simulated Colonic Fluid Replicates the In Vivo Growth Capabilities of Citrobacter rodentium cpxRA Mutants and Uncovers Additive Effects of Cpx-Regulated Genes on Fitness. Infect Immun 2022; 90:e0031422. [PMID: 36000875 PMCID: PMC9476912 DOI: 10.1128/iai.00314-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Citrobacter rodentium is an attaching and effacing (A/E) pathogen used to model enteropathogenic and enterohemorrhagic Escherichia coli infections in mice. During colonization, C. rodentium must adapt to stresses in the gastrointestinal tract, such as antimicrobial peptides, pH changes, and bile salts. The Cpx envelope stress response (ESR) is a two-component system used by some bacteria to remediate stress by modulating gene expression, and it is necessary for C. rodentium pathogenesis in mice. Here, we utilized simulated colonic fluid (SCF) to mimic the gastrointestinal environment, which we show strongly induces the Cpx ESR and highlights a fitness defect specific to the ΔcpxRA mutant. While investigating genes in the Cpx regulon that may contribute to C. rodentium pathogenesis, we found that the absence of the Cpx ESR resulted in higher expression of the locus of enterocyte effacement (LEE) master regulator, ler, and that the genes yebE, ygiB, bssR, and htpX relied on CpxRA for proper expression. We then determined that CpxRA and select gene mutants were essential for proper growth in SCF when in the presence of extraneous stressors and in competition. Although none of the Cpx-regulated gene mutants exhibited marked virulence phenotypes in vivo, the ΔcpxRA mutant had reduced colonization and attenuated virulence, as previously determined, which replicated the in vitro growth phenotypes specific to SCF. Overall, these results indicate that the ΔcpxRA virulence defect is not due to any single Cpx regulon gene examined. Instead, attenuation may be the result of defective growth in the colonic environment resulting from the collective impact of multiple Cpx-regulated genes.
Collapse
|
11
|
Sun H, Wang M, Liu Y, Wu P, Yao T, Yang W, Yang Q, Yan J, Yang B. Regulation of flagellar motility and biosynthesis in enterohemorrhagic Escherichia coli O157:H7. Gut Microbes 2022; 14:2110822. [PMID: 35971812 PMCID: PMC9387321 DOI: 10.1080/19490976.2022.2110822] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTARCTEnterohemorrhagic Escherichia coli (EHEC) O157:H7 is a human pathogen that causes a variety of diseases, such as hemorrhagic colitis and lethal hemolytic uremic syndrome. Flagellum-dependent motility plays diverse roles in the pathogenesis of EHEC O157:H7, including its migration to an optimal host site, adherence and colonization, survival at the infection site, and post-infection dispersal. However, it is very expensive for cellular economy in terms of the number of genes and the energy required for flagellar biosynthesis and functioning. Furthermore, the flagellar filament bears strong antigenic properties that induce a strong host immune response. Consequently, the flagellar gene expression and biosynthesis are highly regulated to occur at the appropriate time and place by different regulatory influences. The present review focuses on the regulatory mechanisms of EHEC O157:H7 motility and flagellar biosynthesis, especially in terms of flagellar gene regulation by environmental factors, regulatory proteins, and small regulatory RNAs.
Collapse
Affiliation(s)
- Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Min Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Pan Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Ting Yao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Wen Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Qian Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China,CONTACT Bin Yang TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin300457, P. R. China
| |
Collapse
|
12
|
Gelalcha BD, Brown SM, Crocker HE, Agga GE, Kerro Dego O. Regulation Mechanisms of Virulence Genes in Enterohemorrhagic Escherichia coli. Foodborne Pathog Dis 2022; 19:598-612. [PMID: 35921067 DOI: 10.1089/fpd.2021.0103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is one of the most common E. coli pathotypes reported to cause several outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen, and ruminants, especially cattle, are considered important reservoirs for the most common EHEC serotype, E. coli O157:H7. Humans are infected indirectly through the consumption of food (milk, meat, leafy vegetables, and fruits) and water contaminated by animal feces or direct contact with carrier animals or humans. E. coli O157:H7 is one of the most frequently reported causes of foodborne illnesses in developed countries. It employs two essential virulence mechanisms to trigger damage to the host. These are the development of attaching and effacing (AE) phenotypes on the intestinal mucosa of the host and the production of Shiga toxin (Stx) that causes hemorrhagic colitis and hemolytic uremic syndrome. The AE phenotype is controlled by the pathogenicity island, the locus of enterocyte effacement (LEE). The induction of both AE and Stx is under strict and highly complex regulatory mechanisms. Thus, a good understanding of these mechanisms, major proteins expressed, and environmental cues involved in the regulation of the expression of the virulence genes is vital to finding a method to control the colonization of reservoir hosts, especially cattle, and disease development in humans. This review is a concise account of the current state of knowledge of virulence gene regulation in the LEE-positive EHEC.
Collapse
Affiliation(s)
- Benti D Gelalcha
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Selina M Brown
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Hannah E Crocker
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, USA
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| |
Collapse
|
13
|
Enterohemorrhagic Escherichia coli and a Fresh View on Shiga Toxin-Binding Glycosphingolipids of Primary Human Kidney and Colon Epithelial Cells and Their Toxin Susceptibility. Int J Mol Sci 2022; 23:ijms23136884. [PMID: 35805890 PMCID: PMC9266556 DOI: 10.3390/ijms23136884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research.
Collapse
|
14
|
Intestinal Enteroid Monolayers Model the Human Intestinal Environment for Escherichia coli Infection. J Bacteriol 2022; 204:e0062021. [PMID: 35389257 DOI: 10.1128/jb.00620-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli O157:H7 is an enteric pathogen responsible for bloody diarrhea, hemolytic uremic syndrome, and in severe cases, even death. The study of O157:H7 is difficult due to the high specificity of the bacteria for the human intestine, along with our lack of sufficiently complex human cell culture models. The recent development of human intestinal enteroids derived from intestinal crypt multipotent stem cells has allowed us to construct two-dimensional differentiated epithelial monolayers grown in transwells that mimic the human intestine. Unlike previous studies, saline was added to the apical surface, while maintaining culture media in the basolateral well. The monolayers continued to grow and differentiate with apical saline. Apical infection with O157:H7 or commensal E. coli resulted in robust bacterial growth from 105 to over 108 over 24 h. Despite this robust bacterial growth, commensal E. coli neither adhered to nor damaged the epithelial barrier over 30 h. However, O157:H7 was almost fully adhered (>90%) by 18 h with epithelial damage observed by 30 h. O157:H7 contains the locus of enterocyte effacement (LEE) pathogenicity island responsible for attachment and damage to the intestinal epithelium. Previous studies report the ability of nutrients such as biotin, d-serine, and L-fucose to downregulate LEE gene expression. O157:H7 treated with biotin or L-fucose, but not d-serine displayed both decreased attachment and reduced epithelial damage over 36 h. These data illustrate enteroid monolayers can serve as a suitable model for the study of O157:H7 pathogenesis, and identification of potential therapeutics. IMPORTANCE O157:H7 is difficult to study due to its high specificity for the human intestine and the lack of sufficiently complex human cell culture models. The recent development of human intestinal enteroids derived from intestinal crypt multipotent stem cells has allowed us to construct two-dimensional differentiated epithelial monolayers grown in transwells that mimic the human intestine. Our data illustrates enteroid monolayers can serve as a suitable model for the study of O157:H7 pathogenesis, and allow for identification of potential therapeutics.
Collapse
|
15
|
Elucidation of a complete mechanical signaling and virulence activation pathway in enterohemorrhagic Escherichia coli. Cell Rep 2022; 39:110614. [PMID: 35385749 DOI: 10.1016/j.celrep.2022.110614] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 12/09/2021] [Accepted: 03/13/2022] [Indexed: 12/23/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important extracellular human pathogen. The initial adherence of EHEC to host cells is a major cue for transcriptional induction of the locus of enterocyte effacement (LEE) genes to promote colonization and pathogenesis, but the mechanism through which this adherence is sensed and the LEE is induced remains largely elusive. Here, we report a complete signal transduction pathway for this virulence activation process. In this pathway, the outer-membrane lipoprotein NlpE senses a mechanical cue generated from initial host adherence and activates the BaeSR two-component regulatory system; the response regulator BaeR then directly activates the expression of airA located on O-island-134 and encoding a LEE transcriptional activator. Disruption of this pathway severely attenuates EHEC O157:H7 virulence both in vitro and in vivo. This study provides further insights into the evolution of EHEC pathogenesis and the host-pathogen interaction.
Collapse
|
16
|
Abstract
The type III secretion system (T3SS) is crucial for the virulence of several pathogenic Escherichia coli species as well as for other gram-negative bacterial strains. Therefore, the ability to monitor this system constitutes a valuable tool for assessing the involvement of different proteins in bacterial virulence, for identifying critical domains and specific mutations, and for evaluating the antivirulence activities of various drugs. The major advantage of the T3SS secretion assay for E. coli over assays for other gram-negative pathogens is that it does not necessarily require specific antibodies. Here, we describe how to grow enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) strains under T3SS-inducing conditions, separate the supernatant fraction from the bacterial pellet, analyze this fraction on sodium dodecyl sulfate (SDS)-polyacrylamide gels, and evaluate the level of T3SS activity. We describe a qualitative analysis using Coomassie staining and a quantitative assay using western blotting.
Collapse
Affiliation(s)
- Bosko Mitrovic
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
17
|
Neetu N, Katiki M, Mahto JK, Sharma M, Narayanan A, Maity S, Tomar S, Ambatipudi K, Sharma AK, Yernool D, Kumar P. Deciphering the enigma of missing DNA binding domain of LacI family transcription factors. Arch Biochem Biophys 2021; 713:109060. [PMID: 34666048 DOI: 10.1016/j.abb.2021.109060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/19/2022]
Abstract
Catabolite repressor activator (Cra) is a member of the LacI family transcriptional regulator distributed across a wide range of bacteria and regulates the carbon metabolism and virulence gene expression. In numerous studies to crystallize the apo form of the LacI family transcription factor, the N-terminal domain (NTD), which functions as a DNA-binding domain, has been enigmatically missing from the final resolved structures. It was speculated that the NTD is disordered or unstable and gets cleaved during crystallization. Here, we have determined the crystal structure of Cra from Escherichia coli (EcCra). The structure revealed a well-defined electron density for the C-terminal domain (CTD). However, electron density was missing for the first 56 amino acids (NTD). Our data reveal for the first time that EcCra undergoes a spontaneous cleavage at the conserved Asn 50 (N50) site, which separates the N-terminal DNA binding domain from the C-terminal effector molecule binding domain. With the site-directed mutagenesis, we confirm the involvement of residue N50 in the spontaneous cleavage phenomenon. Furthermore, the Isothermal titration calorimetry (ITC) assay of the EcCra-NTD with DNA showed EcCra-NTD is in a functional conformation state and retains its DNA binding activity.
Collapse
Affiliation(s)
- Neetu Neetu
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Madhusudhanarao Katiki
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Jai Krishna Mahto
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Monica Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Anoop Narayanan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Dinesh Yernool
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47906, USA
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
18
|
Genome-Scale Metabolic Models and Machine Learning Reveal Genetic Determinants of Antibiotic Resistance in Escherichia coli and Unravel the Underlying Metabolic Adaptation Mechanisms. mSystems 2021; 6:e0091320. [PMID: 34342537 PMCID: PMC8409726 DOI: 10.1128/msystems.00913-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial resistance (AMR) is becoming one of the largest threats to public health worldwide, with the opportunistic pathogen Escherichia coli playing a major role in the AMR global health crisis. Unravelling the complex interplay between drug resistance and metabolic rewiring is key to understand the ability of bacteria to adapt to new treatments and to the development of new effective solutions to combat resistant infections. We developed a computational pipeline that combines machine learning with genome-scale metabolic models (GSMs) to elucidate the systemic relationships between genetic determinants of resistance and metabolism beyond annotated drug resistance genes. Our approach was used to identify genetic determinants of 12 AMR profiles for the opportunistic pathogenic bacterium E. coli. Then, to interpret the large number of identified genetic determinants, we applied a constraint-based approach using the GSM to predict the effects of genetic changes on growth, metabolite yields, and reaction fluxes. Our computational platform leads to multiple results. First, our approach corroborates 225 known AMR-conferring genes, 35 of which are known for the specific antibiotic. Second, integration with the GSM predicted 20 top-ranked genetic determinants (including accA, metK, fabD, fabG, murG, lptG, mraY, folP, and glmM) essential for growth, while a further 17 top-ranked genetic determinants linked AMR to auxotrophic behavior. Third, clusters of AMR-conferring genes affecting similar metabolic processes are revealed, which strongly suggested that metabolic adaptations in cell wall, energy, iron and nucleotide metabolism are associated with AMR. The computational solution can be used to study other human and animal pathogens. IMPORTANCEEscherichia coli is a major public health concern given its increasing level of antibiotic resistance worldwide and extraordinary capacity to acquire and spread resistance via horizontal gene transfer with surrounding species and via mutations in its existing genome. E. coli also exhibits a large amount of metabolic pathway redundancy, which promotes resistance via metabolic adaptability. In this study, we developed a computational approach that integrates machine learning with metabolic modeling to understand the correlation between AMR and metabolic adaptation mechanisms in this model bacterium. Using our approach, we identified AMR genetic determinants associated with cell wall modifications for increased permeability, virulence factor manipulation of host immunity, reduction of oxidative stress toxicity, and changes to energy metabolism. Unravelling the complex interplay between antibiotic resistance and metabolic rewiring may open new opportunities to understand the ability of E. coli, and potentially of other human and animal pathogens, to adapt to new treatments.
Collapse
|
19
|
Sun Y, Ma Y, Guan H, Liang H, Zhao X, Wang D. Adhesion mechanism and biofilm formation of Escherichia coli O157:H7 in infected cucumber (Cucumis sativus L.). Food Microbiol 2021; 105:103885. [DOI: 10.1016/j.fm.2021.103885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022]
|
20
|
Wale KR, Cottam C, Connolly JP, Roe AJ. Transcriptional and metabolic regulation of EHEC and Citrobacter rodentium pathogenesis. Curr Opin Microbiol 2021; 63:70-75. [PMID: 34224961 DOI: 10.1016/j.mib.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) is a gastrointestinal pathogen that colonizes the colonic epithelium of humans and ruminants using a Type Three Secretion System (T3SS). This system is indispensable for disease and is regulated in response to a plethora of host and microbiota derived signals. The murine pathogen, Citrobacter rodentium, has become an instrumental tool in studying EHEC infection mechanisms in vivo, given its natural ability to infect mice and reliance on the same colonisation machinery. Here, we provide a review of the most recent advancements in EHEC infection biology, focusing on transcriptional regulation of the T3SS in response to physiologically relevant signals and how colonisation impacts on the metabolic micro-environment of the host niche. We pay particular attention to studies that have employed the C. rodentium model for elucidation of such mechanisms in vivo.
Collapse
Affiliation(s)
- Kabo R Wale
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Curtis Cottam
- Newcastle University Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - James Pr Connolly
- Newcastle University Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Andrew J Roe
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
21
|
Jia T, Liu B, Mu H, Qian C, Wang L, Li L, Lu G, Zhu W, Guo X, Yang B, Huang D, Feng L, Liu B. A Novel Small RNA Promotes Motility and Virulence of Enterohemorrhagic Escherichia coli O157:H7 in Response to Ammonium. mBio 2021; 12:e03605-20. [PMID: 33688013 PMCID: PMC8092317 DOI: 10.1128/mbio.03605-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/30/2021] [Indexed: 12/15/2022] Open
Abstract
Enterohemorrhagic Escherichia coli serotype O157:H7 (O157) is a critical, foodborne, human intestinal pathogen that causes severe acute hemorrhagic diarrhea, abdominal cramping, and even death. Small RNAs (sRNAs) are noncoding regulatory molecules that sense environmental changes and trigger various virulence-related signaling pathways; however, few such sRNAs have been identified in O157. Here, we report a novel sRNA, EsrF that senses high ammonium concentrations in the colon and enhances O157 pathogenicity by promoting bacterial motility and adhesion to host cells. Specifically, EsrF was found to directly interact with the 5' untranslated regions of the flagellar biosynthetic gene, flhB, mRNA and increase its abundance, thereby upregulating expression of essential flagellar genes, including flhD, flhC, fliA, and fliC, leading to elevated O157 motility and virulence. Meanwhile, an infant rabbit model of O157 infection showed that deletion of esrF and flhB significantly attenuates O157 pathogenicity. Furthermore, NtrC-the response regulator of the NtrC/B two-component system-was found to exert direct, negative regulation of esrF expression. Meanwhile, high ammonium concentrations in the colon release the inhibitory effect of NtrC on esrF, thereby enhancing its expression and subsequently promoting bacterial colonization in the host colon. Our work reveals a novel, sRNA-centered, virulence-related signaling pathway in O157 that senses high ammonium concentrations. These findings provide novel insights for future research on O157 pathogenesis and targeted treatment strategies.IMPORTANCE The process by which bacteria sense environmental cues to regulate their virulence is complex. Several studies have focused on regulating the expression of the locus of enterocyte effacement pathogenicity island in the typical gut pathogenic bacterium, O157. However, few investigations have addressed the regulation of other virulence factors in response to intestinal signals. In this study, we report our discovery of a novel O157 sRNA, EsrF, and demonstrate that it contributed to bacterial motility and virulence in vitro and in vivo through the regulation of bacterial flagellar synthesis. Furthermore, we show that high ammonium concentrations in the colon induced esrF expression to promote bacterial virulence by releasing the repression of esrF by NtrC. This study highlights the importance of sRNA in regulating the motility and pathogenicity of O157.
Collapse
Affiliation(s)
- Tianyuan Jia
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Huiqian Mu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Chengqian Qian
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Lu Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Linxing Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Gege Lu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Wenxuan Zhu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Xi Guo
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Bin Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Di Huang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Lu Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| |
Collapse
|
22
|
Ageorges V, Monteiro R, Leroy S, Burgess CM, Pizza M, Chaucheyras-Durand F, Desvaux M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiol Rev 2021; 44:314-350. [PMID: 32239203 DOI: 10.1093/femsre/fuaa008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Escherichia coli is primarily known as a commensal colonising the gastrointestinal tract of infants very early in life but some strains being responsible for diarrhoea, which can be especially severe in young children. Intestinal pathogenic E. coli include six pathotypes of diarrhoeagenic E. coli (DEC), namely, the (i) enterotoxigenic E. coli, (ii) enteroaggregative E. coli, (iii) enteropathogenic E. coli, (iv) enterohemorragic E. coli, (v) enteroinvasive E. coli and (vi) diffusely adherent E. coli. Prior to human infection, DEC can be found in natural environments, animal reservoirs, food processing environments and contaminated food matrices. From an ecophysiological point of view, DEC thus deal with very different biotopes and biocoenoses all along the food chain. In this context, this review focuses on the wide range of surface molecular determinants acting as surface colonisation factors (SCFs) in DEC. In the first instance, SCFs can be broadly discriminated into (i) extracellular polysaccharides, (ii) extracellular DNA and (iii) surface proteins. Surface proteins constitute the most diverse group of SCFs broadly discriminated into (i) monomeric SCFs, such as autotransporter (AT) adhesins, inverted ATs, heat-resistant agglutinins or some moonlighting proteins, (ii) oligomeric SCFs, namely, the trimeric ATs and (iii) supramolecular SCFs, including flagella and numerous pili, e.g. the injectisome, type 4 pili, curli chaperone-usher pili or conjugative pili. This review also details the gene regulatory network of these numerous SCFs at the various stages as it occurs from pre-transcriptional to post-translocational levels, which remains to be fully elucidated in many cases.
Collapse
Affiliation(s)
- Valentin Ageorges
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Ricardo Monteiro
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Sabine Leroy
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Frédérique Chaucheyras-Durand
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,Lallemand Animal Nutrition SAS, F-31702 Blagnac Cedex, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| |
Collapse
|
23
|
Abstract
Sensing specific gut metabolites is an important strategy for inducing crucial virulence programs by enterohemorrhagic Escherichia coli (EHEC) O157:H7 during colonization and infection. Here, we identified a virulence-regulating pathway wherein the PhoQ/PhoP two-component regulatory system signals to the O island 119-encoded low magnesium-induced regulator A (LmiA), which, in turn, activates locus of enterocyte effacement (LEE) genes to promote EHEC O157:H7 adherence in the low-magnesium conditions of the large intestine. This regulatory pathway is widely present in a range of EHEC and enteropathogenic E. coli (EPEC) serotypes. Disruption of this pathway significantly decreased EHEC O157:H7 adherence in the mouse intestinal tract. Moreover, mice fed a magnesium-rich diet showed significantly reduced EHEC O157:H7 adherence in vivo, indicating that magnesium may help in preventing EHEC and EPEC infection in humans. The large intestinal pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 detects host cues to regulate virulence gene expression during colonization and infection. However, virulence regulatory mechanisms of EHEC O157:H7 in the human large intestine are not fully understood. Herein, we identified a virulence-regulating pathway where the PhoQ/PhoP two-component regulatory system senses low magnesium levels and signals to the O island 119-encoded Z4267 (LmiA; low magnesium-induced regulator A), directly activating loci of enterocyte effacement genes to promote EHEC O157:H7 adherence in the large intestine. Disruption of this pathway significantly decreased EHEC O157:H7 adherence in the mouse intestinal tract. Moreover, feeding mice a magnesium-rich diet significantly reduced EHEC O157:H7 adherence in vivo. This LmiA-mediated virulence regulatory pathway is also conserved among several EHEC and enteropathogenic E. coli serotypes; therefore, our findings support the use of magnesium as a dietary supplement and provide greater insights into the dietary cues that can prevent enteric infections.
Collapse
|
24
|
Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J, Bonnet R. Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Front Microbiol 2020; 11:2065. [PMID: 33101219 PMCID: PMC7545054 DOI: 10.3389/fmicb.2020.02065] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli is a versatile bacterial species that includes both harmless commensal strains and pathogenic strains found in the gastrointestinal tract in humans and warm-blooded animals. The growing amount of DNA sequence information generated in the era of "genomics" has helped to increase our understanding of the factors and mechanisms involved in the diversification of this bacterial species. The pathogenic side of E. coli that is afforded through horizontal transfers of genes encoding virulence factors enables this bacterium to become a highly diverse and adapted pathogen that is responsible for intestinal or extraintestinal diseases in humans and animals. Many of the accessory genes acquired by horizontal transfers form syntenic blocks and are recognized as genomic islands (GIs). These genomic regions contribute to the rapid evolution, diversification and adaptation of E. coli variants because they are frequently subject to rearrangements, excision and transfer, as well as to further acquisition of additional DNA. Here, we review a subgroup of GIs from E. coli termed pathogenicity islands (PAIs), a concept defined in the late 1980s by Jörg Hacker and colleagues in Werner Goebel's group at the University of Würzburg, Würzburg, Germany. As with other GIs, the PAIs comprise large genomic regions that differ from the rest of the genome by their G + C content, by their typical insertion within transfer RNA genes, and by their harboring of direct repeats (at their ends), integrase determinants, or other mobility loci. The hallmark of PAIs is their contribution to the emergence of virulent bacteria and to the development of intestinal and extraintestinal diseases. This review summarizes the current knowledge on the structure and functional features of PAIs, on PAI-encoded E. coli pathogenicity factors and on the role of PAIs in host-pathogen interactions.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Racha Beyrouthy
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julien Delmas
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Richard Bonnet
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
25
|
Khan F, Tabassum N, Pham DTN, Oloketuyi SF, Kim YM. Molecules involved in motility regulation in Escherichia coli cells: a review. BIOFOULING 2020; 36:889-908. [PMID: 33028083 DOI: 10.1080/08927014.2020.1826939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The initial colonization of the host organism by commensal, probiotic, and pathogenic Escherichia coli strains is an important step in the development of infections and biofilms. Sensing and colonization of host cell surfaces are governed by flagellar and fimbriae/pili appendages, respectively. Biofilm formation confers great advantages on pathogenic E. coli cells such as protection against the host immune system, antimicrobial agents, and several environmental stress factors. The transition from planktonic to sessile physiological states involves several signaling cascades and factors responsible for the regulation of flagellar motility in E. coli cells. These regulatory factors have thus become important targets to control pathogenicity. Hence, attenuation of flagellar motility is considered a potential therapy against pathogenic E. coli. The present review describes signaling pathways and proteins involved in direct or indirect regulation of flagellar motility. Furthermore, application strategies for antimotility natural or synthetic compounds are discussed also.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, Republic of Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
26
|
Slater SL, Frankel G. Advances and Challenges in Studying Type III Secretion Effectors of Attaching and Effacing Pathogens. Front Cell Infect Microbiol 2020; 10:337. [PMID: 32733819 PMCID: PMC7358347 DOI: 10.3389/fcimb.2020.00337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sabrina L Slater
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Widespread Strain-Specific Distinctions in Chromosomal Binding Dynamics of a Highly Conserved Escherichia coli Transcription Factor. mBio 2020; 11:mBio.01058-20. [PMID: 32576674 PMCID: PMC7315121 DOI: 10.1128/mbio.01058-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial gene regulation is governed by often hundreds of transcription factors (TFs) that bind directly to targets on the chromosome. Global studies of TFs usually make assumptions that regulatory targets within model strains will be conserved between members of the same species harboring common genetic targets. We recently discovered that YhaJ of Escherichia coli is crucial for virulence in two different pathotypes but binds to distinct regions of their genomes and regulates no common genes. This surprising result leads to strain-specific mechanisms of virulence regulation, but the implications for other E. coli pathotypes or commensals were unclear. Here, we report that heterogenous binding of YhaJ is widespread within the E. coli species. We analyzed the global YhaJ binding dynamics of four evolutionarily distinct E. coli isolates under two conditions, revealing 78 significant sites on the core genome as well as horizontally acquired loci. Condition-dependent dosage of YhaJ correlated with the number of occupied sites in vivo but did not significantly alter its enrichment at regions bound in both conditions, explaining the availability of this TF to occupy accessory sites in response to the environment. Strikingly, only ∼15% of YhaJ binding sites were common to all strains. Furthermore, differences in enrichment of uncommon sites were observed largely in chromosomal regions found in all strains and not explained exclusively by binding to strain-specific horizontally acquired elements or mutations in the DNA binding sequence. This observation suggests that intraspecies distinctions in TF binding dynamics are a widespread phenomenon and represent strain-specific gene regulatory potential.IMPORTANCE In bacterial cells, hundreds of transcription factors coordinate gene regulation and thus are a major driver of cellular processes. However, the immense diversity in bacterial genome structure and content makes deciphering regulatory networks challenging. This is particularly apparent for the model organism Escherichia coli as evolution has driven the emergence of species members with highly distinct genomes, which occupy extremely different niches in nature. While it is well-known that transcription factors must integrate horizontally acquired DNA into the regulatory network of the cell, the extent of regulatory diversity beyond single model strains is unclear. We have explored this concept in four evolutionarily distinct E. coli strains and show that a highly conserved transcription factor displays unprecedented diversity in chromosomal binding sites. Importantly, this diversity is not restricted to strain-specific DNA or mutation in binding sites. This observation suggests that strain-specific regulatory networks are potentially widespread within individual bacterial species.
Collapse
|
28
|
Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2020; 12:toxins12060373. [PMID: 32512916 PMCID: PMC7354503 DOI: 10.3390/toxins12060373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to “non-hemolytic” anemia.
Collapse
|
29
|
Sun Y, Chen J, Liu J, Huang J, Ye T, Wang X. The role of uhpA in Edwardsiella piscicida and the inflammatory cytokine response in tilapia. FISH & SHELLFISH IMMUNOLOGY 2020; 101:192-197. [PMID: 32200072 DOI: 10.1016/j.fsi.2020.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Edwardsiella piscicida (E. piscicida) is an important zoonotic pathogen that infects fish by colonizing the intestines. The intestine provides nutrition including Glucose 6-phosphate (Glu6P) and a competitive environment for the microbiota. Although the transport system regulatory protein gene uhpA has been reported in E. piscicida genomes, whether the uhpA gene is involved in the pathogenicity of E. piscicida remains largely unknown. Therefore, the uhpA gene mutants strain E. piscicida ΔuhpA was constructed to elucidate the functions of Glu6P and the uhpA gene in E. piscicida. The results demonstrated that Glu6P significantly increased the gene expression of uhpC/uhpB/uhpA than without adding Glu6P in the culture. The gene expression of uhpC and uhpB was down regulated in the mutant strain than that of in the wild type strain. E. piscicida ΔuhpA exhibited an increase in virulence compared to that of E. piscicida EIB202 [LD50 value: (3.98 × 106 CFU/fish) and LD50 value: (1.45 × 107 CFU/fish) respectively]. Besides, although TNF-α did not show significant differences (p > 0.05) in the spleen of tilapia infected with ΔuhpA and EIB202 in the whole observed period, the gene expression of IL-1β and TGF-β in the spleen of tilapia infected with ΔuhpA showed significantly higher (p < 0.05) than that of in tilapia infected with EIB202. Meanwhile, the gene expression of IL-1β and TGF-β in spleen of tilapia infected with ΔuhpA showed significantly higher (p < 0.05) than that of in fish infected with EIB202 when zebrafish used as the control in the whole observed period. All these results suggested that Glu6P up-regulated the gene expression of uhpC/uhpB/uhpA; most important, the uhpA gene deletion in E. piscicida down-regulated the gene expression of uhpC and uhpB, enhanced its pathogenicity and its role in inducing the inflammatory cytokine responses in tilapia.
Collapse
Affiliation(s)
- Yongcan Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Jiakang Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Jinyu Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Jinjing Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Tingqi Ye
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Xuepeng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 272000, PR China.
| |
Collapse
|
30
|
O'Boyle N, Turner NCA, Roe AJ, Connolly JPR. Plastic Circuits: Regulatory Flexibility in Fine Tuning Pathogen Success. Trends Microbiol 2020; 28:360-371. [PMID: 32298614 DOI: 10.1016/j.tim.2020.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/30/2022]
Abstract
Bacterial pathogens employ diverse fitness and virulence mechanisms to gain an advantage in competitive niches. These lifestyle-specific traits require integration into the regulatory network of the cell and are often controlled by pre-existing transcription factors. In this review, we highlight recent advances that have been made in characterizing this regulatory flexibility in prominent members of the Enterobacteriaceae. We focus on the direct global interactions between transcription factors and their target genes in pathogenic Escherichia coli and Salmonella revealed using chromatin immunoprecipitation coupled with next-generation sequencing. Furthermore, the implications and advantages of such regulatory adaptations in benefiting distinct pathogenic lifestyles are discussed.
Collapse
Affiliation(s)
- Nicky O'Boyle
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Natasha C A Turner
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Andrew J Roe
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK.
| | - James P R Connolly
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK.
| |
Collapse
|
31
|
Distinct intraspecies virulence mechanisms regulated by a conserved transcription factor. Proc Natl Acad Sci U S A 2019; 116:19695-19704. [PMID: 31501343 PMCID: PMC6765310 DOI: 10.1073/pnas.1903461116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial pathogens emerge by adapting mechanisms of virulence, differentiating them from their nonpathogenic progenitor. Virulence factors are often encoded on accessory genomic elements not part of the core genome and therefore must be integrated into the regulatory architecture of the cell. Here, we show that a highly conserved transcription factor in Escherichia coli has been relieved of a common purpose and adapted to regulate virulence pleiotropically in 2 distinct genetic backgrounds. This leads to enhanced virulence of both intestinal enterohemorrhagic E. coli and extraintestinal uropathogenic E. coli by exclusive mechanisms. These findings challenge the assumption that conserved transcription factors regulate common pathways maintained within a species and suggest that transcriptional repurposing creates new primary roles on an individual basis. Tailoring transcriptional regulation to coordinate the expression of virulence factors in tandem with the core genome is a hallmark of bacterial pathogen evolution. Bacteria encode hundreds of transcription factors forming the base-level control of gene regulation. Moreover, highly homologous regulators are assumed to control conserved genes between members within a species that harbor the same genetic targets. We have explored this concept in 2 Escherichia coli pathotypes that employ distinct virulence mechanisms that facilitate specification of a different niche within the host. Strikingly, we found that the transcription factor YhaJ actively regulated unique gene sets between intestinal enterohemorrhagic E. coli (EHEC) and extraintestinal uropathogenic E. coli (UPEC), despite being very highly conserved. In EHEC, YhaJ directly activates expression of type 3 secretion system components and effectors. Alternatively, YhaJ enhances UPEC virulence regulation by binding directly to the phase-variable type 1 fimbria promoter, driving its expression. Additionally, YhaJ was found to override the universal GAD acid tolerance system but exclusively in EHEC, thereby indirectly enhancing type 3 secretion pleiotropically. These results have revealed that within a species, conserved regulators are actively repurposed in a “personalized” manner to benefit particular lifestyles and drive virulence via multiple distinct mechanisms.
Collapse
|
32
|
Warr AR, Hubbard TP, Munera D, Blondel CJ, Abel zur Wiesch P, Abel S, Wang X, Davis BM, Waldor MK. Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization. PLoS Pathog 2019; 15:e1007652. [PMID: 31404118 PMCID: PMC6705877 DOI: 10.1371/journal.ppat.1007652] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/22/2019] [Accepted: 08/01/2019] [Indexed: 12/28/2022] Open
Abstract
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is an important food-borne pathogen that colonizes the colon. Transposon-insertion sequencing (TIS) was used to identify genes required for EHEC and E. coli K-12 growth in vitro and for EHEC growth in vivo in the infant rabbit colon. Surprisingly, many conserved loci contribute to EHEC's but not to K-12's growth in vitro. There was a restrictive bottleneck for EHEC colonization of the rabbit colon, which complicated identification of EHEC genes facilitating growth in vivo. Both a refined version of an existing analytic framework as well as PCA-based analysis were used to compensate for the effects of the infection bottleneck. These analyses confirmed that the EHEC LEE-encoded type III secretion apparatus is required for growth in vivo and revealed that only a few effectors are critical for in vivo fitness. Over 200 mutants not previously associated with EHEC survival/growth in vivo also appeared attenuated in vivo, and a subset of these putative in vivo fitness factors were validated. Some were found to contribute to efficient type-three secretion while others, including tatABC, oxyR, envC, acrAB, and cvpA, promote EHEC resistance to host-derived stresses. cvpA is also required for intestinal growth of several other enteric pathogens, and proved to be required for EHEC, Vibrio cholerae and Vibrio parahaemolyticus resistance to the bile salt deoxycholate, highlighting the important role of this previously uncharacterized protein in pathogen survival. Collectively, our findings provide a comprehensive framework for understanding EHEC growth in the intestine.
Collapse
Affiliation(s)
- Alyson R. Warr
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Troy P. Hubbard
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diana Munera
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carlos J. Blondel
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pia Abel zur Wiesch
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sören Abel
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaoxue Wang
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brigid M. Davis
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- HHMI, Boston, Massachusetts, United States of America
| |
Collapse
|
33
|
Martis B S, Forquet R, Reverchon S, Nasser W, Meyer S. DNA Supercoiling: an Ancestral Regulator of Gene Expression in Pathogenic Bacteria? Comput Struct Biotechnol J 2019; 17:1047-1055. [PMID: 31452857 PMCID: PMC6700405 DOI: 10.1016/j.csbj.2019.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022] Open
Abstract
DNA supercoiling acts as a global and ancestral regulator of bacterial gene expression. In this review, we advocate that it plays a pivotal role in host-pathogen interactions by transducing environmental signals to the bacterial chromosome and coordinating its transcriptional response. We present available evidence that DNA supercoiling is modulated by environmental stress conditions relevant to the infection process according to ancestral mechanisms, in zoopathogens as well as phytopathogens. We review the results of transcriptomics studies obtained in widely distant bacterial species, showing that such structural transitions of the chromosome are associated to a complex transcriptional response affecting a large fraction of the genome. Mechanisms and computational models of the transcriptional regulation by DNA supercoiling are then discussed, involving both basal interactions of RNA Polymerase with promoter DNA, and more specific interactions with regulatory proteins. A final part is specifically focused on the regulation of virulence genes within pathogenicity islands of several pathogenic bacterial species.
Collapse
Affiliation(s)
- Shiny Martis B
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - Raphaël Forquet
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - Sylvie Reverchon
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - William Nasser
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - Sam Meyer
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| |
Collapse
|
34
|
Herp S, Brugiroux S, Garzetti D, Ring D, Jochum LM, Beutler M, Eberl C, Hussain S, Walter S, Gerlach RG, Ruscheweyh HJ, Huson D, Sellin ME, Slack E, Hanson B, Loy A, Baines JF, Rausch P, Basic M, Bleich A, Berry D, Stecher B. Mucispirillum schaedleri Antagonizes Salmonella Virulence to Protect Mice against Colitis. Cell Host Microbe 2019; 25:681-694.e8. [DOI: 10.1016/j.chom.2019.03.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/10/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022]
|
35
|
Abstract
Iron deficiency remains the largest nutritional deficiency worldwide and the main cause of anaemia. Severe iron deficiency leads to anaemia known as iron deficiency anaemia (IDA), which affects a total of 1·24 billion people, the majority of whom are children and women from resource-poor countries. In sub-Saharan Africa, iron deficiency is frequently exacerbated by concomitant parasitic and bacterial infections and contributes to over 120 000 maternal deaths a year, while it irreparably limits the cognitive development of children and leads to poor outcomes in pregnancy.Currently available iron compounds are cheap and readily available, but constitute a non-physiological approach to providing iron that leads to significant side effects. Consequently, iron deficiency and IDA remain without an effective treatment, particularly in populations with high burden of infectious diseases. So far, despite considerable investment in the past 25 years in nutrition interventions with iron supplementation and fortification, we have been unable to significantly decrease the burden of this disease in resource-poor countries.If we are to eliminate this condition in the future, it is imperative to look beyond the strategies used until now and we should make an effort to combine community engagement and social science approaches to optimise supplementation and fortification programmes.
Collapse
Affiliation(s)
- Isabella Stelle
- Institute of Liver and Digestive Health, Division of Medicine, University College London, London WC1E 6BT, UK
| | - Anastasia Z Kalea
- Institute of Liver and Digestive Health, Division of Medicine, University College London, London WC1E 6BT, UK
- Institute of Cardiovascular Science, University College London, London WC1E 6DD, UK
- School of Human Sciences, London Metropolitan University, London N7 8DB, UK
| | - Dora I A Pereira
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Banjul, The Gambia
| |
Collapse
|
36
|
Control freaks-signals and cues governing the regulation of virulence in attaching and effacing pathogens. Biochem Soc Trans 2018; 47:229-238. [PMID: 30559275 PMCID: PMC6393859 DOI: 10.1042/bst20180546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) mediates disease using a type 3 secretion system (T3SS), which is encoded on the locus of enterocyte effacement (LEE) and is tightly controlled by master regulators. This system is further modulated by a number of signals that help to fine-tune virulence, including metabolic, environmental and chemical signals. Since the LEE and its master regulator, Ler, were established, there have been numerous scientific advancements in understanding the regulation and expression of virulence factors in EHEC. This review will discuss the recent advancements in this field since our previous review, with a focus on the transcriptional regulation of the LEE.
Collapse
|
37
|
Redox, amino acid, and fatty acid metabolism intersect with bacterial virulence in the gut. Proc Natl Acad Sci U S A 2018; 115:E10712-E10719. [PMID: 30348782 DOI: 10.1073/pnas.1813451115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The gut metabolic landscape is complex and is influenced by the microbiota, host physiology, and enteric pathogens. Pathogens have to exquisitely monitor the biogeography of the gastrointestinal tract to find a suitable niche for colonization. To dissect the important metabolic pathways that influence virulence of enterohemorrhagic Escherichia coli (EHEC), we conducted a high-throughput screen. We generated a dataset of regulatory pathways that control EHEC virulence expression under anaerobic conditions. This unraveled that the cysteine-responsive regulator, CutR, converges with the YhaO serine import pump and the fatty acid metabolism regulator FadR to optimally control virulence expression in EHEC. CutR activates expression of YhaO to increase activity of the YhaJ transcription factor that has been previously shown to directly activate the EHEC virulence genes. CutR enhances FadL, which is a pump for fatty acids that represses inhibition of virulence expression by FadR, unmasking a feedback mechanism responsive to metabolite fluctuations. Moreover, CutR and FadR also augment murine infection by Citrobacter rodentium, which is a murine pathogen extensively employed as a surrogate animal model for EHEC. This high-throughput approach proved to be a powerful tool to map the web of cellular circuits that allows an enteric pathogen to monitor the gut environment and adjust the levels of expression of its virulence repertoire toward successful infection of the host.
Collapse
|
38
|
Host-associated niche metabolism controls enteric infection through fine-tuning the regulation of type 3 secretion. Nat Commun 2018; 9:4187. [PMID: 30305622 PMCID: PMC6180029 DOI: 10.1038/s41467-018-06701-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
Niche-adaptation of a bacterial pathogen hinges on the ability to recognize the complexity of signals from the environment and integrate that information with the regulation of genes critical for infection. Here we report the transcriptome of the attaching and effacing pathogen Citrobacter rodentium during infection of its natural murine host. Pathogen gene expression in vivo was heavily biased towards the virulence factor repertoire and was found to be co-ordinated uniquely in response to the host. Concordantly, we identified the host-specific induction of a metabolic pathway that overlapped with the regulation of virulence. The essential type 3 secretion system and an associated suite of distinct effectors were found to be modulated co-ordinately through a unique mechanism involving metabolism of microbiota-derived 1,2-propanediol, which dictated the ability to colonize the host effectively. This study provides novel insights into how host-specific metabolic adaptation acts as a cue to fine-tune virulence. Infection of mice with Citrobacter rodentium is a common model of infection with attaching-and-effacing pathogens. Here, Connolly et al. analyse the transcriptome of C. rodentium during mouse infection, showing host-induced coordinated upregulation of virulence factors and 1,2-propanediol metabolism.
Collapse
|
39
|
Rüter C, Lubos ML, Norkowski S, Schmidt MA. All in—Multiple parallel strategies for intracellular delivery by bacterial pathogens. Int J Med Microbiol 2018; 308:872-881. [PMID: 29936031 DOI: 10.1016/j.ijmm.2018.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/01/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
|
40
|
After the Fact(or): Posttranscriptional Gene Regulation in Enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 2018; 200:JB.00228-18. [PMID: 29967119 DOI: 10.1128/jb.00228-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To adapt to ever-changing environments, pathogens quickly alter gene expression. This can occur through transcriptional, posttranscriptional, or posttranslational regulation. Historically, transcriptional regulation has been thoroughly studied to understand pathogen niche adaptation, whereas posttranscriptional and posttranslational gene regulation has only relatively recently been appreciated to play a central role in bacterial pathogenesis. Posttranscriptional regulation may involve chaperones, nucleases, and/or noncoding small RNAs (sRNAs) and typically controls gene expression by altering the stability and/or translation of the target mRNA. In this review, we highlight the global importance of posttranscriptional regulation to enterohemorrhagic Escherichia coli (EHEC) gene expression and discuss specific mechanisms of how EHEC regulates expression of virulence factors critical to host colonization and disease progression. The low infectious dose of this intestinal pathogen suggests that EHEC is particularly well adapted to respond to the host environment.
Collapse
|
41
|
Platenkamp A, Mellies JL. Environment Controls LEE Regulation in Enteropathogenic Escherichia coli. Front Microbiol 2018; 9:1694. [PMID: 30140259 PMCID: PMC6094958 DOI: 10.3389/fmicb.2018.01694] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a significant cause of infant morbidity and mortality in developing regions of the world. Horizontally acquired genetic elements encode virulence structures, effectors, and regulators that promote bacterial colonization and disease. One such genetic element, the locus of enterocyte effacement (LEE), encodes the type three secretion system (T3SS) which acts as a bridge between bacterial and host cells to pass effector molecules that exert changes on the host. Due to its importance in EPEC virulence, regulation of the LEE has been of high priority and its investigation has elucidated many virulence regulators, including master regulator of the LEE Ler, H-NS, other nucleoid-associated proteins, GrlA, and PerC. Media type, environmental signals, sRNA signaling, metabolic processes, and stress responses have profound, strain-specific effects on regulators and LEE expression, and thus T3SS formation. Here we review virulence gene regulation in EPEC, which includes approaches for lessening disease by exploiting the elucidated regulatory pathways.
Collapse
Affiliation(s)
- Amy Platenkamp
- Department of Biology, Reed College, Portland, OR, United States
| | - Jay L Mellies
- Department of Biology, Reed College, Portland, OR, United States
| |
Collapse
|
42
|
Yang B, Wang S, Huang J, Yin Z, Jiang L, Hou W, Li X, Feng L. Transcriptional Activator GmrA, Encoded in Genomic Island OI-29, Controls the Motility of Enterohemorrhagic Escherichia coli O157:H7. Front Microbiol 2018. [PMID: 29520261 PMCID: PMC5826968 DOI: 10.3389/fmicb.2018.00338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Enterohemorrhagic Escherichia coli O157:H7 is a major human enteric pathogen capable of causing large outbreaks of severe infections that induce bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. Its genome contains 177 unique O islands (OIs) including those carrying the main virulence elements, Shiga toxin-converting phages (OI-45 and OI-93) and locus for enterocyte effacement (OI-148). However, many of these islands harbor only genes of unknown function. Here, we demonstrate that OI-29 encodes a newly discovered transcriptional activator, Z0639 (named GmrA), that is required for motility and flagellar synthesis in O157:H7. GmrA directly binds to the promoter of fliA, an RNA polymerase sigma factor, and thereby regulates flagellar genes controlled by FliA. Expression of gmrA is maximal under host conditions (37°C, neutral pH, and physiological osmolarity), and in the presence of host epithelial cells, indicative of a role of this gene in infection by promoting motility. Finally, GmrA was found to be a widespread regulator of bacterial motility and flagellar synthesis in different pathotypes of E. coli. Our work largely enriches our understanding of bacterial motility control, and provides another example of regulators acquired laterally that mediate flagellar synthesis.
Collapse
Affiliation(s)
- Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| | - Shaomeng Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | - Jianxiao Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | - Zhiqiu Yin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| | - Wenqi Hou
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | - Xiaomin Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | - Lu Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| |
Collapse
|
43
|
Lu SY, Zhao Z, Avillan JJ, Liu J, Call DR. Autoinducer-2 Quorum Sensing Contributes to Regulation of Microcin PDI in Escherichia coli. Front Microbiol 2017; 8:2570. [PMID: 29312248 PMCID: PMC5743794 DOI: 10.3389/fmicb.2017.02570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/11/2017] [Indexed: 01/07/2023] Open
Abstract
The Escherichia coli quorum sensing (QS) signal molecule, autoinducer-2 (AI-2), reaches its maximum concentration during mid-to-late growth phase after which it quickly degrades during stationary phase. This pattern of AI-2 concentration coincides with the up- then down-regulation of a recently described microcin PDI (mccPDI) effector protein (McpM). To determine if there is a functional relationship between these systems, a prototypical mccPDI-expressing strain of E. coli 25 was used to generate ΔluxS, ΔlsrACDBFG (Δlsr), and ΔlsrR mutant strains that are deficient in AI-2 production, transportation, and AI-2 transport regulation, respectively. Trans-complementation, RT-qPCR, and western blot assays were used to detect changes of microcin expression and synthesis under co-culture and monoculture conditions. Compared to the wild-type strain, the AI-2-deficient strain (ΔluxS) and -uptake negative strain (Δlsr) were >1,000-fold less inhibitory to susceptible bacteria (P < 0.05). With in trans complementation of luxS, the AI-2 deficient mutant reduced the susceptible E. coli population by 4-log, which was within 1-log of the wild-type phenotype. RT-qPCR and western blot results for the AI-2 deficient E. coli 25 showed a 5-fold reduction in mcpM transcription with an average 2-h delay in McpM synthesis. Furthermore, overexpression of sRNA micC and micF (both involved in porin protein regulation) was correlated with mcpM regulation, consistent with a possible link between QS and mcpM regulation. This is the direct first evidence that microcin regulation can be linked to quorum sensing in a Gram-negative bacterium.
Collapse
Affiliation(s)
- Shao-Yeh Lu
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| | - Zhe Zhao
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States.,Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Johannetsy J Avillan
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| | - Jinxin Liu
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States.,Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Douglas R Call
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| |
Collapse
|
44
|
O'Boyle N, Connolly JPR, Roe AJ. Tracking elusive cargo: Illuminating spatio-temporal Type 3 effector protein dynamics using reporters. Cell Microbiol 2017; 20. [PMID: 29087624 PMCID: PMC5765406 DOI: 10.1111/cmi.12797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/13/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022]
Abstract
Type 3 secretion systems form an integral part of the arsenal of many pathogenic bacteria. These injection machines, together with their cargo of subversive effector proteins, are capable of manipulating the cellular environment of the host in order to ensure persistence of the pathogen. In order to fully appreciate the functions of Type 3 effectors, it is necessary to gain spatio‐temporal knowledge of each effector during the process of infection. A number of genetic modifications have been exploited in order to reveal effector protein secretion, translocation and subsequent activity, and localisation within host cells. In this review, we will discuss the many available approaches for tracking effector protein dynamics and discuss the challenges faced to improve the current technologies and gain a clearer picture of effector protein function.
Collapse
Affiliation(s)
- Nicky O'Boyle
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - James P R Connolly
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew J Roe
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
45
|
Bacterial Chat: Intestinal Metabolites and Signals in Host-Microbiota-Pathogen Interactions. Infect Immun 2017; 85:IAI.00476-17. [PMID: 28947641 DOI: 10.1128/iai.00476-17] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intestinal bacteria employ microbial metabolites from the microbiota and chemical signaling during cell-to-cell communication to regulate several cellular functions. Pathogenic bacteria are extremely efficient in orchestrating their response to these signals through complex signaling transduction systems. Precise coordination and interpretation of these multiple chemical cues is important within the gastrointestinal (GI) tract. Enteric foodborne pathogens, such as enterohemorrhagic Escherichia coli (EHEC) and Salmonella enterica serovar Typhimurium, or the surrogate murine infection model for EHEC, Citrobacter rodentium, are all examples of microorganisms that modulate the expression of their virulence repertoire in response to signals from the microbiota or the host, such as autoinducer-3 (AI-3), epinephrine (Epi), and norepinephrine (NE). The QseBC and QseEF two-component systems, shared by these pathogens, are involved in sensing these signals. We review how these signaling systems sense and relay these signals to drive bacterial gene expression; specifically, to modulate virulence. We also review how bacteria chat via chemical signals integrated with metabolite recognition and utilization to promote successful associations among enteric pathogens, the microbiota, and the host.
Collapse
|
46
|
Wang S, Yang F, Yang B. Global effect of CsrA on gene expression in enterohemorrhagic Escherichia coli O157:H7. Res Microbiol 2017; 168:700-709. [PMID: 28870757 DOI: 10.1016/j.resmic.2017.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/25/2023]
Abstract
The post-transcriptional regulator CsrA regulates multiple unrelated processes such as central carbon metabolism, motility, biofilm formation and bacterial virulence in different bacteria. However, regulation by CsrA in enterohemorrhagic Escherichia coli (EHEC) O157:H7 is still largely unknown. In this study, we performed a detailed analysis of gene expression differences between the EHEC O157:H7 wild-type strain and a corresponding csrA::kan mutant using RNA-seq technology. Genes whose expression was affected by CsrA were identified and grouped into different clusters of orthologous group categories. Genes located in the locus of enterocyte effacement (LEE) pathogenicity island were significantly upregulated, whereas expression of flagella-related genes was significantly reduced in the csrA::kan mutant. Subsequent bacterial adherence and motility assays showed that inactivation of CsrA in EHEC O157:H7 resulted in a significant increase in bacterial adherence to host epithelial cells, with a concomitant loss of swimming motility on semi-solid agar plates. Furthermore, we also found that CsrA regulates genes not previously identified in other bacterial species, including genes encoding cytochrome oxidases and those required for nitrogen metabolism. Our results provide essential insight into the regulatory function of CsrA.
Collapse
Affiliation(s)
- Shaomeng Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.
| | - Fan Yang
- Department of Neurosurgery, Tianjin First Central Hospital, Tianjin 300192, PR China.
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.
| |
Collapse
|
47
|
Lodato PB, Thuraisamy T, Richards J, Belasco JG. Effect of RNase E deficiency on translocon protein synthesis in an RNase E-inducible strain of enterohemorrhagic Escherichia coli O157:H7. FEMS Microbiol Lett 2017; 364:3871349. [PMID: 28854682 PMCID: PMC5827626 DOI: 10.1093/femsle/fnx131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/19/2017] [Indexed: 11/12/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that assembles a type III secretion system (T3SS) on its surface. The last portion of the T3SS, called the 'translocon', is composed of a filament and a pore complex that is inserted into the membrane of intestinal epithelial cells. The genes encoding the translocon (espADB) are part of the LEE4 operon. Their expression is regulated by a complex post-transcriptional mechanism that involves the processing of LEE4 mRNA by the essential endoribonuclease RNase E. Here, we report the construction of an EHEC strain (TEA028-rne) in which RNase E can be induced by adding IPTG to the culture medium. EHEC cells deficient in RNase E displayed an abnormal morphology and slower growth, in agreement with published observations in E. coli K-12. Under those conditions, EspA and EspB were produced at higher concentrations, and protein secretion still occurred. These results indicate that RNase E negatively regulates translocon protein synthesis and demonstrate the utility of E. coli strain TEA028-rne as a tool for investigating the influence of this ribonuclease on EHEC gene expression in vitro.
Collapse
Affiliation(s)
- Patricia B. Lodato
- Department of Biology, New Mexico State University, Las Cruces, NM 88003-8006, USA
| | - Thujitha Thuraisamy
- Department of Biology, New Mexico State University, Las Cruces, NM 88003-8006, USA
| | - Jamie Richards
- Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, NY 10016-6402, USA
| | - Joel G. Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, NY 10016-6402, USA
| |
Collapse
|
48
|
Zambelloni R, Connolly JPR, Huerta Uribe A, Burgess K, Marquez R, Roe AJ. Novel compounds targeting the enterohemorrhagic Escherichia coli type three secretion system reveal insights into mechanisms of secretion inhibition. Mol Microbiol 2017; 105:606-619. [PMID: 28557017 PMCID: PMC5575525 DOI: 10.1111/mmi.13719] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anti‐virulence (AV) compounds are a promising alternative to traditional antibiotics for fighting bacterial infections. The Type Three Secretion System (T3SS) is a well‐studied and attractive AV target, given that it is widespread in more than 25 species of Gram‐negative bacteria, including enterohemorrhagic E. coli (EHEC), and as it is essential for host colonization by many pathogens. In this work, we designed, synthesized and tested a new series of compounds that block the functionality of the T3SS of EHEC. Affinity chromatography experiments identified the primary target of the compounds as the T3SS needle pore protein EspD, which is essential for effector protein translocation into host cells. These data were supported by mechanistic studies that determined the coiled‐coil domain 1 of EspD as a key compound‐binding site, thereby preventing correct assembly of the T3SS complex on the cell surface. However, binding of inhibitors to EspD or deletion of EspD itself did not result in transcriptional down‐regulation of effector proteins. Instead, we found the compounds to exhibit dual‐functionality by also down‐regulating transcription of the entire chromosomal locus encoding the T3SS, further demonstrating their desirability and effectiveness.
Collapse
Affiliation(s)
- Riccardo Zambelloni
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - James P R Connolly
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Alejandro Huerta Uribe
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Karl Burgess
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Rodolfo Marquez
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, SIP Suzhou, 215123, China
| | - Andrew J Roe
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
49
|
Persat A. Bacterial mechanotransduction. Curr Opin Microbiol 2017; 36:1-6. [DOI: 10.1016/j.mib.2016.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 12/16/2022]
|
50
|
Alverdy JC, Luo JN. The Influence of Host Stress on the Mechanism of Infection: Lost Microbiomes, Emergent Pathobiomes, and the Role of Interkingdom Signaling. Front Microbiol 2017; 8:322. [PMID: 28303126 PMCID: PMC5332386 DOI: 10.3389/fmicb.2017.00322] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/15/2017] [Indexed: 01/10/2023] Open
Abstract
Mammals constantly face stressful situations, be it extended periods of starvation, sleep deprivation from fear of predation, changing environmental conditions, or loss of habitat. Today, mammals are increasingly exposed to xenobiotics such as pesticides, pollutants, and antibiotics. Crowding conditions such as those created for the purposes of meat production from animals or those imposed upon humans living in urban environments or during world travel create new levels of physiologic stress. As such, human progress has led to an unprecedented exposure of both animals and humans to accidental pathogens (i.e., those that have not co-evolved with their hosts). Strikingly missing in models of infection pathogenesis are the various elements of these conditions, in particular host physiologic stress. The compensatory factors released in the gut during host stress have profound and direct effects on the metabolism and virulence of the colonizing microbiota and the emerging pathobiota. Here, we address unanswered questions to highlight the relevance and importance of incorporating host stress to the field of microbial pathogenesis.
Collapse
Affiliation(s)
- John C Alverdy
- Sarah and Harold Lincoln Thompson Professor of Surgery, Pritzker School of Medicine, The University of Chicago Chicago, IL, USA
| | - James N Luo
- Pritzker School of Medicine, The University of Chicago Chicago, IL, USA
| |
Collapse
|