1
|
Wang J, Yao X, Xu H, Lou H, Hu B. Methane cycle in subsurface environment: A review of microbial processes. ENVIRONMENTAL RESEARCH 2025; 265:120404. [PMID: 39579853 DOI: 10.1016/j.envres.2024.120404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Methane is a pivotal component of the global carbon cycle. It acts both as a potent greenhouse gas and a vital energy source. While the microbial cycling of methane in subsurface environments is crucial, its impact on geological settings and related engineering projects is often underestimated. This review uniquely integrates the latest findings on methane production, oxidation, and migration processes in strata, revealing novel microbial mechanisms and their implications for environmental sustainability. We address critical issues of methane leakage and engineering safety during resource extraction, underscoring the urgent need for effective methane management strategies. This work clarifies geological factors affecting methane budgets and emissions, deepening our understanding of methane dynamics. It offers practical insights for geological engineering and sustainable natural gas hydrate exploration, paving the way for future research and applications.
Collapse
Affiliation(s)
- Jiahui Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangwu Yao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hailiang Xu
- Zhejiang HI-TECH Environmental Technology Co., Ltd, China
| | - Honghai Lou
- Zhejiang HI-TECH Environmental Technology Co., Ltd, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
He Y, Yang Y, Huang H, Yang W, Ren B, Hu Q, Jin J, Wen S, Cheng H, Shen L. Spatio-temporal variations in activity of aerobic methane oxidation and community structure of methanotrophs in sediment of Wuxijiang river. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125200. [PMID: 39461609 DOI: 10.1016/j.envpol.2024.125200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Rivers are hotspots for methane (CH4) emissions, and aerobic methane oxidation is a crucial process in controlling emissions. The spatio-temporal heterogeneity of river environment can greatly affect the methane oxidation process. However, currently, few studies have focused on the spatio-temporal changes in activity of methane oxidation and the associated microbiome in riverine ecosystems, which hinders a comprehensive understanding the role of this process in reducing emissions of CH4. Here, we investigated the variations in methane oxidation activity and community of methanotrophs in sediment of a mountain river across different reaches and seasons. The potential methane oxidation rate ranged from 24.11 to 493.03 nmol CH4 g-1 (sediment) d-1, which was significantly greater in sediment obtained during the winter than in that obtained during the summer. Moreover, the rate in middle reaches was significantly greater than that in upper and lower reaches in summer. The abundance of pmoA gene of methanotrophs ranged from 2.45 × 10⁶ to 2.98 × 10⁷ copies g-1 (sediment), which was also significantly greater in winter than in summer and showed significant variations among reaches. Additionally, methanotrophic diversity and community composition exhibited significant variations across both reaches and seasons, and the relative abundance of Methylococcus and Methylocystis was closely associated with methane oxidation activity. Sediment NH4+ content, pH and temperature were potentially crucial factors affecting the activity or methanotrophic community. In conclusion, it is necessary to consider both temporal and spatial scales to improve our understanding of the significance and driving mechanisms of methane oxidation in controlling CH4 emissions from rivers.
Collapse
Affiliation(s)
- Yefan He
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yuling Yang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hechen Huang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wangting Yang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Bingjie Ren
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Qinan Hu
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jinghao Jin
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Sile Wen
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Haixiang Cheng
- College of Chemistry and Material Engineering, Quzhou University, Quzhou, 324000, China
| | - Lidong Shen
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
3
|
Xing T, Liu Y, Dong X, Ji M, Deng Y, Liu P. Glacier melting promotes methane emission via increased methanogenic activity in the foreland alpine meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176947. [PMID: 39426539 DOI: 10.1016/j.scitotenv.2024.176947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Annual glacier melting alters hydrothermal conditions of the foreland alpine meadows, and causes significant fluctuations in methane (CH4) flux. Previously we found that Tibetan glacier foreland alpine meadow shifts to CH4 source from sink during the melting season, but the potential mechanisms remain unclear. This study, via combination of in-situ measurement of seasonal CH4 flux and survey of microbial species that may involve in CH4 metabolism, explores the causes of glacier melting on CH4 flux in a glacier foreland alpine meadow on Tibetan Plateau. We determined a pronounced CH4 emission (13.95 μg·m-2·h-1) in August (melting season) but CH4 uptake in June (-3.76 μg·m-2·h-1) and October (-17.77 μg·m-2·h-1), and 1.4-fold higher soil moisture in August than the other two months. This showed a direct correlation of CH4 flux with glacier melting increased soil water. Additionally, glacier melting caused more CH4 fluxes increase in hollows than in hummocks. Amplicon sequencing determined 126-fold higher abundance of mcrA, the methanogenic marker gene, in August than in June and October, and a higher relative abundance of a fungal phylum Mortierellomycota and syntrophic bacteria that convert the fatty acids, the degradation intermediates of organic complexes to CO2 and acetate, the methanogenic substrates like in August. However, no seasonal variation of pmoA, the marker gene of aerobic methanotrophs, was observed. It appears that glacier melting promotes the CH4 producing but not the consuming microorganisms, thus leading to increased CH4 emission. The findings of this work indicate that global warming resulted glacier melting would increase global CH4 emissions, and in turn worsens global warming, so an alarming positive feedback loop.
Collapse
Affiliation(s)
- Tingting Xing
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China; Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China.
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Mukan Ji
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China
| | - Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Pengfei Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Wu J, Xu Q, Zhang R, Bai X, Zhang C, Chen Q, Chen H, Wang N, Huang D. Methane oxidation coupling with heavy metal and microplastic transformations for biochar-mediated landfill cover soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135879. [PMID: 39298948 DOI: 10.1016/j.jhazmat.2024.135879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The impact of co-occurring heavy metal (HM) and microplastic (MP) pollution on methane (CH4) oxidation by methanotrophs (MOB) in landfill cover soil (LCS) and the role of biochar in mediating these collaborative transformations remains unclear. This study conducted batch-scale experiments using LCS treated with individual or combined HMs and MPs, with or without biochar amendment. Differentiation in methanotrophic activities, HM transformations, MP aging, soil properties, microbial communities, and functional genes across the groups were analyzed. Biochar proved essential in sustaining efficient CH4 oxidation under HM and MP stress, mainly by diversifying MOB, and enhancing polysaccharide secretion to mitigate environmental stress. While low levels of HMs slightly inhibited CH4 oxidation, high HM concentration enhanced methanotrophic activities by promoting electron transfer process. MPs consistently stimulated CH4 oxidation, exerting a stronger influence than HMs. Notably, the simultaneous presence of low levels of HMs and MPs synergistically boosted CH4 oxidation, linked to distinct microbial evolution and adaptation. Methanotrophic activities were demonstrated to affect the fate of HMs and MPs. Complete passivation of Cu was readily achieved, whereas Zn stabilization was negatively influenced by biochar and MPs. The aging of MPs was also partially suppressed by biochar and HM adsorption.
Collapse
Affiliation(s)
- Jiang Wu
- Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Rujie Zhang
- Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Xinyue Bai
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Chao Zhang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Qindong Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Huaihai Chen
- Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Ning Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Dandan Huang
- Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China.
| |
Collapse
|
5
|
Ahmadi F, Lackner M. Recent findings in methanotrophs: genetics, molecular ecology, and biopotential. Appl Microbiol Biotechnol 2024; 108:60. [PMID: 38183483 DOI: 10.1007/s00253-023-12978-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/08/2023] [Accepted: 10/01/2023] [Indexed: 01/08/2024]
Abstract
The potential consequences for mankind could be disastrous due to global warming, which arises from an increase in the average temperature on Earth. The elevation in temperature primarily stems from the escalation in the concentration of greenhouse gases (GHG) such as CO2, CH4, and N2O within the atmosphere. Among these gases, methane (CH4) is particularly significant in driving alterations to the worldwide climate. Methanotrophic bacteria possess the distinctive ability to employ methane as both as source of carbon and energy. These bacteria show great potential as exceptional biocatalysts in advancing C1 bioconversion technology. The present review describes recent findings in methanotrophs including aerobic and anaerobic methanotroph bacteria, phenotypic characteristics, biotechnological potential, their physiology, ecology, and native multi-carbon utilizing pathways, and their molecular biology. The existing understanding of methanogenesis and methanotrophy in soil, as well as anaerobic methane oxidation and methanotrophy in temperate and extreme environments, is also covered in this discussion. New types of methanogens and communities of methanotrophic bacteria have been identified from various ecosystems and thoroughly examined for a range of biotechnological uses. Grasping the processes of methanogenesis and methanotrophy holds significant importance in the development of innovative agricultural techniques and industrial procedures that contribute to a more favorable equilibrium of GHG. This current review centers on the diversity of emerging methanogen and methanotroph species and their effects on the environment. By amalgamating advanced genetic analysis with ecological insights, this study pioneers a holistic approach to unraveling the biopotential of methanotrophs, offering unprecedented avenues for biotechnological applications. KEY POINTS: • The physiology of methanotrophic bacteria is fundamentally determined. • Native multi-carbon utilizing pathways in methanotrophic bacteria are summarized. • The genes responsible for encoding methane monooxygenase are discussed.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- School of Agriculture and Environment, University of Western Australia, Crawley, 6009, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | | |
Collapse
|
6
|
Poddar BJ, Khardenavis AA. Genomic Insights into the Landfill Microbial Community: Denitrifying Activity Supporting One-Carbon Utilization. Appl Biochem Biotechnol 2024; 196:8866-8891. [PMID: 38980659 DOI: 10.1007/s12010-024-04980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/10/2024]
Abstract
In spite of the developments in understanding of denitrifying methylotrophy in the recent years, challenges still exist in unravelling the overall biochemistry of nitrate-dependent methane oxidation in novel or poorly characterized/not-yet-cultured bacteria. In the present study, landfill site was mined for novel C1-carbon-metabolizing bacteria which can use nitrate/nitrite as an electron acceptor. A high-throughput rapid plate assay identified three bacterial isolates with eminent ability for nitrate-dependent methane metabolism under anaerobic conditions. Taxonomic identification by whole-genome sequence-based overall genome relatedness indices accurately assigned the isolates AAK_M13, AAK_M29, and AAK_M39 at the species level to Enterobacter cloacae, Bacillus subtilis, and Bacillus halotolerans, respectively. Several genes encoding sub-components involved in alcohol utilization and denitrification pathways, such as adh, fdh, fdo, nar, nir, and nor, were identified in all the genomes. Though no gene clusters encoding MMO/AMO were annotated, sequencing of PCR amplicons revealed similarity with pMMO/AMO gene using translated nucleotide sequence of strains AAK_M29 and AAK_M39, while strain AAK_M13 showed similarity with XRE family transcriptional regulator. This suggests the horizontal gene transfer and/or presence of a truncated version of a housekeeping enzyme encoded by genes exhibiting partial sequence similarity with pMMO genes that mimicked its function at greenhouse gas emission sites. Owing to lack of conclusive evidence for presence of methane metabolism genes in the selected isolates, further experiment was performed to validate their nitrate-dependent methane oxidation capacities. Bacillus subtilis AAK_M29, Bacillus halotolerans AAK_M39, and Enterobacter cloacae AAK_M13 could oxidize 60%, 75%, and 85% of the added methane respectively accompanied by high nitrate reduction (56-62%) thus supporting the correlation between these two activities. The remarkable ability of these isolates for nitrate-dependent methane metabolism has highlighted their role in ecological contribution and biotechnological potential to serve as methane and nitrate sinks in the landfill sites.
Collapse
Affiliation(s)
- Bhagyashri J Poddar
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anshuman A Khardenavis
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
de Freitas AS, Carlos FS, Martins GL, Monteiro GGTN, Roesch LFW. Bacterial Resilience and Community Shifts Under 11 Draining-Flooding Cycles in Rice Soils. MICROBIAL ECOLOGY 2024; 87:149. [PMID: 39604741 PMCID: PMC11602802 DOI: 10.1007/s00248-024-02468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Flooded rice cultivation, accounting for 75% of global rice production, significantly influences soil redox potential, element speciation, pH, and nutrient availability, presenting challenges such as extensive water usage and altered soil properties. This study investigates bacterial community dynamics in rice soils subjected to repeated draining and flooding in Rio Grande do Sul, Brazil. We demonstrate that bacterial communities exhibit remarkable resilience (the capacity to recover after being altered by a disturbance) but cannot remain stable after long-term exposure to environmental changes. The beta diversity analysis revealed four distinct community states after 11 draining/flooding cycles, indicating resilience over successive environment changes. However, the consistent environmental disturbance reduced microbial resilience, causing the bacterial community structure to shift over time. Those differences were driven by substitutions of taxa and functions and not by the loss of diversity. Notable shifts included a decline in Acidobacteria and an increase in Proteobacteria and Chloroflexi. Increased Verrucomicrobia abundance corresponded with lower pH levels. Functional predictions suggested dynamic metabolic responses, with increased nitrification during drained cycles and a surge in fermenters after the sixth cycle. Despite cyclic disturbances, bacterial communities exhibit resilience, contributing to stable ecosystem functioning in flooded rice soils. These findings enhance our understanding of microbial adaptation, providing insights into sustainable rice cultivation and soil management practices.
Collapse
Affiliation(s)
- Anderson Santos de Freitas
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Filipe Selau Carlos
- Soil Department, "Eliseu Maciel" Agronomy Faculty, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Guilherme Lucio Martins
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | | | | |
Collapse
|
8
|
Kaparullina EN, Agafonova NV, Suzina NE, Grouzdev DS, Doronina NV. Methylocystis borbori sp.nov., a novel methanotrophic bacterium from the sludge of a freshwater lake and its metabolic properties. Antonie Van Leeuwenhoek 2024; 118:29. [PMID: 39576297 DOI: 10.1007/s10482-024-02039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
A novel methanotrophic strain 9NT was isolated from the sludge of a freshwater lake. Cells were aerobic, Gram-stain-negative, non-motile pleomorphic rods with intracytoplasmic membrane systems that appropriate type-II methanotrophs and hemispherical and spherical exocellular formations on the perimeter of the cell wall surface. The novel isolate grows only on methane or methanol as the sole carbon and energy source, at 10-37 °C (optimum 28-30 °C), pH 4.5-9.0 (optimum 7.0-7.5), up to 1% NaCl (optimum 0.3-0.5%). Methanol supported the growth of the strain 9NT in a wide range of concentrations from 0.05 to 5.0% (v/v) with an optimum of 0.5% (v/v). The major fatty acids were C18:1ω8c and C18:1ω7c. Based on 16S rRNA gene sequence phylogenetic analysis, strain 9NT was closely related to representatives of the genus Methylocystis (96.5-98.3%). The genome of strain 9NT was 3.34 Mbp in size with 63.5% of G + C content. The average nucleotide identity and digital DNA-DNA hybridization values between strain 9NT and closely related type strains of genus Methylocystis were 78.0-82.4% and 20.9-24.3%, respectively. The careful genome annotation of the novel strain shows it possessed genes for the detoxification of arsenate and cyanides as well as genes potentially involved in plant growth promotion (such as biosynthesis of indoles, cytokinins, polyhydroxybutyrate, siderophore production, and nitrogen fixation). Based on the phylogenetic, phenotypic, chemotaxonomic and genomic data, we propose Methylocystis borbori sp. nov. as novel species of the genus Methylocystis. The type strain is 9NT (= VKM B-3616T = KCTC 92566T).
Collapse
Affiliation(s)
- Elena N Kaparullina
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki, 5, Pushchino, Moscow Region, Russia, 142290.
| | - Nadezhda V Agafonova
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki, 5, Pushchino, Moscow Region, Russia, 142290
| | - Natalia E Suzina
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki, 5, Pushchino, Moscow Region, Russia, 142290
| | | | - Nina V Doronina
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki, 5, Pushchino, Moscow Region, Russia, 142290
| |
Collapse
|
9
|
Beals DG, Munn JJ, Puri AW. Methane-oxidizing bacterial community dynamics in sub-alpine forest soil. Microbiol Spectr 2024; 12:e0083424. [PMID: 39287454 PMCID: PMC11537040 DOI: 10.1128/spectrum.00834-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Microbial activities in sub-alpine forest soil influence global cycling of the potent greenhouse gas methane. Understanding the dynamics of methane-oxidizing bacterial communities, particularly the roles of potentially active versus total microbial populations, is necessary for reducing uncertainty in global methane budget estimates. However, our understanding of the factors influencing methane cycling in forest soils is limited by our lack of knowledge about the biology of the microbes involved and how these communities are shaped by their environment. Here, we compared the composition and potential activity of microbial communities using 16S rRNA gene amplicon sequencing of total genomic DNA (gDNA) and potentially active complementary DNA (cDNA) from shallow soil in Red Butte Canyon (Salt Lake City, Utah, USA). We compared riparian and upland soils at two time points in the growing season and found distinct differences in both the community composition of the gDNA and cDNA libraries and the potential drivers of these community structures. Aerobic methane-oxidizing bacteria (methanotrophs) were detected in all samples, with cDNA libraries containing a higher average relative abundance and diversity of methanotrophs compared to gDNA libraries. Methane flux at the sample sites did not significantly correlate to the relative abundance (gDNA) or potential activity (cDNA) of methanotrophs. In the cDNA libraries, there were significant positive correlations between the abundance of Methylococcaceae family methanotrophs and several non-methanotrophic methylotrophs previously found to be associated with methane-oxidizing bacterial communities. These findings suggest a complex relationship between methane-cycling bacterial communities and methane flux and highlight the need for further in situ studies to understand the environmental and ecological influences of these microbial consortia. IMPORTANCE Methane-oxidizing bacteria are found in diverse soil and sediment environments and play an important role in mitigating flux of this potent greenhouse gas into the atmosphere. However, it is unclear how these bacteria and their associated communities are structured in the environment and how their activity ultimately influences methane flux. In this work, we examine the composition and structure of methane-oxidizing bacterial communities in sub-alpine forest soil and find soil- and time-specific differences between the stable and potentially active populations. We also find that the potentially active populations of certain methanotrophs and non-methanotrophs are positively correlated. This work provides a step toward refining our understanding of microbially mediated biogeochemical cycles.
Collapse
Affiliation(s)
- Delaney G. Beals
- Department of Chemistry and the Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - J. Jackson Munn
- Department of Chemistry and the Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - Aaron W. Puri
- Department of Chemistry and the Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
Jiang OY, Zhang SY, Zhao XD, Liu ZT, Kappler A, Xu JM, Tang XJ. Arsenic Reduces Methane Emissions from Paddy Soils: Insights from Continental Investigation and Laboratory Incubations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17685-17694. [PMID: 39314094 DOI: 10.1021/acs.est.4c06809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Arsenic (As) contamination and methane (CH4) emissions co-occur in rice paddies. However, how As impacts CH4 production, oxidation, and emission dynamics is unknown. Here, we investigated the abundances and activities of CH4-cycling microbes from 132 paddy soils with different As concentrations across continental China using metagenomics and the reverse transcription polymerase chain reaction. Our results revealed that As was a crucial factor affecting the abundance and distribution patterns of the mcrA gene, which is responsible for CH4 production and anaerobic CH4 oxidation. Laboratory incubation experiments showed that adding 30 mg kg-1 arsenate increased 13CO2 production by 10-fold, ultimately decreasing CH4 emissions by 68.5%. The inhibition of CH4 emissions by As was induced through three aspects: (1) the toxicity of As decreased the abundance and activity of the methanogens; (2) the adaptability and response of methanotrophs to As is beneficial for CH4 oxidation under As stress; and (3) the more robust arsenate reduction would anaerobically consume more CH4 in paddies. Additionally, significant positive correlations were observed between arsC and pmoA gene abundance in both the observational study and incubation experiment. These findings enhance our understanding of the mechanisms underlying the interactions between As and CH4 cycling in soils.
Collapse
Affiliation(s)
- Ou-Yuan Jiang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Si-Yu Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xin-Di Zhao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zi-Teng Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Andreas Kappler
- Department of Geosciences, University of Tübingen, Tübingen 72076, Germany
| | - Jian-Ming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xian-Jin Tang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Rajguru B, Shri M, Bhatt VD. Exploring microbial diversity in the rhizosphere: a comprehensive review of metagenomic approaches and their applications. 3 Biotech 2024; 14:224. [PMID: 39247454 PMCID: PMC11379838 DOI: 10.1007/s13205-024-04065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
The rhizosphere, the soil region influenced by plant roots, represents a dynamic microenvironment where intricate interactions between plants and microorganisms shape soil health, nutrient cycling, and plant growth. Soil microorganisms are integral players in the transformation of materials, the dynamics of energy flows, and the intricate cycles of biogeochemistry. Considerable research has been dedicated to investigating the abundance, diversity, and intricacies of interactions among different microbes, as well as the relationships between plants and microbes present in the rhizosphere. Metagenomics, a powerful suite of techniques, has emerged as a transformative tool for dissecting the genetic repertoire of complex microbial communities inhabiting the rhizosphere. The review systematically navigates through various metagenomic approaches, ranging from shotgun metagenomics, enabling unbiased analysis of entire microbial genomes, to targeted sequencing of the 16S rRNA gene for taxonomic profiling. Each approach's strengths and limitations are critically evaluated, providing researchers with a nuanced understanding of their applicability in different research contexts. A central focus of the review lies in the practical applications of rhizosphere metagenomics in various fields including agriculture. By decoding the genomic content of rhizospheric microbes, researchers gain insights into their functional roles in nutrient acquisition, disease suppression, and overall plant health. The review also addresses the broader implications of metagenomic studies in advancing our understanding of microbial diversity and community dynamics in the rhizosphere. It serves as a comprehensive guide for researchers, agronomists, and policymakers, offering a roadmap for harnessing metagenomic approaches to unlock the full potential of the rhizosphere microbiome in promoting sustainable agriculture.
Collapse
Affiliation(s)
- Bhumi Rajguru
- School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat India
| | - Manju Shri
- School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat India
| | - Vaibhav D Bhatt
- School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat India
| |
Collapse
|
12
|
Gontijo JB, Paula FS, Bieluczyk W, França AG, Navroski D, Mandro JA, Venturini AM, Asselta FO, Mendes LW, Moura JMS, Moreira MZ, Nüsslein K, Bohannan BJM, Bodelier PLE, Rodrigues JLM, Tsai SM. Methane-cycling microbial communities from Amazon floodplains and upland forests respond differently to simulated climate change scenarios. ENVIRONMENTAL MICROBIOME 2024; 19:48. [PMID: 39020395 PMCID: PMC11256501 DOI: 10.1186/s40793-024-00596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Seasonal floodplains in the Amazon basin are important sources of methane (CH4), while upland forests are known for their sink capacity. Climate change effects, including shifts in rainfall patterns and rising temperatures, may alter the functionality of soil microbial communities, leading to uncertain changes in CH4 cycling dynamics. To investigate the microbial feedback under climate change scenarios, we performed a microcosm experiment using soils from two floodplains (i.e., Amazonas and Tapajós rivers) and one upland forest. We employed a two-factorial experimental design comprising flooding (with non-flooded control) and temperature (at 27 °C and 30 °C, representing a 3 °C increase) as variables. We assessed prokaryotic community dynamics over 30 days using 16S rRNA gene sequencing and qPCR. These data were integrated with chemical properties, CH4 fluxes, and isotopic values and signatures. In the floodplains, temperature changes did not significantly affect the overall microbial composition and CH4 fluxes. CH4 emissions and uptake in response to flooding and non-flooding conditions, respectively, were observed in the floodplain soils. By contrast, in the upland forest, the higher temperature caused a sink-to-source shift under flooding conditions and reduced CH4 sink capability under dry conditions. The upland soil microbial communities also changed in response to increased temperature, with a higher percentage of specialist microbes observed. Floodplains showed higher total and relative abundances of methanogenic and methanotrophic microbes compared to forest soils. Isotopic data from some flooded samples from the Amazonas river floodplain indicated CH4 oxidation metabolism. This floodplain also showed a high relative abundance of aerobic and anaerobic CH4 oxidizing Bacteria and Archaea. Taken together, our data indicate that CH4 cycle dynamics and microbial communities in Amazonian floodplain and upland forest soils may respond differently to climate change effects. We also highlight the potential role of CH4 oxidation pathways in mitigating CH4 emissions in Amazonian floodplains.
Collapse
Affiliation(s)
- Júlia B Gontijo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil.
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA.
| | - Fabiana S Paula
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Wanderlei Bieluczyk
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Aline G França
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Deisi Navroski
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Jéssica A Mandro
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | | | - Fernanda O Asselta
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Lucas W Mendes
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - José M S Moura
- Instituto de Formação Interdisciplinar e Intercultural, Universidade Federal do Oeste do Pará, Santarém, PA, Brazil
| | - Marcelo Z Moreira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Klaus Nüsslein
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Brendan J M Bohannan
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Paul L E Bodelier
- Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, GE, The Netherlands
| | - Jorge L Mazza Rodrigues
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Siu M Tsai
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
13
|
Li Q, Deng H, He R, Hu S, Sun L, Li M, Wu QL, Zeng J. Effects of different emergent macrophytes on methane flux and rhizosphere microbial communities in wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172565. [PMID: 38642750 DOI: 10.1016/j.scitotenv.2024.172565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/02/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Emergent macrophytes are of great importance for the structure and functioning of wetland ecosystems and play a significant role in environmental improvement, element cycling, and greenhouse gas (GHG) emissions. However, our understanding of how GHG fluxes differ among macrophyte species and its links with the microbial communities remain limited. In this study, we investigated the rhizosphere microbial communities (including total bacteria, methanotrophs, and methanogens) and the GHG fluxes associated with four emergent macrophytes-Phragmites australis, Thalia dealbata, Pontederia cordata, and Zizania latifolia-collected from Xuanwu Lake wetland, China. We observed the highest CH4 flux (FCH4) (9.35 ± 2.52 mg·m-2·h-1) from Z. latifolia zone, followed by P. australis, P. cordata, and T. dealbata zones (5.38 ± 1.63, 2.38 ± 2.91, and 2.02 ± 0.69 mg·m-2·h-1, respectively). Methanogenesis was methylotrophic at all sites, as the 13C-CH4 values were higher than -64 ‰ and the fractionation coefficients were lower than 1.055. We found a positive linear relationship between FCH4 and the methanogen community, in particular the relative abundances of Methanobacterium and Methanosarcina, indicating that the variations in FCH4 among the studied macrophyte-dominated zones might be attributed to the differences in rhizosphere microbial communities. The methane emissions in various macrophyte zones might be due to the higher capacity of methanogenesis compared to methane oxidation which was inhibited by nutrient-rich sediments. Our findings provide insights for selecting specific emergent macrophytes characterized by low FCH4 in wetland ecological restoration.
Collapse
Affiliation(s)
- Qisheng Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyang Deng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rujia He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Siwen Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Lijie Sun
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Mengyuan Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China.
| |
Collapse
|
14
|
Carmichael MJ, Martinez M, Bräuer SL, Ardón M. Microbial Communities in Standing Dead Trees in Ghost Forests are Largely Aerobic, Saprophytic, and Methanotrophic. Curr Microbiol 2024; 81:229. [PMID: 38896154 PMCID: PMC11186919 DOI: 10.1007/s00284-024-03767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Standing dead trees (snags) are recognized for their influence on methane (CH4) cycling in coastal wetlands, yet the biogeochemical processes that control the magnitude and direction of fluxes across the snag-atmosphere interface are not fully elucidated. Herein, we analyzed microbial communities and fluxes at one height from ten snags in a ghost forest wetland. Snag-atmosphere CH4 fluxes were highly variable (- 0.11-0.51 mg CH4 m-2 h-1). CH4 production was measured in three out of ten snags; whereas, CH4 consumption was measured in two out of ten snags. Potential CH4 production and oxidation in one core from each snag was assayed in vitro. A single core produced CH4 under anoxic and oxic conditions, at measured rates of 0.7 and 0.6 ng CH4 g-1 h-1, respectively. Four cores oxidized CH4 under oxic conditions, with an average rate of - 1.13 ± 0.31 ng CH4 g-1 h-1. Illumina sequencing of the V3/V4 region of the 16S rRNA gene sequence revealed diverse microbial communities and indicated oxidative decomposition of deadwood. Methanogens were present in 20% of the snags, with a mean relative abundance of < 0.0001%. Methanotrophs were identified in all snags, with a mean relative abundance of 2% and represented the sole CH4-cycling communities in 80% of the snags. These data indicate potential for microbial attenuation of CH4 emissions across the snag-atmosphere interface in ghost forests. A better understanding of the environmental drivers of snag-associated microbial communities is necessary to forecast the response of CH4 cycling in coastal ghost forest wetlands to a shifting coastal landscape.
Collapse
Affiliation(s)
- Mary Jane Carmichael
- Departments of Biology and Environmental Studies, Hollins University, Roanoke, VA, 24020, USA.
| | - Melinda Martinez
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, 20708, USA
| | - Suzanna L Bräuer
- Department of Biology, Appalachian State University, Boone, NC, 28608, USA
| | - Marcelo Ardón
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
15
|
Wu H, Nie WB, Tan X, Xie GJ, Qu H, Zhang X, Xian Z, Dai J, Yang C, Chen Y. Different oxygen affinities of methanotrophs and Comammox Nitrospira inform an electrically induced symbiosis for nitrogen loss. WATER RESEARCH 2024; 256:121606. [PMID: 38631236 DOI: 10.1016/j.watres.2024.121606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Aerobic methanotrophs establish a symbiotic association with denitrifiers to facilitate the process of aerobic methane oxidation coupled with denitrification (AME-D). However, the symbiosis has been frequently observed in hypoxic conditions continuing to pose an enigma. The present study has firstly characterized an electrically induced symbiosis primarily governed by Methylosarcina and Hyphomicrobium for the AME-D process in a hypoxic niche caused by Comammox Nitrospira. The kinetic analysis revealed that Comammox Nitrospira exhibited a higher apparent oxygen affinity compared to Methylosarcina. While the coexistence of comammox and AME-D resulted in an increase in methane oxidation and nitrogen loss rates, from 0.82 ± 0.10 to 1.72 ± 0.09 mmol CH4 d-1 and from 0.59 ± 0.04 to 1.30 ± 0.15 mmol N2 d-1, respectively. Furthermore, the constructed microbial fuel cells demonstrated a pronounced dependence of the biocurrents on AME-D due to oxygen competition, suggesting the involvement of direct interspecies electron transfer in the AME-D process under hypoxic conditions. Metagenomic and metatranscriptomic analysis revealed that Methylosarcina efficiently oxidized methane to formaldehyde, subsequently generating abundant NAD(P)H for nitrate reduction by Hyphomicrobium through the dissimilatory RuMP pathway, leading to CO2 production. This study challenges the conventional understanding of survival mechanism employed by AME-D symbionts, thereby contributing to the characterization responsible for limiting methane emissions and promoting nitrogen removal in hypoxic regions.
Collapse
Affiliation(s)
- Hao Wu
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Wen-Bo Nie
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Xin Tan
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han Qu
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xin Zhang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Zhihao Xian
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jingyi Dai
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Chun Yang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yi Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
16
|
Eam H, Ko D, Lee C, Myung J. Methylosinus trichosporium OB3b bioaugmentation unleashes polyhydroxybutyrate-accumulating potential in waste-activated sludge. Microb Cell Fact 2024; 23:160. [PMID: 38822346 PMCID: PMC11140957 DOI: 10.1186/s12934-024-02442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Wastewater treatment plants contribute approximately 6% of anthropogenic methane emissions. Methanotrophs, capable of converting methane into polyhydroxybutyrate (PHB), offer a promising solution for utilizing methane as a carbon source, using activated sludge as a seed culture for PHB production. However, maintaining and enriching PHB-accumulating methanotrophic communities poses challenges. RESULTS This study investigated the potential of Methylosinus trichosporium OB3b to bioaugment PHB-accumulating methanotrophic consortium within activated sludge to enhance PHB production. Waste-activated sludges with varying ratios of M. trichosporium OB3b (1:0, 1:1, 1:4, and 0:1) were cultivated. The results revealed substantial growth and methane consumption in waste-activated sludge with M. trichosporium OB3b-amended cultures, particularly in a 1:1 ratio. Enhanced PHB accumulation, reaching 37.1% in the same ratio culture, indicates the dominance of Type II methanotrophs. Quantification of methanotrophs by digital polymerase chain reaction showed gradual increases in Type II methanotrophs, correlating with increased PHB production. However, while initial bioaugmentation of M. trichosporium OB3b was observed, its presence decreased in subsequent cycles, indicating the dominance of other Type II methanotrophs. Microbial community analysis highlighted the successful enrichment of Type II methanotrophs-dominated cultures due to the addition of M. trichosporium OB3b, outcompeting Type I methanotrophs. Methylocystis and Methylophilus spp. were the most abundant in M. trichosporium OB3b-amended cultures. CONCLUSIONS Bioaugmentation strategies, leveraging M. trichosporium OB3b could significantly enhance PHB production and foster the enrichment of PHB-accumulating methanotrophs in activated sludge. These findings contribute to integrating PHB production in wastewater treatment plants, providing a sustainable solution for resource recovery.
Collapse
Affiliation(s)
- Hyerim Eam
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Dayoung Ko
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Changsoo Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Jaewook Myung
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
17
|
Awala SI, Gwak JH, Kim Y, Jung MY, Dunfield PF, Wagner M, Rhee SK. Nitrous oxide respiration in acidophilic methanotrophs. Nat Commun 2024; 15:4226. [PMID: 38762502 PMCID: PMC11102522 DOI: 10.1038/s41467-024-48161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/22/2024] [Indexed: 05/20/2024] Open
Abstract
Aerobic methanotrophic bacteria are considered strict aerobes but are often highly abundant in hypoxic and even anoxic environments. Despite possessing denitrification genes, it remains to be verified whether denitrification contributes to their growth. Here, we show that acidophilic methanotrophs can respire nitrous oxide (N2O) and grow anaerobically on diverse non-methane substrates, including methanol, C-C substrates, and hydrogen. We study two strains that possess N2O reductase genes: Methylocella tundrae T4 and Methylacidiphilum caldifontis IT6. We show that N2O respiration supports growth of Methylacidiphilum caldifontis at an extremely acidic pH of 2.0, exceeding the known physiological pH limits for microbial N2O consumption. Methylocella tundrae simultaneously consumes N2O and CH4 in suboxic conditions, indicating robustness of its N2O reductase activity in the presence of O2. Furthermore, in O2-limiting conditions, the amount of CH4 oxidized per O2 reduced increases when N2O is added, indicating that Methylocella tundrae can direct more O2 towards methane monooxygenase. Thus, our results demonstrate that some methanotrophs can respire N2O independently or simultaneously with O2, which may facilitate their growth and survival in dynamic environments. Such metabolic capability enables these bacteria to simultaneously reduce the release of the key greenhouse gases CO2, CH4, and N2O.
Collapse
Affiliation(s)
- Samuel Imisi Awala
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
- Center for Ecology and Environmental Toxicology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Yongman Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Man-Young Jung
- Interdisciplinary Graduate Programme in Advance Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
- Department of Science Education, Jeju National University, Jeju, Republic of Korea
- Jeju Microbiome Center, Jeju National University, Jeju, Republic of Korea
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
18
|
Schmider T, Hestnes AG, Brzykcy J, Schmidt H, Schintlmeister A, Roller BRK, Teran EJ, Söllinger A, Schmidt O, Polz MF, Richter A, Svenning MM, Tveit AT. Physiological basis for atmospheric methane oxidation and methanotrophic growth on air. Nat Commun 2024; 15:4151. [PMID: 38755154 PMCID: PMC11519548 DOI: 10.1038/s41467-024-48197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Atmospheric methane oxidizing bacteria (atmMOB) constitute the sole biological sink for atmospheric methane. Still, the physiological basis allowing atmMOB to grow on air is not well understood. Here we assess the ability and strategies of seven methanotrophic species to grow with air as sole energy, carbon, and nitrogen source. Four species, including three outside the canonical atmMOB group USCα, enduringly oxidized atmospheric methane, carbon monoxide, and hydrogen during 12 months of growth on air. These four species exhibited distinct substrate preferences implying the existence of multiple metabolic strategies to grow on air. The estimated energy yields of the atmMOB were substantially lower than previously assumed necessary for cellular maintenance in atmMOB and other aerobic microorganisms. Moreover, the atmMOB also covered their nitrogen requirements from air. During growth on air, the atmMOB decreased investments in biosynthesis while increasing investments in trace gas oxidation. Furthermore, we confirm that a high apparent specific affinity for methane is a key characteristic of atmMOB. Our work shows that atmMOB grow on the trace concentrations of methane, carbon monoxide, and hydrogen present in air and outlines the metabolic strategies that enable atmMOB to mitigate greenhouse gases.
Collapse
Affiliation(s)
- Tilman Schmider
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, 9037, Tromsø, Norway.
| | - Anne Grethe Hestnes
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Julia Brzykcy
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Hannes Schmidt
- Department of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, 1030, Vienna, Austria
| | - Arno Schintlmeister
- Department of Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, 1030, Vienna, Austria
| | - Benjamin R K Roller
- Department of Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, 1030, Vienna, Austria
| | - Ezequiel Jesús Teran
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN-UNCPBA-CONICET-CICPBA), Pinto, 399, Tandil (7000), Argentina
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Exactas, Instituto de Física Arroyo Seco (IFAS), Pinto, 399, Tandil (7000), Argentina
| | - Andrea Söllinger
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Oliver Schmidt
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Martin F Polz
- Department of Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, 1030, Vienna, Austria
| | - Andreas Richter
- Department of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, 1030, Vienna, Austria
| | - Mette M Svenning
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Alexander T Tveit
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
19
|
Xu K, Yan Z, Tao C, Wang F, Zheng X, Ma Y, Sun Y, Zheng Y, Jia Z. A novel bioprospecting strategy via 13C-based high-throughput probing of active methylotrophs inhabiting oil reservoir surface soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171686. [PMID: 38485026 DOI: 10.1016/j.scitotenv.2024.171686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Methane-oxidizing bacteria (MOB) have long been considered as a microbial indicator for oil and gas prospecting. However, due to the phylogenetically narrow breath of ecophysiologically distinct MOB, classic culture-dependent approaches could not discriminate MOB population at fine resolution, and accurately reflect the abundance of active MOB in the soil above oil and gas reservoirs. Here, we presented a novel microbial anomaly detection (MAD) strategy to quantitatively identify specific indicator methylotrophs in the surface soils for bioprospecting oil and gas reservoirs by using a combination of 13C-DNA stable isotope probing (SIP), high-throughput sequencing (HTS), quantitative PCR (qPCR) and geostatistical analysis. The Chunguang oilfield of the Junggar Basin was selected as a model system in western China, and type I methanotrophic Methylobacter was most active in the topsoil above the productive oil wells, while type II methanotrophic Methylosinus predominated in the dry well soils, exhibiting clear differences between non- and oil reservoir soils. Similar results were observed by quantification of Methylobacter pmoA genes as a specific bioindicator for the prediction of unknown reservoirs by grid sampling. A microbial anomaly distribution map based on geostatistical analysis further showed that the anomalous zones were highly consistent with petroleum, geological and seismic data, and validated by subsequent drilling. Over seven years, a total of 24 wells have been designed and drilled into the targeted anomaly, and the success rate via the MAD prospecting strategy was 83 %. Our results suggested that molecular techniques are powerful tools for oil and gas prospecting. This study indicates that the exploration efficiency could be significantly improved by integrating multi-disciplinary information in geophysics and geomicrobiology while reducing the drilling risk to a greater extent.
Collapse
Affiliation(s)
- Kewei Xu
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China; Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi, Jiangsu 214126, China.
| | - Zhengfei Yan
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cheng Tao
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China; Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi, Jiangsu 214126, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuying Zheng
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China; Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi, Jiangsu 214126, China
| | - Yuanyuan Ma
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China; Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi, Jiangsu 214126, China
| | - Yongge Sun
- Department of Earth Science, Zhejiang University, Hangzhou 310027, China
| | - Yan Zheng
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Black Soils Conservation and Utilization, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
20
|
Cao W, Zhao J, Cai Y, Mo Y, Ma J, Zhang G, Jiang X, Jia Z. Ridge with no-tillage facilitates microbial N 2 fixation associated with methane oxidation in rice soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171172. [PMID: 38402982 DOI: 10.1016/j.scitotenv.2024.171172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Aerobic methane-oxidizing bacteria (MOB) play a crucial role in mitigating the greenhouse gas methane emission, particularly prevalent in flooded wetlands. The implementation of ridge with no-tillage practices within a rice-rape rotation system proves effective in overcoming the restrictive redox conditions associated with waterlogging. This approach enhances capillary water availability from furrows, especially during periods of low rainfall, thereby supporting plant growth on the ridges. However, the microbe-mediated accumulation of soil organic carbon and nitrogen remains insufficiently understood under this agricultural practice, particularly concerning methane oxidation, which holds ecological and agricultural significance in the rice fields. In this study, the ridge and ditch soils from a 28-year-old ridge with no-tillage rice field experiment were utilized for incubation with 13C-CH4 and 15NN2 to estimate the methane-oxidizing and N2-fixing potentials. Our findings reveal a significantly higher net production of fresh soil organic carbon in the ridge compared to the ditch soil during methane oxidation, with values of 626 and 543 μg 13C g-1 dry weight soil, respectively. Additionally, the fixed 15N exhibited a twofold increase in the ridge soil (14.1 μg 15N g-1 dry weight soil) compared to the ditch soil. Interestingly, the result of DNA-based stable isotope probing indicated no significant differences in active MOB and N2 fixers between ridge and ditch soils. Both Methylocystis-like type II and Methylosarcina/Methylomonas-like type I MOB catalyzed methane into organic biomass carbon pools. Soil N2-fixing activity was associated with the 15N-labeling of methane oxidizers and non-MOB, such as methanol oxidizers (Hyphomicrobium) and conventional N2 fixers (Burkholderia). Methane oxidation also fostered microbial interactions, as evidenced by co-occurrence patterns. These results underscore the dual role of microbial methane oxidation - not only as a recognized sink for the potent greenhouse gas methane but also as a source of soil organic carbon and bioavailable nitrogen. This emphasizes the pivotal role of microbial methane metabolism in contributing to soil carbon and nitrogen accumulation in ridge with no-tillage systems.
Collapse
Affiliation(s)
- Weiwei Cao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jun Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; Institute for Food and Agricultural Sciences (IFAS), Department of Microbiology & Cell Science, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL 33314, USA
| | - Yuanfeng Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yongliang Mo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; College of Environmental Science and Engineering, China West Normal University, Nanchong 637002, PR China
| | - Jingjing Ma
- Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130102, PR China
| | - Guangbin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xianjun Jiang
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130102, PR China.
| |
Collapse
|
21
|
Xiang X, Yao T, Man B, Lin D, Li C. Global hotspots and trends in microbial-mediated grassland carbon cycling: a bibliometric analysis. Front Microbiol 2024; 15:1377338. [PMID: 38741733 PMCID: PMC11090204 DOI: 10.3389/fmicb.2024.1377338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
Grasslands are among the most widespread environments on Earth, yet we still have poor knowledge of their microbial-mediated carbon cycling in the context of human activity and climate change. We conducted a systematic bibliometric analysis of 1,660 literature focusing on microbial-mediated grassland carbon cycling in the Scopus database from 1990 to 2022. We observed a steep increase in the number of multidisciplinary and interdisciplinary studies since the 2000s, with focus areas on the top 10 subject categories, especially in Agricultural and Biological Sciences. Additionally, the USA, Australia, Germany, the United Kingdom, China, and Austria exhibited high levels of productivity. We revealed that the eight papers have been pivotal in shaping future research in this field, and the main research topics concentrate on microbial respiration, interaction relationships, microbial biomass carbon, methane oxidation, and high-throughput sequencing. We further highlight that the new research hotspots in microbial-mediated grassland carbon cycling are mainly focused on the keywords "carbon use efficiency," "enzyme activity," "microbial community," and "high throughput sequencing." Our bibliometric analysis in the past three decades has provided insights into a multidisciplinary and evolving field of microbial-mediated grassland carbon cycling, not merely summarizing the literature but also critically identifying research hotspots and trends, the intellectual base, and interconnections within the existing body of collective knowledge and signposting the path for future research directions.
Collapse
Affiliation(s)
- Xing Xiang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science, Shangrao Normal University, Shangrao, China
- Key Laboratory for Regional Plants Conservation and Ecological Restoration of Northeast Jiangxi, College of Life Science, Shangrao Normal University, Shangrao, China
| | - Tuo Yao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, China
| | - Baiying Man
- College of Life Science, Shangrao Normal University, Shangrao, China
- Key Laboratory for Regional Plants Conservation and Ecological Restoration of Northeast Jiangxi, College of Life Science, Shangrao Normal University, Shangrao, China
| | - Dong Lin
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Changning Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
22
|
Patil SK, Islam T, Tveit A, Hodson A, Øvreås L. Targeting methanotrophs and isolation of a novel psychrophilic Methylobacter species from a terrestrial Arctic alkaline methane seep in Lagoon Pingo, Central Spitsbergen (78° N). Antonie Van Leeuwenhoek 2024; 117:60. [PMID: 38517574 PMCID: PMC10959801 DOI: 10.1007/s10482-024-01953-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/19/2024] [Indexed: 03/24/2024]
Abstract
The microbial diversity associated with terrestrial groundwater seepage through permafrost soils is tightly coupled to the geochemistry of these fluids. Terrestrial alkaline methane seeps from Lagoon Pingo, Central Spitsbergen (78°N) in Norway, with methane-saturated and oxygen-limited groundwater discharge providing a potential habitat for methanotrophy. Here, we report on the microbial community's comparative analyses and distribution patterns at two sites close to Lagoon Pingo's methane emission source. To target methane-oxidizing bacteria from this system, we analysed the microbial community pattern of replicate samples from two sections near the main methane seepage source. DNA extraction, metabarcoding and subsequent sequencing of 16S rRNA genes revealed microbial communities where the major prokaryotic phyla were Pseudomonadota (42-47%), Gemmatimonadota (4-14%) and Actinobacteriota (7-11%). Among the Pseudomonadota, members of the genus Methylobacter were present at relative abundances between 1.6 and 4.7%. Enrichment targeting the methane oxidising bacteria was set up using methane seep sediments as inoculum and methane as the sole carbon and energy source, and this resulted in the isolation of a novel psychrophilic methane oxidizer, LS7-T4AT. The optimum growth temperature for the isolate was 13 °C and the pH optimum was 8.0. The morphology of cells was short rods, and TEM analysis revealed intracytoplasmic membranes arranged in stacks, a distinctive feature for Type I methanotrophs in the family Methylomonadaceae of the class Gammaproteobacteria. The strain belongs to the genus Methylobacter based on high 16S rRNA gene similarity to the psychrophilic species of Methylobacter psychrophilus Z-0021T (98.95%), the psychrophilic strain Methylobacter sp. strain S3L5C (99.00%), and the Arctic mesophilic species of Methylobacter tundripaludum SV96T (99.06%). The genome size of LS7-T4AT was 4,338,157 bp with a G + C content of 47.93%. The average nucleotide identities (ANIb) of strain LS7-T4AT to 10 isolated strains of genus Methylobacter were between 75.54 and 85.51%, lower than the species threshold of 95%. The strain LS7-T4AT represents a novel Arctic species, distinct from other members of the genus Methylobacter, for which the name Methylobacter svalbardensis sp. nov. is proposed. The type of strain is LS7-T4AT (DSMZ:114308, JCM:39463).
Collapse
Affiliation(s)
- Shalaka K Patil
- Department of Biological Sciences, University of Bergen, Postboks 7803, 5020, Bergen, Norway.
| | - Tajul Islam
- Department of Biological Sciences, University of Bergen, Postboks 7803, 5020, Bergen, Norway
| | - Alexander Tveit
- Department of Arctic and Marine Biology, The Arctic University of Tromsø, 9037, Tromsø, Norway
| | - Andrew Hodson
- University Centre in Svalbard, 9171, Longyearbyen, Norway
| | - Lise Øvreås
- Department of Biological Sciences, University of Bergen, Postboks 7803, 5020, Bergen, Norway
- University Centre in Svalbard, 9171, Longyearbyen, Norway
- Bjerknes Centre for Climate Research, Jahnebakken 5, 5007, Bergen, Norway
| |
Collapse
|
23
|
Wen F, Biederman JA, Hao Y, Qian R, Zheng Z, Cui X, Zhao T, Xue K, Wang Y. Extreme drought alters methane uptake but not methane sink in semi-arid steppes of Inner Mongolia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169834. [PMID: 38190902 DOI: 10.1016/j.scitotenv.2023.169834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
Global climate change, particularly drought, is expected to alter grassland methane (CH4) oxidation, a key natural process against atmospheric greenhouse gas accumulation, yet the extent of this effect and its interaction with future atmospheric CH4 concentrations increases remains uncertain. To address this research gap, we measured CH4 flux during an imposed three-month rain-free period corresponding to a 100-year recurrence drought in soil mesocosms collected from 16 different Eurasian steppe sites. We also investigated the abundance and composition of methanotrophs. Additionally, we conducted a laboratory experiment to explore the impact of elevated CH4 concentration on the CH4 uptake capacity of grassland soil under drought conditions. We found that regardless of the type of grassland, CH4 flux was still being absorbed at its peak, meaning that all grasslands functioned as persistent CH4 sinks even when the soil water content (SWC) was <5 %. A bell-shaped relationship between SWC and CH4 uptake was observed in the soils. The average maximum CH4 oxidation rate in the meadow steppe was higher than that in the typical and desert steppe soils during extreme drought. The experimental elevation of atmospheric CH4 concentration counteracted the anticipated reduction in CH4 uptake related to physiological water stress on methanotrophic soil microbes under the drought stress. On the contrary, we found that across the regional scale, nitrogen, phosphorous, and total soil organic content played a crucial role in moderating the duration and magnitude of CH4 uptake with respect to SWC. USC-γ (Upland Soil Cluster γ) and JR-3 (Jasper Ridge Cluster) were the dominant group of soil methanotrophic bacteria in three types of grassland. However, the methanotrophic abundance, rather than the methanotrophic community composition, was the dominant microbiological factor governing CH4 uptake during the drought.
Collapse
Affiliation(s)
- Fuqi Wen
- College of Life Sciences, University Chinese Academy of Sciences, Beijing, China
| | - Joel A Biederman
- Southwest Watershed Research Center, Agricultural Research Service, Tucson, AZ, USA
| | - Yanbin Hao
- College of Life Sciences, University Chinese Academy of Sciences, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, Chinese Academy of Sciences, Beijing 101408, China..
| | - Ruyan Qian
- College of Life Sciences, University Chinese Academy of Sciences, Beijing, China
| | - Zhenzhen Zheng
- College of Life Sciences, University Chinese Academy of Sciences, Beijing, China
| | - Xiaoyong Cui
- College of Life Sciences, University Chinese Academy of Sciences, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, Chinese Academy of Sciences, Beijing 101408, China
| | - Tong Zhao
- School of Mathematics Sciences, University Chinese Academy of Sciences, Beijing 101408, China
| | - Kai Xue
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, Chinese Academy of Sciences, Beijing 101408, China.; Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810001, China; College of Resources and Environment, University Chinese Academy of Sciences, Beijing 101408, China
| | - Yanfen Wang
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, Chinese Academy of Sciences, Beijing 101408, China.; College of Resources and Environment, University Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
24
|
Huang D, Chen Y, Bai X, Zhang R, Chen Q, Wang N, Xu Q. Methane removal efficiencies of biochar-mediated landfill soil cover with reduced depth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120487. [PMID: 38422848 DOI: 10.1016/j.jenvman.2024.120487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Biochar amendment for landfill soil cover has the potential to enhance methane removal efficiency while minimizing the soil depth. However, there is a lack of information on the response of biochar-mediated soil cover to the changes in configuration and operational parameters during the methane transport and transformation processes. This study constructed three biochar-amended landfill soil covers, with reduced soil depths from 75 cm (C2) to 55 cm (C3) and 45 cm (C4), and the control group (C1) with 75 cm and no biochar. Two operation phases were conducted under two soil moisture contents and three inlet methane fluxes in each phase. The methane removal efficiency increased for all columns along with the increase in methane flux. However, increasing moisture content from 10% to 20% negatively influenced the methane removal efficiency due to mass transfer limitation when at a low inlet methane flux, especially for C1; while this adverse effect could be alleviated by a high flux. Except for the condition with low moisture content and flux combination, C3 showed comparable methane removal efficiency to C2, both dominating over C1. As for C4 with only 45 cm, a high moisture content combined with a high methane flux enabled its methane removal efficiency to be competitive with other soil depths. In addition to the geotechnical reasons for gas transport processes, the evolution in methanotroph community structure (mainly type I methanotrophs) induced by biochar amendment and variations in soil properties supplemented the biological reasons for the varying methane removal efficiencies.
Collapse
Affiliation(s)
- Dandan Huang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China; School of Ecology, Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 0020518107, China
| | - Yuke Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Xinyue Bai
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Rujie Zhang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Qindong Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Ning Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China.
| |
Collapse
|
25
|
Zhang R, Xu Q, Song Z, Wu J, Chen H, Bai X, Wang N, Chen Y, Huang D. Manipulating soil microbial community assembly by the cooperation of exogenous bacteria and biochar for establishing an efficient and healthy CH 4 biofiltration system. CHEMOSPHERE 2024; 352:141319. [PMID: 38286313 DOI: 10.1016/j.chemosphere.2024.141319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 01/31/2024]
Abstract
Manipulating the methanotroph (MOB) composition and microbial diversity is a promising strategy to optimize the methane (CH4) biofiltration efficiency of an engineered landfill cover soil (LCS) system. Inoculating soil with exogenous MOB-rich bacteria and amending soil with biochar show strong manipulating potential, but how the two stimuli interactively shape the microbial community structure and diversity has not been clarified. Therefore, three types of soils with active CH4 activities, including paddy soil, river wetland soil, and LCS were selected for enriching MOB-dominated communities (abbreviated as B_PS, B_RWS, and B_LCS, respectively). They were then inoculated to LCS which was amended with two distinct biochar. Besides the aerobic CH4 oxidation efficiencies, the evolution of the three microbial communities during the MOB enrichment processes and their colonization in two-biochar amended LCS were obtained. During the MOB enriching, a lag phase in CH4 consumption was observed merely for B_LCS. Type II MOB Methylocystis was the primary MOB for both B_PS and B_LCS; while type I MOB dominated for B_RWS and the major species were altered by gas concentrations. Compared to biochar, a more critical role was demonstrated for the bacteria inoculation in determining the community diversity and function of LCS. Instead, biochar modified the community structures by mainly stimulating the dominant MOB but could induce stochastic processes in community assembly, possibly related to its inorganic nutrients. Particularly, combined with biochar advantages, the paddy soil-derived bacteria consortiums with diverse MOB species demonstrated the potent adaption to LCS niches, not only retaining the high CH4-oxidizing capacities but also shaping a community structure with more diverse soil function. The results provided new insights into the optimization of an engineered CH4-mitigation soil system by manipulating the soil microbiomes with the cooperation of exogenous bacteria and biochar.
Collapse
Affiliation(s)
- Rujie Zhang
- Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Zilong Song
- Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, China
| | - Jiang Wu
- Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, China
| | - Huaihai Chen
- Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, China
| | - Xinyue Bai
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Ning Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Yuke Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Dandan Huang
- Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, China.
| |
Collapse
|
26
|
Tucci FJ, Rosenzweig AC. Direct Methane Oxidation by Copper- and Iron-Dependent Methane Monooxygenases. Chem Rev 2024; 124:1288-1320. [PMID: 38305159 PMCID: PMC10923174 DOI: 10.1021/acs.chemrev.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Methane is a potent greenhouse gas that contributes significantly to climate change and is primarily regulated in Nature by methanotrophic bacteria, which consume methane gas as their source of energy and carbon, first by oxidizing it to methanol. The direct oxidation of methane to methanol is a chemically difficult transformation, accomplished in methanotrophs by complex methane monooxygenase (MMO) enzyme systems. These enzymes use iron or copper metallocofactors and have been the subject of detailed investigation. While the structure, function, and active site architecture of the copper-dependent particulate methane monooxygenase (pMMO) have been investigated extensively, its putative quaternary interactions, regulation, requisite cofactors, and mechanism remain enigmatic. The iron-dependent soluble methane monooxygenase (sMMO) has been characterized biochemically, structurally, spectroscopically, and, for the most part, mechanistically. Here, we review the history of MMO research, focusing on recent developments and providing an outlook for future directions of the field. Engineered biological catalysis systems and bioinspired synthetic catalysts may continue to emerge along with a deeper understanding of the molecular mechanisms of biological methane oxidation. Harnessing the power of these enzymes will necessitate combined efforts in biochemistry, structural biology, inorganic chemistry, microbiology, computational biology, and engineering.
Collapse
Affiliation(s)
- Frank J Tucci
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
27
|
Lim J, Wehmeyer H, Heffner T, Aeppli M, Gu W, Kim PJ, Horn MA, Ho A. Resilience of aerobic methanotrophs in soils; spotlight on the methane sink under agriculture. FEMS Microbiol Ecol 2024; 100:fiae008. [PMID: 38327184 PMCID: PMC10872700 DOI: 10.1093/femsec/fiae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024] Open
Abstract
Aerobic methanotrophs are a specialized microbial group, catalyzing the oxidation of methane. Disturbance-induced loss of methanotroph diversity/abundance, thus results in the loss of this biological methane sink. Here, we synthesized and conceptualized the resilience of the methanotrophs to sporadic, recurring, and compounded disturbances in soils. The methanotrophs showed remarkable resilience to sporadic disturbances, recovering in activity and population size. However, activity was severely compromised when disturbance persisted or reoccurred at increasing frequency, and was significantly impaired following change in land use. Next, we consolidated the impact of agricultural practices after land conversion on the soil methane sink. The effects of key interventions (tillage, organic matter input, and cover cropping) where much knowledge has been gathered were considered. Pairwise comparisons of these interventions to nontreated agricultural soils indicate that the agriculture-induced impact on the methane sink depends on the cropping system, which can be associated to the physiology of the methanotrophs. The impact of agriculture is more evident in upland soils, where the methanotrophs play a more prominent role than the methanogens in modulating overall methane flux. Although resilient to sporadic disturbances, the methanotrophs are vulnerable to compounded disturbances induced by anthropogenic activities, significantly affecting the methane sink function.
Collapse
Affiliation(s)
- Jiyeon Lim
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Helena Wehmeyer
- Nestlè Research, Route du Jorat 57, CH 1000 Lausanne 26, Switzerland
| | - Tanja Heffner
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Meret Aeppli
- Environmental Engineering Institute IIE-ENAC, Laboratory SOIL, Ecole Polytechnique Fédérale de Lausanne (EPFL), Valais Wallis, CH 1950 Sion, Switzerland
| | - Wenyu Gu
- Environmental Engineering Institute IIE-ENAC, Laboratory MICROBE, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Pil Joo Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Marcus A Horn
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Adrian Ho
- Nestlè Research, Route du Jorat 57, CH 1000 Lausanne 26, Switzerland
| |
Collapse
|
28
|
Xu K, Tao C, Gu L, Zheng X, Ma Y, Yan Z, Sun Y, Cai Y, Jia Z. Identifying Active Rather than Total Methanotrophs Inhabiting Surface Soil Is Essential for the Microbial Prospection of Gas Reservoirs. Microorganisms 2024; 12:372. [PMID: 38399776 PMCID: PMC10892661 DOI: 10.3390/microorganisms12020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Methane-oxidizing bacteria (MOB) have long been recognized as an important bioindicator for oil and gas exploration. However, due to their physiological and ecological diversity, the distribution of MOB in different habitats varies widely, making it challenging to authentically reflect the abundance of active MOB in the soil above oil and gas reservoirs using conventional methods. Here, we selected the Puguang gas field of the Sichuan Basin in Southwest China as a model system to study the ecological characteristics of methanotrophs using culture-independent molecular techniques. Initially, by comparing the abundance of the pmoA genes determined by quantitative PCR (qPCR), no significant difference was found between gas well and non-gas well soils, indicating that the abundance of total MOB may not necessarily reflect the distribution of the underlying gas reservoirs. 13C-DNA stable isotope probing (DNA-SIP) in combination with high-throughput sequencing (HTS) furthermore revealed that type II methanotrophic Methylocystis was the absolutely predominant active MOB in the non-gas-field soils, whereas the niche vacated by Methylocystis was gradually filled with type I RPC-2 (rice paddy cluster-2) and Methylosarcina in the surface soils of gas reservoirs after geoscale acclimation to trace- and continuous-methane supply. The sum of the relative abundance of RPC-2 and Methylosarcina was then used as specific biotic index (BI) in the Puguang gas field. A microbial anomaly distribution map based on the BI values showed that the anomalous zones were highly consistent with geological and geophysical data, and known drilling results. Therefore, the active but not total methanotrophs successfully reflected the microseepage intensity of the underlying active hydrocarbon system, and can be used as an essential quantitative index to determine the existence and distribution of reservoirs. Our results suggest that molecular microbial techniques are powerful tools for oil and gas prospecting.
Collapse
Affiliation(s)
- Kewei Xu
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; (C.T.); (L.G.); (X.Z.); (Y.M.)
- SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China
- Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi 214126, China
| | - Cheng Tao
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; (C.T.); (L.G.); (X.Z.); (Y.M.)
- SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China
- Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi 214126, China
| | - Lei Gu
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; (C.T.); (L.G.); (X.Z.); (Y.M.)
- SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China
- Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi 214126, China
| | - Xuying Zheng
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; (C.T.); (L.G.); (X.Z.); (Y.M.)
- SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China
- Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi 214126, China
| | - Yuanyuan Ma
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; (C.T.); (L.G.); (X.Z.); (Y.M.)
- SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China
- Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi 214126, China
| | - Zhengfei Yan
- School of Biotechnology, Jiangnan University, Wuxi 214122, China;
| | - Yongge Sun
- Department of Earth Science, Zhejiang University, Hangzhou 310027, China;
| | - Yuanfeng Cai
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
| | - Zhongjun Jia
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
- State Key Laboratory of Black Soils Conservation and Utilization, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
29
|
Ota Y, Iguchi A, Nishijima M, Mukai R, Suzumura M, Yoshioka H, Suzuki A, Tsukasaki A, Aoyagi T, Hori T. Methane diffusion affects characteristics of benthic communities in and around microbial mat-covered sediments in the northeastern Japan sea. CHEMOSPHERE 2024; 349:140964. [PMID: 38128741 DOI: 10.1016/j.chemosphere.2023.140964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/17/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
We investigated relationships between features of benthic macrofaunal communities and geochemical parameters in and around microbial mat-covered sediments associated with a methane seepage on Sakata Knoll in the eastern Japan Sea. A depression on top of the knoll corresponds to a gas-hydrate-bearing area with seepage of methane-rich fluid, and microbial mats cover the seafloor sediments. Sediment cores were collected at three sites for this study: one within a microbial mat, a second a few meters outside of the microbial mat, and a third from a reference site outside the gas-hydrate-bearing areas. Morphological analysis showed that the site inside the microbial mat had higher macrofaunal density and biomass compared with the other sites. 18S rRNA gene analysis showed that annelids were dominant in the surface sediment inside the microbial mat with the possible occurrence of microbial anaerobic oxidation of methane (AOM), whereas in the surface sediments outside the microbial mat and at the reference site the predominant species belonged to phylum Cercozoa. Morphological analysis also showed that the surface sediment inside the microbial mat noticeably favored annelids, with dorvilleid Ophryotrocha sp. and ampharetid Neosabellides sp. identified as major constituents. Statistical analysis showed that sulfidic sediment conditions with concentrations of H2S up to 121 μM resulting from AOM likely resulted in the predominance of annelids with tolerance to sulfide. Both the 18S rRNA genes and macrofaunal characteristics showed that benthic biodiversity among the three sites was greatest outside the microbial mat. The site outside the microbial mat may represent geochemical transition conditions, including a lower rate of upward methane gas-flow compared with the site inside the microbial mat. The high biodiversity there might result from the presence of species specifically suited to the transition zone as well as species also found in photosynthesis-based communities of the background environment.
Collapse
Affiliation(s)
- Yuki Ota
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8561, Japan.
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan; Research Laboratory on Environmentally-Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8567, Japan
| | - Miyuki Nishijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan
| | - Ryo Mukai
- Marine Biological Research Institute of Japan Co., Ltd, Yutaka-cho 4-3-16, Shinagawa, Tokyo, 142-0042, Japan
| | - Masahiro Suzumura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8561, Japan
| | - Hideyoshi Yoshioka
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan
| | - Atsushi Suzuki
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan; Research Laboratory on Environmentally-Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8567, Japan
| | - Ayumi Tsukasaki
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8561, Japan
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8561, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8561, Japan
| |
Collapse
|
30
|
Liu R, Wei Z, Dong W, Wang R, Adams JM, Yang L, Krause SMB. Unraveling the impact of lanthanum on methane consuming microbial communities in rice field soils. Front Microbiol 2024; 15:1298154. [PMID: 38322316 PMCID: PMC10844099 DOI: 10.3389/fmicb.2024.1298154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
The discovery of the lanthanide requiring enzymes in microbes was a significant scientific discovery that opened a whole new avenue of biotechnological research of this important group of metals. However, the ecological impact of lanthanides on microbial communities utilizing methane (CH4) remains largely unexplored. In this study, a laboratory microcosm model experiment was performed using rice field soils with different pH origins (5.76, 7.2, and 8.36) and different concentrations of La3+ in the form of lanthanum chloride (LaCl3). Results clearly showed that CH4 consumption was inhibited by the addition of La3+ but that the response depended on the soil origin and pH. 16S rRNA gene sequencing revealed the genus Methylobacter, Methylosarcina, and Methylocystis as key players in CH4 consumption under La3+ addition. We suggest that the soil microbiome involved in CH4 consumption can generally tolerate addition of high concentrations of La3+, and adjustments in community composition ensured ecosystem functionality over time. As La3+ concentrations increase, the way that the soil microbiome reacts may not only differ within the same environment but also vary when comparing different environments, underscoring the need for further research into this subject.
Collapse
Affiliation(s)
- Ruyan Liu
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ziting Wei
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| | - Wanying Dong
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| | - Rui Wang
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jonathan M. Adams
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China
| | - Lin Yang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China
| | - Sascha M. B. Krause
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
31
|
Hartman WH, Bueno de Mesquita CP, Theroux SM, Morgan-Lang C, Baldocchi DD, Tringe SG. Multiple microbial guilds mediate soil methane cycling along a wetland salinity gradient. mSystems 2024; 9:e0093623. [PMID: 38170982 PMCID: PMC10804969 DOI: 10.1128/msystems.00936-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Estuarine wetlands harbor considerable carbon stocks, but rising sea levels could affect their ability to sequester soil carbon as well as their potential to emit methane (CH4). While sulfate loading from seawater intrusion may reduce CH4 production due to the higher energy yield of microbial sulfate reduction, existing studies suggest other factors are likely at play. Our study of 11 wetland complexes spanning a natural salinity and productivity gradient across the San Francisco Bay and Delta found that while CH4 fluxes generally declined with salinity, they were highest in oligohaline wetlands (ca. 3-ppt salinity). Methanogens and methanogenesis genes were weakly correlated with CH4 fluxes but alone did not explain the highest rates observed. Taxonomic and functional gene data suggested that other microbial guilds that influence carbon and nitrogen cycling need to be accounted for to better predict CH4 fluxes at landscape scales. Higher methane production occurring near the freshwater boundary with slight salinization (and sulfate incursion) might result from increased sulfate-reducing fermenter and syntrophic populations, which can produce substrates used by methanogens. Moreover, higher salinities can solubilize ionically bound ammonium abundant in the lower salinity wetland soils examined here, which could inhibit methanotrophs and potentially contribute to greater CH4 fluxes observed in oligohaline sediments.IMPORTANCELow-level salinity intrusion could increase CH4 flux in tidal freshwater wetlands, while higher levels of salinization might instead decrease CH4 fluxes. High CH4 emissions in oligohaline sites are concerning because seawater intrusion will cause tidal freshwater wetlands to become oligohaline. Methanogenesis genes alone did not account for landscape patterns of CH4 fluxes, suggesting mechanisms altering methanogenesis, methanotrophy, nitrogen cycling, and ammonium release, and increasing decomposition and syntrophic bacterial populations could contribute to increases in net CH4 flux at oligohaline salinities. Improved understanding of these influences on net CH4 emissions could improve restoration efforts and accounting of carbon sequestration in estuarine wetlands. More pristine reference sites may have older and more abundant organic matter with higher carbon:nitrogen compared to wetlands impacted by agricultural activity and may present different interactions between salinity and CH4. This distinction might be critical for modeling efforts to scale up biogeochemical process interactions in estuarine wetlands.
Collapse
Affiliation(s)
| | | | | | - Connor Morgan-Lang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dennis D. Baldocchi
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Susannah G. Tringe
- DOE Joint Genome Institute, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
32
|
Zhu X, Deng Y, Liu Y. Methylocystis dominates methane oxidation in glacier foreland soil at elevated temperature. FEMS Microbiol Lett 2024; 371:fnae011. [PMID: 38366911 DOI: 10.1093/femsle/fnae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 02/19/2024] Open
Abstract
Methane-oxidizing bacteria (methanotrophs) play an important role in mitigating methane emissions in various ecological environments, including cold regions. However, the response of methanotrophs in these cold environments to extreme temperatures above the in-situ temperature has not been thoroughly explored. Therefore, this study collected soil samples from Longxiazailongba (LXZ) and Qiangyong (QY) glacier forelands and incubated them with 13CH4 at 35°C under different soil water conditions. The active methanotroph populations were identified using DNA stable isotope probing (DNA-SIP) and high throughput sequencing techniques. The results showed that the methane oxidation potential in LXZ and QY glacier foreland soils was significantly enhanced at an unusually high temperature of 35°C during microcosm incubations, where abundant substrate (methane and oxygen) was provided. Moreover, the influence of soil water conditions on this potential was observed. Interestingly, Methylocystis, a type II and mesophilic methanotroph, was detected in the unincubated in-situ soil samples and became the active and dominant methanotroph in methane oxidation at 35°C. This suggests that Methylocystis can survive at low temperatures for a prolonged period and thrive under suitable growth conditions. Furthermore, the presence of mesophilic methanotrophs in cold habitats could have potential implications for reducing greenhouse gas emissions in warming glacial environments.
Collapse
Affiliation(s)
- Xinshu Zhu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Yongqin Liu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
33
|
Reis PCJ, Tsuji JM, Weiblen C, Schiff SL, Scott M, Stein LY, Neufeld JD. Enigmatic persistence of aerobic methanotrophs in oxygen-limiting freshwater habitats. THE ISME JOURNAL 2024; 18:wrae041. [PMID: 38470309 PMCID: PMC11008690 DOI: 10.1093/ismejo/wrae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/06/2024] [Accepted: 03/13/2024] [Indexed: 03/13/2024]
Abstract
Methanotrophic bacteria mitigate emissions of the potent greenhouse gas methane (CH4) from a variety of anthropogenic and natural sources, including freshwater lakes, which are large sources of CH4 on a global scale. Despite a dependence on dioxygen (O2) for CH4 oxidation, abundant populations of putatively aerobic methanotrophs have been detected within microoxic and anoxic waters and sediments of lakes. Experimental work has demonstrated active aerobic methanotrophs under those conditions, but how they are able to persist and oxidize CH4 under O2 deficiency remains enigmatic. In this review, we discuss possible mechanisms that underpin the persistence and activity of aerobic methanotrophs under O2-limiting conditions in freshwater habitats, particularly lakes, summarize experimental evidence for microbial oxidation of CH4 by aerobic bacteria under low or no O2, and suggest future research directions to further explore the ecology and metabolism of aerobic methanotrophs in O2-limiting environments.
Collapse
Affiliation(s)
- Paula C J Reis
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jackson M Tsuji
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Cerrise Weiblen
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sherry L Schiff
- Department of Earth & Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Matthew Scott
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
34
|
Deng Y, Liang C, Zhu X, Zhu X, Chen L, Pan H, Xun F, Tao Y, Xing P. Methylomonadaceae was the active and dominant methanotroph in Tibet lake sediments. ISME COMMUNICATIONS 2024; 4:ycae032. [PMID: 38524764 PMCID: PMC10960969 DOI: 10.1093/ismeco/ycae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024]
Abstract
Methane (CH4), an important greenhouse gas, significantly impacts the local and global climate. Our study focused on the composition and activity of methanotrophs residing in the lakes on the Tibetan Plateau, a hotspot for climate change research. Based on the field survey, the family Methylomonadaceae had a much higher relative abundance in freshwater lakes than in brackish and saline lakes, accounting for ~92% of total aerobic methanotrophs. Using the microcosm sediment incubation with 13CH4 followed by high throughput sequencing and metagenomic analysis, we further demonstrated that the family Methylomonadaceae was actively oxidizing CH4. Moreover, various methylotrophs, such as the genera Methylotenera and Methylophilus, were detected in the 13C-labeled DNAs, which suggested their participation in CH4-carbon sequential assimilation. The presence of CH4 metabolism, such as the tetrahydromethanopterin and the ribulose monophosphate pathways, was identified in the metagenome-assembled genomes of the family Methylomonadaceae. Furthermore, they had the potential to adapt to oxygen-deficient conditions and utilize multiple electron acceptors, such as metal oxides (Fe3+), nitrate, and nitrite, for survival in the Tibet lakes. Our findings highlighted the predominance of Methylomonadaceae and the associated microbes as active CH4 consumers, potentially regulating the CH4 emissions in the Tibet freshwater lakes. These insights contributed to understanding the plateau carbon cycle and emphasized the significance of methanotrophs in mitigating climate change.
Collapse
Affiliation(s)
- Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Chulin Liang
- School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xiaomeng Zhu
- School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xinshu Zhu
- School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Lei Chen
- School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Hongan Pan
- School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Fan Xun
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ye Tao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| |
Collapse
|
35
|
Thao HV, Tarao M, Takada H, Nishizawa T, Nam TS, Cong NV, Xuan DT. Methanotrophic Communities and Cultivation of Methanotrophs from Rice Paddy Fields Fertilized with Pig-livestock Biogas Digestive Effluent and Synthetic Fertilizer in the Vietnamese Mekong Delta. Microbes Environ 2024; 39:n/a. [PMID: 39358243 DOI: 10.1264/jsme2.me24021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Biogas digestive effluent (BDE) has been applied to rice fields in the Vietnamese Mekong Delta (VMD). However, limited information is available on the community composition and isolation of methanotrophs in these fields. Therefore, the present study aimed (i) to clarify the responses of the methanotrophic community in paddy fields fertilized with BDE or synthetic fertilizer (SF) and (ii) to isolate methanotrophs from these fields. Methanotrophic communities were detected in rhizospheric soil at the rice ripening stage throughout 2 cropping seasons, winter-spring (dry) and summer-autumn (wet). Methanotrophs were isolated from dry-season soil samples. Although the continued application of BDE markedly reduced net methane oxidation potential and the copy number of pmoA genes, a dissimilarity ordination ana-lysis revealed no significant difference in the methanotrophic community between BDE and SF fields (P=0.167). Eleven methanotrophic genera were identified in the methanotrophic community, and Methylosinus and Methylomicrobium were the most abundant, accounting for 32.3-36.7 and 45.7-47.3%, respectively. Type-I methanotrophs (69.4-73.7%) were more abundant than type-II methanotrophs (26.3-30.6%). Six methanotrophic strains belonging to 3 genera were successfully isolated, which included type I (Methylococcus sp. strain BE1 and Methylococcus sp. strain SF3) and type II (Methylocystis sp. strain BE2, Methylosinus sp. strain SF1, Methylosinus sp. strain SF2, and Methylosinus sp. strain SF4). This is the first study to examine the methanotrophic community structure in and isolate several methanotrophic strains from BDE-fertilized fields in VMD.
Collapse
Affiliation(s)
- Huynh Van Thao
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
- Department of Environmental Sciences, College of Environment and Natural Resources, Can Tho University
| | - Mitsunori Tarao
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Hideshige Takada
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Tomoyasu Nishizawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
- Ibaraki University, College of Agriculture
| | - Tran Sy Nam
- Department of Environmental Sciences, College of Environment and Natural Resources, Can Tho University
| | - Nguyen Van Cong
- Department of Environmental Sciences, College of Environment and Natural Resources, Can Tho University
| | - Do Thi Xuan
- Department of Microbial Technology, Institute of Food and Biotechnology, Can Tho University
| |
Collapse
|
36
|
Garner CT, Sankaranarayanan K, Abin CA, Garner RM, Cai H, Lawson PA, Krumholz LR. Methylocystis suflitae sp. nov., a novel type II methanotrophic bacterium isolated from landfill cover soil. Int J Syst Evol Microbiol 2024; 74. [PMID: 38259170 DOI: 10.1099/ijsem.0.006239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
A bacterial strain, designated NLS-7T, was isolated through enrichment of landfill cover soil in methane-oxidizing conditions. Strain NLS-7T is a Gram-stain negative, non-motile rod, approximately 0.8 µm wide by 1.3 µm long. Phylogenetic analysis based on 16S rRNA gene sequencing places it within the genus Methylocystis, with its closest relatives being M. hirsuta, M. silviterrae and M. rosea, with 99.9, 99.7 and 99.6 % sequence similarity respectively. However, average nucleotide identity and average amino acid identity values below the 95 % threshold compared to all the close relatives and digital DNA-DNA hybridization values between 20.9 and 54.1 % demonstrate that strain NLS-7T represents a novel species. Genome sequencing generated 4.31 million reads and genome assembly resulted in the generation of 244 contigs with a total assembly length of 3 820 957 bp (N50, 37 735 bp; L50, 34). Genome completeness is 99.5 % with 3.98 % contamination. It is capable of growth on methane and methanol. It grows optimally at 30 °C between pH 6.5 and 7.0. Strain NLS-7T is capable of atmospheric dinitrogen fixation and can use ammonium (as NH4Cl), l-aspartate, l-arginine, yeast extract, nitrate, l-leucine, l-proline, l-methionine, l-lysine and l-alanine as nitrogen sources. The major fatty acids are C18:1 ω8c and C18:1 ω7c. Based upon this polyphasic taxonomic study, strain NLS-7T represents a novel species of the genus Methylocystis, for which the name Methylocystis suflitae sp. nov. is proposed. The type strain is NLS-7T (=ATCC TSD-256T=DSM 112294T). The 16S rRNA gene and genome sequences of strain NLS-7T have been deposited in GenBank under accession numbers ON715489 and GCA_024448135.1, respectively.
Collapse
Affiliation(s)
- Christopher T Garner
- School of Biological Sciences, University of Oklahoma, 770 Van Vleet Oval, Norman, OK, 73019, USA
| | - Krithivasan Sankaranarayanan
- Laboratories of Molecular Anthropology and Microbiome Research, Stephenson Research and Technology Center, University of Oklahoma, 101 David L. Boren Blvd., Norman, OK, 73019, USA
| | - Christopher A Abin
- School of Biological Sciences, University of Oklahoma, 770 Van Vleet Oval, Norman, OK, 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, Stephenson Research and Technology Center, University of Oklahoma, 101 David L. Boren Blvd., Norman, OK, 73019, USA
| | - Rosa M Garner
- School of Biological Sciences, University of Oklahoma, 770 Van Vleet Oval, Norman, OK, 73019, USA
| | - Haiyuan Cai
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China. 73 East Beijing Road, Nanjing 210008, PR China
| | - Paul A Lawson
- School of Biological Sciences, University of Oklahoma, 770 Van Vleet Oval, Norman, OK, 73019, USA
| | - Lee R Krumholz
- School of Biological Sciences, University of Oklahoma, 770 Van Vleet Oval, Norman, OK, 73019, USA
| |
Collapse
|
37
|
Wang S, Chen X, Li W, Gong W, Wang Z, Cao W. Grazing exclusion alters soil methane flux and methanotrophic and methanogenic communities in alpine meadows on the Qinghai-Tibet Plateau. Front Microbiol 2023; 14:1293720. [PMID: 38164400 PMCID: PMC10757936 DOI: 10.3389/fmicb.2023.1293720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Grazing exclusion (GE) is an effective measure for restoring degraded grassland ecosystems. However, the effect of GE on methane (CH4) uptake and production remains unclear in dominant bacterial taxa, main metabolic pathways, and drivers of these pathways. This study aimed to determine CH4 flux in alpine meadow soil using the chamber method. The in situ composition of soil aerobic CH4-oxidizing bacteria (MOB) and CH4-producing archaea (MPA) as well as the relative abundance of their functional genes were analyzed in grazed and nongrazed (6 years) alpine meadows using metagenomic methods. The results revealed that CH4 fluxes in grazed and nongrazed plots were -34.10 and -22.82 μg‧m-2‧h-1, respectively. Overall, 23 and 10 species of Types I and II MOB were identified, respectively. Type II MOB comprised the dominant bacteria involved in CH4 uptake, with Methylocystis constituting the dominant taxa. With regard to MPA, 12 species were identified in grazed meadows and 3 in nongrazed meadows, with Methanobrevibacter constituting the dominant taxa. GE decreased the diversity of MPA but increased the relative abundance of dominated species Methanobrevibacter millerae from 1.47 to 4.69%. The proportions of type I MOB, type II MOB, and MPA that were considerably affected by vegetation and soil factors were 68.42, 21.05, and 10.53%, respectively. Furthermore, the structural equation models revealed that soil factors (available phosphorus, bulk density, and moisture) significantly affected CH4 flux more than vegetation factors (grass species number, grass aboveground biomass, grass root biomass, and litter biomass). CH4 flux was mainly regulated by serine and acetate pathways. The serine pathway was driven by soil factors (0.84, p < 0.001), whereas the acetate pathway was mainly driven by vegetation (-0.39, p < 0.05) and soil factors (0.25, p < 0.05). In conclusion, our findings revealed that alpine meadow soil is a CH4 sink. However, GE reduces the CH4 sink potential by altering vegetation structure and soil properties, especially soil physical properties.
Collapse
Affiliation(s)
- Shilin Wang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Xindong Chen
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Wen Li
- Key Laboratory of Development of Forage Germplasm in the Qinghai-Tibetan Plateau of Qinghai Province, Qinghai Academy of Animal Science and Veterinary Medicine of Qinghai University, Xining, China
| | - Wenlong Gong
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zhengwen Wang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Wenxia Cao
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
38
|
Cantera S, Rodríguez E, Santaella Vecchini N, López JC, García-Encina PA, Sousa DZ, Muñoz R. Resilience and robustness of alphaproteobacterial methanotrophs upon methane feast-famine scenarios. ENVIRONMENTAL RESEARCH 2023; 239:117376. [PMID: 37832766 DOI: 10.1016/j.envres.2023.117376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Most of methane (CH4) emissions contain low CH4 concentrations and typically occur at irregular intervals, which hinders the implementation and performance of methane abatement processes. This study aimed at understanding the metabolic mechanisms that allow methane oxidizing bacteria (MOB) to survive for long periods of time under methane starvation. To this aim, we used an omics-approach and studied the diversity and metabolism of MOB and non-MOB in bioreactors exposed to low CH4 concentrations under feast-famine cycles of 5 days and supplied with nutrient-rich broth. The 16S rRNA and the pmoA transcripts revealed that the most abundant and active MOB during feast and famine conditions belonged to the alphaproteobacterial genus Methylocystis (91-65%). The closest Methylocystis species were M. parvus and M. echinoides. Nitrifiers and denitrifiers were the most representative non-MOB communities, which likely acted as detoxifiers of the system. During starvation periods, the induced activity of CH4 oxidation was not lost, with the particulate methane monooxygenase of alphaproteobacterial MOB playing a key role in energy production. The polyhydroxyalkanoate and nitrification metabolisms of MOB had also an important role during feast-famine cycles, maintaining cell viability when CH4 concentrations were negligible. This research shows that there is an emergence and resilience of conventional alphaproteobacterial MOB, being the genus Methylocystis a centrepiece in environments exposed to dilute and intermittent methane emissions. This knowledge can be applied to the operation of bioreactors subjected to the treatment of dilute and discontinuous emissions via controlled bioaugmentation.
Collapse
Affiliation(s)
- Sara Cantera
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE, Wageningen, the Netherlands.
| | - Elisa Rodríguez
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain
| | - Nicolás Santaella Vecchini
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE, Wageningen, the Netherlands
| | - Juan Carlos López
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain
| | - Pedro A García-Encina
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE, Wageningen, the Netherlands
| | - Raul Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain.
| |
Collapse
|
39
|
Woern C, Grossmann L. Microbial gas fermentation technology for sustainable food protein production. Biotechnol Adv 2023; 69:108240. [PMID: 37647973 DOI: 10.1016/j.biotechadv.2023.108240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
The development of novel, sustainable, and robust food production technologies represents one of the major pillars to address the most significant challenges humanity is going to face on earth in the upcoming decades - climate change, population growth, and resource depletion. The implementation of microfoods, i.e., foods formulated with ingredients from microbial cultivation, into the food supply chain has a huge potential to contribute towards energy-efficient and nutritious food manufacturing and represents a means to sustainably feed a growing world population. This review recapitulates and assesses the current state in the establishment and usage of gas fermenting bacteria as an innovative feedstock for protein production. In particular, we focus on the most promising representatives of this taxon: the hydrogen-oxidizing bacteria (hydrogenotrophs) and the methane-oxidizing bacteria (methanotrophs). These unicellular microorganisms can aerobically metabolize gaseous hydrogen and methane, respectively, to provide the required energy for building up cell material. A protein yield over 70% in the dry matter cell mass can be reached with no need for arable land and organic substrates making it a promising alternative to plant- and animal-based protein sources. We illuminate the holistic approach to incorporate protein extracts obtained from the cultivation of gas fermenting bacteria into microfoods. Herein, the fundamental properties of the bacteria, cultivation methods, downstream processing, and potential food applications are discussed. Moreover, this review covers existing and future challenges as well as sustainability aspects associated with the production of microbial protein through gas fermentation.
Collapse
Affiliation(s)
- Carlos Woern
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
40
|
Seppey CVW, Cabrol L, Thalasso F, Gandois L, Lavergne C, Martinez-Cruz K, Sepulveda-Jauregui A, Aguilar-Muñoz P, Astorga-España MS, Chamy R, Dellagnezze BM, Etchebehere C, Fochesatto GJ, Gerardo-Nieto O, Mansilla A, Murray A, Sweetlove M, Tananaev N, Teisserenc R, Tveit AT, Van de Putte A, Svenning MM, Barret M. Biogeography of microbial communities in high-latitude ecosystems: Contrasting drivers for methanogens, methanotrophs and global prokaryotes. Environ Microbiol 2023; 25:3364-3386. [PMID: 37897125 DOI: 10.1111/1462-2920.16526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Methane-cycling is becoming more important in high-latitude ecosystems as global warming makes permafrost organic carbon increasingly available. We explored 387 samples from three high-latitudes regions (Siberia, Alaska and Patagonia) focusing on mineral/organic soils (wetlands, peatlands, forest), lake/pond sediment and water. Physicochemical, climatic and geographic variables were integrated with 16S rDNA amplicon sequences to determine the structure of the overall microbial communities and of specific methanogenic and methanotrophic guilds. Physicochemistry (especially pH) explained the largest proportion of variation in guild composition, confirming species sorting (i.e., environmental filtering) as a key mechanism in microbial assembly. Geographic distance impacted more strongly beta diversity for (i) methanogens and methanotrophs than the overall prokaryotes and, (ii) the sediment habitat, suggesting that dispersal limitation contributed to shape the communities of methane-cycling microorganisms. Bioindicator taxa characterising different ecological niches (i.e., specific combinations of geographic, climatic and physicochemical variables) were identified, highlighting the importance of Methanoregula as generalist methanogens. Methylocystis and Methylocapsa were key methanotrophs in low pH niches while Methylobacter and Methylomonadaceae in neutral environments. This work gives insight into the present and projected distribution of methane-cycling microbes at high latitudes under climate change predictions, which is crucial for constraining their impact on greenhouse gas budgets.
Collapse
Affiliation(s)
- Christophe V W Seppey
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Institute of Environmental Science and Geography, University of Potsdam, Potsdam-Golm, Germany
| | - Léa Cabrol
- Aix-Marseille University, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Frederic Thalasso
- Centro de Investigacíon y de Estudios Avanzados del Instituto Politecnico Nacional (Cinvestav-IPN), Departamento de Biotecnología y Bioingeniería, México, Mexico
| | - Laure Gandois
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Céline Lavergne
- HUB AMBIENTAL UPLA, Laboratory of Aquatic Environmental Research, Universidad de Playa Ancha, Valparaíso, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Karla Martinez-Cruz
- Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile
- Environmental Physics Group, Limnological Institute, University of Konstanz, Konstanz, Germany
| | | | - Polette Aguilar-Muñoz
- HUB AMBIENTAL UPLA, Laboratory of Aquatic Environmental Research, Universidad de Playa Ancha, Valparaíso, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Rolando Chamy
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Bruna Martins Dellagnezze
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Montevideo, Uruguay
| | - Claudia Etchebehere
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Montevideo, Uruguay
| | - Gilberto J Fochesatto
- Department of Atmospheric Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Oscar Gerardo-Nieto
- Centro de Investigacíon y de Estudios Avanzados del Instituto Politecnico Nacional (Cinvestav-IPN), Departamento de Biotecnología y Bioingeniería, México, Mexico
| | - Andrés Mansilla
- Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile
| | - Alison Murray
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, Nevada, USA
| | - Maxime Sweetlove
- Royal Belgian Institute for Natural Sciences, OD-Nature, Brussels, Belgium
| | - Nikita Tananaev
- Melnikov Permafrost Institute, Russian Academy of Sciences, Yakutsk, Russia
- Institute of Natural Sciences, North-Eastern Federal University, Yakutsk, Russia
| | - Roman Teisserenc
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Alexander T Tveit
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Anton Van de Putte
- Royal Belgian Institute for Natural Sciences, OD-Nature, Brussels, Belgium
| | - Mette M Svenning
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maialen Barret
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
41
|
Koike K, Honda R, Aoki M, Yamamoto‐Ikemoto R, Syutsubo K, Matsuura N. A quantitative sequencing method using synthetic internal standards including functional and phylogenetic marker genes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:497-511. [PMID: 37465846 PMCID: PMC10667660 DOI: 10.1111/1758-2229.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
The method of spiking synthetic internal standard genes (ISGs) to samples for amplicon sequencing, generating sequences and converting absolute gene numbers from read counts has been used only for phylogenetic markers and has not been applied to functional markers. In this study, we developed ISGs, including gene sequences of the 16S rRNA, pmoA, encoding a subunit of particulate methane monooxygenase and amoA, encoding a subunit of ammonia monooxygenase. We added ISGs to the samples, amplified the target genes and performed amplicon sequencing. For the mock community, the copy numbers converted from read counts using ISGs were equivalent to those obtained by the quantitative real-time polymerase chain reaction (4.0 × 104 versus 4.1 × 104 and 3.0 × 103 versus 4.0 × 103 copies μL-DNA-1 for 16S rRNA and pmoA genes, respectively), but we also identified underestimation, possibly due to primer coverage (7.8 × 102 versus 3.7 × 103 μL-DNA-1 for amoA gene). We then applied this method to environmental samples and analysed phylogeny, functional diversity and absolute quantities. One Methylocystis population was most abundant in the sludge samples [16S rRNA gene (3.8 × 109 copies g-1 ) and the pmoA gene (2.3 × 109 copies g-1 )] and were potentially interrelated. This study demonstrates that ISG spiking is useful for evaluating sequencing data processing and quantifying functional markers.
Collapse
Affiliation(s)
- Kazuyoshi Koike
- Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaJapan
| | - Ryo Honda
- Faculty of Geosciences and Civil EngineeringKanazawa UniversityKanazawaJapan
| | - Masataka Aoki
- Regional Environment Conservation DivisionNational Institute for Environmental Studies (NIES)IbarakiJapan
| | | | - Kazuaki Syutsubo
- Regional Environment Conservation DivisionNational Institute for Environmental Studies (NIES)IbarakiJapan
- Research Center for Water Environment Technology, School of Engineeringthe University of TokyoTokyoJapan
| | - Norihisa Matsuura
- Faculty of Geosciences and Civil EngineeringKanazawa UniversityKanazawaJapan
| |
Collapse
|
42
|
Schnyder E, Bodelier PLE, Hartmann M, Henneberger R, Niklaus PA. Experimental erosion of microbial diversity decreases soil CH 4 consumption rates. Ecology 2023; 104:e4178. [PMID: 37782571 DOI: 10.1002/ecy.4178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/11/2023] [Accepted: 08/25/2023] [Indexed: 10/04/2023]
Abstract
Biodiversity-ecosystem functioning (BEF) experiments have predominantly focused on communities of higher organisms, in particular plants, with comparably little known to date about the relevance of biodiversity for microbially driven biogeochemical processes. Methanotrophic bacteria play a key role in Earth's methane (CH4 ) cycle by removing atmospheric CH4 and reducing emissions from methanogenesis in wetlands and landfills. Here, we used a dilution-to-extinction approach to simulate diversity loss in a methanotrophic landfill cover soil community. Replicate samples were diluted 101 -107 -fold, preincubated under a high CH4 atmosphere for microbial communities to recover to comparable size, and then incubated for 86 days at constant or diurnally cycling temperature. We hypothesize that (1) CH4 consumption decreases as methanotrophic diversity is lost, and (2) this effect is more pronounced under variable temperatures. Net CH4 consumption was determined by gas chromatography. Microbial community composition was determined by DNA extraction and sequencing of amplicons specific to methanotrophs and bacteria (pmoA and 16S gene fragments). The richness of operational taxonomic units (OTU) of methanotrophic and nonmethanotrophic bacteria decreased approximately linearly with log-dilution. CH4 consumption decreased with the number of OTUs lost, independent of community size. These effects were independent of temperature cycling. The diversity effects we found occured in relatively diverse communities, challenging the notion of high functional redundancy mediating high resistance to diversity erosion in natural microbial systems. The effects also resemble the ones for higher organisms, suggesting that BEF relationships are universal across taxa and spatial scales.
Collapse
Affiliation(s)
- Elvira Schnyder
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Martin Hartmann
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | - Ruth Henneberger
- Institute of Molecular Health Science, ETH Zürich, Zürich, Switzerland
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| |
Collapse
|
43
|
Pérez G, Krause SMB, Bodelier PLE, Meima-Franke M, Pitombo L, Irisarri P. Interactions between Cyanobacteria and Methane Processing Microbes Mitigate Methane Emissions from Rice Soils. Microorganisms 2023; 11:2830. [PMID: 38137974 PMCID: PMC10745823 DOI: 10.3390/microorganisms11122830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Cyanobacteria play a relevant role in rice soils due to their contribution to soil fertility through nitrogen (N2) fixation and as a promising strategy to mitigate methane (CH4) emissions from these systems. However, information is still limited regarding the mechanisms of cyanobacterial modulation of CH4 cycling in rice soils. Here, we focused on the response of methane cycling microbial communities to inoculation with cyanobacteria in rice soils. We performed a microcosm study comprising rice soil inoculated with either of two cyanobacterial isolates (Calothrix sp. and Nostoc sp.) obtained from a rice paddy. Our results demonstrate that cyanobacterial inoculation reduced CH4 emissions by 20 times. Yet, the effect on CH4 cycling microbes differed for the cyanobacterial strains. Type Ia methanotrophs were stimulated by Calothrix sp. in the surface layer, while Nostoc sp. had the opposite effect. The overall pmoA transcripts of Type Ib methanotrophs were stimulated by Nostoc. Methanogens were not affected in the surface layer, while their abundance was reduced in the sub surface layer by the presence of Nostoc sp. Our results indicate that mitigation of methane emission from rice soils based on cyanobacterial inoculants depends on the proper pairing of cyanobacteria-methanotrophs and their respective traits.
Collapse
Affiliation(s)
- Germán Pérez
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands or (G.P.); (S.M.B.K.); (M.M.-F.)
- Laboratory of Microbiology, Department of Plant Biology, Agronomy Faculty, University of the Republic, Montevideo 12900, Uruguay;
| | - Sascha M. B. Krause
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands or (G.P.); (S.M.B.K.); (M.M.-F.)
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200062, China
| | - Paul L. E. Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands or (G.P.); (S.M.B.K.); (M.M.-F.)
| | - Marion Meima-Franke
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands or (G.P.); (S.M.B.K.); (M.M.-F.)
| | - Leonardo Pitombo
- Department of Environmental Sciences, Federal University of São Carlos (UFSCar), São Paulo 18052-780, Brazil;
| | - Pilar Irisarri
- Laboratory of Microbiology, Department of Plant Biology, Agronomy Faculty, University of the Republic, Montevideo 12900, Uruguay;
| |
Collapse
|
44
|
Danilova OV, Oshkin IY, Belova SE, Miroshnikov KK, Ivanova AA, Dedysh SN. One Step Closer to Enigmatic USCα Methanotrophs: Isolation of a Methylocapsa-like Bacterium from a Subarctic Soil. Microorganisms 2023; 11:2800. [PMID: 38004811 PMCID: PMC10672854 DOI: 10.3390/microorganisms11112800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The scavenging of atmospheric trace gases has been recognized as one of the lifestyle-defining capabilities of microorganisms in terrestrial polar ecosystems. Several metagenome-assembled genomes of as-yet-uncultivated methanotrophic bacteria, which consume atmospheric CH4 in these ecosystems, have been retrieved in cultivation-independent studies. In this study, we isolated and characterized a representative of these methanotrophs, strain D3K7, from a subarctic soil of northern Russia. Strain D3K7 grows on methane and methanol in a wide range of temperatures, between 5 and 30 °C. Weak growth was also observed on acetate. The presence of acetate in the culture medium stimulated growth at low CH4 concentrations (~100 p.p.m.v.). The finished genome sequence of strain D3K7 is 4.15 Mb in size and contains about 3700 protein-encoding genes. According to the result of phylogenomic analysis, this bacterium forms a common clade with metagenome-assembled genomes obtained from the active layer of a permafrost thaw gradient in Stordalen Mire, Abisco, Sweden, and the mineral cryosol at Axel Heiberg Island in the Canadian High Arctic. This clade occupies a phylogenetic position in between characterized Methylocapsa methanotrophs and representatives of the as-yet-uncultivated upland soil cluster alpha (USCα). As shown by the global distribution analysis, D3K7-like methanotrophs are not restricted to polar habitats but inhabit peatlands and soils of various climatic zones.
Collapse
Affiliation(s)
| | | | | | | | | | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave. 33/2, Moscow 119071, Russia; (O.V.D.); (I.Y.O.); (S.E.B.); (A.A.I.)
| |
Collapse
|
45
|
Grégoire DS, George NA, Hug LA. Microbial methane cycling in a landfill on a decadal time scale. Nat Commun 2023; 14:7402. [PMID: 37973978 PMCID: PMC10654671 DOI: 10.1038/s41467-023-43129-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Landfills generate outsized environmental footprints due to microbial degradation of organic matter in municipal solid waste, which produces the potent greenhouse gas methane. With global solid waste production predicted to increase substantially in the next few decades, there is a pressing need to better understand the temporal dynamics of biogeochemical processes that control methane cycling in landfills. Here, we use metagenomic approaches to characterize microbial methane cycling in waste that was landfilled over 39 years. Our analyses indicate that newer waste supports more diverse communities with similar composition compared to older waste, which contains lower diversity and more varied communities. Older waste contains primarily autotrophic organisms with versatile redox metabolisms, whereas newer waste is dominated by anaerobic fermenters. Methane-producing microbes are more abundant, diverse, and metabolically versatile in new waste compared to old waste. Our findings indicate that predictive models for methane emission in landfills overlook methane oxidation in the absence of oxygen, as well as certain microbial lineages that can potentially contribute to methane sinks in diverse habitats.
Collapse
Affiliation(s)
- Daniel S Grégoire
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| | - Nikhil A George
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Laura A Hug
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
46
|
Fry EL, Ashworth D, Allen KAJ, Chardon NI, Rixen C, Björkman MP, Björk RG, Stålhandske T, Molau M, Locke-King B, Cantillon I, McDonald C, Liu H, De Vries FT, Ostle NJ, Singh BK, Bardgett RD. Vegetation type, not the legacy of warming, modifies the response of microbial functional genes and greenhouse gas fluxes to drought in Oro-Arctic and alpine regions. FEMS Microbiol Ecol 2023; 99:fiad145. [PMID: 37951295 PMCID: PMC10673709 DOI: 10.1093/femsec/fiad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/13/2023] Open
Abstract
Climate warming and summer droughts alter soil microbial activity, affecting greenhouse gas (GHG) emissions in Arctic and alpine regions. However, the long-term effects of warming, and implications for future microbial resilience, are poorly understood. Using one alpine and three Arctic soils subjected to in situ long-term experimental warming, we simulated drought in laboratory incubations to test how microbial functional-gene abundance affects fluxes in three GHGs: carbon dioxide, methane, and nitrous oxide. We found that responses of functional gene abundances to drought and warming are strongly associated with vegetation type and soil carbon. Our sites ranged from a wet, forb dominated, soil carbon-rich systems to a drier, soil carbon-poor alpine site. Resilience of functional gene abundances, and in turn methane and carbon dioxide fluxes, was lower in the wetter, carbon-rich systems. However, we did not detect an effect of drought or warming on nitrous oxide fluxes. All gene-GHG relationships were modified by vegetation type, with stronger effects being observed in wetter, forb-rich soils. These results suggest that impacts of warming and drought on GHG emissions are linked to a complex set of microbial gene abundances and may be habitat-specific.
Collapse
Affiliation(s)
- Ellen L Fry
- School of Earth and Environment Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Department of Biology, Edge Hill University, St Helens Road, Ormskirk, Lancashire, L39 4AP, United Kingdom
| | - Deborah Ashworth
- School of Earth and Environment Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Kimberley A J Allen
- School of Earth and Environment Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Nathalie Isabelle Chardon
- Biodiversity Research Centre, University of British Columbia, 2212 Main Mall Vancouver, BC V6T 1Z4, Canada
| | - Christian Rixen
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, CH-7260 Davos Dorf, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Flüelastrasse 11, 7260 Davos Dorf, Switzerland
- Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERC, Flüelastrasse 11, 7260 Davos Dorf, Switzerland
| | - Mats P Björkman
- Department of Earth Sciences, University of Gothenburg, Box 100 405 30 Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Box 100 405 30 Gothenburg, Gothenburg, Sweden
| | - Robert G Björk
- Department of Earth Sciences, University of Gothenburg, Box 100 405 30 Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Box 100 405 30 Gothenburg, Gothenburg, Sweden
| | - Thomas Stålhandske
- Department of Earth Sciences, University of Gothenburg, Box 100 405 30 Gothenburg, Gothenburg, Sweden
| | - Mathias Molau
- Department of Earth Sciences, University of Gothenburg, Box 100 405 30 Gothenburg, Gothenburg, Sweden
| | - Brady Locke-King
- Department of Biology, Edge Hill University, St Helens Road, Ormskirk, Lancashire, L39 4AP, United Kingdom
| | - Isabelle Cantillon
- Department of Biology, Edge Hill University, St Helens Road, Ormskirk, Lancashire, L39 4AP, United Kingdom
| | - Catriona McDonald
- Hawkesbury Institute for the Environment, Western Sydney University, Bourke Street, Penrith, NSW, Australia
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Bourke Street, Penrith, NSW, Australia
| | - Franciska T De Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Nick J Ostle
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YW, United Kingdom
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Bourke Street, Penrith, NSW, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Bourke Street, Penrith, NSW, Australia
| | - Richard D Bardgett
- School of Earth and Environment Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
47
|
Goraj W, Pytlak A, Grządziel J, Gałązka A, Stępniewska Z, Szafranek-Nakonieczna A. Dynamics of Methane-Consuming Biomes from Wieliczka Formation: Environmental and Enrichment Studies. BIOLOGY 2023; 12:1420. [PMID: 37998019 PMCID: PMC10669130 DOI: 10.3390/biology12111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
The rocks surrounding Wieliczka salt deposits are an extreme, deep subsurface ecosystem that as we studied previously harbors many microorganisms, including methanotrophs. In the presented research bacterial community structure of the Wieliczka Salt Mine was determined as well as the methanotrophic activity of the natural microbiome. Finally, an enrichment culture of methane-consuming methanotrophs was obtained. The research material used in this study consisted of rocks surrounding salt deposits in the Wieliczka Salt Mine. DNA was extracted directly from the pristine rock material, as well as from rocks incubated in an atmosphere containing methane and mineral medium, and from a methanotrophic enrichment culture from this ecosystem. As a result, the study describes the composition of the microbiome in the rocks surrounding the salt deposits, while also explaining how biodiversity changes during the enrichment culture of the methanotrophic bacterial community. The contribution of methanotrophic bacteria ranged from 2.614% in the environmental sample to 64.696% in the bacterial culture. The methanotrophic enrichment culture was predominantly composed of methanotrophs from the genera Methylomonas (48.848%) and Methylomicrobium (15.636%) with methane oxidation rates from 3.353 ± 0.105 to 4.200 ± 0.505 µmol CH4 mL-1 day-1.
Collapse
Affiliation(s)
- Weronika Goraj
- Department of Biology and Biotechnology of Microorganisms, Faculty of Medicine, The John Paul II Catholic University of Lublin, Str. Konstantynów 1I, 20-708 Lublin, Poland;
| | - Anna Pytlak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-280 Lublin, Poland;
| | - Jarosław Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation–State Research Institute (IUNG-PIB), Czartoryskich 8, 24-100 Puławy, Poland; (J.G.); (A.G.)
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation–State Research Institute (IUNG-PIB), Czartoryskich 8, 24-100 Puławy, Poland; (J.G.); (A.G.)
| | - Zofia Stępniewska
- Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708 Lublin, Poland;
| | - Anna Szafranek-Nakonieczna
- Department of Biology and Biotechnology of Microorganisms, Faculty of Medicine, The John Paul II Catholic University of Lublin, Str. Konstantynów 1I, 20-708 Lublin, Poland;
| |
Collapse
|
48
|
Shinjo R, Oe F, Nakagawa K, Murase J, Asakawa S, Watanabe T. Type-specific quantification of particulate methane monooxygenase gene of methane-oxidizing bacteria at the oxic-anoxic interface of a surface paddy soil by digital PCR. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:392-403. [PMID: 37078408 PMCID: PMC10472520 DOI: 10.1111/1758-2229.13155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
Aerobic methane-oxidizing bacteria (MOB) play an important role in mitigating methane emissions from paddy fields. In this study, we developed a differential quantification method for the copy number of pmoA genes of type Ia, Ib, and IIa MOB in paddy field soil using chip-based digital PCR. Three probes specific to the pmoA of type Ia, Ib, and IIa MOB worked well in digital PCR quantification when genomic DNA of MOB isolates and PCR-amplified DNA fragments of pmoA were examined as templates. When pmoA genes in the surface soil layer of a flooded paddy were quantified by digital PCR, the copy numbers of type Ia, Ib, and IIa MOB were 105 -106 , 105 -106 , and 107 copies g-1 dry soil, respectively, with the highest values in the top 0-2-mm soil layer. Especially, the copy numbers of type Ia and Ib MOB increased by 240% and 380% at the top layer after soil flooding, suggesting that the soil circumstances at the oxic-anoxic interfaces were more preferential for growth of type I MOB than type II MOB. Thus, type I MOB likely play an important role in the methane consumption at the surface paddy soil.
Collapse
Affiliation(s)
- Rina Shinjo
- Graduate School of Bioagricultural SciencesNagoya University, ChikusaNagoya464‐8601Japan
| | - Fumika Oe
- Graduate School of Bioagricultural SciencesNagoya University, ChikusaNagoya464‐8601Japan
| | - Koki Nakagawa
- School of Agricultural SciencesNagoya University, ChikusaNagoya464‐8601Japan
| | - Jun Murase
- Graduate School of Bioagricultural SciencesNagoya University, ChikusaNagoya464‐8601Japan
| | - Susumu Asakawa
- Graduate School of Bioagricultural SciencesNagoya University, ChikusaNagoya464‐8601Japan
| | - Takeshi Watanabe
- Graduate School of Bioagricultural SciencesNagoya University, ChikusaNagoya464‐8601Japan
| |
Collapse
|
49
|
Tian W, Wang H, Xiang X, Loni PC, Qiu X, Wang R, Huang X, Tuovinen OH. Water table level controls methanogenic and methanotrophic communities and methane emissions in a Sphagnum-dominated peatland. Microbiol Spectr 2023; 11:e0199223. [PMID: 37747896 PMCID: PMC10580971 DOI: 10.1128/spectrum.01992-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/27/2023] [Indexed: 09/27/2023] Open
Abstract
Peatlands are important sources of the greenhouse gas methane emissions equipoised by methanogens and methanotrophs. However, knowledge about how microbial functional groups associated with methane production and oxidation respond to water table fluctuations has been limited to date. Here, methane-related microbial communities and the potentials of methane production and oxidation were determined along sectioned peat layers in a subalpine peatland across four Sphagnum-dominated sites with different water table levels. Methane fluxes were also monitored at these sites. The results showed that mcrA gene copies for methanogens were the highest in the 10- to 15-cm peat layer, which was also characterized by the maximum potential methane production (24.53 ± 1.83 nmol/g/h). Copy numbers of the pmoA gene for type Ia and Ib methanotrophs were enriched in the 0-5 cm peat layer with the highest potential methane oxidation (43.09 ± 3.44 nmol/g/h). For the type II methanotrophs, the pmoA gene copies were higher in the 10- to 15-cm peat layer. Hydrogenotrophic methanogens and type II methanotrophs dominated the methane functional groups. Deterministic process contributed more to methanogenic and methanotrophic community assemblages in comparison with stochastic process. The level of water table significantly shaped methanogenic and methanotrophic community structures and regulated methane fluxes. Compared with vascular plants, Sphagnum mosses significantly reduced the methane emissions in peatlands. Collectively, these findings enhance a comprehensive understanding of the effect of the water table level on methane functional groups, with consequential implications for reducing methane emissions within peatland ecosystems.IMPORTANCEThe water table level is recognized as a critical factor in regulating methane emissions, which are largely dependent on the balance of methanogens and methanotrophs. Previous studies on peat methane emissions have been mostly focused on spatial-temporal variations and the relationship with meteorological conditions. However, the role of the water table level in methane emissions remains unknown. In this work, four representative microhabitats along a water table gradient in a Sphagnum-dominated peatland were sampled to gain an insight into methane functional communities and methane emissions as affected by the water table level. The changes in methane-related microbial community structure and assembly were used to characterize the response to the water table level. This study improves the understanding of the changes in methane-related microbial communities and methane emissions with water table levels in peatlands.
Collapse
Affiliation(s)
- Wen Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- College of Resource and Environment, Anhui Science and Technology of University, Chuzhou, China
- Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Xing Xiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- College of Life Science, Shangrao Normal University, Shangrao, China
| | - Prakash C. Loni
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Xuan Qiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Ruicheng Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Xianyu Huang
- Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan, China
| | - Olli H. Tuovinen
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
50
|
Pelsma KAJ, Verhagen DAM, Dean JF, Jetten MSM, Welte CU. Methanotrophic potential of Dutch canal wall biofilms is driven by Methylomonadaceae. FEMS Microbiol Ecol 2023; 99:fiad110. [PMID: 37698884 PMCID: PMC10561707 DOI: 10.1093/femsec/fiad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023] Open
Abstract
Global urbanization of waterways over the past millennium has influenced microbial communities in these aquatic ecosystems. Increased nutrient inputs have turned most urban waters into net sources of the greenhouse gases carbon dioxide (CO2) and methane (CH4). Here, canal walls of five Dutch cities were studied for their biofilm CH4 oxidation potential, alongside field observations of water chemistry, and CO2 and CH4 emissions. Three cities showed canal wall biofilms with relatively high biological CH4 oxidation potential up to 0.48 mmol gDW-1 d-1, whereas the other two cities showed no oxidation potential. Salinity was identified as the main driver of biofilm bacterial community composition. Crenothrix and Methyloglobulus methanotrophs were observed in CH4-oxidizing biofilms. We show that microbial oxidation in canal biofilms is widespread and is likely driven by the same taxa found across cities with distinctly different canal water chemistry. The oxidation potential of the biofilms was not correlated with the amount of CH4 emitted but was related to the presence or absence of methanotrophs in the biofilms. This was controlled by whether there was enough CH4 present to sustain a methanotrophic community. These results demonstrate that canal wall biofilms can directly contribute to the mitigation of greenhouse gases from urban canals.
Collapse
Affiliation(s)
- Koen A J Pelsma
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Daniël A M Verhagen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Joshua F Dean
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, United Kingdom
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|